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Abstract 

The aim of the Aditi project at the University of 
Melbourne is to find out what implementation meth- 
ods and optimization techniques would make deduc- 
tive databases competitive with current commercial 
relational databases. The structure of the Aditi 
prototype is based on a variant of the client-server 
model. The front end of Aditi interacts with the user 
exclusively in a logical language that has more ex- 
pressive power than relational query languages. The 
back end uses relational technology for efficiency in 
the management of disk based data and uses some 
optimization algorithms especially developed for the 
bottom-up evaluation of logical queries involving re- 
cursion. The system has been functional for almost 
two years now, and has already proven its worth as 
a research tool. This paper outlines the structure of 
Aditi and presents an example in some detail. 

1 Introduction 

Aditi is a deductive database system that has been 
designed and is under continuous development at 
the University of Melbourne. Its purpose is to al- 
low research into the use of logic for manipulat- 
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ing large amounts of data. The system provides 
a logic programming language interface for enter- 
ing programs and queries which are evaluated by a 
database backend. This backend is a disk based de- 
ductive database system which supports bottom-up 
computation methods to evaluate queries involving 
recursion and function symbols. This paper presents 
an overview of the Aditi system and discusses CUT- 
rent developments. 

We started work on Aditi in the second quarter of 
1988. A basic version of the system has been opera- 
tional since July 89. We are continuously enhancing 
the system, adding functionality and increasing per- 
formance, but we are also using it as a research tool: 
several techniques employed by the current version 
of Aditi were first implemented and evaluated using 
previous versions. Other aspects of Aditi build on 
original research done previously by members of the 
Aditi team [l, 2, 6, 7, 13, 141. (Aditi is the name of 
an Indian goddess; she is “the personification of the 
infinite” and “mother of the gods” .) 

Another version of this paper will appear in the 
‘Proceedings of the 1991 International Conference on 
Data Engineering; a much longer version is available 
as Technical Report 90/14 from the Ilcpart~mcnt~ of 
Computer Science, University of Melbourne. 

2 The structure of Aditi 

Aditi is based on the client/server model found 
in many commercial relational database systems. 
Users interact with a front-end process (FE) that is 
regarded as a client of the system. The client com- 
municates with a back-end process (server) that per- 
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Figure 1: The structure of Aditi 

forms the usual set of database operations, such as 
joining, merging, and subtracting relations, on be- 
half of the clients. Some systems have one server per 
client, while others have one server supporting mul- 
tiple clients. Aditi is a hybrid of these two schemes: 
some of its server processes are dedicated to clients 
while others are shared by all clients. 

The dedicated server process, called a Database 
Access Process (DAP), performs the initial autho- 
risation clearance of the client as well as all tasks 
connected with query evaluation except the execu- 
tion of relational algebra operations. Those oper- 
ations are performed by a pool of server processes 
called Relational Algebra Processes (RAPS). These 
provide the relational operations required for query 
evaluation. The pool of RAPS is managed by a mas- 
ter process called the Query Server (QS). Figure 1 
illustrates how the pieces fit together. 

As a DAP evaluates a query, the relational alge- 
bra operations are sent to the QS for execution. If 
there is a free RAP, then the QS passes the task 
on to that RAP, otherwise the task is queued un- 
til a RAP becomes available. The RAP then per- 
forms the task and notifies the requesting DAP of 
the result. The RAP also informs the QS that it is 
available for another task. To reduce communica- 
tion overhead, we have implemented our own IPC 
mechanisms using shared memory; nevertheless we 
intend to implement a scheme in which a RAP can 
be assigned exclusively to a DAP for several tasks, 
the RAP being returned to the process pool only 
when the DAP is finished with it. 

Here is a short summary of the properties of the 

various processes. 

FE The clients of Aditi are called Front End pro- 
cesses. When making interactive queries on 
the database, one would use the query shd 
as a front end. When one wants to write ap- 
plications using Aditi embedded in an inter- 
preted language such as NU-Prolog, the front 
end would be the (modified) NU-Prolog inter- 
preter; When one wants to write applications 
using Aditi embedded in a compiled language 
such as C, the front end would be the applica- 
tion program itself. 

DAP Aditi requires each Front End process to ac- 
cess Aditi through a Database Access Process 
or DAP. DAPs are responsible for database se- 
curity and they oversee the execution of queries. 
There is one DAP per live Front End process. 

QS The Query Server or QS is responsible for man- 
aging the load on the machine. In operational 
environments, there will be one QS per maclrirrc 
(in our development environment, one can set, 
up other QSs for testing). 

RAP Relational Algebra Processes or RAPS carry 
out relational algebra operations on behalf of 
the DAPs. RAPS are allocated to DAPs for the 
duration of one such operation. The number of 
RAPS that can be active at a given moment is 
controlled by the QS within configurable limits, 
so there is no necessary connection between the 
number of DAPs and RAPS in the system. 

3 The languages of Aditi 

When supplying tuples for EDB predicates, defining 
IDB predicates or making queries, the users interact 
with Aditi using only Aditi-Prolog, a variant of the 
logic programming language Prolog adapted for de- 
ductive databases. The DAP, however, understands 
only its own machine language, which is a bytecode 
version of RL, the Aditi relational language. The 
Aditi compiler, which is written in NU-Prolog, con- 
verts facts, predicate definitions and queries from 
Aditi-Prolog to RL; an assembler written in C con- 
verts RL to the bytecode expected by the DAP. The 
compiler and assembler are invoked by users when 
they define IDB relations and by the query shell for 
any except the simplest queries. 
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3.1 Aditi-Prolog 

Aditi-Prolog is essentially just pure Prolog aug- 
mented with declarations. Some declarations tell 
the compiler something about the properties of the 
predicate: e.g. which arguments will be known when 
the predicate is called. Others request specific rule 
transformations or evaluation strategies. Among 
those available are naive evaluation, differential or 
semi-naive evaluation [2], evaluation by magic set in- 
terpreter [ll], magic set transformation [3, 41, con- 
straint propagation [6, 81, and transformations for 
linear rules [7, 9, lo]. Here is an example: 

?- mode(edge(f,f)). 

?- mode(path(b,f)). 
?- mode(path(f ,b)). 
?- flag(path, 2, diff). 

patho(, Y) :- edge(X, Y), 
path(X, Y> :- edgeo(, Z>, path(Z, Y). 

The first line declares that the predicate edge has 
two arguments and that it expects to be called with 
both arguments free. Since this code has no defi- 
nition for edge, it must be an EDB relation or a 
separately compiled IDB predicate. 

The second and third lines declare that the 
predicate path has two arguments, and that it 
has two modes. In its first mode, it should 
be called with the first argument bound to a 
ground term and the second argument free (e.g. 
?- start(X) , path(X, Y>, “what nodes Y are 
reachable from nodes X that appear in the start 
relation”). In the second mode, it should be called 
with the second argument bound and the first argu- 
ment free (e.g. ?- path(X, b), “what nodes X is 
node b reachable from”). The fourth line requests 
differential evaluation [2] for the path predicate with 
arity 2. The last two lines are the rules defining this 
predicate. 

3.2 Aditi relational language 

RL is a simple procedural language augmented with 
relational algebra operations. The primitive opera- 
tions of RL fall into the following classes: 

l the standard relational algebra operations such 
as join, union, difference, select and project 
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extended relational algebra operations such as 
union-diff, which performs a union at the same 
time as a difference, thus saving the overhead 
of scanning the input relations twice 

operations for data movement such as append 
(union without checking for duplicates), copy 
(copy the contents of a relation) and assign 
(copy a pointer to a relation) 

operations concerned with data structure opti- 
mization such as presorting relations 

arithmetic and relational operations on integers 
and floating-point numbers and the usual oper- 
ations on boolean values. 

The DAP sends most of the operations in the first 
four classes to the QS for execution by some RAP; 
those in the fifth class and some others (e.g. copy- 
pointer-to-relation) are carried out by the DAP it- 
self. 

The control structures of RL are simple: it sup- 
ports only gotos, conditional branches, and proce- 
dure calls. The procedures are the key to RL. An 
RL program has a procedure for every mode of ev- 
ery predicate in the Aditi-Prolog program it was de- 
rived from. A procedure corresponding to an EDB 
predicate merely returns a pointer to the perma- 
nent relation (all such procedures have all their ar- 
guments free; any selections on permanent relations 
are done by other code). Procedures that implement 
IDB predicates are more complex, partly because 
they naturally require several steps to implement 
and partly because they offer more opportunities for 
optimization. Figure 2 is an example: it shows the 
RL code corresponding to the first mode of path. 

The name of the RL procedure that implements 
an Aditi-Prolog predicate is derived from the name 
of the predicate (path), its arity (2), and its mode 
number (1). By convention, all these RL procedures 
have two arguments. The first is always a relation 
whose tuples represent the values of the input or 
bound arguments of the predicate it implements; the 
second is always a relation whose tuples represent 
the values of aII the arguments of the predicate it im- 
plements. In this case, init-path has one attribute 
while final-path has two, because path has two 
arguments, only one of which is input in mode num- 
ber 1. The idea is that when path-2-l is called, the 
init-path relation must already be known, but that 
path-a-1 is responsible for determining the contents 



procedure path-Z-1 (init,path, final-path) 
relation init,path, final-path; 
< 

relation new-path, diff,path; 
relation edge, nullary; 
boo1 booll; 
int sizel; 

settrel (new-path, 2) ; 
settrel (dif f -path, 21; 
settrelcedge, 2) ; 
settrel (nullary , 0) ; 

call(“edge,2,1”, nullary , edge) ; 
copycedge, f inal,path) ; 
copy(f inal,path, diff -path) ; 

label1 : 
join(edge, diff-path, 

“#(0,1)=#(1,0)“, “‘1, 
new-path, “#(O,O), #(l,l>“); 

uniondif f (f inal,path , new-path, ““, 
f inal,path, dif f -path) ; 

cardinality(diff,path, sizel) ; 
gt(size1, 0, booll) ; 
test(bool1, label11 ; 
join(final-path, init-path, 

“#(o,o)=#(l,o)“, “‘1, 
final-path, “#(O,O), %(O,l)“); 

1 

Figure 2: RL code for path 

of final-path (in fact any tuples in final-path at 
the time that path-2-l is called will be overwritten 
and thrown away). 

The body of the procedure path-2-l begins with 
the declaration of some local variables, and contin- 
ues with the creation of (empty) relations of various 
arities to serve as the initial values of the relation- 
valued variables (settrel stands for set temporary 
relation). 

The next two lines implement the first rule of the 
path predicate. The first line calls the RL proce- 
dure for the predicate edge (arity 2, mode number 
1) with a zero-arity input relation and puts the re- 
sult in edge. Since edge is an EDB predicate, its 
data is stored in a permanent relation, and edge 
will now contain a pointer to this relation. The sec- 
ond line copies the contents of edge into the relation 
final-path (like C, RL permits the use of parame- 

ters as temporaries, even though RT, passes pazrwn- 
eters by reference}. 

The rest of the procedure except for the fi- 
nal line implements the second rule of path. 
The loop invariant is that final-path holds the 
path facts currently known to be true, new-path 
holds the path facts discovered in the current 
iteration, and diff-path holds those facts from 
new-path that were not discovered in previous iter- 
ations. final-path was initialized by the first rule, 
diff-path is initialized in the line before the loop, 
while new-path is computed during the loop, The 
loop body starts out by implementing the join im- 
plicit in the conjunction edge(X, Z), path(Z, Y) 
by joining edge and diff-path with the join con- 
dition that the second argument of the former be 
equal to the first argument of the latter. (As both 
input relations and arguments are numbered from 
zero, the notation #(O,l) refers to input relation 
number 0 (i.e. edge) and argument number 1 (i.e. 
Z).) The join condition is split into two parts; the 
first one contains conditions that are useful for in- 
dexing while the second contains conditions that are 
not (in this case the second part is empty). It is the 
responsibility of the compiler to ensure that the first 
part is appropriate for whatever kind of indexing is 
available for the relations to which it refers. 

The result of the join is a relation with three at- 
tributes, representing the variables X, Y and Z. Since 
the head of the second rule contains only X and Y, 
the result is projected onto X and Y (#(O,O) and 
# (1,l) respectively) before it is assigned to relation 
new-path, which thus contains tuples corresponding 
to the path facts we have discovered in this iteration. 
We then put any tuples in new-path that were not 
in final-path into the relation dif f -path, and add 
all tuples in new-path to the relation final-path, 
maintaining the loop invariant. The uniondiff in- 
struction carries out both these operations at the 
same time (its third argument allows one to specify 
arguments on which the output relations should be 
sorted; this capability is not used in this example). 

At the end of the loop, we put the cardinality 
of the diff-path relation into the’integer variable 
sizel, and test whether this number is greater than 
zero. If it is, we go back to the start of the loop at 
labell. 

When the loop exits, final-path contains the en- 
tire path relation. The final join of final-path 
with init-path, deletes from final-path all tuples 
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whose first arguments are not in init-path, leav- 
ing just those the user asked for. The wastefulness 
of this should be self-evident. Fortunately, there 
are optimization methods that compute only the re- 
quired subset of the path relation, thus avoiding this 
inefficiency [16]. Aditi implements many of these 
optimizations; we chose to show the unoptimized 
version for the sake of exposition. 

3.3 The compiler 

The compiler that turns programs written in Aditi- 
Prolog into RL is written in NU-Prolog [15]. Un- 
like most compilers, it represents programs in not 
one but two intermediate languages, which we call 
HDS and LDS (for “high-level data structure” and 
“low-level data structure” respectively). HDS pro- 
vides an easy-to-manipulate representation of Pro- 
log rules while LDS provides an easy-to-manipulate 
representation of RL programs. The compiler has 
three main stages: Aditi-Prolog to HDS, HDS to 
LDS, and LDS to RL, in addition to optional opti- 
mization stages that transform HDS to HDS or LDS 
to LDS. 

The first main stage, Aditi-Prolog to HDS, is con- 
cerned mainly with parsing the input and filling in 
the slots in the HDS representation of the program 
(most of these slots contain information for HDS to 
HDS optimizations). Some of the tasks required for 
the latter are trivial, such as finding the scopes of 
all variables, while others can have great impact on 
the performance of the final code, such as selecting 
an appropriate sideways information-passing strat- 
egy or SIP [17]. 

The HDS to HDS level is where the compiler im- 
plements the optimizations that are defined in terms 
of source-to-source transformations. These opti- 
mizations include magic set transformation, count- 
ing set transformation [3, 41, constraint propagation 
[6, 81, and context transformations for linear rules 

VI* 
The second main stage, HDS to LDS, is respon- 

sible for converting a predicate calculus oriented 
representation of the program into a representa- 
tion geared to relational algebra operations. Among 
other things, this requires the transformation of re- 
cursive Prolog rules into RL procedures containing 
iteration. If several predicates are mutually recur- 
sive, then the compiler generates a single procedure 
containing one big iteration that computes values 

for all these predicates. It also generates an inter- 
face procedure for each predicate involved; these call 
the procedure containing the iteration and select the 
data they need from it. 

The translation from HDS to LDS can take any 
one of several different paths. The five paths cur- 
rently implemented are naive and differential imple- 
mentations of the standard bottom-up interpreter, 
naive and differential implementations of the so- 
called magic set interpreter Ill], and a differen- 
tial implementation of a bottom-up interpreter with 
predicate rule ordering [12]. Each of these imple- 
mentation schemes is good in some circumstances 
and bad in others; it is an open research problem 
to find the domains of optimality of each. This is a 

,problem we intend to pursue with the help of Aditi. 

LDS to LDS optimizations come from the pro- 
gramming language and relational database lit- 
erature (in contrast to HDS to HDS optimiza- 
tions’, which come mainly from the logic program- 
ming/deductive database literature). They include 
such techniques as common subexpression elimina- 
tion, loop invariant removal, moving selections be- 
fore joins, and the intelligent exploitation of any 
available indexing. 

The third main stage, LDS to RL, is necessary 
because the aim of LDS is easy optimization while 
the aim of RL is easy assembly and fast execution. 
First, LDS has if-then-else and while loops, whereas 
RL has labels and gotos; this stage converts the for- 
mer into the latter. Second, LDS has no notion of 
the bundling of several operations together as oc- 
curs with pre-select and post-project as well as wit11 
operations such as union-die, this stage can convert 
a sequence of LDS operations into a single RL in- 
struction using peephole optimization techniques. 

The input of the compiler at present must con- 
tain declarations specifying the set of optimizations 
to be applied to each predicate. Although we intend 
to add a module to our compiler that would try to 
determine the best set of optimizations automati- 
cally, the current setup gives us the control we now 
need in our experiments concerning the performance 
of various optimization techniques. The data to be 
produced by these experiments will in fact be vital 
in the implementation of an automatic optimization 
module. 

The output of the compiler is human readable RL 
code whose syntax and structure resemble that of C 
programs. The translation of RL into the bytecode 
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needed by the DAP is the task of a small, fast assem- 
bler written in C. This design makes it convenient to 
inspect the output of the compiler, making debug- 
ging the compiler easier. It also allows us to write 
RL code ourselves. This allows us to exercise much 
of Aditi even without a working compiler, which was 
very important when the compiler itself was under 
development and hence sometimes not working cor- 
rectly. It also allows us to try out hand optimized 
queries on the system; we can thus experiment with 
optimizations before deciding to incorporate them 
in the compiler. 

4 Further work 

A prototype of Aditi is functional and we are able 
to evaluate most queries, but much research and de- 
velopment remains to be done. We outline briefly 
some of the more important areas we are currently 
examining. 

Transactions: At present, Aditi has no transac- 
tion mechanism, although some of the hooks re- 
quired are present. A single transaction may require 
the cooperation of several processes (the client DAP 
and any RAPS used); we need to research concur- 
rency control methods that allow this. We are also 
looking at how best to resolve simultaneous updates. 
As recursive computations can take long periods of 
time, overlapping updates are more likely in deduc- 
tive databases than in relational databases. We do 
not want to lock relations for long periods because 
this can drastically reduce concurrency. However, 
optimistic methods that force restarts of computa- 
tions could cause starvation and waste too many 
computation resources. We would prefer a hybrid 
solution that minimises these problems. 

Parallelism: Even the earliest versions of Aditi 
could execute different queries from different users 
in parallel. We are now working on the exploitation 
of parallelism within the evaluation of each query. 
Coarse grained parallelism can be exploited at the 
RL level. The non-recursive rules of a predicate can 
be evaluated independently, and the recursive rules 
belonging to a set of mutually recursive predicates 
can be evaluated independently at each iteration; 
this is OR-parallelism. Similarly, some rules con- 
tain operations that do not use each other’s outputs 
and therefore can be evaluated independently; this is 
AND-parallelism. To take advantage of these oppor- 
tunities, we have extended RL to allow RAP opera- 

tions to execute in parallel, and modified the stan- 
dard DAP to support these extensions by maintain- 
ing a context for each thread of parallel execution 
and coordinating several RAPS. The compiler now 
emits code that exploits OR-parallelism; we need to 
extend it to exploit AND-parallelism, and we need 
to further evaluate and tune our implementation. 
As far as fine grained parallelism is concerned, we 
are currently implementing a parallel hash-join al- 
gorithm, and we also plan to implement parallelized 
versions of the other relational algebra operations in 
the future. 

Aggregates and negation: The compiler can cur- 
rently generate code for programs which are strati- 
fied through negation. Soon this will be extended to 
include programs which are also stratified through 
aggregation operations such as count, sum, max and 
min. We are investigating what modifications to the 
compiler would be required for dealing with non- 
stratified programs for both negation and aggrega- 
tion. In particular, we conjecture that a compiler 
can generate code for sufficiently stratified programs 
[5] with little or no alterations required of the inter- 
preter or the relational back-end. 

Mixed tuple-at-a-time and set-at-a-time: An ad- 
vantage of a deductive database system over a logic 
programming system, is its ability to use relational 
database techniques for performing computations 
involving joins with large relations. However, there 
are often situations where it is far more efficient to 
perform some computations in a tuple at a time 
manner. For example, predicates for list manip- 
ulation such as list reverse and append should be 
compiled into code which takes each tuple in the 
input relation, performs the required list manipula- 
tion on that tuple, and then places it in the output 
relation. This avoids the I/O involved in maintain- 
ing the intermediate relations containing the sublists 
generated by the bottom-up computation of such 
predicates. Predicates to be computed tuple at a 
time can be hidden from set at a time computations 
by encapsulating them in RL procedures that call 
NU-Prolog to perform their evaluation. 

Rule Transformations: We are continuing our in- 
vestigations into general rule transformation tech- 
niques, building on our experience with techniques 
such as magic set interpreters [ll], constraint prop- 
agation [6] and special optimizations for linear re- 
cursions [i’]. We aim to include a strategy selection 
module in the compiler to choose intelligently the set 
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of rule transformations to be applied to each rule. 
Raw input-output: Two of the major sources of 

overhead in the present system are the double copy- 
ing of data (disk to Unix buffer cache to Aditi and 
vice versa) and the Unix system calls required for 
opening and closing files containing relations and 
indexes. We therefore plan to move to an imple- 
mentation based on a raw filesystem. 

5 Summary 

We have presented an overview of the structure of 
Aditi, a disk-based deductive database system under 
continuous development at the University of Mel- 
bourne. 

Users interact with Aditi using a variant of Pro- 
log, a logic programming language that makes it 
easy to write applications involving recursion and 
function symbols. Aditi’s internal operations are 
based on relational technology, but the system also 
employs several optimizations specific to deductive 
databases. Examples include differential evaluation, 
magic set transformation, magic set interpreter, con- 
straint propagation, and context transformation for 
linear rules. Several of these were developed at the 
University of Melbourne [l, 2, 6, 7, 111. 

We are currently using Aditi as a tool for research 
into deductive databases; it has been the vehicle 
for the development and evaluation of several of the 
above optimization techniques. We aim to eventu- 
ally use Aditi to prove that deductive database sys- 
tems can achieve performance comparable to that of 
commercial relational database systems. 
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