
PC++: An Object-Oriented Database System for C++ Applications

Tin A. Nguyen

Objectivity, Inc.
800 El Camino Real

Menlo Park, CA 94025 USA
tin@objy.com

ABSTRACT

This paper describes PC++ (Persistent C++), an object-oriented
database system that supports persistent storage, retrieval, and
manipulation of C++ objects by multiple C++ applications exe-
cuting concurrently on a network. PC++ supports persistent
objects by extending the C++ programming language using the
C++ inheritance mechanism. PC++ provides object-oriented
programming interface, unique object identifier generation, effi-
cient management of object storage and retrieval, optimistic
concurrency control, and crash recovery. PC++ also supports
long transaction, object versioning, and object clustering which
relational database management systems do not support.

PC++ employs a distributed client-server architecture; it consists
of an application workspace manager and a database server. The
application workspace manager implements the programming
interface, performs identifier-to-object mapping, manages the
persistent heap space, and performs object clustering. The data-
base server manages files storing objects, creates and recon-
structs object versions, and performs automatic crash detection
and recovery. The application workspace manager and the data-
base server rendezvous to perform unique object identifier gen-
eration, concurrency control, and long transaction processing.

A C++ application integrates with the application workspace
manager and executes as a database client process. Clients and
the database server communicate using stream sockets. PC++
runs on networked Sun, DEC, and Apollo workstations under
the UNIX operating system.

1.0 Introduction

DATABASE SYSTEMS FOR ADVANCED APPLICATIONS ‘91

Ed. A. Makinouchi
@World Scientific Publishing Co.

Mark Wagner, Brent Hoffman

proCASE Corporation
3 130 De La Cruz Blvd.

Santa Clara, CA 95054 USA

The C++ programming language extends the C programming
language to support object-oriented programming [Str86,
Ker78]. Many engineering applications (such as CAD/CAM,
programming development environments, CASE, AI, and mul-
timedia) are using C++ as the implementation language. These
applications require their objects to be persistent- the life time
of objects are longer than the duration of program executions.

In engineering applications, objects usually interconnect
through references-- pointers to other objects. For example, a
programming tool may use a syntax tree to represent a program.
The syntax tree consists of nodes implemented as objects con-
nected through pointers (right sibling pointers, or parent point-
ers). Some classes of engineering applications manipulate
objects by frequently traversing the references. The references
traversal behavior is referred to as navigation-based referencing
which is distinctive from value-based referencing where an
object (data record) is accessed based on some indexed attribute.
Management information systems are known for having value-
based referencing characteristics and are being well supported
by relational database management system @DBMS).

Current RDBMSs do not support ease of modeling complex
objects, object versioning, and long transaction [Sto86]. Further-
more, RDBMSs cannot support performance requirements of
navigation-based referencing applications (such as CAD appli-
cations[Has82]) due to the overhead in transforming the data-
independent relational representation from and to complex
object representations. With the current workstations, an appli-
cation can potentially traverse hundreds of thousands to millions
of objects per second. Object-oriented database systems (OOD-
BMSs) can achieve high performance when they store and
retrieve objects on disk in the format that is very close to the in-
memory format. Furthermore, OODBMSs support modeling of
complex objects, object versioning, and long transaction.

The goal in developing PC++ is to provide a high-performance
object-oriented database system for storing, retrieving, and
manipulating persistent C-V+ objects. Specifically, PC++ is used
to construct an advanced integrated programming environment
called the SMARTsystem [Ro89]. The SMARTsystem (Software
Maintenance Analysis and Re-engineering Tools system) con-
sists of an integrated collection of tools for developing and main-
taining large C programs. High database system performance is
necessary in making the SMARTsystem usable.

109

--

PC++ provides some major features that are not supported by
relational database management systems such as support for
C++ object modeling, long transaction, and object versioning.
Section of this paper describes the PC++ system in detail. Sec-
tion 3 relates PC++ to other works, and discusses future exten-
sions of several PC++ facilities. Section 4 states some
conclusions.

2.0 PC++ Architecture and Functionalities

Figure 1 depicts the PC++ system architecture. PC++ employs a
distributed client-server architecture that consists of two compo-
nents: the application workspace manager and the database
server. PC++ provides a C++ programming interface through
which applications use PC++ facilities. Section 2.1 describes the
PC++ programming model. Section 2.2 describes the application
workspace manager. Section 2.3 describes the database server.
Section 2.4 describes the optimistic concurrency control and
crash recovery mechanisms. Section 2.5 reports some perfor-
mance characteristics of PC++.

2.1 The Programming Model

A C++ object consists of primitive data, other (nested) objects,
and/or pointers to other objects. A persistent C++ object in a
PC++ database contains an object identifier uniquely identifying
the persistent object. A unique identifier is used as the persistent
pointer to a persistent object. A persistent C++ object at all times
contains object identifiers instead of pointers to other objects
(whether the persistent object is in main memory or on disk).

PC++ provides an object-oriented programming interface con-
sisting of three pre-defined C++ classes (types): PERSISTENT,
PERSISTENT-ID, and WORKSPACE. The class PERSIS-
TENT, which all classes of persistent objects must derive
(inherit) from, supplies the object identifier and functions for ref-
erencing and modifying persistent objects. The class PERSIS-
TENT-ID defines an object identifier and supplies a function for
mapping an object’s identifier to the object.

class PERSISTENT (
public:

PERSISTFNT(int object-size,
cluster c = DEFAULT-CLUSTER);

virtual -PERSISTENT();
protected:

PERSISTENT *modify();
<other protected functions>

private:

1;

PERSISTENT-ID id;
cother private data>

The pre-defined class PERSISTENT-ID defines the following
properties for object identifiers:

class PERSISTENTJD (
public:

PERSISTENT *operator-r();
protected:

<protected functions for manipulating ids>
private:

<declarations for page and object numbers>

For a class P to be persistent, an application must define class P
deriving (directly or indirectly) from the class PERSISTENT. In
addition, the application must define an associated object identi-
fier class (for example, P-lD) deriving from the class PERSIS-
TENT-ID. The object identifier class P-ID serves as the
persistent pointer type for its associated persistent class P.

For example, an incremental programming tool might represent
a program as an abstract syntax tree [FisSS] and would like the
abstract syntax tree to be persistent. The abstract syntax tree con-
sists of a set of nodes containing pointers (left most child, right
sibling or parent) to other nodes in the tree. The nodes can be
modeled as objects. The abstract syntax tree is made persistent
by making its nodes persistent. The programming tool, for
example, would define the following classes:

class node : public PERSISTENT (
public:

node(<args>);
node-id get-leftmost-child0 (return lmc;]
void set-leftmost-child(node-id imcarg)
(modify(); lmc = lmc-arg;)
int get-value();
<other functions specific to node>

private:
node-id lmc;

1;
<other data specific to node>;

The pre-defined class PERSISTENT defines the following prop-
erties for persistent objects:

110

class node-id : public PERSISTENTJD (
public:

node(<args>);
/* pointer-to-identifier conversion function */
node-id(node *);
/* node id-to-node mapping operator */
node *operator->0
(return ((node *) PERSISTENT-ID::->());)

1;

PC++ supports only persistent heap objects; an application can-
not create static or local persistent objects. To create a persistent
object, an application uses the C++ new operator. For example,
to create a node:

node *n = new node(<args>);

In C++, the order of constructors execution for a class hierarchy
is from ancestors to descendants. Thus, the constructor of the
class PERSISTENT executes before the constructor of the class
node executes. The PERSISTENT constructor allocates space
for a new node object, and assigns a unique identifier to the new
node object. The node constructor passes the size of the node
information through the object-size formal argument of the
PERSISTENT constructor. The node constructor also optionally
specifies a cluster where the new node object belongs through
the c formal argument of the PERSISTENT constructor. Clusters
are referred to by cluster identifiers (enumeration constants) that
are defined in a C++ header file.

When modifying an object, an application must invoke the mod-
zfi function which marks the object as modified so that during
transaction processing the application workspace manager can
identify which objects need to be sent to the server for updating.
For example, the set leftmost-child member function of class
node invokes the modify function before modifying the lmc field.

To delete a persistent object, an application uses the C++ delete
operator. The delete operator invokes the PERSISTENT virtual
destructor after the descendants’ virtual destructors. The PER-
SISTENT virtual destructor immediately reclaims the space and
the object identifier of the persistent object being deleted. PC++
employs the C++ heap space management model, and assumes
that the application programmer is responsible for assuring that
there is no dangling persistent pointer. The PERSISTENT con-
structor and destructor for persistent C++ objects have the same
semantics as those of the C++ malloc and free library functions,
respectively, for non-persistent objects. Thus, PC++ does not
employ a garbage collection mechanism (as there is no garbage
collection facility in C++).

Pointers to persistent object are automatically converted to per-
sistent object identifiers by conversion functions. Thus, persis-
tent object pointers are used syntactically the same as non-
persistent object pointers. For example, the following C++ state-
ments set node n2 as node nl’s leftmost child:

node *nl = new node(...);
node *n2 = new node(...);
n I->set_leftmost_child(n2);

Note that the function ser~l&mosr~chiZd accepts a node pointer
(n2) as its argument because the constructor node id(node *) of
the class node-id automatically converts a node pointer to a node
identifier. PC++ provides a C-++ macro implementing the con-
version function to prevent programming error and to relieve
implementation burden on the programmet.

The overloaded operator -> defined in each persistent object
identifier class allows the natural use of C++ syntax in accessing
a persistent object’s members through the persistent object’s

identifier. For example, the following C++ expression invokes
the get-value member function of node nl ‘s leftmost child
which is an object identifier of type node-id:

n 1 ->getJeftmost-child()->get-value0

The overloaded operator -> of the class PERSISTENT imple-
ments the identifier-to-object mapping. Each persistent class
needs to provide only the proper casting of the mapping result.
For example, the overloaded operator -> of the class node
invokes the overloaded operator -> of the class PERSISTENT
and then casts the result to &come a node pointer.

The pre-defined class WORKSPACE supplies functions for
checkpointing, transaction processing, and initialization. The
WORKSPACE class supplies the following interface:

class WORKSPACE (
public:

status checkin();
status abort();
status checkpoint(char *checkpoint-file);
status update(int version-number = LATEST);
status assign-root(PERSISTENTJD root-id);
PERSISTENT *get-root();

1;
status initialize(char *bootstrap-file);

PC++ supports long transaction by providing a checkpoint and a
checkin function. The checkpoint function saves all new and
modified objects to a user-specifiable file in case there is a sys-
tem failure. The checkin function requests the database server to
perform a transaction commit, and sends all new and modified
objects to the server for transaction processing. PC++ starts a
transaction automatically after a transaction commit or abort. To
abort a transaction, an application invokes the abort function
which resets the workspace.

A PC++ database is an extension to a C++ application’s heap
space. The identifier-to-object mapping function provides
implicit indexing on object identifiers which is critical for navi-
gation-based applications. Currently, PC++ does not provide any
explicit indexing capability for accessing objects based on
attributes or names. PC++ assumes that all persistent objects are
reachable from a roof object. The WORKSPACE class provides

111

the function assign root for assigning an object as the root
object, and the function get-root for accessing the root object
from which all objects can then be accessed through their iden-
tifiers.

The WORKSPACE class provides an initialization function for
starting up a C++ application. The initialization function accepts
a UNIX path to a database bootstrap file. The database bootstrap
file contains the location of the followings: the database server,
the database files, the checkpoint file, and the local persistent
heap swap file. Both the application workspace manager and the
database server use the bootstrap file for starting up.

2.2 The Application Workspace Manager

An application integrates with the PC++ application workspace
manager and runs as a database client process. The workspace
manager implements the PC++ programming interface, manages
local persistent objects, and interfaces to the database server
through a stream socket interprocess communication channel on
behalf of the application. Figure 2 depicts the structure of the
application workspace manager.

t object mapping

HI I

The application workspace manager consists of a heap space for
persistent objects, a variable-size page index table, a persistent
swap space manager, and an object clustering manager. The
application workspace manager performs identifier-to-object
mapping, new object creation, object fetching, and long transac-
tion processing in coordination with the database server.

A PC++ object database consists of a number of 4K-bytes pages.
A page contains some header information, a variable-size object
index table, and a set of objects. A page is the physical unit of
fetching. An object identifier consists of a page number and an
object number. The page number specifies which page the object
is in. The object number specifies which object on the given
page-

The PERSISTENT operator -> maps an object identifier to the
object. Given an object identifier, the operator -> uses the iden-
tifier’s page number to look up the page through the page index
table. If the page is not in memory, the persistent swap space
manager fetches the page into memory. Once the page is in
memory, the operator -> uses the identifier’s object number to

find the object through the object index table on the page. The
operator -> returns a pointer to the object.

The persistent heap space consists of pages grouped in clusters.
When allocating an object in a specified cluster, the cluster man-
ager finds an existing page with enough free space for the object.
If there is not enough free space for the object in the specified
cluster, the cluster manager allocates a new page for the cluster.
The cluster manager then allocates space to the object on the
page, and assigns to the object an identifier whose page number
is that of the page and whose object number is the next free index
in the page’s object index table.

The variable-size page index table is a hash table whose entries
are pairs of page numbers and pointers to pages in the heap
space. The page index table grows as the cluster manager allo-
cates new pages.

The application workspace manager provides and manages addi-
tional swap space for persistent objects because the application’s
process swap space may exhaust before the application commits
a long transaction. The application workspace manager employs
a least recently used (LRU) algorithm to swap pages. the algo-
rithm freely discards pages containing only old unmodified
objects since these pages can always be refetched from the data-
base. For pages containing modified or new objects, the algo-
rithm swaps them in from and out to the persistent swap file.

2.3 The Database Server

The database server performs page fetching and reconstruction
per client requests, database update and object versioning during
checkin, crash detection and recovery, and message delivery
between clients and an application-specific lock server. Figure 3
depicts the structure of the database server.

t checkin/lctch ,

A PC++ object database consists of many database versions. A
database version comprises all updated and new objects from a
transaction. The versioning mechanism is page-based. Each
database page consists of a set of base objects (the latest version)
and sets of version objects (previous versions). The base objects
of a page reside on a base page that is stored in a base file. Each
version object of a page contains the delta objects for a previous
version of the page. Version objects reside on version pages
stored in version files. A base page and its associated version

112

pages are logically liked together to facilitate new version cre-
ation (during checkin) and page reconstruction (during fetch-
ing).

The server employs a reverse delta reconstruction algorithm to
reconstruct any version of a database. When a client requests a
page of a previous database version, the server applies the ver-
sion objects of a page to the base page. Since multiple clients
may request the same page of different versions, the server
caches both base and version pages. The server uses an LRU
algorithm for replacing pages in the page cache.

2.4 Concurrency Control and Crash Recovery

PC++ provides optimistic concurrency- concurrent object cre-
ation, access, and modifications by multiple clients- through
mechanisms for unique object identifier generation, and work-
space version updating and conflict resolution. By providing
optimistic concurrency, PC++ does not need to provide a locking
facility.

The application workspace manager generates unique identifiers
by requesting the database server to dynamically allocate unique
sets of contiguous identifiers on demand. When a client creates
a new object and exhausted the previously allocated set of
unique identifiers, the client sends a message to the server
requesting for a new set of unique identifiers. The server returns
a set of unique page numbers that the client can freely use to allo-
cate new objects.

PC++ enables a client to validate the effects and resolve conflicts
(if there are any) resulting from other clients’ checkins by pro-
viding an update workspace function where all the old objects at
version V in the client’s workspace are replaced by their latest
version. When a client successfully checkins a new database ver-
sion, other clients are neither notified nor updated immediately.
Consequently, a client who starts out at version V of the database
may not always able to checkin on top of version V. And there-
fore, the client needs to use the update workspace function to
validate the semantic correctness of the new database version
before the client commits its checkin.

PC++ automatically detects failures and recover through a roll-
back mechanism. If there is a failure during checkin, the server
rollbacks to the latest consistent version before the checkin
started. Rollback consists looking for base pages with the new
version number, and reconstructing them back to the previous
consistent version. Checkin processing facilitates rollback by
first constructing the version object (for the previous version) of
a page and writing the version object out to disk before overwrit-
ing the base page with the new version. Thus, the server can
always reconstruct the previous version of a base page.

2.5 Performance Characteristics

PC++ serves as the foundation for the SMARTsystem. PC++
performance is characterized by numerous SMARTsystems
benchmarks that produce databases ranging in sizes from hun-
dreds of kilobytes to hundreds of megabytes. These benchmarks

113

produce persistent C++ objects with average size of 30 bytes.

Each SMARTsystem benchmark consists of invoking a series of
SMARTsystem tool commands simulating code development
and maintenance activities (text navigation, editing, parsing,
symbols creation and lookup, and call graph browsing) on a pro-
duction C program. The benchmark showed that PC++ takes 15
microseconds to map an object identifier to the object on a Sun
3/60 machine; this translates to roughly 66,000 object traversals
per seconds (providing that they’re already in memory). The
benchmark also showed that PC++ takes 100 microseconds to
create a new object (roughly 10,000 new objects per second).

The SMARTsystem performs well when the working set
IDen of a benchmark fits the available main memory. For
example, navigating and editing with the SMARTsystem syntax-
sensitive editor is as fast as using Emacs[StaSl]. However, some
incremental global symbol generation appears sluggish because
it traverse more objects than the available memory can hold. Pro-
filing the later case showed that the system spent 90% of its time
waiting in the UNIX read system call [Rit74], and the remaining
10% of its time in executing tool functions, other system calls,
or the identifier-to-object mapping function.

Heuristically grouping objects (for example, objects belonging
to the parse tree, or the symbol table) using the static clustering
mechanism improved SMARTsystem performance from 10% to
20%. The improvement comes from increased locality, and less
internal fragmentation because objects of the same type (and
thus same size) are grouped together. On the average, 6% of a
page’s space is overhead (header information and object index
table), and less than 2% of a page’s space is unoccupied by
objects.

3.0 Related and Future Works

The PC++ programming model is similar to that of PS-Algol
tAtk831. Both systems view the persistent heap space as part of
virtual memory, and assume that persistent objects are reachable
from a root object. PC++ applications, like the E system [Ric89]
applications, use C++ to define both persistent types and their
methods. Thus, PC++ and E smoothly integrate their object-ori-
ented database systems with the C++ programming language.
Other systems such as the Vbase system [And871 provide one
language for defining types and a host language (some superset
of the C programming language) for definirig methods. Thus,
Vbase provide more flexibility for supporting other host lan-
guages.

Some SMARTsystem tools produce intermediate objects in
computing some final results. After obtaining the final results,
here is no need to save the intermediate objects to the database.
By making persistency independent from type, PC++ can allow
applications to specify whether an object of a class deriving from
the class pERSISTENT is persistent. Specification of persis-
tency can be done at object creation time through an argument of
the new operator of the class PERSISTENT [SQW. PS-Algo*
and the ODE system [Arg89] provide strict orthogonal persis-
tence.

Like in Avalon/C++ [Det88], in PC++ persistence types are
defined by inheriting from a pre-defined type that supplies per-
sistent properties. PC++ does not employ compilation technol-
ogy, such as employed by the E system, to support persistency.

An object identifier in PC++ is a physical address. Thus, an
object’s physical location (the page location) can be computed
from its identifier without using a lookup table. Consequently,
the identifier-to-object mapping mechanism is simple and highly
efficient. The object size limitation does not hamper the con-
struction of the SMARTsystem in any way. However, applica-
tions in image processing, graphics, or multimedia may require
support for large objects with arbitrary sizes. PC++ can support
arbitrarily-sized objects by dividing the object name space into
two name spaces: one for small objects (less than 4K bytes) and
one for larger objects.

A more flexible object clustering mechanism should include
dynamic clustering. With dynamic clustering, the application
workspace manager creates new clusters at run time on demands
by the application. The existing unique object identifier genera-
tion mechanism can be generalized for generating dynamic clus-
ter identifiers. With both static and dynamic clustering, PC++
can support all object clustering options as described in
[Kim90].

4.0 Conclusions

PC++ is a high performance object-oriented database system for
constructing C++ applications. The design of PC++ fully
exploits the capability of a modem workstation so that C++
applications whose working sets match the workstation’s avail-
able main memory can perform well. By focusing on and achiev-
ing high performance, PC++ is commercially usable.

PC++ supports persistent C++ objects by extending C++ using
the C++ inheritance mechanism. PC++ achieves acceptability
and flexibility by adhering to and implementing the C++ object-
oriented programming and data model, and by providing a sim-
ple object-oriented programming interface. PC++ is acceptable
to C++ programmers because it does not require significant addi-
tional training. PC++ is flexible for C++ programmers because
it allows them to naturally extend the C++ programming model
to include persistency.

5.0 Acktiowledgmen ts

The authors acknowledge design and implementation contribu-
tions from Jerry Barenholtz, Robert Evans, Brian Gill-Price,
Efrem Lipkin, Timothy Rentsch, and Anatol Zolotusky. Susan
Najour and Lynn Rohrer improved this paper’s presentation.

6.0 References

[Arg89] R. Agrawal, and N. H. Gehani, “ODE (Object Database
and Environment): The Language and the Data Model”, Pro-
ceedings of the 1989 ACM-SIGMOD International Confer-
ence on the Management of Data, Portland, Oregon, June
1989.

[And871 T. Andrews, and C. Harris, “Combining Language and
Database Advances in an Object-oriented Development
Environment”, Proceedings of the Conference on Object-
Oriented Programming Systems, Languages, and Applica-
tions, Orlando, FL, October 1987.

[Atk83] M. P. Atkinson, I? J. Bailey, W. P. Cockshott, K. J.
Chisholm, and R. Morrison, “An Approach to Persistent Pro-
gramming”, Computer Journal, 26(4), 360-365, 1983.

men681 P. Denning, “The Working Set Model for Program
Behavior”, Communications of the ACM, 11(5), 323-333,
May 1968.

pet881 D. D. Detlefs, M. I? Herlihy, and J. M. Wing, “Inherit-
ance of Synchronization and Recovery Properties in Avalon/
C++“, IEEE Computer, 21(12), 57-69, December 1988.

[Fis88] C. N. Fischer, R. J. LeBlanc, Jr., Crafting a Compiler,
Benjamin/Cummings, 1988.

@as821 R. Haskings, and R. Lorie, “On Extending Functions of
a Relational Database System”, Proceedings of the 1982
ACM-SIGMOD International Conference on the Manage-
ment of Data, Orlando, FL, June 1982.

[Ker78] B. W. Kernighan, and D. M. Ritchie, The C Program-
ming Language, Prentice-Hall, 1978.

[Kim901 W. Kim, “Architectural Issues in Object-Oriented
Databases”, Journal of Object-Oriented Programming, 2(6),
29-38, March 1990.

[Pro891 proCASE Corporation, The SMARTsystem Reference
Manual, 1989.

[Ric89] J. E. Richardson, and M. J. Carey, “Persistence in the E
Language: Issues and Implementation”, Software-Practice
and Experience, 19(12), December 1989.

[Rit74] D. Ritchie, and K. Thompson, “The UNIX Time-sharing
System”, Communications of the ACM, 17(7), 365-375, July
1974.

[Stag11 R. Stallman, “EMACS: The Extensible, Customizable
Self-Documenting Display Editor”, Proceedings of the 1981
ACM-SIGPLAN-SIGOA Symposium on Text Manipulation,
June 1981.

[Sto86] M. Stonebraker ed., The INGRES Papers: Anatomy of a
Relational Database System, Addision-Wesley, 1986.

[se861 B. stro~~trup, The C++ Programming Language, A&Ii-
son-Wesley, 1986.

[S@Ol B. St~~strup, The C++ Programming Language -
Annotated Reference, Addison-Wesley, 1990.

114

Sun 3/60 is a trademark of Sun Microsystems, Inc.
DEC is a trademark of Digital Equipment Corporation
Apollo is a trademark of Hewlett-Packard Corporation
UNIX is a trademark of AT&T Bell Laboratories
SMARTsystem is a trademark of proCASE Corporation

.i -.

115

- -.- -. --

