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Abstract 

The purpose of this paper is to give an overview of 
the LOLA logic programming system which serves as the 
kernel of a deductive database system. The LOLA lan- 
guage, the query evaluation strategy, the available query 
optimiaations, the overall compiler architecture, and some 
implementational details and performance measurements 
are presented. The LOLA-system is fully implemented in 
Common Lisp and running on SUN UNIX Workstations. 

1 Introduction 

The logic language LOLA has been designed as a query language 
for a deductive database system. LOLA has a clear declarative 
semantics and integrates logic programming and relational query 
processing. Automated access to external relational databases 

and a link to the host language Lisp by built-in predicates are 
provided. 
Instead of applying the top-down query evaluation scheme of re- 
solution based logic progr amming systems [17] LOLA queries are 
evaluated in a set-oriented, bottom-up fashion starting from the 
program facts or base relations. The main evaluation scheme 
for recursive queries is the differential or seminaive flxpoiut ite- 
ration as described in [8], [4], [S], [13]. A number of optimiza- 
tions, among others the Magic Sets transformation [lo], [5], [7] 
are available and can optionally be applied to the program. Dif- 
ferent from comparable logic languages such as LDL-1 [9], [29] 
and NAIL! 1261, [29], type declarations are required for function 
and predicate symbols. Furthermore, future LOLA versions will 
- like Prolog - be able to handle relations containing variables. 
A query is translated into an expression of an extended relational 
algebra. Given a set of base relations, the resulting expression 
computes the set of answer tuples corresponding to the query. 
Base relations can reside in main memory or in any external 

relational database system accessible via SQL. 
The LOLA system has as components a user interface accepting 
programs and queries, the compiler and optimizer and the run 
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time system providing a main memory database, external da- 
tabase access and a link to the host language Lisp. The LOLA 
system is fully implemented in Commonlisp and running on SUN 
UNIX workstations. 
The LOLA system has been designed and implemented by the 
deductive database research group of Prof. R. Bayer at the Tech- 
nische Universitst of Munich. The work has partly been funded 
by the “Deutsche Forschungsgemeinschaft” under contract “Ba 
722/3-2: Effiziente Verfahren zur logischen Deduktion iiber Ob- 
jektbanken”. 
Section 2 below describes the LOLA Language. In section 3 the 
LOLA semantics and query evaluation scheme are discussed. An 
overview of the LOLA system is given in section 4, in particular 
the LOLA compiler (4.2) and the optimizer (4.3). Finally, in 
section 5 some implementational details and performance data 
are listed. The complete LOLA syntax definition can be found 

in the appendix. 

2 The LOLA Language 

LOLA is a clausal logic programming language allowing to define 
predicates by rules and to declare the symbols used in a program. 
Negation, explicit existential quantification and functions are al- 
lowed. The programmer may use any type of recursion to define 
a predicate. LOLA provides a direct access to one or more exter- 
nal relational databases. The user only needs to know the name 
of the external database and the name and schema of the ex- 
ternal relations. LOLA terms are first order terms without any 
restriction. Function symbols are - similar to PROLOG - not 
interpreted. However, a link to the host language is provided via 

built-in predicates allowing the user to directly implement her 
or his own interpretation of a predicate operating on terms of 
certain types. 

2.1 Language Features 

A sample LOLA rule is 

only-child(X) :- 
person<X),$not<$exists(Y. sibling(X.Y))). 

Informally, the rule should be read as: X is the only child (of 
parents not named here) if X is a person and there is no Y being a 
sibling of X. As usual, we call the lefthaud side of the rule the head 
and the righthand side the body of the rule. A query is a rule with 
empty head. Rules and queries are implicitly universally quanti- 
fied with a scope of the entire rule or query. Due to the explicit 
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existential quantifier we do not need to introduce complex rules 
for the implicit quantification of variables occurring in negations 
as in NAIL! [26] or LDL-1 [9]. 
The subgoals of a goal, i.e. a rule body or a query, may be either 
an atom, a database goal, a built-in goal, or a negated or existen- 
tially quantified goal, i.e. negation and existential quantification 
may be nested to any depth. 
A database goal provides a means to specify an access to a - 
possibly external - database relation. The link to the specific 
database and relation is specified by the declaration of the cor- 
responding predicate. By a built-in goal a call to a host language 
function implementing the semantics of the corresponding predi- 
cate is issued. Part of the declaration of a built-in predicate is 
the specification of a binding request defining for each attribute 
position whether it has to be bound ($b), i.e. a ground term is 

$program(flight-connections). 

% f** Declaration Part *** 
$predicate(flight, 

[airport, airport] 1. 
$predicate(flight-route, 

[airport,airport,list(airport)]). 
$predicate(route-to, [airport ,list(airport)]) . 
$predicate(start-from, [airport]). 
$predicate(direct-flight.[airport,airportj). 
$built-in(member-bb, 

CA-Type,list(A-Type)], C$b,$bl). 
$relation(timetable, 

[airport,airport.time,time,code], 
flight-dbl. 

$database(flight-db,$transbase). 

% *** Definition Part *** 
flight(X,Y) :- 

direct-flight(X,Y). 
flight(X,Y) :- 

flight(X, Z), direct-f1ightCZ.Y). 
route-to(Y,CY,Xl) :- 

start-from(X), direct-flight(X,Y). 
route-to(Y,CYlRl) :- 

route-to(Z,R), direct-flight(Z,Y), 
$not(member-bb(Y,Ft)). 

direct-flight(X,Y) :- 
timetable(X,Y,Tl,T2,N). 

Figure 1: Sample LOLA program unit 

$query(route-to). 

% *** Query Part *** 
:- route-to(tokyo, Route). 

% *** Declaration Part *** 
$function(tokyo, Cl , airport) . 
$function(munich, Cl ,airport) . 
$function(frankfurt, [] ,airport) . 

% *** Definition Part *** 
start-from(munich). 
start,from(frankfurt), 

Figure 2: Sample LOLA query unit. 

expected, or it may be free ($f), i.e. may contain variables at 
runtime. Let for instance the symbol append-bbf be declared as 
a built-in predicate requiring the first two attributes to be bo- 
und. The built-in goal append-bbf ([a,bI , Cc] ,L) represents a 
call to the function append-bbf with- actual parameters [a, b, c] 
and Cc, dl which will return the relation 

{append-bbf (Ca.bl , Ccl , [a,b,cl)> 

A built-in predicate may be implemented as to evaluate its para- 
meters. This way evaluable functions can be simulated in LOLA. 

Note, that built-in predicates do not need to evaluate their para- 
meters. In this case they operate on symbolic terms just as the 
directly implemented version of a normal predicate. A predicate 
is said to be normalif it neither is a built-in predicate, nor names 
a base relation. 

The programmer organizes her or his LOLA rules as a collection 
of units. We distinguish between a LOLA program unit and a 
LOLA query unit. A LOLA program unit consists of a number 
of declarations and definitions. For every constant, function, and 
predicate symbol a type declaration has to be specified (see sec- 
tion 2.2 below). The definition of a predicate is a set of rules as 
usual. Figure 1 shows a sample LOLA program unit. 
A LOLA query unit consists of a query followed by optional 
declarations and definitions. The latter two allow the user to 
declare constants introduced by the query as well as to define the 
shape of the answer relation by giving an “on the fly” definition 
of the query predicate which is independent. of the underlying 
fixed LOLA program. The most important application of this 
feature, however, is to supply the actual definition of a predicate 
at query time. This can be used in order to keep the link to 
a database relation separate from the program or to specify an 
actual set of facts serving as the starting set of facts for a LOLA 
program which has been transformed by the Magic Sets transfor- 
mation (see section 4.3). A sample LOLA query unit is shown 
in Figure 2. 
Of course, queries can also be asked in an ad-hoc fashion during a 
LOLA session. For this type of queries type correctness is tacitly 

assumed and no declarations are required. 
The complete LOLA syntax definition can be found in the ap- 
pendix. 

2.2 Declarations 

Type declarations for normal function and predicate symbols in 
LOLA serve merely as a means to check program correctness at 
compile time. They can be viewed as a separate program specify- 
ing certain restrictions imposed on the rules in the definition part 
of a LOLA program. As far as this part of the LOLA type con- 
cept is concerned there are only minor differences to the concept 
of [19]. 
The LOLA type concept essentially provides a means to group 
the terms into different classes. LOLA types are disjoint and 
there are no union types or type hierarchies. For variables an 
attempt is made to infer a unique type at type checking time. 
They cannot be declared. A symbol can only be declared once. 
Predicate symbols and function symbols are of fixed arity. The 
sample program of Figure 1 contains type declarations. 
The declarations for built-in predicates, relations and databases 
have an additional meaning because they provide the link bet- 
ween the symbols and their operational semantics. 
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The LOLA s”yntax allows to deal with constructed lists similar 
to Prolog’s lists. The list constructs CX .Yl and CX I Ll are simply 
shorthand for the functional terms cons (X ,cons (Y .nil) ) and 
c ens (X , L) respectively. The symbols nil and cons are implicitly 
declared using the polymorphic type list as shown below. 

$function(nil, t] ,list(Any,Type)). 
Sfunction(cons,[Any-Type.list(Any,Type)I, 

list(Any,Type)). 

Type checking is purely static and performed as a preprocessing 
step. A LOLA program unit is checked when fed to the compiler. 
At query processing time the type checking is repeated for the 
program augmented by the query unit. 
The type correctness of a LOLA program is essentially described 
by the following rules 

l The same unique type must be inferred for each occurrence 
of a variable in a clause. 

l The result type inferred for a function symbol of a func- 
tional term must coincide with the type inferred for the 
argument position being the occurence of the term. 

Type correctness is checked by simultaneous unification of the 
types inferred for a subterm using all possible inference paths. 
Consider for example the correctly typed rule taken from the 
sample program of Figure 1. 

route-to(Y,cons(Y.R)) :- 
route,to(Z,R),direct-flight(Z,Y), 
$not(member-bb(Y.R)). 

The types list (Any-Type), list (airport), and list (A-Type) 
are attached to the variable R through the declarations of 
cons, route-to, and member,bb respectively. Therefore both 
Any-Type as well as A-Type must be bound to the type airport. 
This agrees with the type bindings inferred for Y. Thus the type 
list (airport) is inferred for the term cons (Y ,R) as requested 
by the declaration of predicate route-to. 
The type checker is completely written in LOLA. For more de- 
tails and a description of the type checking algorithm see 1231. 

2.3 The Intermediate Language LOLitA 

During the preprocessing phase of compilation (see section 4.2). 
a goal with nested negations and/or existential quantification ia 
broken into a simpler goal together with a set of rules having 
as subgoals only atoms and negated atoms. We will refer to the 
simpler intermediate language allowing only unnested subgoals 
as LOLitA . 
LOLitA programs and queries have to satisfy a number of con- 
straints in order to be evaluable. 

l Stmtifiability with respect to negation 

l Range Restriction, i.e. for every rule each variable of the 
rule head must occur in at least one unnegated normal or 
database subgoal or in a term at a free position in an un- 
negated built-in subgoal of the rule body. 

l Safety, i.e. for every rule and query each variable of a 
negated subgoal not bound by existential quantification and 
each variable occuring in a term at a bound position of 

a built-in subgoal must occur in at least one unnegated 
normal or database subgoal. 

l Ground Database Relations 

Note that the safety constraint currently disallows the chaining 
of built-in predicates. This restriction can be relaxed as shown 
in [29, pp. 805-8173, and a future version of the LOLA system 
will be able to deal with chained built-in subgoals. 
The propagation of bindings introduced by a query will in many 
cases instantiate the variables of unrestricted rules making the 
modified program range restricted. The Magic Set transforma- 
tion can as weIl be used to transform e.g. the rule equaUX,X) . 
into a range restricted rule. Nevertheless are we currently in- 
vestigating as to which extent the range restriction constraint 
can be generally relaxed by applying a more powerful evaluation 
scheme able to deal with general substitution sets rather than 
with ground tuple sets [lS]. Consequently, the enhanced system 
will generate nonground answers’. 

2.4 Sample LOLA Programs 

The sample LOLA program flight-connections with negation, 
built-in predicates, functions and recursion is shown in Figure 1. 
By the first five declarations normal predicates defined by LOLA 
rules are declared. member-bb is a built-in predicate having a 
binding request of “bound” for both attributes. The predicate 
timetable is declared to be a the name of a base relation sto- 
red in the external database flight-db which is maintained by 
the relational DBMS TransBase [27]. A call to the predicate 
timetable will automatically be translated into a SQL query 
and an appropriate call to the LOLA-SQL-Interface. 
The flight predicate is defined as the transitive closure of 
direct-f light. Note, that the leftrecursive definition has been 
chosen. Predicate route-to gives a more detailed description of 
flight connections by the list of airports visited on the way from 
some start airport to Y. The list is constructed in reverse order 
for the sake of simplicity. The start-from predicate serves as 
an input and specifies the start airports. It is not defined in the 
program flight-connections. 
Figure 2 shows the LOLA query unit route-to asking which 
flight route leads to Tokyo. The user has supplied a definition of 
the predicate start-from specifying munich and frenkfurt as 
the start airports. The constants t okyo, munich and f rankfurt 
have been declared in order to preserve type correctness. 

3 Semant its 

The semantics of LOLA is fully declarative. :In particular, it does 
not depend on the subgoal order within a rule or query. The 
overall basis of the mathematical semantics of logic programs is 
described in 1171. The semantics of LOLA programs without ne- 
gations coincides with the semantics of definite programs defined 
in [17] whereas the semantics of normal LOLA programs relies on 
the minimal model semantics defined by iterated fixpoint compu- 
tation for a partitioning sequence of disjoint rule sets as described 

‘The acronyme LOLA spells “Logic Language allowing Open Answers” 
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in [212. 
The LOLA semantics is defined through the semantics of the 
simpler language LOLitA (see section 2.3). This point of view is 
reflected by the LOLA compilation which as a first step generates 
the LOLitA query and program corresponding to a given LOLA 
query and program. 

3.1 Notation 

Our notation is partly adopted from [2]. Let P be a 
LOLitA program. The definition of a predicate symbol p in P is 
the set of all defining rules of p. A rule T is a defining rule of p 
iff p is the head predicate of T. p is defined in the program P iff 
there is a defining rule T E P of p. 
A relation is a set of ground atoms having the same predicate 
symbol p. We often denote the relation itself by p. The relati- 
ons named by predicate symbols that have been declared to be 
relation names are called the base relations of P. 
We say that a predicate symbol p rqfers positively (negatively) to 
a predicate symbol CJ iff Q is the predicate symbol of a nonnegated 
(negated) atom in the body of a defining rule of p. The meta- 
relation depends on, denoted by >, is defined to be the transitive 
closure of the meta-relation refers to. A predicate symbol p is 
recursive iff we have p + p otherwise p’ is nonrecursive. p and Q 
are mutually recursive iff p + CJ and Q + p. 

An equivalence relation JC on the set of predicate symbols of P is 
defined by p M Q iff q 5 p or p and q are mutually recursive. The 
equivalence classes are called the predicate clusters of P. The 
collection of definitions of the predicates in a predicate cluster 

forms a rule cluster of P. It should be clear that each rule cluster 
corresponds to a uniquely determined predicate cluster and vice 
versa. The t- relation can be defined on the set of rule clusters 
in a natural way. 
The programs PI, . . ., Pm form a stratification of P iff P = 
Pl CD . . . @Pm, where @ denotes disjoint union, the definition of 
each predicate symbol q occurring positively in a rule T E Pj is 

a subset of tJiSl Pk, and the definition of each predicate symbol 

q occurring negatively in a rule T E Pj is a subset of Ui=: Pk. P 
is called stmtifiable iR there is a stratification of P. It is easy to 
show that the rule clusters of a stratifiable LOLitA program P 
form a stratification of P (cf. [2]). 

3.2 Minimal Model Semantics 

We assume throughout this section that the language Lp defined 
by a LOLitA program P is determined by the symbols of P, 
the symbols occuring in the base relations of P, and the symbols 
occuring in the relations generated by the built-in predicates of 
P. The Eerbmnd basis of P, denoted by t?p, is defined as usual 
using the language Lp. An interpretation of P is a subset of the 
Herbrand basis. 
The immediate consequence operator Tp of the program P maps 
the set of Herbrand interpretations onto itself. The usual d&n.i- 

‘The minimal model semantics of [2] differs from Clark’s semantics of 
normal progr~~~~s as defined in 1171. For more details see [Z] 

tion is extended as follows in order to cover built-in predicates: 
We treat a built-in predicate p as a special b&se relation, i.e we 
assume that the semantics of a 1-ary built-in predicate p is a priori 
known and given by the set of ground atoms 

{Ph , . . . , tr) f Bp 1 p(tl,. . . Jr) is true } 

The above set is the eltension table EP of p. 
In [2] it is shown that for a stratifiable program P a uniquely 
determined minimal Herbrand model of P can be computed by 
iterated fixpoint computation of the immediate consequence ope- 
rators defined by the rule clusters of P starting from the base 
relations of P. hIore formally, let P be a LOMtA program and 
let PI, . . . . P,,, be a stratification of P. Let bl, . . . , bi be the base 
relations of P, and let q1, . . . , Q~ be the built-in predicates of P. 
The sequence 

MO := (j bk u lj f4, 
led S=l 

Mj := Tp(Mj-1) for 15 j < m 

defines a minimal Herbrand modei 1M’, of P. Furthermore, the 

model is independent of the particular stratification of P. Let 
P be a stratifiable LOLitA program. We define the standard 
minimal Herbmnd model M+ of P by the model sequence which 
is determined by the rule clusters of P. The standard minimal 
model coincides with the pefect model as defined in [20]. 
An answer to a query is a (possibly empty) set of substitutions 
for the variables of the query. From a positive atomic query :- 

PFl, . . . , tk) . and an answer substitution set c a corresponding 
answer relation can be computed by applying every u E C to 
the query atom. Consider for example the LOLA program of 
Figure 1 and assume that 

timetable = 
C timetable(munich.frankfurt,...), 

timetable(frankfurt,tokyo,...) 1 

An answer to the query : - flight (U, V) . is the substitution set 

C CU/munich, V/frankfurt). 
CU/frankfurt, V/tokyo), 
iU/munich, Y/tokyo> 3 

The corresponding answer relation is 

{ flight(munich,frankfurt), 

flight(frankfurt,tokyo), 
flightfmunich. tokyo) 3 

An answer to a negative atomic query :- Snot p(tl, . . . , tk) . is 
only defined for ground terms tr, . . . ,tk due to the safety con- 
straint (see section 2.3). It can either be the empty substitu- 
tion set (empty relation) or the substitution set containing only 
the identity substitution (the relation containing only the atom 
true). 
An answer C to a query : - G1, . . . , G, . for a program P is a COT- 

rect answer iff for every Q E C the instantiated goal Gla, . . . , G,o 
is true in the standard minimal model Mv. 
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Figure 3: Top-Down Query Compilation 

3.3 Operational Semantics 

The results listed in the preceding section aze the theoretical 
basis for an operational semantics of LOLitA . Essentially, for 
each rule cluster 7’j a relational expression is constructed which 
implements the immediate consequence operator Tpj of Pj. The 
operational semantics of LOLA does therefore not differ from 
the minimal model semantics of section 3.2. Fixpoint iteration 
and the relational operations union, project, select, join, product 
working on sets of term tuples are the basic requisites for the 
definition of the operational semantics of LOLitA . 
On a conceptual level a distinction is made between relations and 
substitution sets. However, suitably designed relational operati- 
ons can be applied to both equally well. To clarify this point let C 
be a substitution set for the variables 21,. . . , xn. Then X can be 
represented as the pair ((21,. . . ,x,), Rx) where Rc is the set of 
of term tuples (tl , . . . , t,,) such that {al/tl, . . . ,x,/t,} E C. The 
empty and the identity substitution sets are represented by ((),0) 
and (0, { 0)) respectively. Similarly, a n-ary relation R, i.e. a set 
of atoms p(tl , . . . , tk), can be represented as the pair (p,Tz~pZes~) 
where TuplesR is the set of n-ary term tuples (tl, . . . , t,,) such 
that p(tl ,...,t,J E R. 
For each rule cluster Pj of a program P a relational expression 
&(Pj) is inductively defined as follows. Details can be found in 
[ll] and are omitted here for the sake of brevity. 

Predicates defined in lower layers Pi, I < j, and predicates 
naming base relations are taken as relational parameters. 

Recursive predicates which are members of the correspon- 
ding predicate cluster are taken a.9 relational parameters. 

We will call them local parameters. 

A normal or a database subgoal G z p(tl, . . . ,tk) defines a 
select operation on the relation p. The result is the set of 
all substitutions o for the variables of G such that there is 
an atom A E p and a substitution T such that AT z Gu3. 

Let G be a built-in subgoal p(tl, . . . , th). Assume without 
loss of generality that p requires its first 2 < k attributes 
to be bound. Then, by the safety constraint (section 2.3), 
the terms tl , . . . , t[ are ground*. Let f&aq,. . . ,parrj de- 
note the host language program implementing p. Then G 
defines an expression having as result the set of all substi- 
tutions B for the variables of G such that p(tl, . . . , tk)a 6 

f&l,. * . 9 trl- 

Let G be a negated subgoal Snot p(tl,. . . , tk). Then, by 
the safety constraint (section 2.3), G is ground5. Let & be 
the expression defined by the positive goal p(tl, . . . , tk). G 
defines an expression having as result the empty substitu- 
tion set if & returns the identity subsitution set and vice 
versa. 

A goal G1,... ,G, defines a join, an antijoin6, an input 
join7, or a product operation on the substitution sets for 
the G; computing a substitution set for the variables of 
G1,...,G,,. 

A rule p(tl, . . . , TV) . , i.e. a fact, defines the relation 

ti(t1,. f * ,621. 

A rule p(tl ,..., tk):-GI,... , G, . defines a project opera- 
tion on the substitution set C defined by the rule body. 
The result is the relation computed by applying every single 
substitution u E C to the atom p(tl, . . . , tk). 

A nonempty set of rules defines a union operation on the 
set of the relations defmed by the single rules. The empty 
set of rules defines the empty tuple set. 

A rule cluster Pj defining the (mutually) recursive predicates 
pl, . . . ,pm, m 2 1 requires a fkpoint iteration computing rela- 
tions for the local parameters ~1,. . . ,p, and taking the nonlo- 
cal parameters as fixed input. The iterative relational expression 
thus.defined does no longer have local but may still have nonlocal 
relational parameters. If a rule cluster defines a single nonrecu- 
sive predicate no ikcpoint iteration is needed. 

‘Note, that for a ground relation p the result is simply the set of substi- 
tutions Q such that Gu E p. 

‘In case of a nonground term at a bound position either G is a subgoal of 
agoalGl,..., G,, with a positive normal or database subgoal G; containing 
the variables of the term or a syntax error is detected. In the former case an 
input join expression is generated. 

‘If variables occur in G either G is a subgoal of a goal G1, . . . , G, with 
a positive normal or database subgoals Gi containing the variables of G 
or a syntax error is detected. Iu the former case au antijoin expression is 
generated. 

‘An ontijoin operation can be understood as a generalized set difference. 
‘Au input join operation essentially maps the procedure defkxiig a built- 

in predicate over the set of tuples serving as input and subsequently joins 
the result aud the input tuple set 

220 



Multi DB Aocess 

Figure 4: Bottom-Up Query Evaluation 

A relational expression computing an answer for a query 
:-G 1, . . . , G, . is defined by induction over the +-relation bet- 
ween rule clusters. We proceed top-down starting from the query. 
The query itself is treated like a rule body. For every subgoal 
G; = q(tl , . . . , tk) the rule cluster Pe defining q is selected and 
the corresponding relational expression &(Pp) is constructed. For 
every nodocd parameter T of &(p,) the relational expression 
&(P,) of the rule cluster defining T is generated. A predicate not 

defined in P and neither being declared as a relation name nor 
as a built-in predicate is considered to be defined by the empty 
rule cluster. This procedure is repeated untiI no nonlocal para- 
meter is left. The translation procedure terminates because the 
+-relation between rule clusters is acyclic. Note, that the answer 
relation computed by the above defined operator is always ground 
if the program and query satisfy the constraints of section 2.3. 
Under the general assumption that the computed tuple sets are 
finites it can be shown that the relational expression defined for 
an atomic query computes the interpretation of the query predi- 
cate in the standard minimal model. 
The LOLA compiler (see section 4.2) takes a program and a 
query as input and essentially generates a relational expression as 
described above. The fixpoint iteration scheme used is differential 
or seminaive fixpoint iteration [8], [4], [6] which has been shown 
to be complete and correct in [13] The compiler also generates 
code for the external database access and calls to procedures 
implementing the built-in predicates. 
A schematic view of the query translation and evaluation is shown 
in Figures 3 and 4. 

‘By the above construction only finite subsets of the extension tables of 
built-in predicates are computed 

Figure 5: Overview of the LOLA compiler 

4 The LOLA system 

The LOLA system consists of an user interface, the compiler, 
the optimizer, and the run time system. 

4.1 User Interface 

The user interface takes a collection of LOLA program units as 
an input and initiates the necessary preprocessing steps. The 
system is then ready to accept a LOLA query unit or an ad-hoc 

query. The latter queries are automatically converted into query 
units. For each query optional optimieations can be selected by 
the user. After query compilation the answer is shown to the 
user or can be stored as a relation. 
It is assumed that the user is interested in a relation, i.e. a set of 
facts, as the result of a query. For atomic queries a set of LOLA 
facts is shown as the answer, for instance 

flight(munich,frankfurt). 
flightcfrankfurt ,tokyo). 
flight(munich, tokyo). 

Nonatomic queries are converted into an atomic query having 
a new predicate and as attributes all the terms of the origid 
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query together with a rule defining the nent predicate through 
the query subgoals. 

4.2 The LOLA Compiler 

The LOLA compiler takes a LOLA program unit and a query 
unit as input and generates a relational expression as described 
in section 3. The LOLA compiler has a modular architecture 
allowing to implement optimization algorithms or different code 
generators as “plug in” modules. Figure 5 shows an overview of 
the compilation process. The compiler makes use of precompiled 
and preoptimized queries thus supporting incremental compila- 
tion and modular program developement. 
During the preprocessing phase a LOLA unit is transformed into 
a LOLitA unit by unnesting negations and eliminating existen- 
tial quantification. The resulting LOLitA program is internally 
represented as a set of relations from which a rille-goal graph can 
easily be generated. The rule-goal graph9 consists of rule nodes, 
goal nodes, and edges pointing from a rule to each of its body 
subgoals and from a goal to each of its defining rules. Every mo- 
dule performing a source level optimization actually transforms 
the rule-goal graph of the LOLitA program. 
The rule-goal graph is subsequently transformed into an operator 
graph which represents an expression of a very high level exten- 
ded relational algebra. A number of optimizations such as the 
introduction of indexes or the symbolic differentiation required 
for the differential fixpoint computation can better be performed 
on the operator graph as a common data structure. 
During the code genemtion phase the heterogeneous relational 
expression is generated, i.e. relational expressions with embed- 
ded calls to the main memory database&he external database 
interface or a host language procedure (See section 4.4). The co- 
degeneration can easily be adapted to different run-time systems. 

4.3 The LOLA Optimizer 

A number of optimization modules are available and can optio- 
nally be applied to a LOLA program. There are mainly two 
groups, the first performing source level optimizations and the 
second acting on the intermediate code represented by the ope- 
rator graph. 

4.3.1 Source Level Optimization 

The available source level optimizations are actually designed 
as transformations of the rule-goal graph. They are currently 
invoked by the user rather than by strategy rules (cf. [26], [29, 
p. 992 1). Future versions of the LOLA system will incorporate 
a metalevel strategy module governing the optimization. 
Bindings introduced by the query may be propagated through 
nonrecursive rules down to the base relations. In case of recur- 
sive rules care has to be taken in order to leave the instantiated 
program semantically correct. An algorithm has been developed 

‘The LOLA rule-goal graph is comparable to the Predicate Comectipn 
Graph of LDL-1 [9], 1291 rather than to the rule-goal graph of NAIL! [26], 
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which generates a sufficient condition for the correctness of selec- 
tion. propagation [14]. The algorithm is applicable to any syntac- 
tically correct LOLA program even in the presence of functions 
or mutual recursion. The selection optimization transforms a gi- 
ven program into a specialized program. In the current version 
the selection optimization is always invoked. 
The Magic Sets transformation [lo], [5], [7] can be applied to any 
syntactically correct LOLA program and is not limited to DA- 
TALOG. The transformation also recognizes nonground facts and 
unrestricted rules and tries to convert them into range restricted 
rules. After application of the Magic Sets transformation a for- 
merly stratigable program need no longer be stratifiable. The 
BPR-labelling algorithm of [5] has been generalized in order to 
cover any possible removable violation of stratifiability [3]. 
The optimization of projections as described in [21] has been com- 
bined with a special selection propagation and is avsilable for ar- 
bitrary LOLA programs [14]. The projection optimization often 
makes an early termination of the fixpoint iteration possible. 

4.3.2 Operator Graph Optimization 

Common subexpressions are detected on the basis of subgoals. 
Two subgoals define a common subexpression (CSUB) if they 
are variants or one is an instantiation of the other. CSUBs are 
translated into function objects knowing about their evaluating 
expression and the number of goal nodes referencing them. They 
are controlled by reference counts and free memory as soon as 
there are no open references left. Note, that particularly the 
nonlocai parameters of iterative relational expressions (see sec- 
tion 3.3) are subject to common subexpression optimization. 
Common subexpression optimization (see above) makes it profi- 
table to generate and maintain indexes even to support simple 
selection operations. The index optimizatiolz is always applied. 
Database goals specify the access to one single external relation. 
As long as no fixpoint iteration or complex attribute terms are in- 
volved it is possible to combine database goals and generate more 
complex SQL queties according to the rules of the LOLA pro- 
gram thus putting a bigger part of the computational load onto 
the external DBMS. SQL queries can optionally be combined. 
The differential fixpoint iteration scheme requires a modified re- 
lational expression which can be generated by symbolic differen- 
tiation of the original expression. This is done at the operator 
graph level. This optimization is always applied. 

4.4 The LOLA Run Time System 

Lisp has been chosen as the host language of the LOLA system. 
The LOLA run time system consists of the following components 

l the Lisp system 

l the extendend relational algebra R-LISP 

l a main memory database 

l a SQL interface to external relationa3. database manage- 
ment systems 



Compilation Evaluation 
Optimization LOLA Lisp 

(SW) (set) (set) 

1413 Tuples in Base Relation timetable 
Cyclic Data 

Query: :- flight(munich.Y). 

No. Tuples: 110 
none 0.5 1 1.5 1 76.0 

Selection 0.5 2.0 0.3 
Magic Sets 2.0 6.0 2.0 
Supp Magic Sets 3.0 16.0 3.2 

Table 1: Performance Data 

R-LISP [22] is a Lisp macro package implementing the usual 
relational operations able to process relations having complex 
structured attribute values. In addition, R-LISP provides a ge- 
neral purpose differential fixpoint iteration operator and a num- 
ber of operations for index creation and maintenance. R-LISP 
is the target code of the LOLA compiler. 
The main memory database is currently just a set of R-LISP 
relations. A catalogue management will be integrated in future 
LOLA versions. Built-in predicates are implemented in Lisp. 
SQL queries are issued by the Lisp system via the SQL interface 
[16] which makes use of the application interface usually provided 
by a relational database management system (DBMS). Relations 
can be transferred back and forth between the Lisp system and 
the external DBMS. 
The heterogeneous relational expression as defined in section 4.2 
is compiled into the multi database access query function by the 
Lisp compiler (see Figure 3). When a call to the query function is 
issued by the Lisp system the answer is computed starting from 
base relations and functions implementing built-in predicates (see 
Figure 4). 

5 Impiement at ion 

The preprocessing modules are fully written in LOLA [24], [12]. 
Some optimization modules are also written in LOLA but in the 
current version the compiler kernel is directly implemented in 
Lisp. Since all the data structures are relationally represented 

the compiler modules can in general be specified as a LOLA 
program as long as built-in predicates are available for the basic 
operations on the list datatype. Thus a bootstrapping of the 
LOLA compiler seems to be possible. 
Allegro Common Lisp [l] is the implementation language of the 
LOLA system. Thus, the evaluable code of the LOLA system, 
either generated by the LOLA compiler or directly coded, is Al- 
legro Common Lisp. The system is currently running on SUN 
3 and SUN 4 workstations under UNIX. The standard external 
database management system is TransBase [27] which is coupled 
to the LOLA system [IS] via the foreign function interface of 
Allegro Common Lisp and the TBX interface of the TransBase 
DBMS [28]. Any other relational DBMS can be coupled to the 
LOLA system as long as the query language is SQL and it pro- 
vides an application programming interface. Experiments with 
other query languages have been made but a fully operational 
interface is only available for SQL. 
Even complex queries are translated into relational algebra or 
SQL code in a few seconds. The main bottleneck is the Lisp 
compiler. Experiments have shown that the automated parti- 
tioning of the relational algebra expression defined by the query 
and subsequent Lisp compilation of the resulting smaller parts 
will solve the problem. Code reduction by code sharing, i.e. a 
more extensive use of common subexpression elimination, is of 
course another way to be considered. 

6 Performance 

The run time performance and sometimes even the effective com- 
putability of a query depends heavily on the number and size of 
the intermediate relations computed during fixpoint iteration. 
The propagation of selection does not affect the structure of the 
program but reduces the size of intermediate results generated 
during the iterative evaluation of recursive predicates. The Ma- 
gic Sets transformation, on the other hand, is often the source 
of complex mutually recursive predicate definitions. Selection 
propagation, if applicable, mostly outperforms the Magic Sets 
Transformation. The LOLA compiler is abIe to handle arbitrary 
recursion. For the sake of run time efficiency, however, it has 
always been a good strategy to apply selection optimization as 
extensively as possible and to apply the Magic Set transformation 
subsequently, if necessary at all. 
The performance data listed in Table 1 have been measured on 
a SUN 4 workstation with 16 Megabytes main memory. The un- 
derlying LOLA program is shown in Figure 1. Different from 
the declaration specified there the timetable relation has been 
stored in main memory as a R-LISP relation. Time figures for 
LOLA compiling include optimization time. The first and third 
query permit selection propagation on the first attribute whe- 
reas the second does not. Note, that the efficiency gain obtained 
through the Magic Set transformation is rather low for the bin- 
ding pattern ($f , $b). This is due to the cyclic base data be- 
cause every airport is contained in the magic relations and thus 
the size of intermediate relations is actually not reduced whe- 
reas selection propagation provides for a drastic reduction of the 
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starting tuple set. 

7 Applications 

The LOLA system serves as a tool for several application pro- 
jects in an industrial environment as well as in academic research 
projects. 

In the CSKB (Common Source Knowledge Base) project 
a structuring instrument for the product support of au- 
tomobile manufacturers is developed. An object oriented 
approach is used in order to represent the structural kno- 
wledge whereas integrity constraints will be represented as 
a logic program. CSKB is a joint project of the Bava- 
rian Research Center for Knowledge Based Systems and 
the ESG/FEG company as an industrial partner. 

The overall goal of the Knowledge Base Consistency pro- 
ject of the Bavarian Research Center for Knowledge Based 
Systems is to enhance deductive database systems by a rea- 
soning maintenance component. To this end integrity con- 
straints are included in the rules of a deductive database 
system and can be used to guide an intelligent backtracking 
mechanism. 

The LOLA project itself makes intensive use of the LOLA 
system as a tool. In particular, a compiler version suitable 
for bootstrapping is developed. 

AMOS, a large scale system for the morpho-syntactical ana- 
lysis of Old Hebrew text (251, is intensively used by linguist 
at the University of Munich. 

A system able to give advice in the area of automobile 
diagnosis based on au abstraction mechanism is developed. 

l The prototype of a travel assistant fully written in LOLA 
has been implemented. The system serves as a midsize 
example for LOLA applications 

8 Conclusion 

The LOLA language and an overview of the LOLA system, a 
prototype of a deductive database system have been presented. 
The LOLA system is fully implemented and running. Main fea- 
tures are 

declarative semantics 

set-oriented bottom-up query evaluation 

type declarations 

direct and easy access to external DBMS 

link to the host language by built-in predicates 

modular architecture 

l flexible query optimization 

Future work will essentially concentrate on relations containing 
nonground terms, language extensions allowing user controllable 
sideways information passing, a strategy module for automati- 
cally controlling the type and order of possible optimizations, a 
debugger which is critical for medium and large scale applications 
and, of course, additional optimization modules. 

Acknowledgement 

Prof. Rudolf Bayer and Prof. Ulrich Giintzer started the LOLA 
project and have always supported the research presented in this 
paper. The authors wish to thank Elli Prochaska and Anne Ei- 
nenkel for technical and organizational support and ah the many 
students for contributing to the project by their theses. 

References 

PI 

PI 

[31 

141 

151 

PI 

171 

PI 

191 

DOI 

WI 

WI 

Allegro COMMON LISP User Guide, Manual, F’ranz Inc., Berkeley, 
California, 1988 

Apt K.R., Blair H.A. and Walker A.: Towclrds a Theory of Decla- 
rative Knowledge, in: Foundations of Deductive Databases and 
Logic Programming, Minker J. (ed.), Morgan Kaufmann, Los Al- 
tos, 1987 

Argenton H.: iU4gic Set Transformation und Negation, Diploma 
Thesis, Technische Universitat Miinchen, Munich, 1990 

Baibin I., Ramamohanarao K.: A Diflerential Approach lo Query 
Optimisation in Recursive Databases, Technical Report 8617, De- 
partment of Computer Science, University of Melbourne, 1986 

Balbin I., Port G.S., Ramamohanarao K.: M4gic Set Computa- 
tion for Stratified Databases, University of Melbourne, Dep. of 
Computer Science, Technical Report 87/3, ParkvilIe, Australia, 
1987 

Bancilhon I?., Ramakrishnan R.: An Amateur’s Introduction to 
Recursive Query Processing Strategies, Proc. ACM SIGMOD, 
1986 

Bancilhon F. et al.: Magic Sets and Other Strange Ways to Im- 
plement Logic Programs, Proc. ACM SIGMOD-SIGACT Symp. 
on Principles of Database Systems, 1986 

Bayer R.: Query Evaluation and Recursion in Deductive Database 
Systems, TUM-18503, Technische Universitat Miinchen, Internal 
Report, Munich, 1985 

Beeri C. et. al.: Sets and Negation in a Logic Database Language 
(LDLl), Proc. ACM PODS 1987, ACM, 1987, pp. 21-37 

Beeri C:, Ramakrishnan R.: On the Power of Magic, Proc. ACM 
STGMOD-SIGACT Symp. on Principles of Database Systems, 
1987 

Freitag B.: Bottom-Up Evaluation of Logic Queries, Technische 
Universit%it Miinchen, Internal Report, Munich, 1989 

Freitag B., Specht G.: A Parsing System based on a Deductive Da- 
tabase, Proc. German Workshop on Artificial Intelligence GWAI 
‘89, Springer, 1989 

224 



1131 

P41 

1151 

WI 

1171 

1181 

PI 

P-4 

PI 

PI 

1231 

(241 

P-51 

PI 

P71 

P81 

PI 

Giintzer U., Kiessling W, Bayer R.: On the Euabalion of Re- 
cursion in (Deductive) Database Systems by Eficient Differential 
F&point Iteration, Proc. 3rd International Conference on Data 
Engineering, Los Angeles, 1987 

Hager J.: Optimierung 2ron Selektion und Ezistenzquantifika- 
tion in Logikprogrammen, Diploma Thesis, Technische Universitit 
Miinchen, Munich, 1990 

Huber Th.: Typ-oberptifung fiir die Logikspmche LOLA, Di- 
ploma Thesis, Technische Universitit Miinchen, Munich, 1990 

Kempe H., Lenz Th.: Eine Programmierschnittstelle fir Trans- 

Base in Allegro COMMON LISP, in german, Technische Universitst 
Miinchen, Internal Report, Munich, 1989 

Lloyd J.W.: Foundations of Logic Programming, Springer, 1987 

Moser M.: Eine relationale Algebra mit Unifikalionsoperatoren, 
Diploma Thesis, Technische Universitit Miinchen, Munich, 1990 

Mycroft A., O’Keefe R.A.: A Polymorphic Type System for Pro- 
log, Artificial Intelligence 23, 1984, pp. 295-307 

Przymusinski T.C.: On the declarative semantics of deductive 
databases and logic programs, in: Minker J.,Ed.: Foundations 
of deductive databases and logic programming, Morgan Kauf- 
manq1988, pp. 193-217 

Ramakrishnan R., Beeri C., Krishnamurthy R.: Optimizing Exi- 

stential Datalog Queries, Proc. ACM PODS, ACM, 1988 

Schiitz H.: R-Lisp - Eine enueiterte relationale Algebl-a in Lisp, 
in german, Technische Universit;it Miinchen, TUM-19049, Munich 
1990 

Schiitz H.: Ein Typkonzept fir eine Homkiausel-Sprache, in ger- 
man, Technische Universitit Miinchen, Internal Report, Munich, 
1989 

Specht G.: Die Logikspmche LOLA und ihre inlente Dars2ellung 
durch Relationen, in german, Technische Universitst Miinchen, 
TUM-18910, Munich, 1989 

Specht G.: Wissensbasierte Analyse althebriischer Morphosyntaz; 
Das Ezpertensystem AMOS EOS-Verlag, 1990 

Takashi C.: Design Overview of the NAIL! System, E. Shapiro 
(Ed.), Third International Conference on Logic Programming, 
London, Juli 1986, Springer Verlag, 1986, pp. 554-569 

BansBase Relational Database System, System Guide, Version 
3.3, Manual, TransAction Software GmbH, Munich, 1989 

TmnsBase Relational Database System, PTogmmming Interface 
TBX, Version 3.3, Manual, TransAction Software GmbH, Mu- 
nich, 1989 

Ullman J.D.: Principles of Database and Knowledge-Base Sy- 
stems, Volume II: The New Technologies, Computer Science Press, 
Rockville, 1989 

Appendix: LOLA syntax definition 

<Unit> : := 
1 

<LOLA-program> ::= 
<LOLA-query> : : = 
<program-id> : := 
<query-id> : : = 
<program> : := 
cquery> : := 

<declaration> ::= 
I 
I 

I 
<type-list> : := 

I 
<type> : :’ 

I 

Spredicats(<predicate>, <type-list>). 
tfunction<<function>, <type-list>, <type>). 
$built_in(cpredicate>, <type-list>. 

<binding-request>). 
$relation(<psedicate>, <type-list>, <db-name>). 
$dstabase(<db-name>, <db-type,). 
n 
Ewpe> f. ctype>3*1 
<type-variable> 
<type-constructor> 
<type-constructor>(<type-list>) 

<type-variable> : = <variable> 
<type-constructor> ::= <functor> 
<binding-request> ::= 0 

I [<binding> I, <binding>381 
<binding3 ::= ftf I tb3 
<db-name> ::= <iunctor> 
cdb-type> : := Itmain I ttransbase3 

<LOLA-program> 
<LOLA-query> 
<program-id> <program> 
<query-id> <quary> <program> 
tprogram(cprogram-nam>). 
tquery(<query-name>). 
<<decleration> I trule>3* 
:- <goal>. 

+.xle> : := 

<head> 
<body> 
<goal> 

<subgoal> 

: := 
: := 
: :’ 

I 
: := 

I 

GGxml> ::= 

<tem> : := 

I 
<list> : :x 

<program-name> ::= 
<query-name> : : = 
<predicate> : := 
<function> : : = 
<f lmct.or> ::= 

I 
<variable> : : = 
<number> : := 
<string> ; ;= 
<quoted-sequ> ::= 
<allowed-char> ::= 

I 

<separation> : : = 
<separator> : : = 
ccamment> : := 

I 

<keywords > : := 

<head> :- <body>. 
<head>. 
catom> 
<goal> 
<subgoal> 
<subgoal>, <goal> 
<atom> 
ctem> = <term> 
tnot (<goal>) 
$exists(<variable>, <goal>) 
<predicate> 
<predicate>(<term> I, <tem>3*) 

<variable> 
<llumber> 
~functOr> 
<iunctor>(<term> c, <term>3*) 
<list> 

~tcmo {, <tem>3*1 
[<term> I, <ten03* ‘1’ <term>1 
<string> 

<functor> 
<functor> 
<functor> 
tfulctor> 
Ia- h-z I A-Z I O-9 I t I ! I -3* 
<quoted-sequ> 
C A-Z I -3 b-z I A-Z I O-9 I t I ! I -3* 
c+ I -3 io-93+ 
“<allowed-char>+” 
‘<allowed-char>*’ 
<ASCII-Char.between ! and - except \, ” > 
\f<q’ character>3 

{ <separator> 3* 
<TAB> I <BLANK> I <CR> I <comment.> 
I* C <any character except ‘*I’> 3* l / 
r. C <any character except <CR> 3* CCR> 

CSprogrm, Squery, 8predicate. *function, 
(built-in. trelatian, Sdatabase, *main, 
Stransbase. St, Sb. Snot, texiats3 
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