
Sang Hyuk Son

Department of Computer Science
University of Virginia

Charlottesville, Virginia 22903
USA

ABSTRACT

Real-time database systems support apphcations
which have severe operational constraints such as tran-
saction deadlmes and continued operation in the face of
failures. in designing real-time database systems, there
can be two approaches to meet those constraints. Fit
approach is to redesign conventional database systems
architecture to replace the bottleneck components.
Second approach is to trade desired features, such as
serializability, cx exploit semantic information of tran-
sactions and dam for high performance and reliability.
In this paper, we discuss issues involved in these
approaches, and present algorithms to solve problems
in real-time database systems.

1. Introduction
As computers are becoming essential part of

real-time systems, real-firne cor~4~&1g is emerging as
an important discipline in computer science and
engineering [SHI871. Since any kind of computing
needs to access data, methods for designing and imple-
menting database systems that satisfy the requirement
of timing constraints in collecting, updating, and
retrieving data play an important role in the success of
real-time computing. In the recent workshops span-
sored by the Office of Naval Research [ONR87,
IRM88], developers of “real” real-time systems pointed
to the need for basic research in database systems that
satisfy timing requirements in processing shared data.
Further evidence of its importance is the recent growth
of research in this field and the announcements by
some vendors of database products that include
features rvzhieving high availability and predictability
LsON883.

Compared with traditional databases. real-time
database systems have a distinct feature: they must
satisfy not only the database consistency constrairtts but
also the timing constraints associated with transactions.

Approaches to Design of Real-Time Database Systems

Hytichul Kang

Department of Computer Scicnct
Chung Ang University

Seoul, Korea

In other words, “time” is one of the key factors to be
considered in real-time database systems. Transactions
inust be scheduled in such a way that they can be com-
pleted before their corresponding deadlines expire. For
example, both the update and query on a tracking data
of a missile must be processed within the given dead-
lines: otherwise, the information provided could be of
little value. How to specify or determine deadlines is a
relatively unexplored but dif?icult problem. It is even
harder to guarantee that transactions can meet their
deadlines due to dynamic nature of conflicts on shared
data objects.

State-of-the-art database management systems
are typically not used in real-time applications due to
two inadequacies: poor performance and lack of pred-
ictability. Although conventional database systems
provide efficient ways to store and retrieve data
through user-friendly interface, they rely on secondary
storage to store the database. In conventional database
systems, transaction processing requires accessing
database stored on the secondary storage; thus transac-
tion response time is limited by disk access delays,
which can be in the order of milliseconds. Still these
databases arc fast enough for traditional applications in
which a response time of few seconds is often accept-
able to human users. However, those systems may not
be able to provide a response which is fast enough for
high-performance real-time applications that require
responses in the order of micro-seconds. Consequently,
requirements and design objectives of real-time data-
base systems widely differ from those of conventional
database systems. A natural question is how should we
redesign conventional database systems so that its per-
formance and reliability can be acceptabb.for real-time
applications.

Thii work WI, supported in pat by the Office. of Naval
Resurd~ under contract I NOOO14-88-K-0245, by he Depmmmt of
Energy under contraa # DEFGO5-88-ER25063. and by the Federal
Systems Division of JBM Corporation.

One approach to achieve high performance is to
replace bottleneck devices (e.g., a disk) by a high speed
version. Second alternative is to tinker with features of
conventional database systems. For example, by
exploiting semantic information associated with tran-
sactions and data objects, we can use the notion of
correctness different from the serializability of transac-
tion execution. Third approach is the effective use of
data replication to improve performance as well as

International Symposium on

Database Systems for Advanced Applications Seoul, Korea, April, 1989
- 274 -

reliability. In this paper. we discuss issues and
approaches to the design of high-performance real-time
database systems, and present algorithms to solve prob-
lems in those approaches.

2. Main Memory Database Systems

2.1. Recovery Problem
Due to advancements in integrated circuits tech-

nology, the chip densities of semiconductor memories
have been increased dramatically throughout the past
decade, and the cost of main memory has been sharply
decreased. The availability of large, relatively inexpen-
sive main memories coupled with the demand for faster
response time for real-time systems has brought a new
perspective to database system designers: main
memory databases in which the primary copies of all
data reside permanently in main memory.

Elimination of disk access can contribute to sub-
stantial improvement in transaction response time.
However, the migration of data from secondary storage
to main memory requires a careful investigation of the
components of traditional database systems, since they
introduce some potential problems of their own. The
most critical problem is associated with the recovery
mechanism of the system, which must guarantee tran-
saction atomic&y and durability [SON36]. Since the
least expensive form of main memory is volatile. any
loss of electric power destroys all stored data. Conse-
quentIy, a main memory database system still requires
a disk to act as stable storage to provide a backup copy
for the database.

A crash recovery mechanism in database systems
essentially consists of two phases: preparation for the
recovery by saving necessary information during nor-
mal operation of the system, and the coordination of
actual recovery. The preparation for recovery is usually
performed through checkpointing and logging which
record database changes to a separate stable medium
such as a disk. The disk activity associated with the
preparation for recovery can be a bottleneck for tradi-
tional disk-oriented database systems. For a main
memory database system with no need for disk activity
for data access, this disk activity may have even worse
effects on system performance, possibly nullifying the
advantages of having all the data in main memory.
Thus, constructing a recoverable main memory data-
base system using volatile memory appears to be one of
the most challenging issues to the system designer. One
important requirement in constructing a checkpoint is
that the interference of the checkpointing procedure
with the transaction processing should be kept as small
as possible. Consistency of the constructed checkpoint
is also important since no undo operation would be
necessary during recovery, reducing the recovery time.

On-fine log compression is:neces* to keep the
log short to achieve i r&pitP&%stat~ Cotttpressioh oan be
used by any database system to itnprove restart time,
but is essential for. main memory database systems
which may achieve very high transaction throughput.
Most of the recovery techniques assume that a portion
of memory can be made non-volatile by using batteries
as a backup power supply [DEW&I, HAG86, SAL861.
By exploiting this portion of mm-volatile memory, log
compression can be achieved effectively. It has been
shown that the amount of such memory the system
would need is not great [SAL%].

2.2. An Approach
In this section, we present a recovery scheme

that is based on the techniques of non-interfering incre-
mental checkpointing and log compression using non-
volatile areas of memory. They are combined to
increase the transaction &o&put by reducing the
number of log write operations, and minimizing the
interference of checkpointing with the transaction pro-
cessing. The scheme also provides. a rapid restart of the
database system from failures.

To make transactions durable in spite of system
failures, the system must ensure that before a transac-
tion commits, either all pages updzitcd by the transac-
tion are flushed into the backup copy, or a complete
redo information is recorded in the log on the stable
storage. The latter (saving redo information) achieves
better performance than the former in general, since the
former may involve more I/O activity. Our recovery
scheme ensures the latter.

The checkpointing in this scheme is performed
concurrently with transaction activity while construct-
ing a transaction-consistent checkpoint on disk, without
requiring the database quiesce to save a consistent
state. This is particularly important in an environment
where many update trans+ctions generate a large
number of updated pages between checkpoints, or in a
real-time application where high availabiliqr of the
database is desirable.

To construct a transaction-consistent checkpoint,
the updates of a transaction must be either included in
the checkpoint completely, or they must not be
included at all. To achieve this, transactions ate divided
into two groups according to their relationships to the
current checkpoint: included-transactions (JNT) and
excluded-transactions (EXT). The.updates belonging to
lNT are included in the current checkpoint while those
belonging to EXT are not included. Time-stamps are
used to determine membership in INl’ and EXT. A
transaction-consistent “state of the database is always
maintained on disk. At a checkpoint time, only the por-
tion of the saved state which has been changed since
the last checkpoint is replaced. When a checkpoint

- 275 -

completes, next one begins with only a negligible
interruption of service to delete old versions that have
been checkpointed.

A checkpointing begins by setting the checkpoint
number (CN) as the current clock value. Transactions
with the time-stamps smaller than the CN are the
members of INT, others are the members of EXT. The
transaction activity continues with the checkpomting
process. When an EXT updates data objects updated by
INT, new in-memory versions are created, leaving the
oId versions to be written to disk.

The checkpointing process waits until there is no
active INT in the system, It then begins to write the
pages updated by lNT to disk, constructing a portion of
the state to be replaced in the checkpoint. Let & be the
set of pages that have been updated by INT since the
last checkpoint. First, the members of 6, must be
identified. This might be done with hardware assist by
setting a dirty bit when the page is updated by INT.
Then 6t must be written on disk without the loss of
previous checkpoint in the case of a system failure. To
achieve this, a variation of stable storage technique
LAM811 can be used in two steps. During the first
step, i& is written to a new disk file S2. When it is suc-
cessfully completed, then fit is written into the desired
location iu disk. If the system crashes while the check-
point state is being replaced by 61, a consistent check-
pointed state can be reconstructed from &.

After 62 has been successfully created, a “begin
checkpoint” record is written to the log, indicating the
completion of the first step of checkpointing procedure.
When 6, is written to their original locations on disk,
making the checkpoint state on disk identical to the
database state in memory as if all transaction activities
are completed and no more transaction has been started
after CN, an “end checkpoint” record is written to the
log. It indicates that the checkpoint in disk is a com-
plete transaction-consistent state of the database, and it
includes all the updates of transactions active at time
CN. The address of the checkpoint .record and the value
of CN are saved in non-volatile memory so that they
can be used in locating the most recent checkpoint
record in the log during recovery. When a checkpoint-
ing procedure completes, pages in S1, updated by EXT,
are overwritten by the new versions, and their dirty bits
are set. They are the initial members of fil for the next
checkpoint. Then the next checkpoint begins with the
new CN.

The checkpointing approach presented here is
different form that of [DEW843 in two important ways.
First, it constructs a transaction-consistent state of the
database instead of action-consistent state. Second, it
does not require the database quiesce. It is also dif-
ferent from the “fuzzy dump” checkpointing in
EHAG86], which constructs an inconsistent state of the

database.
The non-volatile memory is used to hold au in-

memory log so that the log writes to disk can be
delayed. In-memory log can be considered as a reliable
disk output queue for log data. When the log data must
be written to disk since in-memory log buffer is full,
many transactions that have entries in the log may now
be completed. For aborted transactions, the whole
entries in the log may be eliminated; for committed
transactions, the undo part of log records may be elim-
inated. In addition, the log entries can be stored in disk
in a more compact form. In the conventional approach,
log entries for all transactions are intermixed in the log.
A more efficient alternative is to maintain the log on a
per transaction basis, and it is possible by using the
non-volatile memory. Non-volatile memory also assists
in reducing the recovery time by maintaining the infor-
mation such as the log entry of the oldest update that
refers to an uncheckpointed page. to help to determine
the point in the log from which recovery should begin.

3. Distributed Real-Time Database Systems
Falling cost of hardware and advances in com-

munication technology over the last decade have trig-
gered considerable interests in distributed database sys-
tems. In such systems, data objects are spread over a
collection of autonomous computer systems (called
sites) that are connected via a communication network.
Since the physical separation of sites ensures the
independent failure modes of sites and limits the propa-
gation of errors throughout. the system, distributed data-
base systems must be able to continue to operate
correctly despite of component failures. However, as
the size of a distributed system increases, so does the
probability that one or more of its components will fail.
‘llms, distributed systems must be fault tolerant to com-
ponent failures to achieve a desired level of reliability
and availability. Asserting that the system will con-
tinue to operate correctly if less than a certain number
of failure occurs is a guarantee independent of the reli-
ability of the sites that make up the system. It is a
measure, of the fault tolerance suppotted by the system
architecture, in contrast to fault tolerance achieved by
using reliable components.

Distributed database systems are of great impor-
tance to real-time applications because they offer
several advantages such as higher system availability,
over a single-site database system. In many situations,
real-time systems naturally include distributed database
systems because they are inherently distributed. In dis-
tributed real-time database systems, the main issue is
how to make several sites work collectively so that a
high level of performance is obtained. In this section,
we discuss approaches to the design of high-
performance distributed real-time database systems.

- 276 -

3.1. Using Semantic Information
We can enhance the performance of distributed

real-time database systems by exploiting semantic
information of transactions. A read-only transaction is
a typical example of the use of transaction semantics.
A read-only transaction can be used to take a check-
point of the database for recovering from subsequent
failures, or to check the consistency of the database, or
simply to retrieve the information from the database.
Since read-only transactions are still transactions, they
can be processed using the algorithms for arbitrary
tmnsactions. However, it is possible to use special pro-
cessing algorithms for read-only transactions in order
to improve efficiency, resulting in high performance.
With this approach, the specialized transaction process-
ing algorithm can take advantage of the semantic infor-
mation that no data will be modified by the transaction.

Se&&ability has been accepted as the standard
correctness criteria in database systems. It means that
the concurrent execution of a group of transactions is
equivalent to some serial execution of the same group
of transactions. However, people actually developing
large real-time systems are unwilling to pay the price
for serializability, because predictability of response is
severely compromised due to bIocking or preemption.
For read-only transactions, correcmess requirements
can be divided into two independent classes: the
currency requirement and the consistency requirement.

The currency requirement specifies what update
transactions should be &&ted by the data read. There
m several ways in which the currency requirement can
be specified;-we are”mterested in the following two:

(1) Tixedztime requirement: A read-only transac-
tron T requires data as they existed at a given
time r. This means that the data read by the tran-
saction must reflect the modifications of all
update transactions committed .in the system
before f.
Latest-time requirement: A read-only transac-
tion T requires data it reads reflect at least all
update transactions committed before T is
started, i.e., T requires most up-to-date data
available.

The consistency requirement specifies the degree
of consistency needed by read-only transactions. A
read-only transaction may -have one’ of ‘the following
requirements:

(1) Internal consistency: It only requires that the
values read by each read-only transaction
satisfy the invariants (consistency constraints)
of the database.

(2) Weak consistency: It requires that the values
read by each read-only transaction be the result
of a serial execution of some subset of the

(3)

update transac@onS’. com@.tted. Weak con-
sistency is at’ l.east ‘as strong a requirement as
internal consistency, because the result of a
serial execution of update transactions always
satisfies consistency constraints.
Strong consistency: It requires that all update
transactions together with all other read-only
transactions that rquire strong consistency,
must be serializable as a group. Strong con-
sistency requirement is equivalent to serializa-
bility requirement for processing of arbitrary
transactions.

We make a few comments concerning the
currency and consistency requirementa. First, it might
seem that the internal consistency, requirement is too
weak to be useful. However, a ret@-only transaction
with only internal consistency requkment is very sim-
ple and efficient to process, and at least one proposed
algorithm IFIS821 does not satisfy any strunger con-
sistency requirement. Second, it is easy to see that
strong consistency is a stronger requirement than weak
consistency, as shown by the following example. Sup-
pose we have two update transactions, T1 and Tz. two
read-only transactions, Ts and T4, and two data objects,
X and Y, stored at two sites A and B. Assume that the
initial values of both X and Y were 0 &fore the execu-
tion of any transactions. Now consider the following
execution sequence:

T3 reads 0 from X at A.
Tt writes 1 into X at A.
T4 reads 1 from X at A.
T4 reads 0 from Y at B.
Tz writes 1 into Y at B.
T3readslfromYatB.

The values read by T3 am the result of a setil execu-
tion of TacTscTt , while the values read by T4 are tbe
result of a serial execution of Ts<T.,<Ts. Both of them
are valid serialization order, and thus, the execution is
weakly consistent. However, there is no single serial
execution of all four transactions, so the execution is
not serializable. In other words, both read-only transac-
tions see valid serialization orders of updates, but they
see-different orders.

Clearly, strong consistency is preferable to weak
consistency. However, as in the-case of internal con-
sistency, it can be cheaper to ensure weak consistency
than to ensure strong consistency. For the applications
that can toierate a weaker requirement, the potential
performance gain could be significant.

Finally, one might wonder why fixed-time
requirement is interesting, since most read-only u-an-
sactions may requite information about the latest data-
base state. However, there are situations that the user is

- 277 -

interested in looking at the database as it existed at a
given time. For an example of a fixed-time read-only
transaction, consider the case of a general in the army
making a decision by looking at the database showing
the current position of the enemy. The general may be
interested in looking at the position of the enemy of
few hours ago or few days ago, in order to figure out
the purpose of their moving. A read-only transaction of
a given fixed-time will provide the general with the
desired results.

There are several problems that must be solved
by an algorithm that uses multiple versions. For exam-
ple, selection of old versions for a given read-only tran-
saction must ensure the consistency of the state seen by
the transaction. In addition, the need to save old ver-
sions for read-only transactions introduces a storage
management problem, i.e., methods to determine which
version is no longer needed so that it can be discarded.
In the next section, we focus our attention on these
problems.

3.2. Using Replication and Multiversion 4. A Resilient Synchronization Algorithm
An obvious approach to improve system availa-

bility is to keep replicated copies of critical data at mul-
tiple sites so that the system can access the data even if
some of the copies are not available due .to failures. In
addition, replication can enhance performance by
allowing transactions initiated at sites where the data
am stored to be processed locally without incurring
communication delays, and by distributing the work-
load of transactions to several sites where the subtasks
of a transaction can be processed concurrently. These
benefits of replication must be seen in the light of the
additional cost and complexities introduced by replica-
tion control.

In the algorithm to be presented below, we use
the notion of tokens to support fault-tolerant distributed
real-time database systems in increasing both the avai-
lability of data and the degree of.concurmncy, without
incurring too much storage and processing overhead.
Each data object has a predetermined number of
tokens. Tokens are used to designate a read-write copy,
and a token copy is a single version representing the
latest value of the data object. The site which has a
token copy of a data object is called a token sire, with
respect to the data object. The number of tokens for
each data object can be used as a tuning parameter to
adjust the robusmess of the system.

A major restriction of using replication is that
replicated copies must behave like a single copy, i.e.,
mutual consistency of a replicated data must be
preserved. By mutual consistency, we mean that all
copies converge to the same value and would be identi-
cal if all update activities cease. The inherent commun-
ication delay between sites that store and maintain
copies of a replicated data makes it impossible to
ensure that all copies are identical at all times when
updates are processed in the system [SON873.

Maintaining multiple versions of data objects is
another approach to improve system responsiveness by
increasing the degree of concurrency. The objective of
using multiple versions is to reduce the conflict proba-
bility among transactions and the possibility of rejec-
tion of transactions by providing a succession of views
of data objects. One of the reasons for rejecting tran-
sactions is that its operations cannot be serviced by the
system. For example, a read operation has to be
rejected if the value of data object it was supposed to
read has already been overwritten by some other tran-
sactions. Such rejections can be avoided by keeping old
versions of each data object so that an appropriate old
value can be given to a tardy read operation. In a sys-
tem with multiple versions of data, each write operation
on a data object produces a new version instead of
overwriting it. Hence, for each read operation, the sys-
tem selects an appropriate version to read, enjoying the
flexibility in controlling the order of read and write
operations.

- 278 -

Multiversions are stored and managed only at
read-only copy sites. For read-only copies, each data
object is a collection of consecutive versions. A read-
only transaction does not necessarily read the latest
committed version of a data object. The particular old
version that a read-only transaction has to read is deter-
mined by the time-stamp of the read-only transaction
(for the latest-time requirement) or by the given time
(for the fixed-time requirement). The time-stamp is
assigned to a read-only transaction when it begins,
while the time-stamp for an update transaction is deter-
mined as it commits. When a read-only transaction
with time-stamp T attempts to read a data object, the
version of the data object with the largest time-stamp
less than T is selected as the value to be returned by the
read operation.

We assume that update transactions use two-
phase locking lESW761. with exclusive locks used for
write operations, and shared locks for read operations.
Lock requests are made only to token copies, and there
is no locks associated with read-only copies. In addi-
tion, update transactions use the two-phase commit
protocol and stable storage lLAM8IJ to achieve fault-
tolerance to site failures. when a new version is
created, it is created at all copy sites, including read-
only copy site. However, any new versions are not
accessible to other transactions until they are finalized
through the two-phase commit protocol. Upon receiv-
ing the commit message from the coordinator, new ver-
sions of data objects created by the transaction replace

transactions. Recall that e&h data object keeps track of
the read-only transz$ons Ihat have accessed the data
object, along with a lower bound on the time-stamp
chosen by each transaction. Data objects can use the
following rule to decide which versions to keep and
which to discard.

Rule for retention:

A version with timestamp TS must be retained if

(1) there is no version with time-stamp greater than
TS (i.e., current version), or

(2) there is a version with time-stamp TS’ > TS,
and there is an active read-only transaction
whose time-stamp might be between TS and
TS’.

By having a read-only transaction inform data objects
when it completes, versions of data objects that are no
longer needed can be discarded. This process of
informing data objects that a read-only lrans@on has
completed need not be performed synchronously with
the commit of the transaction. It imposes some over-
head on the system, but the’overhead can be reduced by
piggybacking information on existing messages, CR by
sending messages when the system load is low.

When a read-only transaction sends a read
request to an object, the read-only site effectively
agrees to retain the current version and any later ver-
sions, until it knows which of those versions is needed
by the read-only transaction. when the read-only site
finds out the time-stamp chosen by the transaction, it
can tell exactly which version the transaction needs to
read. At that point any versions that were retained only
because ,$e read-only transaction might have needed
them can be discarded. By minimizing the time during
which only a lower bound on the transaction’s time-
stamp is known, the system can reduce the storage
needed for maintaining versions. One simple way of
doing this is to have each read-only transaction broad-
cast its time-stamp to‘ all re&only sites when it
chooses the timestamp.

The version management described above is
effective at minimizing the amount of storage needed
for versions. For example, unlike the “version pool”
scheme in [CHA85], it is not necessary to discad a
version that is needed by an active read-only transac-
tion because the buffer space is being used by a version
that no transaction wants to read. However, ensuring
that each read-only site knows which versions are
needed at any point in time has an associated cost; a
read-only transaction cannot begin execution until it
has chosen a time-stamp, a process that requires com-
municating.with all data objects it needs to access.

l3ecausf3 the time-stamp for a fixed-time &-
only transaction is determined by the user, the number
of versions that needs to be retained to process fixed-
time M-only transactions cannot be bounded as in the
case fa latest-time read-only .transactions. In order to
process all the potential tied-time read-only transac-
tions, the system must maintain all the versions created
up to the present, which may require huge amount of
storage. There arq several alternatives to keep a history
instead of saving all the versions created for each data
object. One of the simplest and efficient alternative
would be to keep a log of all the update transactions.
Fixed-time read-only transactions can be processed by
examining the log in reverse chronological order until
the desired version of the data object can be recon-
strutted. Since fixed-time read-only transactions must
examine the log, their execution depends on the availa-
bility of the log, and their execution speed would be
slower than that of latest-time read-only transactions.
One important advantage of the transaction log
mechanism is that in many systems the log is required
anyway for crash recovery. Thus, in these systems,
keeping the log for fixed-rime read-only transactions
represents no real overhead.

Read-only transactions are never aborted and
their response time is reduced because they do not need
to go through two-phase commit protocol. Further-
more, access requests from read-only transactions do
not require to access token copies, and hence no block-
ing is introduced by update transactions. This results in
further reduction of response time of read-only transac-
tions. In general, the number of aborts and average
transaction response time for a given set of transactions
depend on system parameters and read-set/write-set of
transactions. making analytical evaluation complicated.
A prototyping tool for experimenting distributed data-
base systems is being developed at the University of
Virginia ESON88b1, and a quantitative evaluation of the
proposed algorithm will be performed and reported in a
separate paper.

5. Concluding Remarks
A real-time database system supports applica-

tions which require severe performance constraints
such as fast response time and continued operation in
case of subsystem failures. Real-time database systems
are still in the state of infancy, and issues and alterna-
tives in their design are not very well explored. In this
paper, we have addressed two appro~bes to design of
real-time database systems. The 6rst approach is aim-
ing to reduce 40 delays by having main memory
resident database. The second approach calls for
exploiting semantic information and data replication
especially in distributed environments.

- 280 -

.- ,” E . . .a..’ :,. :

Replication is a key factor in making distributed
database systems more reliable than single-site sys-
tems. The algorithm presented in this paper exploits the
multiple versions of data objects and the semantic
information of read-only transactions in achieving
improved system performance. Multiple versions are
maintained only at the read-only copy sites, hence the
storage requirement is reduced in comparison to other
multiversion mechanisms lREE83, CHA85J.

High performance and high reliability do not
come for free. There is a cost associated with each
approach: storage requirement and complicated control
in synchronization and recovery. For appropriate
management of multiple versions, some communica-
tion cost is inevitable to inform data objects about
activities of read-only transactions. There is also a cost
associated with maintaining the data structures for
keeping track of versions and time-stamps. In many
real-time applications of database systems, however,
the cost of those approaches is justifiable. Further work
is clearly needed to develop alternative approaches for
recovery in main memory database systems and for
exploiting semantic information of transactions and
data objects, and to investigate performance of dif-
ferent approaches.

EHA86

BIT86

CHA85

DEWS4

ES W76

FIS82

REFERENCES

Bhargava, B., Ruan, Z., Site Recovery in
Replicated Distributed Database Systems,
Proc. 6th Inrernctional Conference on Dis-
tributed Computing Systems, Cambridge,
Massachusetts, May 1986, pp 621-627.
Bitton, D., The Effect of Large Main
Memory on Database Systems, Proc. ACM
SIGMOD Conference on Management of
Data, May 1986, pp 337-339.
Chan, A. and Gray, R., Implementing Dis-
tributed Read-Only Transactions, IEEE
Trans. on Software Engineering, Feb. 1985,
pp 205-212.
Dewitt, D., Katz, R., Olken, F., Shapiro, L.,
Stonebraker, M., and Wood, D., Implemen-
tation Techniques for Main Memory Data-
base Systems, Proc. ACM SIGMOD Cofer-
ence on Management of Data, 1984, pp l-8.
Eswaran, K.P. et al, The Notion of Con-
sistency and Predicate Locks in a Database
System, Communications of ACM 19. Nov.
1976, pp 624-633.
Fischer, M. J., Griffeth, N. D. and Lynch, N.
A., Global States of a Distributed System,

HAG86

IBM88

LAM81

ONR87

REE83

SAL86

SW187

SKE81

SON86

SON87

SON88

SON88b

--281-

IEEE Trans. on Software Engineering. May
1982, pp 198202.
Hagmann, R., A Crash Recovery Scheme
for a Memeory-Resident Database System,
IEEE Trans. OR Computer Systems, Sept.
1986, pp 839-843.
IBM Real-Time Systems Requirements and
Issues Workrhop, Manassas, Virginia, April
1988.
Lampson, IX, Atomic Transactions, Distri-
buted Systems: Architecture and Implemen-
tation, Lecture Notes in Computer Science,
Vol. 105, Springer-Verlag, 198 1, pp 246-
265.
ONR Real-Time Computing Initiative
Workshop, San Jose, California, Dec. 1987.
Reed, D., Implementing Atomic Actions on
Decentralized Data, ACM Trans. on Com-
puter Sysrems, Feb. 1983, pp 3-23.
Salem, K. and Garcia-Molina, H., Crash
Recovery Mechanisms for Main Storage
Database Systems, Technicai Report CS-
TR-034-86. Department of Computer Sci-
ence, Princeton University, April 1986.
Shin, K. G., Introduction to the Special
Issue on Real-Time Systems, ZEEE Trans.
on Computers, Aug. 1987.901-902.
Skeen. D., Nonblocking Commit Protocols,
Proc. ACM SiGMOD Coherence on
Management ofData. 1981, pp 133-142.
Son, S. H. and Agrawala, A., An Algorithm
for Database Reconstruction in Distributed
Environments, Proc. 6th international
Conference on Distributed Computing Sys-
tems, May 1986, pp 532-539.
Son, S. H., Synchronization of Replicated
Data in Distributed Systems, Information
Systems 12,2, June 1987,191-202.
Son, S. H., Real-Time Database Systems:
Issues and Approaches, ACM SIGMOD
Record, Special Issue on Real-Time Data-
base Systems, Vol. 17, No. 1, March 1988.
Son, S. H., A Message-Based Approach to
Distributed Database Prototyping, Fifth
IEEE Workshop on Real-Time Software and
Operating Sysrems, Washington, DC, May
1988, pp 71-74.

