
Real-Time Database Scheduling:
Design, Implementation, and Performance Evaluation

Sang H. Son, Prasad Wagle, and Seog Park-f

Department of Computer Science, University of Virginia, Charlottesville, VA 22903, USA
t Dep‘artment of Computer Science, Sogang University, Seoul, Korea

ABSTRACT
A reaI-time database system has timing con-

straints associated with transactions and the database.
To ensure that a real-time database system completes
as many transactions as possible without violating their
timing constraints, its scheduling strategy should be
dynamic and use information about the timing con-
straints associated with transactions and the database.
This paper presents an intelligent dynamic scheduling
algorithm for transactions in real-time database sys-
lcms. The scheduling algorithm uses timing informa-
Lion about transactions and the database to enhance the
system’s ability to meet transaction dcadIincs. The
scheduling algorithm is implcmcntcd in a simulated
puke detection system, and its pcrformancc is dcmon-
slratcd by a series of expcrimcnts.
1. Introduction

A Real-time database system is a database sys-
tcm that supports real-time computing. Reul-lime com-
[~/in8 is a type of computing whcrc the correctness of
the system’s response depends not only on the logical
result of the computation, but also on the time at which
the results are produced [Stan88]. The Liming con-
straint on the system’s response is called deadline.
Traditional reaI-time systems have concentrated on sys-
tcms which have hard deadlines. IC a system misses a
hard deadline, the consequences can bc disasLrous. On
the other hand, if the system misses a soft deadline,
there may still be some value for computing the
rcsponsc of the system. Real-time systems arc assum-
ing an increasingly important role in our society.
Examples of current real-time computing systems are
cominand and control systems, aircraft avionics, robot-
ics, network management, and program trading.

‘skis work was supported in pan by the Office of Naval
Research under contract # NOOO14-88-K-0245, 13~ IBM Pedcral Sys-
tems Division, and by rhe Center for Innovative l’cchnology under
con1rac1 # Cl-r-INF-90-011.

DATABA~E~YSTEM~FORADVANCEDAPPLICATIONS'~~
Ed. A. Makinouchi
@World Scientific Publishing Co.

Most of the complex real-time computing appli-
cations need to access large amount of data. Thus, we
need database systems which arc cognizant of the
rcquircments of real-time computing, i.e. real-time
dulabase syslerns [Son88]. Transactions in real-time
database systems must be scheduled in such a way that
they can be completed before their corresponding dead-
lines expire. For example, both the update and query
on the tracking data of a missile must be processed
within the given deadlines: otherwise, the information
provided could be of little value. In such a system,
transaction processing must satisfy not only the data-
base consistency constsaints but also the timing con-
suaints.

Concurrency conlrol algorifhms in database sys-
tcms control the interaction among the concurrent tran-
sacLions in order to prevent them from destroying the
consistency of the database. Serializability is a widely
acccptcd notion of the dclinition of correctness for con-
currency con&o1 in database systems. A scheduler in
database systems is entrusted with the task of enforcing
the serializability constraints. It accepts database opera-
tions from transactions and schedules them appropri-
atcly for the data manager. To satisfy both consistency
and real-time constraints in real-time database systems,
thcrc is a need to intcgratc concurrency control algo-
rithms with real-time scheduling algorithms.

Real-lime scheduling algorilhms address the
problem of meeting the specified timing constraints.
Satisfying the timing constraints of real-time systems
demands the scheduling of system resources according
to some well-understood algorithms so that the timing
behavior of the system is understandable, predictable,
and maintainable. The goal of most scheduling prob-
lems is to find optimal static schedules which minimize
the response time for a given task set. In-many real-
time systems, however, there is generally no incentive
to minimize the response time other than meeting the
dcadlinc. ReaLLime systems arc often highly dynamic
requiring on-line, adaptive scheduling algorithms. In
these cases, the goal is 19 schedule as many jobs as pos-
sible, subject to meeting the task timing constraints.
Alternative schedules and/or error handlers are

146

required and must be integrated with the on-line
scheduler.

A real-time database scheduling algorithm must
maximize both concurrency and resource utilization
subject to three constraints: data consistency, transac-
tion correctness, and transaction deadlines [Son90c].
This requirement can be satisfied by the intelligent
integration of two forms of scheduling protocols: con-
currency control protocols and real-time scheduling
protocols. It is not very straightfonvard to integrate the
two protocols, since while the term “scheduling” is
used in both database systems and real-time system
schedulers, the processing of scheduling has different
assumptions and objectives in the two environments
[Son90]. The notion of a schedule as formalized in
database systems does not include time, so there is no
way to measure the timeliness of a database schedule.
On the other hand, the notion of a schedule as forrnal-
izcd in real-time systems does not enforce any con-
sistency metric on data resources.

Satisfying timing constraints while preserving
data consistency requires scheduling and concurrency
control protocols to accommodate timeliness of tran-
sactions as well as data consistency requirements. In
real-time database systems, timeliness of a transaction
is usually combined with its criticality to take the form
of the priority of the transaction. Therefore, proper
management of priorities and conflict resolution in
real-time transaction scheduling are essential for pred-
ictability and responsiveness of real-time database sys-
tems. In this paper, we present a dynamic scheduling
algorithm developed for real-time database systems.

’ The algorithm employs the notion of dynamic priorily
based on a number of important parameters that affect
scheduling decisions. We first discuss a few basic con-
cepts and issues associated with real-time database
scheduling in the next section. The proposed algorithm
is then discussed in detail, together with experimental
study which illustrates the performance of the algo-
rithm.

2. Basic Concepts

2.1. Validity Constraints

Deadlines are timing constraints associated with
transactions. There exist another kind of timing con-
straints which are associated with transactions and data
objects in the database. In a database, there may be
some data objects which get old or out-of-date if they
are not updated within a certain period of time. To
quantify this notion of age we associate with each data
object a degree of validity which decreases with time.
The validity curve associated with each data object is a
plot of the degree of validity of the data object with
respect to the time elapsed after the object was last

modified.

If w is the time of last modification of a data
object, we can calculate the validity of the data object
at time t from its validity curve. A transaction may
require that any data object it reads does not have a
degree of validity less than the minimum degree of
validity. This constraint could be either hard or soft,
like deadlines. Scheduling decision could be made
more intelligent by incorporating this validity informa-
tion about transactions and data objects they read

2.2. Static versus Dynamic Scheduling

It is possible to statically guarantee real-time
constraints by pre-calculating all possible schedules of
transactions off-line. There are two reasons why this
approach is infeasible. First, the task of finding all pos-
sible schedules of transactions is NP-hard [Stan90].
Therefore, the task becomes computationally intract-
able when there are a large number of simultaneously
active transactions. Second, the demands on a real-time
database system can change frequently. For example,
aperiodic transactions, by their very nature, can be
activated at unpredictable times. Therefore, a dynamic
scheduling strategy is needed to make the system more
flexible. Also, to make “intelligent” scheduling deci-
sions, the scheduling strategy should use as much tim-
ing information as possible about transactions and the
data objects they access.

A scheduler in database systems accepts database
operations from transactions and schedules them
appropriately for the data manager [Bem871. In a dis-
tributed system, each site has its own scheduler which
can receive database operations from transaction
managers at different sites. In conventionai database
systems, the scheduler is entrusted with the task of
enforcing the serializability constraints. In real- time
database systems, it is also necessary to take into
account the timing constraints associated with the tran-
sactions and the database while making scheduling
decisions.

3. The Scheduling Algorithm

In this section, ‘we present a dynamic scheduling
algorithm for transactions in real-time database sys-
tems. The scheduling strategy uses timing and validity
information about transactions and data objects to cal-
culate dynamic priorities of transactions. These priori-
ties are then used to make scheduling decisions at all
places where transactions contend for scarce resources.

3.1. Information for Intelligent Scheduling

A transaction can be represented as a tuple (SP,
RS, WS, A, D, E, V,,). The elements of the tuple are
described below.

(1) System priority (SP):
This is the static component of the dynamic
priority associated with a transaction. It is a
measure of the value to the system of complet-
ing the transaction within its timing constraints.
For example, transactions dealing with emer-
gency situations should have a higher priority
than routine transactions.

(2) Read set (RS):
This is the set of data objects which the transac-
tion reads.

(3) Write set (WS)
This is the set of data objects which the transac-
tion writes.

(4) Arrival time (A):
This is the time at which the transaction arrives
in the system.

(5) Deadline (D):
This is the time before which the transaction
has to finish its execution. The transaction
specifies whether the deadline is hard or soft.

(6) Runtime estimate (E):
This is the estimate of the processing time
required by a transaction. This includes the time
required for CPU as well as I/O operations.

(7) Minimum Validity(V&):
This is the minimum degree of validity required
of all objects read by the transaction. The tran-
saction specifies whether this validity constraint
is hard or soft.

148

The above information about the transaction is
available to the system before the transaction is started
and remains constant throughout the transaction execu-
tion. Since the scheduling strategy is dynamic, it needs
information about the transaction which varies with
time. The information which varies with time is
described below.

(8) Read set validity(RSV):
This is the degree of validity of data objects in
the transaction’s read set. The degree of validity
of a data object can be calculated from its vali-
dity curve. The validity curve of a data object
defines a function of the degree of validity of
the data object with respect to the time elapsed
after the data object was last modified. There-
fore, if we know the time the object was last
modified, we can calculate the degree of vaIi-
dity of the data object at the current time from
the validity curve.

(9) Processing time(P):
This is the processing time already received by
a transaction. This includes the time required
for CPU as we11 as I/O operations.

(10) Current time(C):
This is the time at which the scheduling deci-
sion is made.

3.2. Design Issues
Before implementing any scheduling strategy, it

is important to consider the overhead it requires. Obvi-
ously, a complicated scheduling strategy requires more
time. This factor can be crucial in deciding whether it
is of any practical benefit to use the extra information
about transactions and the database in the scheduling
strategy.

For instance, if the database is disk-resident and
the transactions are I/O intensive, the time required for
I/O operations would be large compared to the time
required for doing CPU operations. In that case, it
would not make a big difference whether or not we use
a complicated scheduling policy at the CPU level. The
bottleneck in this case would be the data objects and it
would be imperative to schedule the database opera-
tions in an intelligent way. But if the database is
memory resident and the transactions are CPU inten-
sive then it would become necessary to use the extra
information about transactions in the scheduling deci-
sion at the CPU level. Example 1 shows a scenario
which illustrates a situation where an intelligent
scheduling strategy at the CPU level would be helpful.

ExampIe I: Assume that transactions execute CPU and
I/O instructions alternately. Let the time required for
one session of CPU computation be 10 time units and
the time required for one I/O operation be 2 time units
(if there is no blocking). Let the transactions to be
scheduled (T, and T2) have the characteristics given
below. This situation can arise if both T1 and T2 wait
for some other transaction (say, T3) to release a data
object dl. Assume that T3 releases the data object at
time 5. Thus, the scheduling decision has to be made at
time 5.

Transaction A E D Ooerations
T, 0 12 30 read cd, \
7-2 5 12 20 read(dl)

According to the FCFS scheduling strategy, T1 is
scheduled first and it completes at time 17. Tz starts at
time 15, but since it requires 12 time units to complete,
it misses its deadline at time 20. The execution
sequence is shown in Fig. 3.2.

If the system is intelligent enough to follow the
elaborate scheduling strategy to be discussed in Section
3.3, T2 would be scheduled first. (According to the
least slack method of assigning priorities, T2 has a
higher priority than T1, because the slack of T2 is less
than the slack of T,.) In that case both transactions
would meet their deadlines as shown in Fig. 3.2.

Tl(CPU) T2(CPU)

5 15 17 2u.

Tl
completes

T2 misses
its deadline

Fig. 3.1 FCFS Scheduling

T2(CPU)

Twm) ~'1 (I/O>

Tl (CPU)

15 17 25 27

T2 Tl
completes completes

Fig. 3.2 Intelligent Scheduling

An issue involved in designing a scheduling stra-
tegy is whether or not to allow preemption. The
scheduling decision at the CPU level normally allows
preemption. However, if we allow preemption at the
data object level, we may have to abort the preempted
transaction for maintaining consistency of the database.
When preemption is not allowed, the scheduling deci-
sion has to be made whenever a transaction relinqu-
ishes a resource or when a transaction requests a
resource which is not being used. When preemption is
allowed the scheduling decision has to be made when-
ever a transaction either requests or relinquishes a
resource.

3.3. A Real-Time Database Scheduler

A scheduling algorithm for transactions in real-
time database systems can be dccomposcd into three
components: (1) determining eligibility, (2) assigning
dynamic priorities, and (3) making scheduling deci-
sions on granting the resource. Each component of the
proposed algorithm is described in detail in the follow-
ing sections.

3.3.1. Determining Eligibility

Before making a scheduling decision we have to
decide whether the transactions involved are eligible
for scheduling i.e. whether it is of any use to the system
to start processing those transactions. If a transaction is
ineligible for scheduling we abort it immediately.

We assume that, if a transaction misses a hard
deadline, it is ineligible for scheduling and should be
aborted. If a transaction misses a soft deadline, it is still
eligible for scheduling. We also check whether it is
possible for the transaction to finish before its deadline:

(D-C) 2(E-P)

If it is not possible, and the deadline in question is hard,
we consider the transaction ineligible for scheduling.
Howcvcr, if the deadline is soft, the transaction remains
eligible for scheduling.

The steps taken in incorporating validity con-
straints are similar to those taken for deadlines. If a
transaction misses a hard validity constraint then it is
ineligible for scheduling and should be aborted. If the
validity constraint missed is soft, then we continue exe-
cuting the transaction at a different priority. We also

149

check, for each data object read by the transaction,
whether its degree of validity is greater than the
minimum validity level expected by the transaction. If
that is not the case, and the validity constraint of the
transaction is hard, we consider the transaction ineligi-
ble for scheduling. However, if the validity constraint
is soft, the transaction remains eligible for scheduling.

3.3.2. Assigning Dynamic Priorities

The dynamic priority of a transaction is a number
calculated by the scheduler while making the schedul-
ing decision. It is a measure of the importance, to the
over-all goals of the system, of scheduling that transac-
tion before others at that point in time [Son89]. Since
this measure may change with time, it has to be calcu-
lated dynamically when a scheduling decision has to be
made.

Dynamic priority (DP) is a weighted sum of the
following factors:

(1) System priority (SP): It is the static component
of dynamic priority.

(21 Slack with respect to deadline (SDL): It is the
amount of time the transaction can be delayed
and still meet its deadline. It is calculated as fol-
lows:

SDL=D-C-(E-P)

(3) Slack with respect to minimum validity con-
straints (SV): It is the amount of time the tran-
saction can be delayed and still be completed
without violating its validity constraints.

SV = Min (t I For each data object d
read with Vd(T + t) 2 Vmi,]

where, Vd(T + t) is the degree of validity
of an object d at time (T + t), assuming
no updates between time T and (T + t).

Dynamic Priority (DP) is calculated as follows:

DP := DP, + DP, + DP3
where,
DP1 := w1 * SP
DP2 := w2 * SDL
DP3 := w3 * SV

The factors involved in determining the dynamic
priority of a transaction have constraints closely related
to the characteristics of real- time transactions. First,
w1 > 0, since if SP increases, DP should increase. Also,
if SDL > 0 then w2 < 0, since if SDL decreases then
DP should increase. If SDL < 0, then the transaction
has already missed its deadline. Note that since the
transaction is still eligible for scheduling, the deadline
missed must have been soft. At this point, there are two

options available to us. We could reason as follows:
Since the transaction has missed its deadline (soft), it
should be finished as soon as possible, and hence its
priority must be increased. In that-case, w2 c 0. How-
ever, we might reason that since the transaction has
already missed its deadline, its priority should be
reduced so that it does not interfere with other transac-
tions in the system which are nearing their deadlines. In
that case, w2 > 0. Similar discussion applies to w3 and
sv.

The relative values of wl, w2, w3 depend on the
high level goals of the system. For example, some sys-
tems may aim at minimizing the number of transactions
that miss their deadline, in which case w1 would not be
very high. Some systems might require that absolutely
none of the higher priority transactions be aborted, in
which case w1 would very high. Example 2 shows a
scenario which illustrates that a scheduling strategy at
the CPU level taking validity constraints into account
does prevent unnecessary aborts of transactions.

Example 2: Assume that transactions use the CPU and
do I/O operations alternately. Let the time required for
one session of CPU computation be 10 time units and
the time required for one I/O operation be 2 time units
(if there is no blocking). Let the transactions to be
scheduled (I’, and T2) have the characteristics given
below.

_ Transaction A E D V,;, Operations
T, 0 12 30 100% read(d,)
T? 0 12 25 50% read(d,) _

Let the validity curve for object di be as shown
in Fig. 3.3, and the time it was last modified be 0. Let
the weights w2 and w3 for calculating dynamic priori-
ties be -1. This implies that, in the formula for calculat-
ing dynamic priorities, the slacks with respect to dead-
line and validity constraints have the same weight.

Case A) Assume that validity constraints are not con-
sidered:
In this case, DP := DP, + DP2. The slack of Ti with
respect to deadline is 18. The slack of T2 with respect
to deadline is 13. Therefore,

DP2(Tl> = -18 and DPz(T2) = -13.
i.e. DP2(T2) > DP2(TI).

Assuming equal system priorities, DP(T2) > DP(T,),
implying that T2 would be scheduled first. The execu-
tion would proceed as shown in Fig. 3.4. T2 would
finish its execution at time 12, and then Ti would start.

However, at time 20 the validity of object dt would be
50%. This would violate the validity constraint of T1,
which would have to be aborted.

Case B) Assume that validity constraints are con-
sidered:

150

Validity 4

30 Time elapsed

Fig. 3.3 Validity Curve

T2(CPU)

I

Tl (CPU)

0 10 12

T2
completes

20
Tl violates its
validity constraint

Fig. 3.4 Validity constraints ignored

In this case, DP := DP, + DP, + DP3. The slack of T,
with respect to validity constraints is IO. The slack of
T2 with respect to validity constraints is 20. Therefore,

DPa(Tt) = -10 and DP,(Tz) = -20.
i.e. DP,(T,) + DP,(T,) > DP2(T2) + DP,(T,).

Assuming equal system priorities, DP(T,) > DP(T,),
implies that T1 would be scheduled first. The execution
would proceed as shown in Fig. 3.5. At time 10 the
validity of object 1 would be lOO%, satisfying T,‘s
validity constraints. T1 would finish its execution at
time 12, and then Tz would start. At time 20, the vali-
dity of object dt would be 50%, satisfying Tz’s validity
constraints. Thus T2 would finish its execution at time
22. This example shows that incorporating validity
constraints in the scheduling strategy does prevent tran-
sactions from being aborted unnecessarily.

3.3.3. Making Scheduling Decisions

The way a scheduling decision is made depends
on whether preemption is allowed or not. In the

following discussion we assume that the transactions
considered have already passed the eligibility test. Let
us consider the scheduling algorithms for the two
cases:

Case 1. No preemption.
There are more than one transactions request-
ing a resource and we have to decide the tran-
saction which should be granted the resource. In
this case we grant the resource to the transac-
tion with the highest dynamic priority.

Case 2. With preemption.
There is a transaction currently holding a
resource and there is another transaction
requesting the same resource. We have to
decide whether or not to preempt’the transac-
tion holding the resource and grant the resource
to the transaction requesting it.

Let two transactions Th and T, be the resource
holder and the requester for a shared resource, respee-
tively. Let P(Th) and P(T,) be dynamic priorities of the
two transactions. Let P(Tg) be the priority of Th were it

151

0

Tl(CPU)

Tl 0/Q TWO)

TqCPU)

10 12 20 22

Tl T2
completes completes

Fig. 3.5 Validity constraints considered

to be preempted by T,. The algorithm works as follows.
It is based on a resolution policy of the conditional res-
tart in [Abbo88].

if PO;) > P(Th) and P(T,) > P(Tg) then
if RemainingTime > Slack(T,)

then preempt T,;
else block T,

T, inherits the priority OF T,
endif;

else block T,
endif;

where RemainingTime = E(T’,) - P(Th)
and Slack(T,) = min. of SDL and SV of T,.

4. Experimentation

4.1. Need for a Real-Life Application

The research on real-time transactions schedul-
ing is still in its infancy. There exists no formal
theoretical framework to analyze the performance of
the existing scheduling algorithms. For this reason, it
is necessary to make an experiment to compare the pcr-
formance of different scheduling strategies.

Until now, none of the algorithms proposed in
previous studies have been evaluated in real systems.
[Abbo88] and [Abbo89] present experimental results
based on simulation, whereas muan presents an
integrated approach to study real-time transaction pro-
cessing on a testbed system. In these studies semanti-
cally meaningless transactions are randomly generated
with random system priorities, resource requirements,
and timing constraints. The disadvantage of this
approach is that it does not give the researcher a true
feel for real-life problems. Also, for any scheduling
strategy to be used in industry, it has to be supported by
an extensive round of experimentation with a real-life
application.

4.2. A Pulse Detection System

A pulse detection system is an example of a
real-time database system [Hale89]. It is used to detect
and track external objects by means of pulses (radar or
sonar) received from them. The pulse detection system
maintains information about each object in reality in a
database of emitter files. It contains a number of simul-
taneously active transactions with different system
priorities, timing constraints, and resource require-
ments.

The pulse detection system we have imple-
mented runs on a SUN 3/75 Workstation with a color
monitor. It is based on the scenario of a battleship sur-
rounded by airborne enemy objects like aircrafts or
missiles. It consists of two windows: the reality win-
dow, and the operator’s console window

The reality window consists of a stationary bat-
tleship at its center and the surrounding enemy objects.
Each object has a position and a velocity associated
with it. An object is implemented as a process which
calculates the new position of the object and displays it
in the reality window. The reality window is managed
by two modules: Object and Reality. The
moduie Object is responsible for creating objects in
reality, continuously updating their positions and
detecting collisions. The module Reality is respon-
sible for creating the reality window. It has a pro-
cedure called GetPulseData which simulates the
operation of a radar by getting new pulse data of an
object in reality.

The operator’s console window displays the
operator’s view of reality as maintained by the pulse
detection system. It is supposed to display the most
current positions of enemy objects in ;eality. The
operator’s console window is managed by the modules:
Detect and EmitterFile. The module Emit-
terFile maintains an emitter file to store information
corresponding to each enemy object in reality.

152

The Detect module contains three periodic
and two aperiodic transactions. Each transaction is
implemented as a process. The following are the
periodic transactions with a brief description of what
they do.

(1) Track: It calls Reality: GetPulseData
to get a new pulse data of an object in reality. It
scans all the emitter files to fmd an emitter file
which correlates with the pulse data received. If
it finds such an emitter file, it updates it; else it
creates a new emitter file with that pulse data.

(2) Clean: It periodically scans the emitter files
and deletes emitter files which haven’t been
updated for a predetermined amount of time
assuming that the object which they represents
have been destroyed.

(3) Operator Interaction: This transaction
accepts operator commands. For example, an
operator may query the database to find more
information about an emitter file, or he may
start a transaction to shoot an enemy object.

The operator interaction transaction, in turn, can
start two aperiodic transactions, which are:

(1) Display Information: This tranSaCtiOn

displays information about the object chosen by
the operator.

(2) Shoot Object: This transaction shoots a
missile at the object chosen by the operator.

4.3. The Simulation Feature of the System

Since the pulse detection system we have imple-
mented runs in a simulated environment, it is very
important that the experimenter has control over the
relative speeds of the transactions being executed and
the amount of time a transaction needs to use a
resource. To provide this capability, we have created a
special software module, called the Simulation
module. If two or more processes want to use a
resource at the same time, a decision has to be made in
the Simulation as to which process should be
granted the resource. This decision is made consider-
ing the attributes associated with the different
processes according to some scheduling strategy.

Currently each process contending for a shared
resource has the following atuibutcs: (1) System prior-
ity; (2) Arrival time; (3) Deadline; (4) Run-time esti-
mate; (5) Processing time it has received; and (6)
Minimum validity of the data it reads.

The system allows the researcher to choose the
scheduling strategy follow&d, with or without preemp-
tion, and examine its effects on the pulse detection sys-
tem. Currently the following strategies, with or without
preemption, are supported: (1) First Come First Served;

153

(2) System Priority; (3) Earliest Deadline First: (4)
Least Slack First; and (5) A variant of the scheduling
strategy presented in the previous chapter, which will
be henceforth referred to as the Combination strategy.
The Combinafion strategy uses the system priority (SP)
and the slack with respect to deadline (SDL) while
making its scheduling decisions.

Our intention is to show that the performance of
the pulse detection system can be enhanced by the use
of intelligent scheduling algorithms. The performance
of a scheduling strategy can be judged in two ways: (1)
by the visual behavior of the simulated pulse detection
system; or (2) by the information about successful
completion of transactions displayed each time the
scheduling strategy is changed.

4.4. Assumptions

The following are the assumptions made about
the simulations.

(1)

(2)

The consistency of the database is maintained
using exclusive locks which are non-
preemptible. A more efficient concurrency pro-
tocol would be the priority ceiling protocol
using shared locks [Sha91].

All transactions have hard timing and validity
constraints. When a periodic transaction or an
instance of a periodic transaction is started, the
run-time estimate and the deadline parameters
of the transaction are set.

(3) A transaction cannot use more than one
resource at the same time.

4.5. Results of Experiments

To make the differences in the performance of
the different scheduling strategies obvious two periodic
dummy transactions were added to the system. This is
justified, since, real-time systems do have certain back-
ground tasks which are not directly connected to the
real-time application. The following are the dummy
transactions and their characteristics:

(1)

(2)

Dummyl: Low system priority, Tight deadline.

Dummy2: High system priority, Loose dead-
line.

The simulation results can be grouped into three
cases:

(1) Case 1: Dummyl, but not Dummy2, is
activated.

(2) Case 2: Dummy2, but not Dummyl, is
activated.

(3) Case 3: Both Dummy1 and Dummy2 are
activated.

To quantitatively evaluate the results of a partic-
ular scheduling strategy, we calculate itsfigure of merif
as follows:

figure of merit = C (% success)(System Priority)
TlXWXiO~typ~

where

% success _ (No. of successful completions)
(No. of instances started)

The system priorities of the different transaction
types is shown in the following table.

The simulation results based on the above perfor-
mance metric are summarized in the following tables.
The entries in the tabIe are either quantitative (figures
of mcril) or qualitative (good or bad). The qualitative
assessment is done by taking into account the visual
behavior of the system.

4.51. When Preemption is Allowed

Quantitative Assessment..

Qualitative Assessment..

We observe that the FCFS strategy performs
poorly in all the three cases. This is because the FCFS
strategy does not possess the requisite intelligence to
prevent the dummy transactions from using the
resources. This causes the more important transactions
to miss their deadline.

In Case 1, the dummy transaction activated has
low priority but a tight deadline. The scheduling stra-
tegy based on system priority can filter out the dummy
transaction. But the earliest deadline first and least
slack first strategies do process the dummy transaction,
thus causing the system to behave poorly.

In Case 2, the dummy transaction activated has
high priority but a loose deadline. The earliest deadline
first and least slack first strategies can filter out the
dummy transaction. But, the scheduling strategy based
on system priority does process the dummy transaction,
thus causing the system to behave poorly.

In Case 3, dummy transactions of both kinds are
activated. The Combination strategy works well since it
uses information about system priority as well as infor-
mation about the timing constraints while making its
scheduling decision.

4.5.2. When Preemption is Not Allowed
Quantitative Assessment:

Qualitafive Assessment:

As seen above, in general, scheduling strategies
perform poorly when preemption is not allowed. From
the output of the simulation runs it is observed that
almost all of the track transactions miss their deadlines,
implying that the operator’s console is empty most of
the time. Due to this, the clean transactions trivially
complete, since they have no emitter tiles to clean. But,
it is almost impossible to start any transactions to shoot
or display information about objects. Thus, the entire
purpose of the pulse detection system is defeated.

5. Conclusion

Real-time database systems have timing and vali-
dity constraints associated with transactions. To ensure
that a real-time database system completes as many
transactions as possible without violating their timing
and validity constraints, its scheduling strategy should
have the following characteristics. First and foremost,
the scheduling strategy should be dynamic. Second, it

154

should use the timing and validity information associ-
ated with transactions and the database. Third, the
scheduling strategy should be used in every situation
where there is a resource contention. Fourth, preemp-
tion should be allowed wherever possible.

In this paper, we have presented a dynamic
scheduling algorithm for transactions in real-time data-
base systems. The scheduling algorithm uses timing
and validity information about transactions and data
objects to calculate dynamic priorities of transactions.
These priorities are then used to make scheduling deci-
sions when transactions contend for scarce resources.
The extra information enables the scheduler to make
intelligent decisions so that the system completes as
many critical transactions as possible.

To be useful, any scheduling algorithms have to
bc supported by an extensive round of experimentation
with a real-Q% application. The proposed algorithm
has been implemented and evaluated using a puise
detection system as a real-life, real-time database appli-
cation. The experimental results show that scheduling
algorithms for real-time database systems can be made
more effective by making use of extra information
about transactions and the database.

Real-time database systems of tomorrow will be
large and complex, since they will be distributed,
operate in an adaptive manner in a highly dynamic
environment, exhibit intelligent behavior, and be
characterized as having catastrophic consequences if
the logical or timing constraints of transactions are not
met. Meeting the challenges imposed by these charac-
teristics very much depends on a focused and coordi-
nated research efforts in several areas, especially in
real-time transaction scheduling. The dynamic
scheduling algorithm presented in this paper shows
promising characteristics that are important to the prob-
lem of real-time transaction scheduling.

References

[Abbo88] Abbott, A. and H. Garcia-Molina, “Schedul-
ing Real-time Transactions: a Performance
Evaluation”, Proceedings of the 14th VLDB
Conference, 1988.

[Abbo89] Abbott, A. and H. Garcia-Molina, “Schedul-
ing Real-time Transactions with Disk
Resident Data”, Proceedings of the 15th
VLDB Conference, 1989.

[Bern871 Bernstein, P.A., V. Hadzilakos, and N.
Goodman, “Concurrency Control and
Recovery in Database Systems”, Addison-
Wesley, 1987.

[Hale891

[Huan89]

[Sha9 11

[Son881

[Son891

[Son901

[SonS)Ob]

[Son90c]

[Stan881

[Stan901

Haleen, B. A., “SDEX/20 and 43RSS: Navy
Standard Operating Systems”, Proceedings
of the Workshop on Operating Systems for
Mission Critical Computing, University of
Maryland, College Park, Maryland, 1989.

Huang, J. and J. Stankovic, “Experimental
Evaluation of Real-Time Transaction Pro-
cessing”, Proceedings of the Real-Time Sys-
tems Symposium, December 1989.

Sha, L., R. Rajkumar, S. H. Son, and C.
Chang, “A Real-Time Locking Protocol,”
IEEE Transactions on Computers, (to
awed.
Son, S. H., editor, ACM SIGMOD Record,
17, 1, Special Issue on Real-Time Database
Systems, March 1988.

Son, S. H., “On Priority-Based Synchroniza-
tion Protocols for Distributed Real-Time
Database Systems,” IFACIIFIP Workshop
on Distributed Databases in Real-Time
Control. Budapest, Hungary, Oct. 1989, pp
67-72.

Son, S. H. and C. Chang, “Performance
Evaluation of Real-Time Locking Protocols
using a Distributed Software Prototyping
.Environment,” 10th International Confer-
ence on Distributed Computing Systems,
Paris, France, June 1990, pp 124-131.

Son, S. H. and J. Lee, “Scheduling Real-
Time Transactions in Distributed Database
Systems,” 7th IEEE Workshop on Real-
Time Operating Systems and Software,
Charlottesville, Virginia, May 1990, pp 39-
43.

Son, S. H., “Real-Time Database Systems:
A New Challenge,” Data Engineering, vol.
13, no. 4, Special Issue on Directions for
Future Database Research and Develop-
ment, December 1990, pp 39-43.

Stankovic, J. A., “Misconceptions abour
Real-Time Computing”, IEEE Computer,
October 1988.

Stankovic, J. A., K. Ramamritham, and D.
Towsley, “Scheduling in Real-Time Tran-
saction Systems,” ONR Annual Workshop
on Foundations of Real-Time Computing.
Washington, D.C., October 1990, pp 127-
144.

155

