
The Aditi deductive database system
(extended abstract)

Kotagiri Ramamohanarao

rao@cs.mu.OZ.AU
Key Centre for Knowledge Based Systems

Department of Computer Science
The University of Melbourne

Parkville, 3052, Australia

Abstract

The aim of the Aditi project at the University of
Melbourne is to find out what implementation meth-
ods and optimization techniques would make deduc-
tive databases competitive with current commercial
relational databases. The structure of the Aditi
prototype is based on a variant of the client-server
model. The front end of Aditi interacts with the user
exclusively in a logical language that has more ex-
pressive power than relational query languages. The
back end uses relational technology for efficiency in
the management of disk based data and uses some
optimization algorithms especially developed for the
bottom-up evaluation of logical queries involving re-
cursion. The system has been functional for almost
two years now, and has already proven its worth as
a research tool. This paper outlines the structure of
Aditi and presents an example in some detail.

1 Introduction

Aditi is a deductive database system that has been
designed and is under continuous development at
the University of Melbourne. Its purpose is to al-
low research into the use of logic for manipulat-

DATABASE SYSTEMS FOR ADVANCED APPLICATIONS ‘91
Ed. A. Makinouchi
@World Scientific Publishing Co.

ing large amounts of data. The system provides
a logic programming language interface for enter-
ing programs and queries which are evaluated by a
database backend. This backend is a disk based de-
ductive database system which supports bottom-up
computation methods to evaluate queries involving
recursion and function symbols. This paper presents
an overview of the Aditi system and discusses CUT-
rent developments.

We started work on Aditi in the second quarter of
1988. A basic version of the system has been opera-
tional since July 89. We are continuously enhancing
the system, adding functionality and increasing per-
formance, but we are also using it as a research tool:
several techniques employed by the current version
of Aditi were first implemented and evaluated using
previous versions. Other aspects of Aditi build on
original research done previously by members of the
Aditi team [l, 2, 6, 7, 13, 141. (Aditi is the name of
an Indian goddess; she is “the personification of the
infinite” and “mother of the gods” .)

Another version of this paper will appear in the
‘Proceedings of the 1991 International Conference on
Data Engineering; a much longer version is available
as Technical Report 90/14 from the Ilcpart~mcnt~ of
Computer Science, University of Melbourne.

2 The structure of Aditi

Aditi is based on the client/server model found
in many commercial relational database systems.
Users interact with a front-end process (FE) that is
regarded as a client of the system. The client com-
municates with a back-end process (server) that per-

201

Figure 1: The structure of Aditi

forms the usual set of database operations, such as
joining, merging, and subtracting relations, on be-
half of the clients. Some systems have one server per
client, while others have one server supporting mul-
tiple clients. Aditi is a hybrid of these two schemes:
some of its server processes are dedicated to clients
while others are shared by all clients.

The dedicated server process, called a Database
Access Process (DAP), performs the initial autho-
risation clearance of the client as well as all tasks
connected with query evaluation except the execu-
tion of relational algebra operations. Those oper-
ations are performed by a pool of server processes
called Relational Algebra Processes (RAPS). These
provide the relational operations required for query
evaluation. The pool of RAPS is managed by a mas-
ter process called the Query Server (QS). Figure 1
illustrates how the pieces fit together.

As a DAP evaluates a query, the relational alge-
bra operations are sent to the QS for execution. If
there is a free RAP, then the QS passes the task
on to that RAP, otherwise the task is queued un-
til a RAP becomes available. The RAP then per-
forms the task and notifies the requesting DAP of
the result. The RAP also informs the QS that it is
available for another task. To reduce communica-
tion overhead, we have implemented our own IPC
mechanisms using shared memory; nevertheless we
intend to implement a scheme in which a RAP can
be assigned exclusively to a DAP for several tasks,
the RAP being returned to the process pool only
when the DAP is finished with it.

Here is a short summary of the properties of the

various processes.

FE The clients of Aditi are called Front End pro-
cesses. When making interactive queries on
the database, one would use the query shd
as a front end. When one wants to write ap-
plications using Aditi embedded in an inter-
preted language such as NU-Prolog, the front
end would be the (modified) NU-Prolog inter-
preter; When one wants to write applications
using Aditi embedded in a compiled language
such as C, the front end would be the applica-
tion program itself.

DAP Aditi requires each Front End process to ac-
cess Aditi through a Database Access Process
or DAP. DAPs are responsible for database se-
curity and they oversee the execution of queries.
There is one DAP per live Front End process.

QS The Query Server or QS is responsible for man-
aging the load on the machine. In operational
environments, there will be one QS per maclrirrc
(in our development environment, one can set,
up other QSs for testing).

RAP Relational Algebra Processes or RAPS carry
out relational algebra operations on behalf of
the DAPs. RAPS are allocated to DAPs for the
duration of one such operation. The number of
RAPS that can be active at a given moment is
controlled by the QS within configurable limits,
so there is no necessary connection between the
number of DAPs and RAPS in the system.

3 The languages of Aditi

When supplying tuples for EDB predicates, defining
IDB predicates or making queries, the users interact
with Aditi using only Aditi-Prolog, a variant of the
logic programming language Prolog adapted for de-
ductive databases. The DAP, however, understands
only its own machine language, which is a bytecode
version of RL, the Aditi relational language. The
Aditi compiler, which is written in NU-Prolog, con-
verts facts, predicate definitions and queries from
Aditi-Prolog to RL; an assembler written in C con-
verts RL to the bytecode expected by the DAP. The
compiler and assembler are invoked by users when
they define IDB relations and by the query shell for
any except the simplest queries.

202

3.1 Aditi-Prolog

Aditi-Prolog is essentially just pure Prolog aug-
mented with declarations. Some declarations tell
the compiler something about the properties of the
predicate: e.g. which arguments will be known when
the predicate is called. Others request specific rule
transformations or evaluation strategies. Among
those available are naive evaluation, differential or
semi-naive evaluation [2], evaluation by magic set in-
terpreter [ll], magic set transformation [3, 41, con-
straint propagation [6, 81, and transformations for
linear rules [7, 9, lo]. Here is an example:

?- mode(edge(f,f)).

?- mode(path(b,f)).
?- mode(path(f ,b)).
?- flag(path, 2, diff).

patho(, Y) :- edge(X, Y),
path(X, Y> :- edgeo(, Z>, path(Z, Y).

The first line declares that the predicate edge has
two arguments and that it expects to be called with
both arguments free. Since this code has no defi-
nition for edge, it must be an EDB relation or a
separately compiled IDB predicate.

The second and third lines declare that the
predicate path has two arguments, and that it
has two modes. In its first mode, it should
be called with the first argument bound to a
ground term and the second argument free (e.g.
?- start(X) , path(X, Y>, “what nodes Y are
reachable from nodes X that appear in the start
relation”). In the second mode, it should be called
with the second argument bound and the first argu-
ment free (e.g. ?- path(X, b), “what nodes X is
node b reachable from”). The fourth line requests
differential evaluation [2] for the path predicate with
arity 2. The last two lines are the rules defining this
predicate.

3.2 Aditi relational language

RL is a simple procedural language augmented with
relational algebra operations. The primitive opera-
tions of RL fall into the following classes:

l the standard relational algebra operations such
as join, union, difference, select and project

203

extended relational algebra operations such as
union-diff, which performs a union at the same
time as a difference, thus saving the overhead
of scanning the input relations twice

operations for data movement such as append
(union without checking for duplicates), copy
(copy the contents of a relation) and assign
(copy a pointer to a relation)

operations concerned with data structure opti-
mization such as presorting relations

arithmetic and relational operations on integers
and floating-point numbers and the usual oper-
ations on boolean values.

The DAP sends most of the operations in the first
four classes to the QS for execution by some RAP;
those in the fifth class and some others (e.g. copy-
pointer-to-relation) are carried out by the DAP it-
self.

The control structures of RL are simple: it sup-
ports only gotos, conditional branches, and proce-
dure calls. The procedures are the key to RL. An
RL program has a procedure for every mode of ev-
ery predicate in the Aditi-Prolog program it was de-
rived from. A procedure corresponding to an EDB
predicate merely returns a pointer to the perma-
nent relation (all such procedures have all their ar-
guments free; any selections on permanent relations
are done by other code). Procedures that implement
IDB predicates are more complex, partly because
they naturally require several steps to implement
and partly because they offer more opportunities for
optimization. Figure 2 is an example: it shows the
RL code corresponding to the first mode of path.

The name of the RL procedure that implements
an Aditi-Prolog predicate is derived from the name
of the predicate (path), its arity (2), and its mode
number (1). By convention, all these RL procedures
have two arguments. The first is always a relation
whose tuples represent the values of the input or
bound arguments of the predicate it implements; the
second is always a relation whose tuples represent
the values of aII the arguments of the predicate it im-
plements. In this case, init-path has one attribute
while final-path has two, because path has two
arguments, only one of which is input in mode num-
ber 1. The idea is that when path-2-l is called, the
init-path relation must already be known, but that
path-a-1 is responsible for determining the contents

procedure path-Z-1 (init,path, final-path)
relation init,path, final-path;
<

relation new-path, diff,path;
relation edge, nullary;
boo1 booll;
int sizel;

settrel (new-path, 2) ;
settrel (dif f -path, 21;
settrelcedge, 2) ;
settrel (nullary , 0) ;

call(“edge,2,1”, nullary , edge) ;
copycedge, f inal,path) ;
copy(f inal,path, diff -path) ;

label1 :
join(edge, diff-path,

“#(0,1)=#(1,0)“, “‘1,
new-path, “#(O,O), #(l,l>“);

uniondif f (f inal,path , new-path, ““,
f inal,path, dif f -path) ;

cardinality(diff,path, sizel) ;
gt(size1, 0, booll) ;
test(bool1, label11 ;
join(final-path, init-path,

“#(o,o)=#(l,o)“, “‘1,
final-path, “#(O,O), %(O,l)“);

1

Figure 2: RL code for path

of final-path (in fact any tuples in final-path at
the time that path-2-l is called will be overwritten
and thrown away).

The body of the procedure path-2-l begins with
the declaration of some local variables, and contin-
ues with the creation of (empty) relations of various
arities to serve as the initial values of the relation-
valued variables (settrel stands for set temporary
relation).

The next two lines implement the first rule of the
path predicate. The first line calls the RL proce-
dure for the predicate edge (arity 2, mode number
1) with a zero-arity input relation and puts the re-
sult in edge. Since edge is an EDB predicate, its
data is stored in a permanent relation, and edge
will now contain a pointer to this relation. The sec-
ond line copies the contents of edge into the relation
final-path (like C, RL permits the use of parame-

ters as temporaries, even though RT, passes pazrwn-
eters by reference}.

The rest of the procedure except for the fi-
nal line implements the second rule of path.
The loop invariant is that final-path holds the
path facts currently known to be true, new-path
holds the path facts discovered in the current
iteration, and diff-path holds those facts from
new-path that were not discovered in previous iter-
ations. final-path was initialized by the first rule,
diff-path is initialized in the line before the loop,
while new-path is computed during the loop, The
loop body starts out by implementing the join im-
plicit in the conjunction edge(X, Z), path(Z, Y)
by joining edge and diff-path with the join con-
dition that the second argument of the former be
equal to the first argument of the latter. (As both
input relations and arguments are numbered from
zero, the notation #(O,l) refers to input relation
number 0 (i.e. edge) and argument number 1 (i.e.
Z).) The join condition is split into two parts; the
first one contains conditions that are useful for in-
dexing while the second contains conditions that are
not (in this case the second part is empty). It is the
responsibility of the compiler to ensure that the first
part is appropriate for whatever kind of indexing is
available for the relations to which it refers.

The result of the join is a relation with three at-
tributes, representing the variables X, Y and Z. Since
the head of the second rule contains only X and Y,
the result is projected onto X and Y (#(O,O) and
(1,l) respectively) before it is assigned to relation
new-path, which thus contains tuples corresponding
to the path facts we have discovered in this iteration.
We then put any tuples in new-path that were not
in final-path into the relation dif f -path, and add
all tuples in new-path to the relation final-path,
maintaining the loop invariant. The uniondiff in-
struction carries out both these operations at the
same time (its third argument allows one to specify
arguments on which the output relations should be
sorted; this capability is not used in this example).

At the end of the loop, we put the cardinality
of the diff-path relation into the’integer variable
sizel, and test whether this number is greater than
zero. If it is, we go back to the start of the loop at
labell.

When the loop exits, final-path contains the en-
tire path relation. The final join of final-path
with init-path, deletes from final-path all tuples

204

whose first arguments are not in init-path, leav-
ing just those the user asked for. The wastefulness
of this should be self-evident. Fortunately, there
are optimization methods that compute only the re-
quired subset of the path relation, thus avoiding this
inefficiency [16]. Aditi implements many of these
optimizations; we chose to show the unoptimized
version for the sake of exposition.

3.3 The compiler

The compiler that turns programs written in Aditi-
Prolog into RL is written in NU-Prolog [15]. Un-
like most compilers, it represents programs in not
one but two intermediate languages, which we call
HDS and LDS (for “high-level data structure” and
“low-level data structure” respectively). HDS pro-
vides an easy-to-manipulate representation of Pro-
log rules while LDS provides an easy-to-manipulate
representation of RL programs. The compiler has
three main stages: Aditi-Prolog to HDS, HDS to
LDS, and LDS to RL, in addition to optional opti-
mization stages that transform HDS to HDS or LDS
to LDS.

The first main stage, Aditi-Prolog to HDS, is con-
cerned mainly with parsing the input and filling in
the slots in the HDS representation of the program
(most of these slots contain information for HDS to
HDS optimizations). Some of the tasks required for
the latter are trivial, such as finding the scopes of
all variables, while others can have great impact on
the performance of the final code, such as selecting
an appropriate sideways information-passing strat-
egy or SIP [17].

The HDS to HDS level is where the compiler im-
plements the optimizations that are defined in terms
of source-to-source transformations. These opti-
mizations include magic set transformation, count-
ing set transformation [3, 41, constraint propagation
[6, 81, and context transformations for linear rules

VI*
The second main stage, HDS to LDS, is respon-

sible for converting a predicate calculus oriented
representation of the program into a representa-
tion geared to relational algebra operations. Among
other things, this requires the transformation of re-
cursive Prolog rules into RL procedures containing
iteration. If several predicates are mutually recur-
sive, then the compiler generates a single procedure
containing one big iteration that computes values

for all these predicates. It also generates an inter-
face procedure for each predicate involved; these call
the procedure containing the iteration and select the
data they need from it.

The translation from HDS to LDS can take any
one of several different paths. The five paths cur-
rently implemented are naive and differential imple-
mentations of the standard bottom-up interpreter,
naive and differential implementations of the so-
called magic set interpreter Ill], and a differen-
tial implementation of a bottom-up interpreter with
predicate rule ordering [12]. Each of these imple-
mentation schemes is good in some circumstances
and bad in others; it is an open research problem
to find the domains of optimality of each. This is a

,problem we intend to pursue with the help of Aditi.

LDS to LDS optimizations come from the pro-
gramming language and relational database lit-
erature (in contrast to HDS to HDS optimiza-
tions’, which come mainly from the logic program-
ming/deductive database literature). They include
such techniques as common subexpression elimina-
tion, loop invariant removal, moving selections be-
fore joins, and the intelligent exploitation of any
available indexing.

The third main stage, LDS to RL, is necessary
because the aim of LDS is easy optimization while
the aim of RL is easy assembly and fast execution.
First, LDS has if-then-else and while loops, whereas
RL has labels and gotos; this stage converts the for-
mer into the latter. Second, LDS has no notion of
the bundling of several operations together as oc-
curs with pre-select and post-project as well as wit11
operations such as union-die, this stage can convert
a sequence of LDS operations into a single RL in-
struction using peephole optimization techniques.

The input of the compiler at present must con-
tain declarations specifying the set of optimizations
to be applied to each predicate. Although we intend
to add a module to our compiler that would try to
determine the best set of optimizations automati-
cally, the current setup gives us the control we now
need in our experiments concerning the performance
of various optimization techniques. The data to be
produced by these experiments will in fact be vital
in the implementation of an automatic optimization
module.

The output of the compiler is human readable RL
code whose syntax and structure resemble that of C
programs. The translation of RL into the bytecode

205

needed by the DAP is the task of a small, fast assem-
bler written in C. This design makes it convenient to
inspect the output of the compiler, making debug-
ging the compiler easier. It also allows us to write
RL code ourselves. This allows us to exercise much
of Aditi even without a working compiler, which was
very important when the compiler itself was under
development and hence sometimes not working cor-
rectly. It also allows us to try out hand optimized
queries on the system; we can thus experiment with
optimizations before deciding to incorporate them
in the compiler.

4 Further work

A prototype of Aditi is functional and we are able
to evaluate most queries, but much research and de-
velopment remains to be done. We outline briefly
some of the more important areas we are currently
examining.

Transactions: At present, Aditi has no transac-
tion mechanism, although some of the hooks re-
quired are present. A single transaction may require
the cooperation of several processes (the client DAP
and any RAPS used); we need to research concur-
rency control methods that allow this. We are also
looking at how best to resolve simultaneous updates.
As recursive computations can take long periods of
time, overlapping updates are more likely in deduc-
tive databases than in relational databases. We do
not want to lock relations for long periods because
this can drastically reduce concurrency. However,
optimistic methods that force restarts of computa-
tions could cause starvation and waste too many
computation resources. We would prefer a hybrid
solution that minimises these problems.

Parallelism: Even the earliest versions of Aditi
could execute different queries from different users
in parallel. We are now working on the exploitation
of parallelism within the evaluation of each query.
Coarse grained parallelism can be exploited at the
RL level. The non-recursive rules of a predicate can
be evaluated independently, and the recursive rules
belonging to a set of mutually recursive predicates
can be evaluated independently at each iteration;
this is OR-parallelism. Similarly, some rules con-
tain operations that do not use each other’s outputs
and therefore can be evaluated independently; this is
AND-parallelism. To take advantage of these oppor-
tunities, we have extended RL to allow RAP opera-

tions to execute in parallel, and modified the stan-
dard DAP to support these extensions by maintain-
ing a context for each thread of parallel execution
and coordinating several RAPS. The compiler now
emits code that exploits OR-parallelism; we need to
extend it to exploit AND-parallelism, and we need
to further evaluate and tune our implementation.
As far as fine grained parallelism is concerned, we
are currently implementing a parallel hash-join al-
gorithm, and we also plan to implement parallelized
versions of the other relational algebra operations in
the future.

Aggregates and negation: The compiler can cur-
rently generate code for programs which are strati-
fied through negation. Soon this will be extended to
include programs which are also stratified through
aggregation operations such as count, sum, max and
min. We are investigating what modifications to the
compiler would be required for dealing with non-
stratified programs for both negation and aggrega-
tion. In particular, we conjecture that a compiler
can generate code for sufficiently stratified programs
[5] with little or no alterations required of the inter-
preter or the relational back-end.

Mixed tuple-at-a-time and set-at-a-time: An ad-
vantage of a deductive database system over a logic
programming system, is its ability to use relational
database techniques for performing computations
involving joins with large relations. However, there
are often situations where it is far more efficient to
perform some computations in a tuple at a time
manner. For example, predicates for list manip-
ulation such as list reverse and append should be
compiled into code which takes each tuple in the
input relation, performs the required list manipula-
tion on that tuple, and then places it in the output
relation. This avoids the I/O involved in maintain-
ing the intermediate relations containing the sublists
generated by the bottom-up computation of such
predicates. Predicates to be computed tuple at a
time can be hidden from set at a time computations
by encapsulating them in RL procedures that call
NU-Prolog to perform their evaluation.

Rule Transformations: We are continuing our in-
vestigations into general rule transformation tech-
niques, building on our experience with techniques
such as magic set interpreters [ll], constraint prop-
agation [6] and special optimizations for linear re-
cursions [i’]. We aim to include a strategy selection
module in the compiler to choose intelligently the set

206

of rule transformations to be applied to each rule.
Raw input-output: Two of the major sources of

overhead in the present system are the double copy-
ing of data (disk to Unix buffer cache to Aditi and
vice versa) and the Unix system calls required for
opening and closing files containing relations and
indexes. We therefore plan to move to an imple-
mentation based on a raw filesystem.

5 Summary

We have presented an overview of the structure of
Aditi, a disk-based deductive database system under
continuous development at the University of Mel-
bourne.

Users interact with Aditi using a variant of Pro-
log, a logic programming language that makes it
easy to write applications involving recursion and
function symbols. Aditi’s internal operations are
based on relational technology, but the system also
employs several optimizations specific to deductive
databases. Examples include differential evaluation,
magic set transformation, magic set interpreter, con-
straint propagation, and context transformation for
linear rules. Several of these were developed at the
University of Melbourne [l, 2, 6, 7, 111.

We are currently using Aditi as a tool for research
into deductive databases; it has been the vehicle
for the development and evaluation of several of the
above optimization techniques. We aim to eventu-
ally use Aditi to prove that deductive database sys-
tems can achieve performance comparable to that of
commercial relational database systems.

Acknowledgements

Jayen Vaghani was the main implementor of Aditi:
he wrote the query server and the most versions of
the DAP and RAP. David Kemp and Kim Marriott
wrote a prototype compiler, which has now been re-
placed by the one described in this paper. Peter
Stuckey wrote the new, extensible compiler based
on a design by Zoltan Somogyi. John Shepherd
wrote the RL assembler and some of the indexing
methods; David Keegel wrote the query shell; Tim
Leask wrote a fast message passing package and par-
allelized the DAP; Warwick Harvey added support
for function symbols; and Jeff Schultz served as our
NU-Prolog guru.

This research was supported by a grant from the
Australian Research Council through the Machino
Intelligence Project.

References

PI

PI

PI

151

PI

VI

[81

I. Balbin, G. S. Port, and K. Ramamoha-
narao. Magic set computations for strati-
fied databases. Journal of Logic Programming,
1990. To appear.

I. Balbin and K. Ramamohanarao. A general-
ization of the differential approach to recursive
query evaluation. Journal of Logic Program-
ming, 4(3):259-262, September 198’7.

F. Bancilhon, D, Maier, Y. Sagiv, and J. Ull-
man. Magic sets and other strange ways to
implement logic programs. In Proceedings 0s
the Fifth Symposium on Principles of Dutnbasc
Systems, pages 1-15, Washington DC., 1986.

C. Beeri and R. Ramakrishnsn. On the power
of magic. In Proceedings of the Sixth ACM
Symposium on Principles of Database Systems,
pages 269-283, San Diego, California, March
1987.

P. M. Dung and K. Kanchanasut. A fixpoint
approach to declarative semantics of logic pro-
grams. In Proceedings of the First North Rmer-
ican Conference on Logic Programtiing, pages
604-625, Cleveland, Ohio, October 1989.

D. B. Kemp, K. Ramamohanarao, I. Balbin,
and K. Meenakshi. Propagating constraints in
recursive deductive databases. In Proceedings of
the First North American Conference on Logic
Programming, pages 981-998, Cleveland, Ohio,
October 1989.

D. B. Kemp, K. Ramamohanarao, and Z. Som-
ogyi. Right-, left-, and multi-linear rule trans-
formations that maintain context information.
In Proceedings of the Sixteenth International
Conference on Very Large Data Bases, pages
380-391, Brisbane, Australia, August 1990.

I. S. Mumick, S. J. Finkelstein, H. Pirahesh,
and R. Ramakrishnan. Magic conditions. In
Proceedings of the Ninth Symposium on Prin-
ciples of Database Systems, pages 314-330,
Nashville, Tennessee, April 1990.

207

[9] J. F. Naughton, R. Ramakrishnan, Y. Sagiv,
and J. D. Ullman. Efficient evaluation of right-
, left-, and multi-linear rules, In Proceedings of
ACM SIGMOD ‘89, pages 235-242, 1989.

[lo] J. F. Naught on, R. Ramakrishnan, Y. Sagiv,
and J. D. Ullman. Argument reduction by fac-
toring. In Proceedings of the Fifteenth Confer-
ence on Very Large Data Bases, pages 173-182,
Amsterdam, The Netherlands, August 1989.

[ll] G. Port, I. Balb in, K. Meenakshi, and K. Ra-
mamohanarao. Magic sets made simple. Tech-
nical Report 88/20, Department of Computer
Science, University of Melbourne, Melbourne,
Australia, Submitted for publication.

[12] R. Ramakrishnan, D. Srivastava, and S. Su-
darshan. Rule ordering in bottom-up fixpoint
evaluation of logic programs. In Proceedings

of the Sixteenth International Conference on
Very Large Data Bases, pages 359-371, Bris-
bane, Australia, August 1990.

[13] K. Ramamohanarao and J. Shepherd. A su-
perimposed codeword indexing scheme for very
large Prolog databases. In Proceedings of the
Third International Conference on Logic Pro-
gramming, pages 569-576, London, England,
July 1986.

[14] K. Ramamohanarao, J. Shepherd, I. Balbin,
G. Port, L. Naish, J. Thorn, J. Zobel, and
P. Dart. The NU-Prolog deductive database
system. In P. Gray and R. Lucas, editors, Pro-
log and databases, pages 212-250. Ellis Hor-
wood, Chicester, England, 1988.

[15] J. A. Thom.and J. A. Zobel. NU-Prolog ref-
erence manual, version 1.3. Technical report,
Department of Computer Science, University of
Melbourne, Melbourne, Australia, 1988.

[16] J. D. Ullman. Principles of knowledge-base
systems, volume 2. Computer Science Press,
Rockville, Maryland, 1989.

[17] J. D. Ullman. Implementation of logical query
languages for databases. ACM Transactions
on Database Systems, 10(3):289-321, Septem-
ber 1985.

208

