
Semantic Query Processing in
Object-Oriented Database Systems

Jong-Jin Sung and Jong-Tae Park

Department of Electronic Engineering

Kyungpook National University, Taegu, 702-701 Korea

Abstract : A new semantic query processing tech-
nique in an object-oriented database system is presented.
Issues related to the query processing in object-oriented
database systems arc discussed. The query processing
technique takes advantage of semantic data integrity con-
straints to generate more efficient access plans. Semantic
information related to the target objects of a given query
is utilized in a suitable way, either by eliminating the un-
necessary part of the query or by transforming the given
query into a more efficient form. Heuristics which guide
query processor into generating efficient access plans using
semantic knowledge are developed.

1 Introduct ion

Nowadays, there is a growing interest in the application of
object-oriented concept to the areas of software develop-
ment, programming language design and database man-
agement system design. The conventional datatypes such
as integers, reals and characters impose a restriction on the
way data are represented, so that it is less useful. On the
other hand, the object-oriented concept tries to express
everything in the world as an object, and it provides more
powerful expressibility. The representation and processing
of complex objects in an DBMS(Database Management
System) by using this concept ensures a great advantage.
Complex object here is a mixed form of multiple related

DATABASE SkSTEMS FOR ADVANCED APPLICATIONS ‘91
Ed. A. Makinouchi
@World Scientific Publishing Co.

objects.
Several researches are going on to design DBMS with

object-oriented concept, i.e., the design of an object-oriented
DBMS. It has a big advantage in storing and processing
various kinds of information. But complex objects hav-
ing another objects as components have a complex form,
and relationships among objects are complicated. Effec-
tive definition and manipulation of data such a8 complex
objects in an Object-Oriented Database(OODB) are not
easy. To solve this problem, many researches are going on.

In this article, a new method utilizing semantic knowl-
edge for the efficient processing of queries in an object-
oriented DBMS is presented. It is known that object-
oriented DBMS generally has poor performance in its pro-
cessing speed. Semantic knowledge, guided by a set of
heuristics associated with efficient query processing tech-
niques, is taken advantage of to improve the performance.

There have already been a handful of researches on the
application of semantic knowledge for the query process-
ing in a relational DBMS[r),l4]. On the other hand, in an
object-oriented DBMS, there have, within author’8 knowl-
edge, been no previous attempts to apply the semantic
information for the efficient processing of the queries.

The design of Semantic Query Optimization(SQ0) sys-
tem in an OODB system require8 several preliminary works:
i.e., defining the architectural model of the object-oriented
DBMS, defining the format of an object-oriented query
and developing its processing methodology based on this
model. The scheme for the representation of semantic
knowledge in an OODB system should also be developed.
Currently, there is no standard object-oriented database
model. Accordingly, there is no standard query process-
ing methodology. Access method8 with respect to data
storage have been investigated in a various ways. Tak-
ing account on these situations, we assume no particu-
lar object-oriented DBMS model. Rather, the typical feat
tures of OODB systems are assumed to be provided in our
object-oriented DBMS model. We focus our attention on
investigating the applicability of semantic knowledge for
the query processing problem in an object-oriented DBMS,
and on developing a set of proper heuristic8 which could
guide the query processor to execute the queries more ef-

ficiently by using the semantic knowledge.
Shenoy[l4] developed simple semantic query optimiza-

tion system in a relational DBMS. We extend Shenoy’s
framework to OODB system environment. Furthermore,
new inference-guiding heuristics which are applicable to
an OODB system are developed. These heuristics make
query processing plans more efficient by utilizing seman-
tic knowledge. As in Shenoy’s system our SQO system
is composed of two stages, i.e., expansion and reduction.
Different heuristics are applied in each stage.

In the following section, previous works associated with
these problems are introduced. In Section 3, query expres-
sion and query processing techniques are described. A for-
malization of SQO in OODB is given in Section 4. In Sec-
tion 5, heuristics are proposed and examples are provided
to illustrate the application of semantic query processing
heuristics in OODI3 systems. The architecture of seman-
tic query optimization is described in Section 6. Finally,
the conclusion and future research areas are followed in
Section 7.

2 Previous Works

In this section, previous research works on query process-
ing in OODB systems are described.

Shaw and Zdonik[l2] Investigate query optimization
problem in an OODB system, based on the concept of ob-
ject equivalence. Two objects are defined to be O-equal if
they have the same object identity[6,12,13]. Other con-
cepts of object equivalence like i-equal are provided to
define deepequality[6,12,13]. They also define query alge-
bra[13] suitable for object-oriented DBMS. They, based on
these concepts of equivalence and query algebra, provide
a mechanism for the identification of equivalent queries
which would produce the same result. They present a
query optimization technique which selects the most effi-
cient one among these equivalent queries.

Clutin, et.al., develop the object-oriented DBMS, 02,
and define a query language, Reloop for 0, which is similar
to SQL[4]. Algebra dealing with selection, projection, and
Cartesian product operations and a new macro algebra are
defined for query processing. However, the methods which
could provide data update operations and data definition
are not completed. The optimization problem is also not
mentioned.

Tanaka and Chang[l5] define natural join operation
in an object-oriented DBMS. It can be executed between
objects of any type, so it is supposed to be well suited to
object-oriented DBMS manipulating complex objects.

Kim and others[fl develop indexing techniques for the
processing of queries in the object-oriented DBMS, ORION
These are described in Section 3.3.

There is another research on indexing technique, used
in OPAL which is the object-oriented DBMS language de-
veloped for Gemstone DBMS[2].

It is noted that, all these previous research works inves-
tigate query processing problem, for their specific object-
oriented DBMS architectures and models, without men-
tioning the utilization,of semantic knowledge.

3 Representation and Processing
of an OODB Query

In this section, we will use Reloop query language sup-
ported by the object-oriented DBMS, 01, for the repre-
sentation of our OODB queries. The reason why we use
Reloop is that it provides a query representation which
is easy to understand. We are not going to rely on any
specific query processing system to explain our semantic
query optimization technique. We acc:ommodate all the
aspects which a typical OODB system would provide. In
this section, a few examples of OODB query representa-
tion and processing techniques are presented. First, we
will show example data of an OODB and then describe
our query representation and processing techniques upon
them. Data presented here will be used subsequently in
Section 5 to describe semantic query processing.

3.1 Example Data

Classes defined here have the form Ci := [ai:ti, az:tz, . . . ,
an:&1 where i and n are arbitrary integers. Ci is a class
name, a, is an attribute name and t, represents the type
of an attribute here. Now, we are going to define example
classes.

Univ-Stud = [Record : Personal
Stud-Id : integer,
Major : Department,
Score : integer,
Activity : {string)]

Personal = [Name : string,
Person-Id : integer,
Addr : [City : string, Eve/Str : string,

Zip : integer]]

Department = [M-Name : string,
Detail : string,
Prof : string]

The main operation we shall use in this article with these
data is to reference the values of attributes. Methods and
interfaces should therefore be defined to reference each at-
tribute value in classes. In ORION OODB system, a query
is represented mainly by messages. These messages are do-
ing the role of interfaces. The predicates of a query here
include referencing messages which reference the values
of attributes, and relationa. operator messages (>, <, =)
which compare them.

12

UnivStud

I
I I

Record Stud-Id

Pe+l
V

i nteser
Department I

I
Name Person-Id Addr

I

Y
I

Ci,y Eve/,tr Z,p

Y v .i
string strln9 in eger

Figure 1: Component hierarchy tree of the example data.
The attribute Activity is a set of string type.

The above data are depicted in Figure 1, which gives us
an easy look of hierarchical, internal structures of classes
and attribute types. In Figure 1, Univ-Stud, Personal, and
Department are all classes. Among them the Personal and
the Department are nested to the Univ-Stud each as an
attribute type. These are called nested classes or branch
classes, and the Univ-Stud is a root class. From a nesting
relationship, a nesting part is defined as a parent class and
a nested part as a child class. Nesting can be made in a
cycle and multiple ways. Instances of the class Personal
and those of the Department are referenced as values of the
attributes Record and Major respectively. This operation
of fetching an instance is called object instantiation’. In
Figure 1 an instantiation is expressed as a down arrow.

3.2 Representation of a Query

Based on the data presented in the previous section, we
are going to represent an OODB query in SQLlike form of
Reloop which is similar to SQL. The role of SQLlike form
of Reloop in this article is limited to the representational
aspect of a query. The processing method of a query does
not follow .that of Reloop.

Example 3.1

Query “Find student id numbers and average scores of
the students who are majoring in electronic engi-
neering and living in Taegu.”

select [student id number : Stud-Id(u),
average score:Score(u)]

from u in Univ-Stud
where MBame(Major(u)) = “electronic engineering”

and City(Addr(Record(u))) = “Taegu”

In SQLlike form, u in the from clause represents an in-
stance of the class Univ-Stud. The representation
“MName(Major(u))” in the predicates of the where clause

shows the path u.Major.MrJame within the class com-
ponent hierarchy which can be divided by parentheses
(“(“, “)“). Th’ 1s In o representation is also used in the k‘ d f
Iris object-oriented DBMS[S]. Predicates in where clause
represent comparison of indicated attributes with another
specified attribute or constant values. These are the con-
ditions requested by the query.

Each OODB system has its own query processing and
optimization techniques which suit well with its system
structure and characteristics. Some useful query process-
ing techniques like indexing and join are supported by al-
most all OODB systems to help efficient processing.

3.3 Indexing Techniques in OODB Sys-
tems

Indexing in an OODB system reduces query execution
time as the indexing in relational database does. Accord-
ing to the research of Kim and others [7] upon indexing
techniques, there are some interesting points.

First, there are two ways of traversal within a complex
object. One is forward traversal and’ the other is reverse
traversal. Forward traversal is to traverse within a com-
ponent hierarchy from the root to the terminal nodes in
depth-first order. Reverse traversal, on the contrary, does
that from the terminal nodes to the root. With these two
traversal methods, if we use properly indexed attributes,
we can achieve considerable cost reduction in query pro-
cessing that requires searching in nested classes2.

One more technique about indexing is class-hierarchy
indexing. The conventional indexing is regarded as single-
class indexing made within a scope of one class. But the
class-hierarchy indexing is made within many classes re-
lated to each other by inheritance relationship, i.e., within
superclasses and subclasses.

3.4 Join Operation in OODB Systems

In this Section, we give the definition of join operation in
an OODB system. The join in an OODB is conceptually
similar to that of a relational database. It is used to create
relationships between objects each of which belonging to
possibly different classes. Our definition of join is similar
to Ojoin proposed by Shaw and Zdonik[I3]. Suppose that
there are collections of objects, Sl and S2. Join(S1, S2,
Al, A2, p) = {(Al:sl, A2:s2)I sl in Sl A s2 in S2 A

Pf544) where p is a predicate defined over objects
from Sl and 52. (Al:sl, A2:s2) is a pair in which Al and
A2 are attribute names. A predicate is usually defined
using comparison operators(=, >, <, etc). For equality(=)
operator, the join is referred to as equi-join. Here, equality
is defined in terms of many concepts such as the equality

of two object values and object identities. The equality
concept associated with (shallow)deepequality[6,10] and

‘In this article, it is also called simply instantiation aFor details, refer to [7].

av@bh vVii% -+ aib,jIi' &-/

vx yz

(a) Before the join (b) After the join

Figure 2: Form of data in join operation.

(i)id-equality[lO,l2] can also be used.

Join of objects in classes A and B in Figure 2 (a) will
result in the form in Figure 2 (b). It is noted that the re-
sult of join preserves the internal structures of both classes
A and B.

4 A Formalization of SQO in OODB
Systems.

Semantic Query Optimization(SQ0) is a technique that
uses semantic knowledge for query optimization. It uses
the semantic knowledge about objects to transform a query
into more efficient one generating the same result. In a re-
lational database a lot of researches have been done on it.
We introduce a SQO approach to the OODB query op
timization. OODB systems have many different ways of
query processing. The SQO system can be implemented
and inserted as a preprocessing system of OODB query
optimization systems.

In this section, the formalization of OODB SQQ is
given. A database query is to extract portions of data
from target objects satisfying given conditions. A target
of a Query can be either a single class or multiple classes
depending on the users’ requests. The predicate of a query
for SQO here is restricted to be the conjunction of simple
comparison operations.

Semantic knowledge used in a SQO is the semantic in-
tegrity constraints (SIC) which are expressions of some
rules that must be observed from database application
viewpoint. These rules are stored in the knowledge base
and are applied to the queries in a SQO system for se-
mantic query transformation. Semantic query transfor-
mation brings about an alternative form of a query which
is semantically equivalent to the original one. The heuris-
tics are used to transform the queries into more efficient
forms. SICs, in this article, are restricted to be in the
form of Horn clauses and only the implication integrity
constraints are used. An example of the SIC using data
in Figure 1 is shown below. The semantic knowledge “If
someone has name Jone Doe and majors in electronic en-
gineering, then his id number is 8903124.” is expressed as
“(Name(Record(u)) = “Jone Doe” h MName(Major(u))
= “electronic engineering”) + Stud-Id(u) = 8903124”.
The front part of the implication mark(+) is called an-
tecedent part and the sear part is called consequent part..

A SIC is said to be appiicsble to an attribute of an OODB
if predicate in the antecedent part of the SIC matches
up to the attribute of an OODB. For example, for an in-
stance u of a class in an OODB, if the values of attributes
Name(Record(u)) and MName(Major(u)) are “Jane Doe”
and “electronic engineering” respectively, it is said t,hat
this SIC is applicable to the attributes Name and M-Name.

We will prove that, in the OODB, SIC can be used for
SQO and the results of a query and its transformed one
by the application of SIC are the same.

Lemma 1 Any attribute can, regardle:rr of itr level in a
component hienzrchy tree of an OODB, be used for SIC
predicaier.

., .____.. ..__ 1 eve 1 4

al bl(a2) bZ(a2) b3(a2) cl(bUa2)) c2(b4((a2))

II1 c3(b4(a2)) b5(a3) b6(a3) b7(a3) a4

Case 1: c2(b4(a2(C))) = "xyz" -+ a4(C) 2 5000
Case 2: al(C) < 40 - b5(a3(C)) 2 600
Case 3: b6(a3(C)) = "Ford" --t cl(b4(a2(C))) = “carw

Without loss of generality, we assu.me that a typical
component hierarchy tree is structured as shown above.
Using the concept of the path, all the attributes in the
tree structure can be restructured into elements of a tu-
ple in a relational database. This means that, with the
concept of the path, attributes of any branches of a tree
can be referenced directly, not affecting other attributes.
Therefore as in the case 1, the SIC composed of c2 in the
antecedent part and a4 in the consequent part can be ap
plicable to the attributes c2 and a4, where c2 is at a high
level and a4 at a low level of the component hierarchy tree.
In the case 2, the SIC having an attribute at a low level
as an antecedent part and a high level as a consequent
part is also applicable. The case 3 shows that no matter
where the attributes are positioned in a component hierar-
chy tree, the attributes can be used for the SIC predicates,
.

For simplicity, two classes are said to be joined when
collections of instances of those classes are joined.

Lemma 2 Any attributer in the clajses which will be joined
can be used for the SIC predicates.

Proof :

14

ri-7-l bl b2 b3 b4
v v v v

“1JJ-q-q

“abc”

c3(b4(a2(Cl)J) = “abc” + yl(x4(C2)1 = “xyz”

If classes Cl and C2, shown above are joined, then
single temporary or permanent class like the one in Fig-
ure 2(b) will be formed and this joined class now becomes
the target of both the query and the SIC. According to
Lemma 1, any attribute in this joined class can be used
for SIC predicates. Therefore it can be said that any at-
tribute of two classes to be joined will be used in the SIC
predicates. u

Lemma 3 The result of the tramformed query by the op-
plication of SICs is the same as thot of the original one.

Proof : If the antecedent part of SIC is satisfied for an in-
stance of OODB, then the consequent part is also satisfied.
Therefore, if query conditions match the SIC’s antecedent
part, the SIC’s consequent part can also be added to the
query conditions without altering the result. n

This lemma provides the basis on which we can achieve
query optimization, in the OODB, by using SICs as in the
relational database.

5 Heuristics for Semantic Query
Optimization

In order to transform the query efficiently, semantic knowi-
edge in the knowledge bases are searched and applied to
the query transformation. Among the many applicable
SICs, some of them transform the query into the less ef-
ficient one. Heuristics are used to transform more effi-
ciently. In a relational database, King[8] suggests some
useful heuristics. In this article, we suggest new heuristics
that are specific to OODB model.

5.1 Heuristics

From the viewpoint of the data structures, the OODB class
and the relational database relation scheme are associated
with a shape which is a set of tuples. But OODB in-
stances have attributes that are instances of another com-
plex class. In Figure 1, an OODB class forms a tree-shaped
hierarchical structure having nested classes in its branches.
This structure is far different from the simple tuple struc-
ture of a relational database. It requires different traversal
mechanisms to find the target attribute values for a query.
Taking into account this structural property of an OODB,

new heuristics which = di%!erent from those for relational
database are needed:l%e heuristics that can be used for
a SQO in OODB systems are presented below. Details on
these ideas will be explained with the illustrating examples
in the subsequent subsection.

Hl Index Introduction
While using the attributes which are in the query,
try to use a clustered indexed attribute.

H2 Instantiation Reduction.
Use the attribute which resides in a low level in data
component hierarchy.
This heuristic is based on the observation that an
object instantiation itself costs much. If all the at-
tributes in the query are in the branches far from
the root, unnecessary instantiations(operation) can
be saved by using an attribute near to the root. This
heuristics can be used in the system that provides
forward traversal.

H3 Instantiation Introduction
Use another branch class by instantiation which is
not traversed by the original query. This heuristic
is useful in the system that permits reverse traver-
sal. In this case, the nested class to be newly used
should have clustering link to the parent class and
the number of instances are much smaller than that
of the parent class.

H4 Instantiation Elimination
Eliminate the redundant instantiation operation.
There are many cases in which, in the execution of a
query to find some specific objects, the nested class
which is not necessary for the query doesn’t have to
be fetched.

H5

H6

H7

Join Introduction
Use a clustering link from another class. Even if a
class is not included in the query, it can be used by
join when it has much smaller number of instances
and has clustering link into the class which is con-
strained by the query.

Scan Reduction
Prior to performing the cross referencing for the join
operation, we can reduce the number of inner scans
of the join by using additional restrictions.

Join Elimination
Eliminate a class if its attribute has no contribution
to the query result.

Among these heuristics, Hl, H5, H6 and H7 are similar
to the King’s heuristics for a relational database[d]. How-
ever, due to the structural differences between a relational
database and an OODB, there are some differences to be
considered. These details will be explained next with the

15

example for each heuristic.

5.2 Examples using Heuristics

First, we show semantic knowledge(SIC’s or semantic rules)
which will be used in the examples.

Rl

R2

R3

R4

“Professor Hong is in physics department.”
(Prof(Major(u)) = “Hong” + MXune(Major(u)) =
“physics”)

“If the value of i is x, then that of d is Y.“~
(i(g(a(Clinstance))) = x -+ d(Clinstance) = y)

“Students in electronic engineering department have
student id numbers which have 0 in the third digit
and 3 in the fourth digit.”
(Stud-Id(u) = ??03???* --f M-Name (Major(u)) =
“electronic engineering”)

“No student who was born after 1968 has the student
id number that starts with 86 which represents the
year when the student enters the collage.”
(Studld (u) = ati + Personld(Record(u)) 5 B&4)

In our queries, the example data in Section 3.1 are used.
To explain each heuristic, we ahow an example query(Q), a
semantic rule(R) and an efficiently transformed query(TQ)
using the semantic rule.

Example 5.1

This example shows that a clustered indexed attribute
is used by appling the first heuristic, in&z i.ntrodwtiorr.

Ql “Find student id numbers of the students whose ad-
visor is Hong.”

select Stud-Id(u)
from u in Univ-Stud
where Prof(Major(u)) = “Hong”

RI

TQl

“Professor Hong is in physics department.”
(Prof(Major(u)) = “Hong” -r M_Name(Major(u)) =
“physics”)

“Find student id numbers of the student whose ma-
jor is physics and advisor is Hong.”

select Stud-Id(u)
from u in Univ-Stud
where MJVame(Major(u)) = “physics” and

Prof(Major(u)) = “Hong”

In this example, the original query Ql searches every in-
stance object of UnivStud with the restriction that advi-
sor is Hong. If there is a semantic rule that says professor

3See Figure 4
4The ? character stands for any ringb chamcter.
5The * character stands for any sequence of R ckamcterr.

Hong is in physics department, and a clustered index is on
the lUWae ajQib&a, .awe can first check M_Naree +
tribute to select rapidly the students majo&& ii! phy&cs
as a newly added restriction. Thus we ca&uce the range
of valid targets, and within this reduced range, finding the
students whose advisor is Hong can be done much faster
than the original query processing would do. That is to
say, using clustered index, efficient query processing can
be achieved.

There is one thing to be noted about appling this heuris-
tic to the OODB. Fortunately, in the above example, the
newly introduced indexed attribute M-Name is in the same
branch class as the attribute Prof used in the query, i.e.,
the class Major. But, if the newly added indexed attribute
is in a different class far away, then it would not be a good
way. For instance, if in the above example, the semantic
knowledge to be used is Rl’ : “Students of professor Hong
are all living in Taegu city.” and it is assumed that a clus
tered index is on the City attribute. We will then use a
new restriction City(Addr(Record(u))) = ‘Taegu”. In this
case, in order to use this new restriction, query process-
ing needs to traverse from the root of the UnivStud class
to the City attribute to check which instances have string
“Taegu” in it. In the middle of this process, there occurs
instantiation (operation) from the Record attribute to the
nested Personal class. This can be very costly, because all
the instances in the class Personal should be searched.

Kim and others[7] state that fetching an instance of a
child class from its parent class is similar to a join oper-
ation in a relational database. Depicted in Figure 3 are
relational database join and an OODB instantiation. The
class Cl in Figure 3 (b) nests class C2 which is the type
of the attribute b. As in Figure 3 (b), finding and relating
the instances of C2 from b is almost the same as aqui-join
operation between the attribute b of Cl and the oidCof
C2 instances.

rl-7i-n abcdef

Rl R2 R

a b cdefwxyz

(a)Join in a relational DB (b)Instantiation in an OODB

Figure 3: Comparison between relational database join
and OODB instantiation.

‘Object identifier

16

As illustrated above, the instantiation in nesting rela-
tionship can require large searching time. I/O processing
cost for searching data in the secondary storages should
not be ignored. Therefore, when using Example 5.1, index
introduction, the semantic rule Rl’, i.e., (Prof(Major(u))
= “Hong” --f City(Addr(Record(u))) = “Taegu” requires
referencing of a new class Personal which is not constrained
in the original query. So, the mechanism which could eval-
uate the amount of I/O cost spent by an additional instan-
tiaton and the time saved by introduction of index should
be devised in the SQO system.

Considering this example, it is reasonable for the de-
signer to make index on the oid of all the nested instances
or, from the very first in the system itself, to connect every
nested class with index like join index of Valduriez[lG], in
order to make fast instantiation possible. But maintaining
those indices is costly.

----2--

k 4” k Jd
c2 Y

el fl v v 4 J

Figure 4: Example data for Q2.

Example 5.2

This example, using the data from Figure 4, shows the
heuristic associated with instantiation redaction.

92 ‘<Find instances of Cl whose attribute i has value x.”

select Clinstance
from Clinstance in Cl
where i(g(a(Clinstance))) = x

R2 “If the value of i is x, then that of d is y”
(i(g(a(Clinstance))) = x + d(Clinstance) =y)

TQ2 “Find instances of Cl whose attributes d and i have
values y and x respectively.”

select Clinstance
from Clinstance in Cl
where d(Clinstance) = y and

i(g(a(Clinstance))) = x

If all the attributes used in the original query are in the
high level, i.e., near to the terminal nodes of component
hierarchy tree, then by using an another attribute which
is in the low level in the tree, we can reduce the number
of instantiations.

The newly added restriction in TQ2, “d(Clinstance)
= y” uses the attribute whose distance from the root is

the smallest, i.e., the attribute is positioned in the low-
est level in the component hierarchy. It can be applied
prior to instantiation of C2 and C3. If this restriction
“d(Clinstance) = y” is not satisfied, there’s no need to
apply the restriction “i(g(a(Clinstance))) = x”. Instan-
tiations of C2 and C3 may not be necessary here.

We present below the formulas to estimate the possible
cost reduction. Referring to the data in Figure 4, we define
that the number of instances of class Ci is N; and the
number of data pages in the storages occupied by C, is
Ni/P where P is the number of instances in one page. It
can be shown that I/O cost for the original query 92 is
formulated as

NIP + NN,/P + NzNzN,/P

It is noted that the estimation on the cost of the instanti-
ation is based on nested-loop method. After we transform
the query using semantic knowledge R2, the cost of TQ2
becomes

N,/P + CU,N,N,/P t alNJV2N3/P~ where 0 I &I 5 1

Here, a1 is the selectivity determined by the restriction
“d(Clinstance) = y” which is applied to the class Cl. al
has the value between 0 and 1, so qrlN1 5 N1. Therefore,
this cost formula shows that the cost of TQ5 is reduced by
the factor cyl in comparison with the Q. Since cyi usually
has the value far less than 1, the cost reduction can be
great.

Example 5.3

This example shows the instantiation introduction heuris-
tic. This heuristic can be applied to the system that allows
reverse traversal. A child class which is not constrained
in the original query can be used when it has cluster-
ing link to the parent class which appears in the original
query. The child class should have much smaller number
of instances than those of the parent. This example is
explained using the data of Figure 1.

93 “Show the average score of the student whose student
id number is 8603111.”

select Score(u)
from u in Univ-Stud
where Stud-Id(u) = 8603111

R3 “Students majoring in electronic engineering have
student id numbers which have 0 in the third digit
and 3 in the fourth digit.”
(Studld(u) = ??03??? + M-Name(Major(u)) =
“electronic engineering”)

TQ3 “Show the average score of the student whose ma-
jor is electronic engineering and whose id number is
8603111.”

17

select Score(u)
from u in UnivStud
where M-Name(Major(u)) = “electronic engineering”

and Stud-Id(u) = 8603111

Many Univ-Stud instances can share the same Department
instance as the value of the Major attribute. In a real
world, this means that under one advisor (professor) there
can be many students.
Estimated numbers of the two class instances are

l UnivStud - as many as the number of students in
our university, 20,000 instances , 4,000 pages of data
(5 instances/ a page)

l Department - as many as the number of professors,
500 instances, 100 pages (5 instances/ a page)

The reason why the number of instances of class Depart-
ment does not match with that of M-Name but that of
Prof is that there are more than one professor in each de-
partment .

From the data in Figure 1, to search with a restriction
“Stud-Id(u) = 8603111”, we should read in 4,000 pages
of all the Univ-Stud data. But with the knowledge that
a student who has student id number of 0603111 is in
the electronic engineering major, we can use the class De-
partment by instantiation. The cost estimation is as fol-
lows. The size of the class Department is 100 pages and
its oid has clustering link to the Major attribute of the
class UnivStud. At first, 100 pages of Department class
data from storages are read in and every electronic en-
gineering students are selected. With the oids of the se-
lected Department instances, UnivStud instances of stu-
dents whose major is electronic engineering can be read
in directly by using clustering link. Let’s assume that stu-
dents in electronic engineering major are 2,000 and number
of the pages are 400. Then, the reading of the Department
class data takes 100 pages and reading through clustering
link takes 400 pages, so the total number of pages to be

read in are 500. This is 8 times smaller than the original
4,000 pages. Thus we achieved great efficiency by instan-
tiation introduction.

Example 5.4

This example illustrates the heuristic, I~nriantiatios elim-
ination. It is assumed that, the student id number starts
with two least digits of the entrance year? and the personal
id number starts with those of the birth year.

84 “Show the student id numbers and the average scores
of students whose entrance year is 1986 and birth
year is before 1969.”

select [student id:Stud-Id(u), average score:Score(u)]
from u in Univ-Stud
where Stud-Id(u) = 86-k and

PersonJd(Record(u)) 5 6%

R4 “NO student who was born after 1968 has the student
id number that starts with 86 which represents the
college entrance year.”
(Stud-Id (u) = 8& --) Personlcl(R.ecord(u)) 5 6&)

TQ4 “Show the student id numbers and the average scores
of students whose entrance year is 1986.”

select [student id:StudJd(u), average score:Score(u)]
from u in Univ-Stud
where Stud-Id(u) = d61t

Looking at the semantic knowledge R4, we can notice that
the restriction “birth year is before ‘1969” is redundant.
Thus the instantiation of the class Personal just for using
that redundant restriction is also redundant. So, by elim-
inating unnecessary instantiation operation we can save a
lot of I/O cost.

6 The Architecture for Semantic
Query Optimization

6.1 The Architecrture

In this section, we are going to describe the architecture
for semantic query optimization. As shown in Shenoy[l4],
we use two stages of transformations in our SQO system,
expansion stage and reduction stage. During the seman-
tic query transformation, expansions of the query are first
performed, and then reductions follow next. However, de-
tails of operations in each stage as well as heuristics are
different from those in Shenoy[l$

As stated before, a specific method adopted by a con-
ventional query optimizer is not an important issue here.
We transform the query into the efficient one in the pre-
processing phase which is then applied to the conventional
query optimization. In Figure 5, the architecture of the
SQO stem is shown.

Unti 1 no more consequent
part of SICs are added

To Conventional &m-y Optimization

Figure 5: Architecture of the SQO system.

18

Query expansion implies addition of other restrictions
to the original query. Added restrictions are the ones that
could lead to the more efficient processing plan when ap-
plied. Query reduction means elimination of the redun-
dant restrictions and/or targets that are unnecessary for
the desired result. Among the heuristics we have proposed,
Hl, H2, H3, H5 and H6 contribute to the query expansion
stage, i.e., the stage 1 of the preprocessing. The rest of the
heuristics are used in the stage 2 where query reduction is
performed.

The system works as follows. Each heuristic is imple-
mented into a procedure Hi(Q). In the expansion stage,
the procedu~s b(Q), WQ), WQ), I%(Q) and HdQ)
are called and executed in a proper order. Callings are
repeated until all the applicable SICs are tried out. When
no more SICs can be applicable, the reduction stage fol-
lows. In the reduction stage H1(Q) and I-IT(Q) are applied.
In each heuristic procedure Hi(Q), a query is transformed
by the specific way that the heuristic requires. The algo-
rithm of the procedure .Hi(Q) is presented below. In the
step A, the possibility of appling the heuristic is examined,
and if applicable, transformation of the query is performed
in the step B. Application of the next Hi(Q) procedure is
followed for more transformation. After the application
of all the heuristics, the original query Q must have been
transformed into TQ. This query TQ produces the same
result as the original query Q, while the processing cost of
the TQ might be reduced.

Procedure Expand-Query
/* This procedure describes the operations for
expansion stage */

Begin

Repeat
For i = I, 2, 3, 5, 6
Call Hi(Q), in a proper order

Until no more new consequent part of SIC is
added to query predicates

End {Expand-Query}

Procedure Reduce-Query
1s This procedure describes the operations for

reduction stage s/

Begin
Call k(Q)
Cal 1 H7(Q)

End {Reduce-Query)

Procedure Hi(Q)
/* This procedure describes the transformation
operations guided by heuristic Hi */

/* Q: query, Q.pred:predicate of Q, R:a set of
integrity rules, SIC:a rule, SIC.ante:antecedent part

of the SIC, SIC.cons:consequent part of the SIC */
Begin

A { If Hi is applicable to Q

1

Then
For all SIC E R Do

B If SIC.ante matches conditions of HI and Q.pred
Then transform Q.pred (and Q.target) as Hi

requires

End {Hi(Q)]

6.2 Effectiveness of the SQO

It is proven that the query generated by semantic query
optimization is semantically equivalent to the original one.
It is also shown that semantic query optimization gener-
ates efficient access plans in terms of processing cost. The
result of original query Q is expressed as Result(Q), and
that of the transformed query TQ as Result(TQ).

Theorem 1 The result of the query which is tnznsformed
by the application of semantic knowledge under the guid-
ance of the heuristics, is the same as that of the original
one. In other words, Q is semantically equivalent to TQ,
i.e.,

Result(Q) = Result(TQ)

Proof : Heuristics are used only for selecting semantic
knowledge and appling that to a query in such a way that
could reduce the cost. In other words, profitable SICs are
only applied to a query while SICs themselves are not af-
fected by the heuristics. According to &emma 3, i.e., the
transformation of a query by the application of SICs does
not change the result, Result(Q) = Result(TQ) follows. m

Now, we show that the cost of TQ is less than or at
least equal to that of Q. It is assumed that the time spent
by CPU is much smaller than that of I/O access to the
storage, so it could be ignored. We consider only I/O ac-
cess time for the cost estimation. In Section 5, we showed
that the heuristics used in SQO transform a query into the
efficient one with lower cost. Cost(Q) represents the cost
of Q, and cost(TQ) does that of TQ.

Theorem 2

Cost(Q) 2 Cost(TQ)

Proof : When a query Q is transformed into TQ by the
application of the procedure Hi(Q) for some i, it becomes
an efficient one having lower cost. At this time, the CPU
overhead increased by the semantic query transformation
processes is so small that it can be ignored. The consecu-
tive applications of heuristics during the expansion stage
would reduce the cost as long as SICs could be applicable.
Iterative running of expansion stage would not increase
the cost. After the expansion stage, heuristics for reduc-
tion stage are applied, which would not increase the cost.
Therefore, it is proved that Cost(Q) 2 Cost(TQ). l

For the worst case, where none of the heuristics are ap
plicable, Q and TQ have the samelorm, and no efficiency
is achieved. In this case, even if the system calls a Hi(Q)
procedure, in the first step(step A in the algorithm), the
query is checked for the validity of this transformation.
If none of the SICs are applicable, then the query is not
transformed, leaving the rest of the transformation step
untouched. So, this amount of the CPU overhead can be

19

ignored.

7 Conclusion

In this article we have shown an efficient query processing
method in Object-Oriented Database(OODB) systems. Is-
sues related to OODB systems are described. We propose
a new query processing technique in OODB systems which
utilizes semantic knowledge.

There have been lots of researches on query optimiza-
tion in a relational DBMS, utilizing semantic data in-
tegrity constraints. However, no attempts have been made
to use semantic knowledge for query optimization in an
OODB system. In this article, we have first shown that
semantic knowledge can be applied to the efficient query
processing in an OODB system. We have proposed a se-
mantic query processing method in which queries referenc-
ing complex objects can be processed with great efficiency
by using the semantic information related to target ob-
jects.

Several heuristics are proposed which could guide query
processor to proceed, using semantic knowledge, in a more
profitable way in terms of processing cost. Semantic query
optimization(SQ0) system incorporating these heuristics
is designed. The effectiveness of SQO system as well as
the semantic equivalence of transformed query are proven.

In the future research work, semantic query optimiza-
tion method taking into account inheritance property of
an OODB system will be studied. The concept of ob-
ject equality proposed by Khoshafian[6] and Masunaga[lO]
will be utilized in order to explore more diverse and effi-
cient ways of processing queries in an OODB system. The
implementation of SQO system is currently under study,
which will be accomplished with some additional features.

References

[1] D. Beech, “ A Foundation for Evolution from Re!a-
tional to Object Databases,” Proc EDBT, Venice, Italy,
1988.

[2] R. Bretl et. al., “The Gemstone Data Management
System,” Object-Oriented Concepts, Databases
and Applications, ACM PRESS, Part 3, Ch. 12, 1989.

[3] M. Carey, D. Dewitt and S. Vandenberg, “A Data
Model and Query Language for Exodus,” Proc. ACM
SIGMOD Conf., Chicago, 1988.

[4] S. Cluetin, C. Delobel, C. Lecluse and P. Richard,
“Reloop, an Algebra Based Query Language for an
Object-Oriented Database system,” Proceedings of the
1st International Conference on Deductive and Object-
Oriented Databases, Kyoto, Japan, 19t39.

[5] D. H. Fishman et. al., “Overview of the Iris DBMS,”
Object-Oriented Concepts, Databases and Ap-
plications, ACM PRESS, Part 3, Ch. 10, 1989.

[6] S. N. Khoshafian and G. P. Copeland, “Object Iden-
tity,” Proceedings of the Conference on Object-Oriened
Programming Systems, Languages and Applications,
pp. 406-416, ACM, Sept. 1986.

[7] W. Kim, K. Kim and A. Dale, “Indexing Techniques
for Object-Oriented Databases,” Object-Oriented
Concepts, Databases and Applications, ACM
PRESS, Part 4, Ch. 15, 1989.

[S] J. J. King, “Quist : A System for Semantic Query Op-
timization in Relational Databases,” VLDB, pp. 5IO-
517, 1981.

[9] C. Lecluse, P. Richard and F. Velez, “02, An Object-
Oriented Data Model,” Proceedings of ACM-SIGMOD
Conf., Chicago, June 1988.

IlO] Y. Masunaga, “Oject Identity, Equality and Re-
lational Concept,” Proceedings of the 1st Interna-
tional Conference on Deductive and Object-Oriented
Databases, Kyoto, Japan, pp. 170-187, 1989.

[ll] J. T. Park, T. J. Teorey and S. Lafortune, “A
knowledge-based approach to multiple query process-
ing,” Journal of Data & Knowledge Engineering, Noth-
Holand, New York, Vol. 3, pp. 261-284, March 1989.

[12] G. M. Shaw and S. B. Zdonik, “Object-Oriented
Queries: Equivalence and Optimization,” Proceedings
of the 1st International Conference on Deductive and
Object-Oriented Databases, Kyoto, Japan, 1989.

[13] G. M. Shaw and S. B. Zdonik, “A Query Algebra
for Object-Oriented Databases,” Proceedings of the 6th
International Conference on Data Engineering, IEEE,
1990.

1141 S. T. Shenoy and Z. M. Ozsoyoglu, “A System for
Semantic Optimization,” Proceedings of the ACM SIG-
MOD Conf., San Francisco, pp. 181-195, May 27-29,
1987.

[15] K. Tanaka and T. S. Chang, “On Natural Join in
Object-Oriented Databases,” Proceedings of the 1st
International Conference on Deductive and Object-
Oriented Databases, Kyoto, Japan, pp. 279-293, 1989.

[16] P. Valduriez, “Join Indices,” ACM Transactions on
Database Systems, Vol. 12, No. 2, pp 213-246, June
1987.

20

