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ABSTRACT 

Real-time database systems support apphcations 
which have severe operational constraints such as tran- 
saction deadlmes and continued operation in the face of 
failures. in designing real-time database systems, there 
can be two approaches to meet those constraints. Fit 
approach is to redesign conventional database systems 
architecture to replace the bottleneck components. 
Second approach is to trade desired features, such as 
serializability, cx exploit semantic information of tran- 
sactions and dam for high performance and reliability. 
In this paper, we discuss issues involved in these 
approaches, and present algorithms to solve problems 
in real-time database systems. 

1. Introduction 
As computers are becoming essential part of 

real-time systems, real-firne cor~4~&1g is emerging as 
an important discipline in computer science and 
engineering [SHI871. Since any kind of computing 
needs to access data, methods for designing and imple- 
menting database systems that satisfy the requirement 
of timing constraints in collecting, updating, and 
retrieving data play an important role in the success of 
real-time computing. In the recent workshops span- 
sored by the Office of Naval Research [ONR87, 
IRM88], developers of “real” real-time systems pointed 
to the need for basic research in database systems that 
satisfy timing requirements in processing shared data. 
Further evidence of its importance is the recent growth 
of research in this field and the announcements by 
some vendors of database products that include 
features rvzhieving high availability and predictability 
LsON883. 

Compared with traditional databases. real-time 
database systems have a distinct feature: they must 
satisfy not only the database consistency constrairtts but 
also the timing constraints associated with transactions. 

Approaches to Design of Real-Time Database Systems 

Hytichul Kang 

Department of Computer Scicnct 
Chung Ang University 

Seoul, Korea 

In other words, “time” is one of the key factors to be 
considered in real-time database systems. Transactions 
inust be scheduled in such a way that they can be com- 
pleted before their corresponding deadlines expire. For 
example, both the update and query on a tracking data 
of a missile must be processed within the given dead- 
lines: otherwise, the information provided could be of 
little value. How to specify or determine deadlines is a 
relatively unexplored but dif?icult problem. It is even 
harder to guarantee that transactions can meet their 
deadlines due to dynamic nature of conflicts on shared 
data objects. 

State-of-the-art database management systems 
are typically not used in real-time applications due to 
two inadequacies: poor performance and lack of pred- 
ictability. Although conventional database systems 
provide efficient ways to store and retrieve data 
through user-friendly interface, they rely on secondary 
storage to store the database. In conventional database 
systems, transaction processing requires accessing 
database stored on the secondary storage; thus transac- 
tion response time is limited by disk access delays, 
which can be in the order of milliseconds. Still these 
databases arc fast enough for traditional applications in 
which a response time of few seconds is often accept- 
able to human users. However, those systems may not 
be able to provide a response which is fast enough for 
high-performance real-time applications that require 
responses in the order of micro-seconds. Consequently, 
requirements and design objectives of real-time data- 
base systems widely differ from those of conventional 
database systems. A natural question is how should we 
redesign conventional database systems so that its per- 
formance and reliability can be acceptabb.for real-time 
applications. 

Thii work WI, supported in pat by the Office. of Naval 
Resurd~ under contract I NOOO14-88-K-0245, by he Depmmmt of 
Energy under contraa # DEFGO5-88-ER25063. and by the Federal 
Systems Division of JBM Corporation. 

One approach to achieve high performance is to 
replace bottleneck devices (e.g., a disk) by a high speed 
version. Second alternative is to tinker with features of 
conventional database systems. For example, by 
exploiting semantic information associated with tran- 
sactions and data objects, we can use the notion of 
correctness different from the serializability of transac- 
tion execution. Third approach is the effective use of 
data replication to improve performance as well as 
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reliability. In this paper. we discuss issues and 
approaches to the design of high-performance real-time 
database systems, and present algorithms to solve prob- 
lems in those approaches. 

2. Main Memory Database Systems 

2.1. Recovery Problem 
Due to advancements in integrated circuits tech- 

nology, the chip densities of semiconductor memories 
have been increased dramatically throughout the past 
decade, and the cost of main memory has been sharply 
decreased. The availability of large, relatively inexpen- 
sive main memories coupled with the demand for faster 
response time for real-time systems has brought a new 
perspective to database system designers: main 
memory databases in which the primary copies of all 
data reside permanently in main memory. 

Elimination of disk access can contribute to sub- 
stantial improvement in transaction response time. 
However, the migration of data from secondary storage 
to main memory requires a careful investigation of the 
components of traditional database systems, since they 
introduce some potential problems of their own. The 
most critical problem is associated with the recovery 
mechanism of the system, which must guarantee tran- 
saction atomic&y and durability [SON36]. Since the 
least expensive form of main memory is volatile. any 
loss of electric power destroys all stored data. Conse- 
quentIy, a main memory database system still requires 
a disk to act as stable storage to provide a backup copy 
for the database. 

A crash recovery mechanism in database systems 
essentially consists of two phases: preparation for the 
recovery by saving necessary information during nor- 
mal operation of the system, and the coordination of 
actual recovery. The preparation for recovery is usually 
performed through checkpointing and logging which 
record database changes to a separate stable medium 
such as a disk. The disk activity associated with the 
preparation for recovery can be a bottleneck for tradi- 
tional disk-oriented database systems. For a main 
memory database system with no need for disk activity 
for data access, this disk activity may have even worse 
effects on system performance, possibly nullifying the 
advantages of having all the data in main memory. 
Thus, constructing a recoverable main memory data- 
base system using volatile memory appears to be one of 
the most challenging issues to the system designer. One 
important requirement in constructing a checkpoint is 
that the interference of the checkpointing procedure 
with the transaction processing should be kept as small 
as possible. Consistency of the constructed checkpoint 
is also important since no undo operation would be 
necessary during recovery, reducing the recovery time. 

On-fine log compression is:neces* to keep the 
log short to achieve i r&pitP&%stat~ Cotttpressioh oan be 
used by any database system to itnprove restart time, 
but is essential for. main memory database systems 
which may achieve very high transaction throughput. 
Most of the recovery techniques assume that a portion 
of memory can be made non-volatile by using batteries 
as a backup power supply [DEW&I, HAG86, SAL861. 
By exploiting this portion of mm-volatile memory, log 
compression can be achieved effectively. It has been 
shown that the amount of such memory the system 
would need is not great [SAL%]. 

2.2. An Approach 
In this section, we present a recovery scheme 

that is based on the techniques of non-interfering incre- 
mental checkpointing and log compression using non- 
volatile areas of memory. They are combined to 
increase the transaction &o&put by reducing the 
number of log write operations, and minimizing the 
interference of checkpointing with the transaction pro- 
cessing. The scheme also provides. a rapid restart of the 
database system from failures. 

To make transactions durable in spite of system 
failures, the system must ensure that before a transac- 
tion commits, either all pages updzitcd by the transac- 
tion are flushed into the backup copy, or a complete 
redo information is recorded in the log on the stable 
storage. The latter (saving redo information) achieves 
better performance than the former in general, since the 
former may involve more I/O activity. Our recovery 
scheme ensures the latter. 

The checkpointing in this scheme is performed 
concurrently with transaction activity while construct- 
ing a transaction-consistent checkpoint on disk, without 
requiring the database quiesce to save a consistent 
state. This is particularly important in an environment 
where many update trans+ctions generate a large 
number of updated pages between checkpoints, or in a 
real-time application where high availabiliqr of the 
database is desirable. 

To construct a transaction-consistent checkpoint, 
the updates of a transaction must be either included in 
the checkpoint completely, or they must not be 
included at all. To achieve this, transactions ate divided 
into two groups according to their relationships to the 
current checkpoint: included-transactions (JNT) and 
excluded-transactions (EXT). The.updates belonging to 
lNT are included in the current checkpoint while those 
belonging to EXT are not included. Time-stamps are 
used to determine membership in INl’ and EXT. A 
transaction-consistent “state of the database is always 
maintained on disk. At a checkpoint time, only the por- 
tion of the saved state which has been changed since 
the last checkpoint is replaced. When a checkpoint 
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completes, next one begins with only a negligible 
interruption of service to delete old versions that have 
been checkpointed. 

A checkpointing begins by setting the checkpoint 
number (CN) as the current clock value. Transactions 
with the time-stamps smaller than the CN are the 
members of INT, others are the members of EXT. The 
transaction activity continues with the checkpomting 
process. When an EXT updates data objects updated by 
INT, new in-memory versions are created, leaving the 
oId versions to be written to disk. 

The checkpointing process waits until there is no 
active INT in the system, It then begins to write the 
pages updated by lNT to disk, constructing a portion of 
the state to be replaced in the checkpoint. Let & be the 
set of pages that have been updated by INT since the 
last checkpoint. First, the members of 6, must be 
identified. This might be done with hardware assist by 
setting a dirty bit when the page is updated by INT. 
Then 6t must be written on disk without the loss of 
previous checkpoint in the case of a system failure. To 
achieve this, a variation of stable storage technique 
LAM811 can be used in two steps. During the first 
step, i& is written to a new disk file S2. When it is suc- 
cessfully completed, then fit is written into the desired 
location iu disk. If the system crashes while the check- 
point state is being replaced by 61, a consistent check- 
pointed state can be reconstructed from &. 

After 62 has been successfully created, a “begin 
checkpoint” record is written to the log, indicating the 
completion of the first step of checkpointing procedure. 
When 6, is written to their original locations on disk, 
making the checkpoint state on disk identical to the 
database state in memory as if all transaction activities 
are completed and no more transaction has been started 
after CN, an “end checkpoint” record is written to the 
log. It indicates that the checkpoint in disk is a com- 
plete transaction-consistent state of the database, and it 
includes all the updates of transactions active at time 
CN. The address of the checkpoint .record and the value 
of CN are saved in non-volatile memory so that they 
can be used in locating the most recent checkpoint 
record in the log during recovery. When a checkpoint- 
ing procedure completes, pages in S1, updated by EXT, 
are overwritten by the new versions, and their dirty bits 
are set. They are the initial members of fil for the next 
checkpoint. Then the next checkpoint begins with the 
new CN. 

The checkpointing approach presented here is 
different form that of [DEW843 in two important ways. 
First, it constructs a transaction-consistent state of the 
database instead of action-consistent state. Second, it 
does not require the database quiesce. It is also dif- 
ferent from the “fuzzy dump” checkpointing in 
EHAG86], which constructs an inconsistent state of the 

database. 
The non-volatile memory is used to hold au in- 

memory log so that the log writes to disk can be 
delayed. In-memory log can be considered as a reliable 
disk output queue for log data. When the log data must 
be written to disk since in-memory log buffer is full, 
many transactions that have entries in the log may now 
be completed. For aborted transactions, the whole 
entries in the log may be eliminated; for committed 
transactions, the undo part of log records may be elim- 
inated. In addition, the log entries can be stored in disk 
in a more compact form. In the conventional approach, 
log entries for all transactions are intermixed in the log. 
A more efficient alternative is to maintain the log on a 
per transaction basis, and it is possible by using the 
non-volatile memory. Non-volatile memory also assists 
in reducing the recovery time by maintaining the infor- 
mation such as the log entry of the oldest update that 
refers to an uncheckpointed page. to help to determine 
the point in the log from which recovery should begin. 

3. Distributed Real-Time Database Systems 
Falling cost of hardware and advances in com- 

munication technology over the last decade have trig- 
gered considerable interests in distributed database sys- 
tems. In such systems, data objects are spread over a 
collection of autonomous computer systems (called 
sites) that are connected via a communication network. 
Since the physical separation of sites ensures the 
independent failure modes of sites and limits the propa- 
gation of errors throughout. the system, distributed data- 
base systems must be able to continue to operate 
correctly despite of component failures. However, as 
the size of a distributed system increases, so does the 
probability that one or more of its components will fail. 
‘llms, distributed systems must be fault tolerant to com- 
ponent failures to achieve a desired level of reliability 
and availability. Asserting that the system will con- 
tinue to operate correctly if less than a certain number 
of failure occurs is a guarantee independent of the reli- 
ability of the sites that make up the system. It is a 
measure, of the fault tolerance suppotted by the system 
architecture, in contrast to fault tolerance achieved by 
using reliable components. 

Distributed database systems are of great impor- 
tance to real-time applications because they offer 
several advantages such as higher system availability, 
over a single-site database system. In many situations, 
real-time systems naturally include distributed database 
systems because they are inherently distributed. In dis- 
tributed real-time database systems, the main issue is 
how to make several sites work collectively so that a 
high level of performance is obtained. In this section, 
we discuss approaches to the design of high- 
performance distributed real-time database systems. 

- 276 - 



3.1. Using Semantic Information 
We can enhance the performance of distributed 

real-time database systems by exploiting semantic 
information of transactions. A read-only transaction is 
a typical example of the use of transaction semantics. 
A read-only transaction can be used to take a check- 
point of the database for recovering from subsequent 
failures, or to check the consistency of the database, or 
simply to retrieve the information from the database. 
Since read-only transactions are still transactions, they 
can be processed using the algorithms for arbitrary 
tmnsactions. However, it is possible to use special pro- 
cessing algorithms for read-only transactions in order 
to improve efficiency, resulting in high performance. 
With this approach, the specialized transaction process- 
ing algorithm can take advantage of the semantic infor- 
mation that no data will be modified by the transaction. 

Se&&ability has been accepted as the standard 
correctness criteria in database systems. It means that 
the concurrent execution of a group of transactions is 
equivalent to some serial execution of the same group 
of transactions. However, people actually developing 
large real-time systems are unwilling to pay the price 
for serializability, because predictability of response is 
severely compromised due to bIocking or preemption. 
For read-only transactions, correcmess requirements 
can be divided into two independent classes: the 
currency requirement and the consistency requirement. 

The currency requirement specifies what update 
transactions should be &&ted by the data read. There 
m several ways in which the currency requirement can 
be specified;-we are”mterested in the following two: 

(1) Tixedztime requirement: A read-only transac- 
tron T requires data as they existed at a given 
time r. This means that the data read by the tran- 
saction must reflect the modifications of all 
update transactions committed .in the system 
before f. 
Latest-time requirement: A read-only transac- 
tion T requires data it reads reflect at least all 
update transactions committed before T is 
started, i.e., T requires most up-to-date data 
available. 

The consistency requirement specifies the degree 
of consistency needed by read-only transactions. A 
read-only transaction may -have one’ of ‘the following 
requirements: 

(1) Internal consistency: It only requires that the 
values read by each read-only transaction 
satisfy the invariants (consistency constraints) 
of the database. 

(2) Weak consistency: It requires that the values 
read by each read-only transaction be the result 
of a serial execution of some subset of the 

(3) 

update transac@onS’. com@.tted. Weak con- 
sistency is at’ l.east ‘as strong a requirement as 
internal consistency, because the result of a 
serial execution of update transactions always 
satisfies consistency constraints. 
Strong consistency: It requires that all update 
transactions together with all other read-only 
transactions that rquire strong consistency, 
must be serializable as a group. Strong con- 
sistency requirement is equivalent to serializa- 
bility requirement for processing of arbitrary 
transactions. 

We make a few comments concerning the 
currency and consistency requirementa. First, it might 
seem that the internal consistency, requirement is too 
weak to be useful. However, a ret@-only transaction 
with only internal consistency requkment is very sim- 
ple and efficient to process, and at least one proposed 
algorithm IFIS821 does not satisfy any strunger con- 
sistency requirement. Second, it is easy to see that 
strong consistency is a stronger requirement than weak 
consistency, as shown by the following example. Sup- 
pose we have two update transactions, T1 and Tz. two 
read-only transactions, Ts and T4, and two data objects, 
X and Y, stored at two sites A and B. Assume that the 
initial values of both X and Y were 0 &fore the execu- 
tion of any transactions. Now consider the following 
execution sequence: 

T3 reads 0 from X at A. 
Tt writes 1 into X at A. 
T4 reads 1 from X at A. 
T4 reads 0 from Y at B. 
Tz writes 1 into Y at B. 
T3readslfromYatB. 

The values read by T3 am the result of a setil execu- 
tion of TacTscTt , while the values read by T4 are tbe 
result of a serial execution of Ts<T.,<Ts. Both of them 
are valid serialization order, and thus, the execution is 
weakly consistent. However, there is no single serial 
execution of all four transactions, so the execution is 
not serializable. In other words, both read-only transac- 
tions see valid serialization orders of updates, but they 
see-different orders. 

Clearly, strong consistency is preferable to weak 
consistency. However, as in the-case of internal con- 
sistency, it can be cheaper to ensure weak consistency 
than to ensure strong consistency. For the applications 
that can toierate a weaker requirement, the potential 
performance gain could be significant. 

Finally, one might wonder why fixed-time 
requirement is interesting, since most read-only u-an- 
sactions may requite information about the latest data- 
base state. However, there are situations that the user is 
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interested in looking at the database as it existed at a 
given time. For an example of a fixed-time read-only 
transaction, consider the case of a general in the army 
making a decision by looking at the database showing 
the current position of the enemy. The general may be 
interested in looking at the position of the enemy of 
few hours ago or few days ago, in order to figure out 
the purpose of their moving. A read-only transaction of 
a given fixed-time will provide the general with the 
desired results. 

There are several problems that must be solved 
by an algorithm that uses multiple versions. For exam- 
ple, selection of old versions for a given read-only tran- 
saction must ensure the consistency of the state seen by 
the transaction. In addition, the need to save old ver- 
sions for read-only transactions introduces a storage 
management problem, i.e., methods to determine which 
version is no longer needed so that it can be discarded. 
In the next section, we focus our attention on these 
problems. 

3.2. Using Replication and Multiversion 4. A Resilient Synchronization Algorithm 
An obvious approach to improve system availa- 

bility is to keep replicated copies of critical data at mul- 
tiple sites so that the system can access the data even if 
some of the copies are not available due .to failures. In 
addition, replication can enhance performance by 
allowing transactions initiated at sites where the data 
am stored to be processed locally without incurring 
communication delays, and by distributing the work- 
load of transactions to several sites where the subtasks 
of a transaction can be processed concurrently. These 
benefits of replication must be seen in the light of the 
additional cost and complexities introduced by replica- 
tion control. 

In the algorithm to be presented below, we use 
the notion of tokens to support fault-tolerant distributed 
real-time database systems in increasing both the avai- 
lability of data and the degree of.concurmncy, without 
incurring too much storage and processing overhead. 
Each data object has a predetermined number of 
tokens. Tokens are used to designate a read-write copy, 
and a token copy is a single version representing the 
latest value of the data object. The site which has a 
token copy of a data object is called a token sire, with 
respect to the data object. The number of tokens for 
each data object can be used as a tuning parameter to 
adjust the robusmess of the system. 

A major restriction of using replication is that 
replicated copies must behave like a single copy, i.e., 
mutual consistency of a replicated data must be 
preserved. By mutual consistency, we mean that all 
copies converge to the same value and would be identi- 
cal if all update activities cease. The inherent commun- 
ication delay between sites that store and maintain 
copies of a replicated data makes it impossible to 
ensure that all copies are identical at all times when 
updates are processed in the system [SON873. 

Maintaining multiple versions of data objects is 
another approach to improve system responsiveness by 
increasing the degree of concurrency. The objective of 
using multiple versions is to reduce the conflict proba- 
bility among transactions and the possibility of rejec- 
tion of transactions by providing a succession of views 
of data objects. One of the reasons for rejecting tran- 
sactions is that its operations cannot be serviced by the 
system. For example, a read operation has to be 
rejected if the value of data object it was supposed to 
read has already been overwritten by some other tran- 
sactions. Such rejections can be avoided by keeping old 
versions of each data object so that an appropriate old 
value can be given to a tardy read operation. In a sys- 
tem with multiple versions of data, each write operation 
on a data object produces a new version instead of 
overwriting it. Hence, for each read operation, the sys- 
tem selects an appropriate version to read, enjoying the 
flexibility in controlling the order of read and write 
operations. 
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Multiversions are stored and managed only at 
read-only copy sites. For read-only copies, each data 
object is a collection of consecutive versions. A read- 
only transaction does not necessarily read the latest 
committed version of a data object. The particular old 
version that a read-only transaction has to read is deter- 
mined by the time-stamp of the read-only transaction 
(for the latest-time requirement) or by the given time 
(for the fixed-time requirement). The time-stamp is 
assigned to a read-only transaction when it begins, 
while the time-stamp for an update transaction is deter- 
mined as it commits. When a read-only transaction 
with time-stamp T attempts to read a data object, the 
version of the data object with the largest time-stamp 
less than T is selected as the value to be returned by the 
read operation. 

We assume that update transactions use two- 
phase locking lESW761. with exclusive locks used for 
write operations, and shared locks for read operations. 
Lock requests are made only to token copies, and there 
is no locks associated with read-only copies. In addi- 
tion, update transactions use the two-phase commit 
protocol and stable storage lLAM8IJ to achieve fault- 
tolerance to site failures. when a new version is 
created, it is created at all copy sites, including read- 
only copy site. However, any new versions are not 
accessible to other transactions until they are finalized 
through the two-phase commit protocol. Upon receiv- 
ing the commit message from the coordinator, new ver- 
sions of data objects created by the transaction replace 



transactions. Recall that e&h data object keeps track of 
the read-only transz$ons Ihat have accessed the data 
object, along with a lower bound on the time-stamp 
chosen by each transaction. Data objects can use the 
following rule to decide which versions to keep and 
which to discard. 

Rule for retention: 

A version with timestamp TS must be retained if 

(1) there is no version with time-stamp greater than 
TS (i.e., current version), or 

(2) there is a version with time-stamp TS’ > TS, 
and there is an active read-only transaction 
whose time-stamp might be between TS and 
TS’. 

By having a read-only transaction inform data objects 
when it completes, versions of data objects that are no 
longer needed can be discarded. This process of 
informing data objects that a read-only lrans@on has 
completed need not be performed synchronously with 
the commit of the transaction. It imposes some over- 
head on the system, but the’overhead can be reduced by 
piggybacking information on existing messages, CR by 
sending messages when the system load is low. 

When a read-only transaction sends a read 
request to an object, the read-only site effectively 
agrees to retain the current version and any later ver- 
sions, until it knows which of those versions is needed 
by the read-only transaction. when the read-only site 
finds out the time-stamp chosen by the transaction, it 
can tell exactly which version the transaction needs to 
read. At that point any versions that were retained only 
because ,$e read-only transaction might have needed 
them can be discarded. By minimizing the time during 
which only a lower bound on the transaction’s time- 
stamp is known, the system can reduce the storage 
needed for maintaining versions. One simple way of 
doing this is to have each read-only transaction broad- 
cast its time-stamp to‘ all re&only sites when it 
chooses the timestamp. 

The version management described above is 
effective at minimizing the amount of storage needed 
for versions. For example, unlike the “version pool” 
scheme in [CHA85], it is not necessary to discad a 
version that is needed by an active read-only transac- 
tion because the buffer space is being used by a version 
that no transaction wants to read. However, ensuring 
that each read-only site knows which versions are 
needed at any point in time has an associated cost; a 
read-only transaction cannot begin execution until it 
has chosen a time-stamp, a process that requires com- 
municating.with all data objects it needs to access. 

l3ecausf3 the time-stamp for a fixed-time &- 
only transaction is determined by the user, the number 
of versions that needs to be retained to process fixed- 
time M-only transactions cannot be bounded as in the 
case fa latest-time read-only .transactions. In order to 
process all the potential tied-time read-only transac- 
tions, the system must maintain all the versions created 
up to the present, which may require huge amount of 
storage. There arq several alternatives to keep a history 
instead of saving all the versions created for each data 
object. One of the simplest and efficient alternative 
would be to keep a log of all the update transactions. 
Fixed-time read-only transactions can be processed by 
examining the log in reverse chronological order until 
the desired version of the data object can be recon- 
strutted. Since fixed-time read-only transactions must 
examine the log, their execution depends on the availa- 
bility of the log, and their execution speed would be 
slower than that of latest-time read-only transactions. 
One important advantage of the transaction log 
mechanism is that in many systems the log is required 
anyway for crash recovery. Thus, in these systems, 
keeping the log for fixed-rime read-only transactions 
represents no real overhead. 

Read-only transactions are never aborted and 
their response time is reduced because they do not need 
to go through two-phase commit protocol. Further- 
more, access requests from read-only transactions do 
not require to access token copies, and hence no block- 
ing is introduced by update transactions. This results in 
further reduction of response time of read-only transac- 
tions. In general, the number of aborts and average 
transaction response time for a given set of transactions 
depend on system parameters and read-set/write-set of 
transactions. making analytical evaluation complicated. 
A prototyping tool for experimenting distributed data- 
base systems is being developed at the University of 
Virginia ESON88b1, and a quantitative evaluation of the 
proposed algorithm will be performed and reported in a 
separate paper. 

5. Concluding Remarks 
A real-time database system supports applica- 

tions which require severe performance constraints 
such as fast response time and continued operation in 
case of subsystem failures. Real-time database systems 
are still in the state of infancy, and issues and alterna- 
tives in their design are not very well explored. In this 
paper, we have addressed two appro~bes to design of 
real-time database systems. The 6rst approach is aim- 
ing to reduce 40 delays by having main memory 
resident database. The second approach calls for 
exploiting semantic information and data replication 
especially in distributed environments. 
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Replication is a key factor in making distributed 
database systems more reliable than single-site sys- 
tems. The algorithm presented in this paper exploits the 
multiple versions of data objects and the semantic 
information of read-only transactions in achieving 
improved system performance. Multiple versions are 
maintained only at the read-only copy sites, hence the 
storage requirement is reduced in comparison to other 
multiversion mechanisms lREE83, CHA85J. 

High performance and high reliability do not 
come for free. There is a cost associated with each 
approach: storage requirement and complicated control 
in synchronization and recovery. For appropriate 
management of multiple versions, some communica- 
tion cost is inevitable to inform data objects about 
activities of read-only transactions. There is also a cost 
associated with maintaining the data structures for 
keeping track of versions and time-stamps. In many 
real-time applications of database systems, however, 
the cost of those approaches is justifiable. Further work 
is clearly needed to develop alternative approaches for 
recovery in main memory database systems and for 
exploiting semantic information of transactions and 
data objects, and to investigate performance of dif- 
ferent approaches. 
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