
LOLA - A Logic Language for Deductive
Databases and its Implementation

Burkhard F’reitag Heribert Schiitz Giint her Specht

Technische Universit&t Miinchen, Institut fiir Informatik
Orleansstrasse 34, D-8000 Miinchen 80, Germany

E-Mail: freitagQlan.informatik.tu-muenchen.dbp.de

Abstract

The purpose of this paper is to give an overview of
the LOLA logic programming system which serves as the
kernel of a deductive database system. The LOLA lan-
guage, the query evaluation strategy, the available query
optimiaations, the overall compiler architecture, and some
implementational details and performance measurements
are presented. The LOLA-system is fully implemented in
Common Lisp and running on SUN UNIX Workstations.

1 Introduction

The logic language LOLA has been designed as a query language
for a deductive database system. LOLA has a clear declarative
semantics and integrates logic programming and relational query
processing. Automated access to external relational databases

and a link to the host language Lisp by built-in predicates are
provided.
Instead of applying the top-down query evaluation scheme of re-
solution based logic progr amming systems [17] LOLA queries are
evaluated in a set-oriented, bottom-up fashion starting from the
program facts or base relations. The main evaluation scheme
for recursive queries is the differential or seminaive flxpoiut ite-
ration as described in [8], [4], [S], [13]. A number of optimiza-
tions, among others the Magic Sets transformation [lo], [5], [7]
are available and can optionally be applied to the program. Dif-
ferent from comparable logic languages such as LDL-1 [9], [29]
and NAIL! 1261, [29], type declarations are required for function
and predicate symbols. Furthermore, future LOLA versions will
- like Prolog - be able to handle relations containing variables.
A query is translated into an expression of an extended relational
algebra. Given a set of base relations, the resulting expression
computes the set of answer tuples corresponding to the query.
Base relations can reside in main memory or in any external

relational database system accessible via SQL.
The LOLA system has as components a user interface accepting
programs and queries, the compiler and optimizer and the run

DATABASE SYSTEMS FOR ADVANCED APPLICATIONS ‘91
Ed. A. Makinouchi
@World Scientific Publishing Co.

time system providing a main memory database, external da-
tabase access and a link to the host language Lisp. The LOLA
system is fully implemented in Commonlisp and running on SUN
UNIX workstations.
The LOLA system has been designed and implemented by the
deductive database research group of Prof. R. Bayer at the Tech-
nische Universitst of Munich. The work has partly been funded
by the “Deutsche Forschungsgemeinschaft” under contract “Ba
722/3-2: Effiziente Verfahren zur logischen Deduktion iiber Ob-
jektbanken”.
Section 2 below describes the LOLA Language. In section 3 the
LOLA semantics and query evaluation scheme are discussed. An
overview of the LOLA system is given in section 4, in particular
the LOLA compiler (4.2) and the optimizer (4.3). Finally, in
section 5 some implementational details and performance data
are listed. The complete LOLA syntax definition can be found

in the appendix.

2 The LOLA Language

LOLA is a clausal logic programming language allowing to define
predicates by rules and to declare the symbols used in a program.
Negation, explicit existential quantification and functions are al-
lowed. The programmer may use any type of recursion to define
a predicate. LOLA provides a direct access to one or more exter-
nal relational databases. The user only needs to know the name
of the external database and the name and schema of the ex-
ternal relations. LOLA terms are first order terms without any
restriction. Function symbols are - similar to PROLOG - not
interpreted. However, a link to the host language is provided via

built-in predicates allowing the user to directly implement her
or his own interpretation of a predicate operating on terms of
certain types.

2.1 Language Features

A sample LOLA rule is

only-child(X) :-
person<X),$not<$exists(Y. sibling(X.Y))).

Informally, the rule should be read as: X is the only child (of
parents not named here) if X is a person and there is no Y being a
sibling of X. As usual, we call the lefthaud side of the rule the head
and the righthand side the body of the rule. A query is a rule with
empty head. Rules and queries are implicitly universally quanti-
fied with a scope of the entire rule or query. Due to the explicit

216

existential quantifier we do not need to introduce complex rules
for the implicit quantification of variables occurring in negations
as in NAIL! [26] or LDL-1 [9].
The subgoals of a goal, i.e. a rule body or a query, may be either
an atom, a database goal, a built-in goal, or a negated or existen-
tially quantified goal, i.e. negation and existential quantification
may be nested to any depth.
A database goal provides a means to specify an access to a -
possibly external - database relation. The link to the specific
database and relation is specified by the declaration of the cor-
responding predicate. By a built-in goal a call to a host language
function implementing the semantics of the corresponding predi-
cate is issued. Part of the declaration of a built-in predicate is
the specification of a binding request defining for each attribute
position whether it has to be bound ($b), i.e. a ground term is

$program(flight-connections).

% f** Declaration Part ***
$predicate(flight,

[airport, airport] 1.
$predicate(flight-route,

[airport,airport,list(airport)]).
$predicate(route-to, [airport ,list(airport)]) .
$predicate(start-from, [airport]).
$predicate(direct-flight.[airport,airportj).
$built-in(member-bb,

CA-Type,list(A-Type)], C$b,$bl).
$relation(timetable,

[airport,airport.time,time,code],
flight-dbl.

$database(flight-db,$transbase).

% *** Definition Part ***
flight(X,Y) :-

direct-flight(X,Y).
flight(X,Y) :-

flight(X, Z), direct-f1ightCZ.Y).
route-to(Y,CY,Xl) :-

start-from(X), direct-flight(X,Y).
route-to(Y,CYlRl) :-

route-to(Z,R), direct-flight(Z,Y),
$not(member-bb(Y,Ft)).

direct-flight(X,Y) :-
timetable(X,Y,Tl,T2,N).

Figure 1: Sample LOLA program unit

$query(route-to).

% *** Query Part ***
:- route-to(tokyo, Route).

% *** Declaration Part ***
$function(tokyo, Cl , airport) .
$function(munich, Cl ,airport) .
$function(frankfurt, [] ,airport) .

% *** Definition Part ***
start-from(munich).
start,from(frankfurt),

Figure 2: Sample LOLA query unit.

expected, or it may be free ($f), i.e. may contain variables at
runtime. Let for instance the symbol append-bbf be declared as
a built-in predicate requiring the first two attributes to be bo-
und. The built-in goal append-bbf ([a,bI , Cc] ,L) represents a
call to the function append-bbf with- actual parameters [a, b, c]
and Cc, dl which will return the relation

{append-bbf (Ca.bl , Ccl , [a,b,cl)>

A built-in predicate may be implemented as to evaluate its para-
meters. This way evaluable functions can be simulated in LOLA.

Note, that built-in predicates do not need to evaluate their para-
meters. In this case they operate on symbolic terms just as the
directly implemented version of a normal predicate. A predicate
is said to be normalif it neither is a built-in predicate, nor names
a base relation.

The programmer organizes her or his LOLA rules as a collection
of units. We distinguish between a LOLA program unit and a
LOLA query unit. A LOLA program unit consists of a number
of declarations and definitions. For every constant, function, and
predicate symbol a type declaration has to be specified (see sec-
tion 2.2 below). The definition of a predicate is a set of rules as
usual. Figure 1 shows a sample LOLA program unit.
A LOLA query unit consists of a query followed by optional
declarations and definitions. The latter two allow the user to
declare constants introduced by the query as well as to define the
shape of the answer relation by giving an “on the fly” definition
of the query predicate which is independent. of the underlying
fixed LOLA program. The most important application of this
feature, however, is to supply the actual definition of a predicate
at query time. This can be used in order to keep the link to
a database relation separate from the program or to specify an
actual set of facts serving as the starting set of facts for a LOLA
program which has been transformed by the Magic Sets transfor-
mation (see section 4.3). A sample LOLA query unit is shown
in Figure 2.
Of course, queries can also be asked in an ad-hoc fashion during a
LOLA session. For this type of queries type correctness is tacitly

assumed and no declarations are required.
The complete LOLA syntax definition can be found in the ap-
pendix.

2.2 Declarations

Type declarations for normal function and predicate symbols in
LOLA serve merely as a means to check program correctness at
compile time. They can be viewed as a separate program specify-
ing certain restrictions imposed on the rules in the definition part
of a LOLA program. As far as this part of the LOLA type con-
cept is concerned there are only minor differences to the concept
of [19].
The LOLA type concept essentially provides a means to group
the terms into different classes. LOLA types are disjoint and
there are no union types or type hierarchies. For variables an
attempt is made to infer a unique type at type checking time.
They cannot be declared. A symbol can only be declared once.
Predicate symbols and function symbols are of fixed arity. The
sample program of Figure 1 contains type declarations.
The declarations for built-in predicates, relations and databases
have an additional meaning because they provide the link bet-
ween the symbols and their operational semantics.

217

The LOLA s”yntax allows to deal with constructed lists similar
to Prolog’s lists. The list constructs CX .Yl and CX I Ll are simply
shorthand for the functional terms cons (X ,cons (Y .nil)) and
c ens (X , L) respectively. The symbols nil and cons are implicitly
declared using the polymorphic type list as shown below.

$function(nil, t] ,list(Any,Type)).
Sfunction(cons,[Any-Type.list(Any,Type)I,

list(Any,Type)).

Type checking is purely static and performed as a preprocessing
step. A LOLA program unit is checked when fed to the compiler.
At query processing time the type checking is repeated for the
program augmented by the query unit.
The type correctness of a LOLA program is essentially described
by the following rules

l The same unique type must be inferred for each occurrence
of a variable in a clause.

l The result type inferred for a function symbol of a func-
tional term must coincide with the type inferred for the
argument position being the occurence of the term.

Type correctness is checked by simultaneous unification of the
types inferred for a subterm using all possible inference paths.
Consider for example the correctly typed rule taken from the
sample program of Figure 1.

route-to(Y,cons(Y.R)) :-
route,to(Z,R),direct-flight(Z,Y),
$not(member-bb(Y.R)).

The types list (Any-Type), list (airport), and list (A-Type)
are attached to the variable R through the declarations of
cons, route-to, and member,bb respectively. Therefore both
Any-Type as well as A-Type must be bound to the type airport.
This agrees with the type bindings inferred for Y. Thus the type
list (airport) is inferred for the term cons (Y ,R) as requested
by the declaration of predicate route-to.
The type checker is completely written in LOLA. For more de-
tails and a description of the type checking algorithm see 1231.

2.3 The Intermediate Language LOLitA

During the preprocessing phase of compilation (see section 4.2).
a goal with nested negations and/or existential quantification ia
broken into a simpler goal together with a set of rules having
as subgoals only atoms and negated atoms. We will refer to the
simpler intermediate language allowing only unnested subgoals
as LOLitA .
LOLitA programs and queries have to satisfy a number of con-
straints in order to be evaluable.

l Stmtifiability with respect to negation

l Range Restriction, i.e. for every rule each variable of the
rule head must occur in at least one unnegated normal or
database subgoal or in a term at a free position in an un-
negated built-in subgoal of the rule body.

l Safety, i.e. for every rule and query each variable of a
negated subgoal not bound by existential quantification and
each variable occuring in a term at a bound position of

a built-in subgoal must occur in at least one unnegated
normal or database subgoal.

l Ground Database Relations

Note that the safety constraint currently disallows the chaining
of built-in predicates. This restriction can be relaxed as shown
in [29, pp. 805-8173, and a future version of the LOLA system
will be able to deal with chained built-in subgoals.
The propagation of bindings introduced by a query will in many
cases instantiate the variables of unrestricted rules making the
modified program range restricted. The Magic Set transforma-
tion can as weIl be used to transform e.g. the rule equaUX,X) .
into a range restricted rule. Nevertheless are we currently in-
vestigating as to which extent the range restriction constraint
can be generally relaxed by applying a more powerful evaluation
scheme able to deal with general substitution sets rather than
with ground tuple sets [lS]. Consequently, the enhanced system
will generate nonground answers’.

2.4 Sample LOLA Programs

The sample LOLA program flight-connections with negation,
built-in predicates, functions and recursion is shown in Figure 1.
By the first five declarations normal predicates defined by LOLA
rules are declared. member-bb is a built-in predicate having a
binding request of “bound” for both attributes. The predicate
timetable is declared to be a the name of a base relation sto-
red in the external database flight-db which is maintained by
the relational DBMS TransBase [27]. A call to the predicate
timetable will automatically be translated into a SQL query
and an appropriate call to the LOLA-SQL-Interface.
The flight predicate is defined as the transitive closure of
direct-f light. Note, that the leftrecursive definition has been
chosen. Predicate route-to gives a more detailed description of
flight connections by the list of airports visited on the way from
some start airport to Y. The list is constructed in reverse order
for the sake of simplicity. The start-from predicate serves as
an input and specifies the start airports. It is not defined in the
program flight-connections.
Figure 2 shows the LOLA query unit route-to asking which
flight route leads to Tokyo. The user has supplied a definition of
the predicate start-from specifying munich and frenkfurt as
the start airports. The constants t okyo, munich and f rankfurt
have been declared in order to preserve type correctness.

3 Semant its

The semantics of LOLA is fully declarative. :In particular, it does
not depend on the subgoal order within a rule or query. The
overall basis of the mathematical semantics of logic programs is
described in 1171. The semantics of LOLA programs without ne-
gations coincides with the semantics of definite programs defined
in [17] whereas the semantics of normal LOLA programs relies on
the minimal model semantics defined by iterated fixpoint compu-
tation for a partitioning sequence of disjoint rule sets as described

‘The acronyme LOLA spells “Logic Language allowing Open Answers”

38

in [212.
The LOLA semantics is defined through the semantics of the
simpler language LOLitA (see section 2.3). This point of view is
reflected by the LOLA compilation which as a first step generates
the LOLitA query and program corresponding to a given LOLA
query and program.

3.1 Notation

Our notation is partly adopted from [2]. Let P be a
LOLitA program. The definition of a predicate symbol p in P is
the set of all defining rules of p. A rule T is a defining rule of p
iff p is the head predicate of T. p is defined in the program P iff
there is a defining rule T E P of p.
A relation is a set of ground atoms having the same predicate
symbol p. We often denote the relation itself by p. The relati-
ons named by predicate symbols that have been declared to be
relation names are called the base relations of P.
We say that a predicate symbol p rqfers positively (negatively) to
a predicate symbol CJ iff Q is the predicate symbol of a nonnegated
(negated) atom in the body of a defining rule of p. The meta-
relation depends on, denoted by >, is defined to be the transitive
closure of the meta-relation refers to. A predicate symbol p is
recursive iff we have p + p otherwise p’ is nonrecursive. p and Q
are mutually recursive iff p + CJ and Q + p.

An equivalence relation JC on the set of predicate symbols of P is
defined by p M Q iff q 5 p or p and q are mutually recursive. The
equivalence classes are called the predicate clusters of P. The
collection of definitions of the predicates in a predicate cluster

forms a rule cluster of P. It should be clear that each rule cluster
corresponds to a uniquely determined predicate cluster and vice
versa. The t- relation can be defined on the set of rule clusters
in a natural way.
The programs PI, . . ., Pm form a stratification of P iff P =
Pl CD . . . @Pm, where @ denotes disjoint union, the definition of
each predicate symbol q occurring positively in a rule T E Pj is

a subset of tJiSl Pk, and the definition of each predicate symbol

q occurring negatively in a rule T E Pj is a subset of Ui=: Pk. P
is called stmtifiable iR there is a stratification of P. It is easy to
show that the rule clusters of a stratifiable LOLitA program P
form a stratification of P (cf. [2]).

3.2 Minimal Model Semantics

We assume throughout this section that the language Lp defined
by a LOLitA program P is determined by the symbols of P,
the symbols occuring in the base relations of P, and the symbols
occuring in the relations generated by the built-in predicates of
P. The Eerbmnd basis of P, denoted by t?p, is defined as usual
using the language Lp. An interpretation of P is a subset of the
Herbrand basis.
The immediate consequence operator Tp of the program P maps
the set of Herbrand interpretations onto itself. The usual d&n.i-

‘The minimal model semantics of [2] differs from Clark’s semantics of
normal progr~~~~s as defined in 1171. For more details see [Z]

tion is extended as follows in order to cover built-in predicates:
We treat a built-in predicate p as a special b&se relation, i.e we
assume that the semantics of a 1-ary built-in predicate p is a priori
known and given by the set of ground atoms

{Ph , . . . , tr) f Bp 1 p(tl,. . . Jr) is true }

The above set is the eltension table EP of p.
In [2] it is shown that for a stratifiable program P a uniquely
determined minimal Herbrand model of P can be computed by
iterated fixpoint computation of the immediate consequence ope-
rators defined by the rule clusters of P starting from the base
relations of P. hIore formally, let P be a LOMtA program and
let PI, P,,, be a stratification of P. Let bl, . . . , bi be the base
relations of P, and let q1, . . . , Q~ be the built-in predicates of P.
The sequence

MO := (j bk u lj f4,
led S=l

Mj := Tp(Mj-1) for 15 j < m

defines a minimal Herbrand modei 1M’, of P. Furthermore, the

model is independent of the particular stratification of P. Let
P be a stratifiable LOLitA program. We define the standard
minimal Herbmnd model M+ of P by the model sequence which
is determined by the rule clusters of P. The standard minimal
model coincides with the pefect model as defined in [20].
An answer to a query is a (possibly empty) set of substitutions
for the variables of the query. From a positive atomic query :-

PFl, . . . , tk) . and an answer substitution set c a corresponding
answer relation can be computed by applying every u E C to
the query atom. Consider for example the LOLA program of
Figure 1 and assume that

timetable =
C timetable(munich.frankfurt,...),

timetable(frankfurt,tokyo,...) 1

An answer to the query : - flight (U, V) . is the substitution set

C CU/munich, V/frankfurt).
CU/frankfurt, V/tokyo),
iU/munich, Y/tokyo> 3

The corresponding answer relation is

{ flight(munich,frankfurt),

flight(frankfurt,tokyo),
flightfmunich. tokyo) 3

An answer to a negative atomic query :- Snot p(tl, . . . , tk) . is
only defined for ground terms tr, . . . ,tk due to the safety con-
straint (see section 2.3). It can either be the empty substitu-
tion set (empty relation) or the substitution set containing only
the identity substitution (the relation containing only the atom
true).
An answer C to a query : - G1, . . . , G, . for a program P is a COT-

rect answer iff for every Q E C the instantiated goal Gla, . . . , G,o
is true in the standard minimal model Mv.

219

Figure 3: Top-Down Query Compilation

3.3 Operational Semantics

The results listed in the preceding section aze the theoretical
basis for an operational semantics of LOLitA . Essentially, for
each rule cluster 7’j a relational expression is constructed which
implements the immediate consequence operator Tpj of Pj. The
operational semantics of LOLA does therefore not differ from
the minimal model semantics of section 3.2. Fixpoint iteration
and the relational operations union, project, select, join, product
working on sets of term tuples are the basic requisites for the
definition of the operational semantics of LOLitA .
On a conceptual level a distinction is made between relations and
substitution sets. However, suitably designed relational operati-
ons can be applied to both equally well. To clarify this point let C
be a substitution set for the variables 21,. . . , xn. Then X can be
represented as the pair ((21,. . . ,x,), Rx) where Rc is the set of
of term tuples (tl , . . . , t,,) such that {al/tl, . . . ,x,/t,} E C. The
empty and the identity substitution sets are represented by ((),0)
and (0, { 0)) respectively. Similarly, a n-ary relation R, i.e. a set
of atoms p(tl , . . . , tk), can be represented as the pair (p,Tz~pZes~)
where TuplesR is the set of n-ary term tuples (tl, . . . , t,,) such
that p(tl ,...,t,J E R.
For each rule cluster Pj of a program P a relational expression
&(Pj) is inductively defined as follows. Details can be found in
[ll] and are omitted here for the sake of brevity.

Predicates defined in lower layers Pi, I < j, and predicates
naming base relations are taken as relational parameters.

Recursive predicates which are members of the correspon-
ding predicate cluster are taken a.9 relational parameters.

We will call them local parameters.

A normal or a database subgoal G z p(tl, . . . ,tk) defines a
select operation on the relation p. The result is the set of
all substitutions o for the variables of G such that there is
an atom A E p and a substitution T such that AT z Gu3.

Let G be a built-in subgoal p(tl, . . . , th). Assume without
loss of generality that p requires its first 2 < k attributes
to be bound. Then, by the safety constraint (section 2.3),
the terms tl , . . . , t[are ground*. Let f&aq,. . . ,parrj de-
note the host language program implementing p. Then G
defines an expression having as result the set of all substi-
tutions B for the variables of G such that p(tl, . . . , tk)a 6

f&l,. * . 9 trl-

Let G be a negated subgoal Snot p(tl,. . . , tk). Then, by
the safety constraint (section 2.3), G is ground5. Let & be
the expression defined by the positive goal p(tl, . . . , tk). G
defines an expression having as result the empty substitu-
tion set if & returns the identity subsitution set and vice
versa.

A goal G1,... ,G, defines a join, an antijoin6, an input
join7, or a product operation on the substitution sets for
the G; computing a substitution set for the variables of
G1,...,G,,.

A rule p(tl, . . . , TV) . , i.e. a fact, defines the relation

ti(t1,. f * ,621.

A rule p(tl ,..., tk):-GI,... , G, . defines a project opera-
tion on the substitution set C defined by the rule body.
The result is the relation computed by applying every single
substitution u E C to the atom p(tl, . . . , tk).

A nonempty set of rules defines a union operation on the
set of the relations defmed by the single rules. The empty
set of rules defines the empty tuple set.

A rule cluster Pj defining the (mutually) recursive predicates
pl, . . . ,pm, m 2 1 requires a fkpoint iteration computing rela-
tions for the local parameters ~1,. . . ,p, and taking the nonlo-
cal parameters as fixed input. The iterative relational expression
thus.defined does no longer have local but may still have nonlocal
relational parameters. If a rule cluster defines a single nonrecu-
sive predicate no ikcpoint iteration is needed.

‘Note, that for a ground relation p the result is simply the set of substi-
tutions Q such that Gu E p.

‘In case of a nonground term at a bound position either G is a subgoal of
agoalGl,..., G,, with a positive normal or database subgoal G; containing
the variables of the term or a syntax error is detected. In the former case an
input join expression is generated.

‘If variables occur in G either G is a subgoal of a goal G1, . . . , G, with
a positive normal or database subgoals Gi containing the variables of G
or a syntax error is detected. Iu the former case au antijoin expression is
generated.

‘An ontijoin operation can be understood as a generalized set difference.
‘Au input join operation essentially maps the procedure defkxiig a built-

in predicate over the set of tuples serving as input and subsequently joins
the result aud the input tuple set

220

Multi DB Aocess

Figure 4: Bottom-Up Query Evaluation

A relational expression computing an answer for a query
:-G 1, . . . , G, . is defined by induction over the +-relation bet-
ween rule clusters. We proceed top-down starting from the query.
The query itself is treated like a rule body. For every subgoal
G; = q(tl , . . . , tk) the rule cluster Pe defining q is selected and
the corresponding relational expression &(Pp) is constructed. For
every nodocd parameter T of &(p,) the relational expression
&(P,) of the rule cluster defining T is generated. A predicate not

defined in P and neither being declared as a relation name nor
as a built-in predicate is considered to be defined by the empty
rule cluster. This procedure is repeated untiI no nonlocal para-
meter is left. The translation procedure terminates because the
+-relation between rule clusters is acyclic. Note, that the answer
relation computed by the above defined operator is always ground
if the program and query satisfy the constraints of section 2.3.
Under the general assumption that the computed tuple sets are
finites it can be shown that the relational expression defined for
an atomic query computes the interpretation of the query predi-
cate in the standard minimal model.
The LOLA compiler (see section 4.2) takes a program and a
query as input and essentially generates a relational expression as
described above. The fixpoint iteration scheme used is differential
or seminaive fixpoint iteration [8], [4], [6] which has been shown
to be complete and correct in [13] The compiler also generates
code for the external database access and calls to procedures
implementing the built-in predicates.
A schematic view of the query translation and evaluation is shown
in Figures 3 and 4.

‘By the above construction only finite subsets of the extension tables of
built-in predicates are computed

Figure 5: Overview of the LOLA compiler

4 The LOLA system

The LOLA system consists of an user interface, the compiler,
the optimizer, and the run time system.

4.1 User Interface

The user interface takes a collection of LOLA program units as
an input and initiates the necessary preprocessing steps. The
system is then ready to accept a LOLA query unit or an ad-hoc

query. The latter queries are automatically converted into query
units. For each query optional optimieations can be selected by
the user. After query compilation the answer is shown to the
user or can be stored as a relation.
It is assumed that the user is interested in a relation, i.e. a set of
facts, as the result of a query. For atomic queries a set of LOLA
facts is shown as the answer, for instance

flight(munich,frankfurt).
flightcfrankfurt ,tokyo).
flight(munich, tokyo).

Nonatomic queries are converted into an atomic query having
a new predicate and as attributes all the terms of the origid

221

query together with a rule defining the nent predicate through
the query subgoals.

4.2 The LOLA Compiler

The LOLA compiler takes a LOLA program unit and a query
unit as input and generates a relational expression as described
in section 3. The LOLA compiler has a modular architecture
allowing to implement optimization algorithms or different code
generators as “plug in” modules. Figure 5 shows an overview of
the compilation process. The compiler makes use of precompiled
and preoptimized queries thus supporting incremental compila-
tion and modular program developement.
During the preprocessing phase a LOLA unit is transformed into
a LOLitA unit by unnesting negations and eliminating existen-
tial quantification. The resulting LOLitA program is internally
represented as a set of relations from which a rille-goal graph can
easily be generated. The rule-goal graph9 consists of rule nodes,
goal nodes, and edges pointing from a rule to each of its body
subgoals and from a goal to each of its defining rules. Every mo-
dule performing a source level optimization actually transforms
the rule-goal graph of the LOLitA program.
The rule-goal graph is subsequently transformed into an operator
graph which represents an expression of a very high level exten-
ded relational algebra. A number of optimizations such as the
introduction of indexes or the symbolic differentiation required
for the differential fixpoint computation can better be performed
on the operator graph as a common data structure.
During the code genemtion phase the heterogeneous relational
expression is generated, i.e. relational expressions with embed-
ded calls to the main memory database&he external database
interface or a host language procedure (See section 4.4). The co-
degeneration can easily be adapted to different run-time systems.

4.3 The LOLA Optimizer

A number of optimization modules are available and can optio-
nally be applied to a LOLA program. There are mainly two
groups, the first performing source level optimizations and the
second acting on the intermediate code represented by the ope-
rator graph.

4.3.1 Source Level Optimization

The available source level optimizations are actually designed
as transformations of the rule-goal graph. They are currently
invoked by the user rather than by strategy rules (cf. [26], [29,
p. 992 1). Future versions of the LOLA system will incorporate
a metalevel strategy module governing the optimization.
Bindings introduced by the query may be propagated through
nonrecursive rules down to the base relations. In case of recur-
sive rules care has to be taken in order to leave the instantiated
program semantically correct. An algorithm has been developed

‘The LOLA rule-goal graph is comparable to the Predicate Comectipn
Graph of LDL-1 [9], 1291 rather than to the rule-goal graph of NAIL! [26],

I291

which generates a sufficient condition for the correctness of selec-
tion. propagation [14]. The algorithm is applicable to any syntac-
tically correct LOLA program even in the presence of functions
or mutual recursion. The selection optimization transforms a gi-
ven program into a specialized program. In the current version
the selection optimization is always invoked.
The Magic Sets transformation [lo], [5], [7] can be applied to any
syntactically correct LOLA program and is not limited to DA-
TALOG. The transformation also recognizes nonground facts and
unrestricted rules and tries to convert them into range restricted
rules. After application of the Magic Sets transformation a for-
merly stratigable program need no longer be stratifiable. The
BPR-labelling algorithm of [5] has been generalized in order to
cover any possible removable violation of stratifiability [3].
The optimization of projections as described in [21] has been com-
bined with a special selection propagation and is avsilable for ar-
bitrary LOLA programs [14]. The projection optimization often
makes an early termination of the fixpoint iteration possible.

4.3.2 Operator Graph Optimization

Common subexpressions are detected on the basis of subgoals.
Two subgoals define a common subexpression (CSUB) if they
are variants or one is an instantiation of the other. CSUBs are
translated into function objects knowing about their evaluating
expression and the number of goal nodes referencing them. They
are controlled by reference counts and free memory as soon as
there are no open references left. Note, that particularly the
nonlocai parameters of iterative relational expressions (see sec-
tion 3.3) are subject to common subexpression optimization.
Common subexpression optimization (see above) makes it profi-
table to generate and maintain indexes even to support simple
selection operations. The index optimizatiolz is always applied.
Database goals specify the access to one single external relation.
As long as no fixpoint iteration or complex attribute terms are in-
volved it is possible to combine database goals and generate more
complex SQL queties according to the rules of the LOLA pro-
gram thus putting a bigger part of the computational load onto
the external DBMS. SQL queries can optionally be combined.
The differential fixpoint iteration scheme requires a modified re-
lational expression which can be generated by symbolic differen-
tiation of the original expression. This is done at the operator
graph level. This optimization is always applied.

4.4 The LOLA Run Time System

Lisp has been chosen as the host language of the LOLA system.
The LOLA run time system consists of the following components

l the Lisp system

l the extendend relational algebra R-LISP

l a main memory database

l a SQL interface to external relationa3. database manage-
ment systems

Compilation Evaluation
Optimization LOLA Lisp

(SW) (set) (set)

1413 Tuples in Base Relation timetable
Cyclic Data

Query: :- flight(munich.Y).

No. Tuples: 110
none 0.5 1 1.5 1 76.0

Selection 0.5 2.0 0.3
Magic Sets 2.0 6.0 2.0
Supp Magic Sets 3.0 16.0 3.2

Table 1: Performance Data

R-LISP [22] is a Lisp macro package implementing the usual
relational operations able to process relations having complex
structured attribute values. In addition, R-LISP provides a ge-
neral purpose differential fixpoint iteration operator and a num-
ber of operations for index creation and maintenance. R-LISP
is the target code of the LOLA compiler.
The main memory database is currently just a set of R-LISP
relations. A catalogue management will be integrated in future
LOLA versions. Built-in predicates are implemented in Lisp.
SQL queries are issued by the Lisp system via the SQL interface
[16] which makes use of the application interface usually provided
by a relational database management system (DBMS). Relations
can be transferred back and forth between the Lisp system and
the external DBMS.
The heterogeneous relational expression as defined in section 4.2
is compiled into the multi database access query function by the
Lisp compiler (see Figure 3). When a call to the query function is
issued by the Lisp system the answer is computed starting from
base relations and functions implementing built-in predicates (see
Figure 4).

5 Impiement at ion

The preprocessing modules are fully written in LOLA [24], [12].
Some optimization modules are also written in LOLA but in the
current version the compiler kernel is directly implemented in
Lisp. Since all the data structures are relationally represented

the compiler modules can in general be specified as a LOLA
program as long as built-in predicates are available for the basic
operations on the list datatype. Thus a bootstrapping of the
LOLA compiler seems to be possible.
Allegro Common Lisp [l] is the implementation language of the
LOLA system. Thus, the evaluable code of the LOLA system,
either generated by the LOLA compiler or directly coded, is Al-
legro Common Lisp. The system is currently running on SUN
3 and SUN 4 workstations under UNIX. The standard external
database management system is TransBase [27] which is coupled
to the LOLA system [IS] via the foreign function interface of
Allegro Common Lisp and the TBX interface of the TransBase
DBMS [28]. Any other relational DBMS can be coupled to the
LOLA system as long as the query language is SQL and it pro-
vides an application programming interface. Experiments with
other query languages have been made but a fully operational
interface is only available for SQL.
Even complex queries are translated into relational algebra or
SQL code in a few seconds. The main bottleneck is the Lisp
compiler. Experiments have shown that the automated parti-
tioning of the relational algebra expression defined by the query
and subsequent Lisp compilation of the resulting smaller parts
will solve the problem. Code reduction by code sharing, i.e. a
more extensive use of common subexpression elimination, is of
course another way to be considered.

6 Performance

The run time performance and sometimes even the effective com-
putability of a query depends heavily on the number and size of
the intermediate relations computed during fixpoint iteration.
The propagation of selection does not affect the structure of the
program but reduces the size of intermediate results generated
during the iterative evaluation of recursive predicates. The Ma-
gic Sets transformation, on the other hand, is often the source
of complex mutually recursive predicate definitions. Selection
propagation, if applicable, mostly outperforms the Magic Sets
Transformation. The LOLA compiler is abIe to handle arbitrary
recursion. For the sake of run time efficiency, however, it has
always been a good strategy to apply selection optimization as
extensively as possible and to apply the Magic Set transformation
subsequently, if necessary at all.
The performance data listed in Table 1 have been measured on
a SUN 4 workstation with 16 Megabytes main memory. The un-
derlying LOLA program is shown in Figure 1. Different from
the declaration specified there the timetable relation has been
stored in main memory as a R-LISP relation. Time figures for
LOLA compiling include optimization time. The first and third
query permit selection propagation on the first attribute whe-
reas the second does not. Note, that the efficiency gain obtained
through the Magic Set transformation is rather low for the bin-
ding pattern ($f , $b). This is due to the cyclic base data be-
cause every airport is contained in the magic relations and thus
the size of intermediate relations is actually not reduced whe-
reas selection propagation provides for a drastic reduction of the

223

starting tuple set.

7 Applications

The LOLA system serves as a tool for several application pro-
jects in an industrial environment as well as in academic research
projects.

In the CSKB (Common Source Knowledge Base) project
a structuring instrument for the product support of au-
tomobile manufacturers is developed. An object oriented
approach is used in order to represent the structural kno-
wledge whereas integrity constraints will be represented as
a logic program. CSKB is a joint project of the Bava-
rian Research Center for Knowledge Based Systems and
the ESG/FEG company as an industrial partner.

The overall goal of the Knowledge Base Consistency pro-
ject of the Bavarian Research Center for Knowledge Based
Systems is to enhance deductive database systems by a rea-
soning maintenance component. To this end integrity con-
straints are included in the rules of a deductive database
system and can be used to guide an intelligent backtracking
mechanism.

The LOLA project itself makes intensive use of the LOLA
system as a tool. In particular, a compiler version suitable
for bootstrapping is developed.

AMOS, a large scale system for the morpho-syntactical ana-
lysis of Old Hebrew text (251, is intensively used by linguist
at the University of Munich.

A system able to give advice in the area of automobile
diagnosis based on au abstraction mechanism is developed.

l The prototype of a travel assistant fully written in LOLA
has been implemented. The system serves as a midsize
example for LOLA applications

8 Conclusion

The LOLA language and an overview of the LOLA system, a
prototype of a deductive database system have been presented.
The LOLA system is fully implemented and running. Main fea-
tures are

declarative semantics

set-oriented bottom-up query evaluation

type declarations

direct and easy access to external DBMS

link to the host language by built-in predicates

modular architecture

l flexible query optimization

Future work will essentially concentrate on relations containing
nonground terms, language extensions allowing user controllable
sideways information passing, a strategy module for automati-
cally controlling the type and order of possible optimizations, a
debugger which is critical for medium and large scale applications
and, of course, additional optimization modules.

Acknowledgement

Prof. Rudolf Bayer and Prof. Ulrich Giintzer started the LOLA
project and have always supported the research presented in this
paper. The authors wish to thank Elli Prochaska and Anne Ei-
nenkel for technical and organizational support and ah the many
students for contributing to the project by their theses.

References

PI

PI

[31

141

151

PI

171

PI

191

DOI

WI

WI

Allegro COMMON LISP User Guide, Manual, F’ranz Inc., Berkeley,
California, 1988

Apt K.R., Blair H.A. and Walker A.: Towclrds a Theory of Decla-
rative Knowledge, in: Foundations of Deductive Databases and
Logic Programming, Minker J. (ed.), Morgan Kaufmann, Los Al-
tos, 1987

Argenton H.: iU4gic Set Transformation und Negation, Diploma
Thesis, Technische Universitat Miinchen, Munich, 1990

Baibin I., Ramamohanarao K.: A Diflerential Approach lo Query
Optimisation in Recursive Databases, Technical Report 8617, De-
partment of Computer Science, University of Melbourne, 1986

Balbin I., Port G.S., Ramamohanarao K.: M4gic Set Computa-
tion for Stratified Databases, University of Melbourne, Dep. of
Computer Science, Technical Report 87/3, ParkvilIe, Australia,
1987

Bancilhon I?., Ramakrishnan R.: An Amateur’s Introduction to
Recursive Query Processing Strategies, Proc. ACM SIGMOD,
1986

Bancilhon F. et al.: Magic Sets and Other Strange Ways to Im-
plement Logic Programs, Proc. ACM SIGMOD-SIGACT Symp.
on Principles of Database Systems, 1986

Bayer R.: Query Evaluation and Recursion in Deductive Database
Systems, TUM-18503, Technische Universitat Miinchen, Internal
Report, Munich, 1985

Beeri C. et. al.: Sets and Negation in a Logic Database Language
(LDLl), Proc. ACM PODS 1987, ACM, 1987, pp. 21-37

Beeri C:, Ramakrishnan R.: On the Power of Magic, Proc. ACM
STGMOD-SIGACT Symp. on Principles of Database Systems,
1987

Freitag B.: Bottom-Up Evaluation of Logic Queries, Technische
Universit%it Miinchen, Internal Report, Munich, 1989

Freitag B., Specht G.: A Parsing System based on a Deductive Da-
tabase, Proc. German Workshop on Artificial Intelligence GWAI
‘89, Springer, 1989

224

1131

P41

1151

WI

1171

1181

PI

P-4

PI

PI

1231

(241

P-51

PI

P71

P81

PI

Giintzer U., Kiessling W, Bayer R.: On the Euabalion of Re-
cursion in (Deductive) Database Systems by Eficient Differential
F&point Iteration, Proc. 3rd International Conference on Data
Engineering, Los Angeles, 1987

Hager J.: Optimierung 2ron Selektion und Ezistenzquantifika-
tion in Logikprogrammen, Diploma Thesis, Technische Universitit
Miinchen, Munich, 1990

Huber Th.: Typ-oberptifung fiir die Logikspmche LOLA, Di-
ploma Thesis, Technische Universitit Miinchen, Munich, 1990

Kempe H., Lenz Th.: Eine Programmierschnittstelle fir Trans-

Base in Allegro COMMON LISP, in german, Technische Universitst
Miinchen, Internal Report, Munich, 1989

Lloyd J.W.: Foundations of Logic Programming, Springer, 1987

Moser M.: Eine relationale Algebra mit Unifikalionsoperatoren,
Diploma Thesis, Technische Universitit Miinchen, Munich, 1990

Mycroft A., O’Keefe R.A.: A Polymorphic Type System for Pro-
log, Artificial Intelligence 23, 1984, pp. 295-307

Przymusinski T.C.: On the declarative semantics of deductive
databases and logic programs, in: Minker J.,Ed.: Foundations
of deductive databases and logic programming, Morgan Kauf-
manq1988, pp. 193-217

Ramakrishnan R., Beeri C., Krishnamurthy R.: Optimizing Exi-

stential Datalog Queries, Proc. ACM PODS, ACM, 1988

Schiitz H.: R-Lisp - Eine enueiterte relationale Algebl-a in Lisp,
in german, Technische Universit;it Miinchen, TUM-19049, Munich
1990

Schiitz H.: Ein Typkonzept fir eine Homkiausel-Sprache, in ger-
man, Technische Universitit Miinchen, Internal Report, Munich,
1989

Specht G.: Die Logikspmche LOLA und ihre inlente Dars2ellung
durch Relationen, in german, Technische Universitst Miinchen,
TUM-18910, Munich, 1989

Specht G.: Wissensbasierte Analyse althebriischer Morphosyntaz;
Das Ezpertensystem AMOS EOS-Verlag, 1990

Takashi C.: Design Overview of the NAIL! System, E. Shapiro
(Ed.), Third International Conference on Logic Programming,
London, Juli 1986, Springer Verlag, 1986, pp. 554-569

BansBase Relational Database System, System Guide, Version
3.3, Manual, TransAction Software GmbH, Munich, 1989

TmnsBase Relational Database System, PTogmmming Interface
TBX, Version 3.3, Manual, TransAction Software GmbH, Mu-
nich, 1989

Ullman J.D.: Principles of Database and Knowledge-Base Sy-
stems, Volume II: The New Technologies, Computer Science Press,
Rockville, 1989

Appendix: LOLA syntax definition

<Unit> : :=
1

<LOLA-program> ::=
<LOLA-query> : : =
<program-id> : :=
<query-id> : : =
<program> : :=
cquery> : :=

<declaration> ::=
I
I

I
<type-list> : :=

I
<type> : :’

I

Spredicats(<predicate>, <type-list>).
tfunction<<function>, <type-list>, <type>).
$built_in(cpredicate>, <type-list>.

<binding-request>).
$relation(<psedicate>, <type-list>, <db-name>).
$dstabase(<db-name>, <db-type,).
n
Ewpe> f. ctype>3*1
<type-variable>
<type-constructor>
<type-constructor>(<type-list>)

<type-variable> : = <variable>
<type-constructor> ::= <functor>
<binding-request> ::= 0

I [<binding> I, <binding>381
<binding3 ::= ftf I tb3
<db-name> ::= <iunctor>
cdb-type> : := Itmain I ttransbase3

<LOLA-program>
<LOLA-query>
<program-id> <program>
<query-id> <quary> <program>
tprogram(cprogram-nam>).
tquery(<query-name>).
<<decleration> I trule>3*
:- <goal>.

+.xle> : :=

<head>
<body>
<goal>

<subgoal>

: :=
: :=
: :’

I
: :=

I

GGxml> ::=

<tem> : :=

I
<list> : :x

<program-name> ::=
<query-name> : : =
<predicate> : :=
<function> : : =
<f lmct.or> ::=

I
<variable> : : =
<number> : :=
<string> ; ;=
<quoted-sequ> ::=
<allowed-char> ::=

I

<separation> : : =
<separator> : : =
ccamment> : :=

I

<keywords > : :=

<head> :- <body>.
<head>.
catom>
<goal>
<subgoal>
<subgoal>, <goal>
<atom>
ctem> = <term>
tnot (<goal>)
$exists(<variable>, <goal>)
<predicate>
<predicate>(<term> I, <tem>3*)

<variable>
<llumber>
~functOr>
<iunctor>(<term> c, <term>3*)
<list>

~tcmo {, <tem>3*1
[<term> I, <ten03* ‘1’ <term>1
<string>

<functor>
<functor>
<functor>
tfulctor>
Ia- h-z I A-Z I O-9 I t I ! I -3*
<quoted-sequ>
C A-Z I -3 b-z I A-Z I O-9 I t I ! I -3*
c+ I -3 io-93+
“<allowed-char>+”
‘<allowed-char>*’
<ASCII-Char.between ! and - except \, ” >
\f<q’ character>3

{ <separator> 3*
<TAB> I <BLANK> I <CR> I <comment.>
I* C <any character except ‘*I’> 3* l /
r. C <any character except <CR> 3* CCR>

CSprogrm, Squery, 8predicate. *function,
(built-in. trelatian, Sdatabase, *main,
Stransbase. St, Sb. Snot, texiats3

225

