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Abstract. This is an overvic~w of McgaLog - a platform on which 
nezt generation Knowledge/Dala Base Management Systems could be 
built. To achieve this purpose, th.e requirements of object oriented and 
of deductive K/DBMSs were considered in the design of MegaLog, and 
feaiures to support them efliciexllu were built into it. This is indeed an 
assertion that there is no contradiction in the fundamental principles 
on which ihese two types of Ii/DBMS rest. On the contrary, there are 
many important elements in. common, alrd those principles that are nol 
common arc at the very least complcmenlary lo each other. 

The original contributions in the destgn and implementation of Mega- 
Log are threefold: the commott platform approach discussed above, the 
techniques that make possible the persistence of programs and data for 
shared and concurrent usage ou a large scale, and finally but not least 
important - the use, scale and scope to wlriclr conventional lechniques in 
the fields of logic programming and of data bases have been applied. 

1 Introduction 

For a number of years now, research in the field of knowledge/data 
bases has focused on making the technology of modern programming 
languages available to knowledge/data base users. Research work on 
object oriented data bases has mainly concentrated on bringing high 
level concepts found in languages such as SmallTalk and C++ into the 
next generation of data base systems [34, 20, 271. Rowever this has not 
been an exclusive aim of the object oriented research community, but 
also of many other researchers. In a broader sense, one finds this trend 
in the research efforts of the knowledge/data base community at large. 
Newly developed systems, or syslems still in the process of design clearly 
show this tendency. Systems derived from relational technology such as 
Starburst [18] and POSTGRES [29] are exa.mples. The ultimate aim of 
this effort in our opinion is to totally eliminate the distinction in the 
treatment given to data and programs. 

In the last few years, researchers iu the field of persistent program- 
ming languages have sought to eliminate the language ‘impedance mis- 
match’ caused by the different. treatment given to data and programs, 
by making the programming language persist [l]. Although significant 
progress has been made in this direction, the levels of performance of 
the experimental systems built so far, among other factors, rule them 
out for practical applications which require a scaling factor beyond the 
boundaries of current main memory technology. 
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At least in theoretical terms, logic programming provides an ideal ba- 
sis to develop a persistent programming environment which in addition 
can support the high level concepts found in object oriented systems. 
At a simple level Zaniolo [35] h as shown how this can be done. In 
particular, Horn clauses seen as a uniform representation for data and 
procedures allow for the manipulation of structurally highly complex 
terms (whether they are used as data or procedures is irrelevant). More- 
over, logic programming provides one extra feature which is important 
by itself - deduction. 

In general, deduction and object orientation are complementary to 
each other and their coming together in a common knowledge/data base 
platform is highly desirable. However, t,he issue of performance remains 
a fundamental one. 

In MegaLog our objective has been to construct an efficient platform 
to provide support for navigalional and set evaluation strategies simul- 
taneously over highly complex data and/or procedures. In addition, we 
have sought to provide mechanisms wilh which to efficiently support the 
high level concepts found in object oriented and deductive systems. In 

our view, the fullfilment of these requirements not only makes possi- 
ble the successful development of object oriented and/or deductive data 
base systems as the next technology in data base systems, but also allows 
the co-existence and sharing of data and programs amongst K/DBMSs 
based npon different data models. It also provides support for the em- 
ulation of applications developed for the older generation of relational 
and navigational data base systems. 

The results obtained with the development of MegaLog rest on re- 
search work on a number of experimental systems that preceded it. In 
Educe [12, 10, 11, 91 we studied the problems of coupling and integrat- 
ing logic programming systems with a relational DBMS. We showed the 
relevance of the technologies to t.he problem at hand. However, we also 
showed the inadequacies of coupling or integrations of existing systems 
- in particular, the inability of the DBMS to manage rules efficiently in 
persistent store. In Educe, we experimented with keeping rules in source 
form in the relational engine. In the ICB-Prolog compiler [4, 5, 61 we 
designed and built the basic inference machinery to operate over data 
intensive applications for a Prolog system. In Educe* [13, 141 we ex- 
panded the functionality of KB-Prolog with a basic relational sub-system 
which was syntactically and semanlically integrated with the inference 
engine. MegaLog and its programming language represent the latest 
stage of development of this work. 

This paper introduces the subject with a presentation of the techno- 
logical background of MegaLog. It continues with the genera1 principles 
of design and an overview of the implementation. Then, it presents and 
discusses the techniques of incremental compilation of Horn clauses in 
the context of persistence and the mechanisms used to execute them. 
Conclusions are presented based on performance figures obtained from 
benchmarks and applications. 

2 The background of MegaLog 

Logic programming in general aud the language Prolog in particular 
have proved their worth in practice in l.he implementation of deductive 
systems and expert systems of small scale. Because of these results, it 
has often been claimed that a good way in which to build a platform for 
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the next generation of KBMSs could be to use Prolog as a front-end to 
a relational DBMS [2G, 12, 10, 01. The mechanism suggested is either a 
coupling or an integration of a Prolog interpreter/compiler to an existing 
relational DBMS. It is our view Lhat, his is a rather poor solution, if any 
at all. The syntax and semantics of the language Prolog fall short of 
the requirements to scale up lhcl technology. Three problem areas have 
already been recognized: 

1. Performance and reliability. 111 l.he context of persistence, major 
deficiencies in performance are soon noticed by users of these hy- 
brid systems. A particular aspect of this which has perhaps not 
until now been clearly isolated is the way in which the performance 
of these systems degrades to the point of collapse after a relatively 
short period of operation. This is caused by the inability of the 
component systems to share basic control information. For exam- 
ple, the appearance of a cut in a Prolog program should cause a 
release of buffers, cursors and other resources by the underlying 
DBMS. 

2. Power of expression and evaluation machinery. The research work 
on so called recursive systems [2] points to yet worse situations. In 
a coupling/integration, the mismatch between the expressive power 
of the programming language and that of the evaluation machinery 
very often leads to programmers being allowed to express what the 
underlying execution machinery cannot properly evaluate. 

3. Mismatch of the run time support engines. Similarly, the two in- 
dependently developed mechanisms for run time support, i.e. the 
unification and relational engines, fail to solve practical problems 
such as the ones caused by the simultaneous use of two different 
data type systems and two different implementations of common 
types (121. 

Because of these problems and encouraged by our experience devel- 
oping Educe* [13, 141 we concluded that is was necessary to develop a 
new system from scratch, starting only from the principles of data base 
and logic programming technologies. However, to achieve the ultimate 
objective of providing the plalform ouLlined in the introduction, some 
fundamental issues beyond the ‘impedance mismatch’ problem need to 
be addressed. Among the most important of them are: deduction rules; 
complex objects handling, encapsulation and inheritance; and evaluation 
strategies. 

2.1 Rules in Persistent Store 

Although relational DBMSs are particularly successful in handling sim- 
ple factual information, their usability is at best questionable when the 
nature of the information to be handled increases in complexity. Thus 
for example, the capability to maintain rules in persistent and shareable 
store is beyond the functionality of relational DBMSs. To see the appli- 
cability of this facility, consider an airline data base. Say we want keep 
information on flights. For example, we want to state that there is a 
flight from London to Glasgow once every two hours, every working day 
of the week, between eight o’clock in the morning and eight o’clock in 
the evening. This can be expressed in MegaLog by use of a rule - the 
first clause in the deductive relation connect: 

connect( london, glasgow, Day, Depart, Arrive) :- 
work-day(Day), 
period( 8:00, 20:00, 2:00, Depart). 
add-tima( Depart, O:SO, Arrive). 

connect( glasgov, dundee, Wednesday, 11320. 12:OS). 

At this point, we depart from the vision of separating programs from 
facts (second clause) and we rely on deduclion as a generalization of the 
concept of retrieval used in data bases. This, in our new formulation 
of the airline knowledge base, avoids the need to keep one entry in the 
connecl relation for each flight between two cities. Now, only a few 
clauses in the connect relation aze sufficient to summarize all of them ‘. 

More importantly though, if the airline decides to update the howl- 
edge base, say by increasing the numbers of flights London - Glasgow 
from only work days (Monday to Friday) to-daily, that is easily done bY 
replacing the first clause above with: 
connrct( london. glasgou. Day, Depart, Arrive) :- 

day(Day), 
period( 8:O0. 20:00, 2~00. Depart), 
add-time4 Depart, 0:50. Arrive). 

2.2 Objects 

The concept of organizing/modelling knowledge around collections of ob- 
jects and their mutual relationships is the central one in object-oriented 
languages. Communication between objects is allowed only by means of 
message passing. It is this paradigm that makes the implementation of 
individual objects independent of the implementation of other objects - 
in other words, a high level of modularity is achieved. Clearly, this char- 
acteristic is highly desirable in knowledge and data base management 
systems. 

Similarly, because of its contribution to the organizing/modeling of 
knowledge, one would like to find support for class inheritance in knowl- 
edge and data base management systems. This makes possible the shar- 
ing of existing methods by newly created classes of objects. 

MegaLog inherits from Prolog very rich facilities for dynamically 
building complex structures - logic terms. These terms give to users 
of MegaLog the possibility of representing complex objects. Similarly, 
efficient implementations of particular types of encapsulation and inheri- 
tance are supported at the level of the Megatog abstract machine. Thus 
for example, at the architecture level, one abstract machine word maps 
to two words in the host machine running MegaLog. This extra support 
for tagging and classification, used in conjunction with other primitives 
provided by MegaLog, gives potential implementors of knowledge/data 
base systems a powerful mechanism for handling subtypes, inheritance 
and/or signature analysis. At a more simplistic level, it is also possi- 
ble within MegaLog to define the operators with and isa proposed by 
Zaniolo [35] to implement inheritance and encapsulation. For example, 
in MegaLog one could define the class air-route and then, the sub-class 
directair-route with inherits the methods of air-rot&: 

?- air-route( Ho) with 
C(nes( From, To, Stops) :- 

aetval-privatec No, air-route. 
a,route(From, To, Stops))), 

(route( Route) :- 
getval-private( No, air-route. 

a-routa(From. To, Stopa)), 
conc( Stops, [To], X), 
cond [FromI, X. Route) ), 

(delete :- 
erase-private-array(No, air-route/O)) 

I, 

direct-air-routa with 
[(nea(From, To) :- 

air-route(No) :neu( From, To. n>) 
1. 

?- direct-air-route(No1 isa air,route( No). 

Although the significance of the above concepts for the development 
and maintenance of knowledge/data bases is now widely accepted, the 
mechanisms provided in the current generation of object oriented data 
bases are in our view restrictive in two important aspects: only deter- 
ministic procedural methods are allowed; and intensional objects are not 
supported. 

MegaLog not only makes possible the implementation of the function- 
ality required to efficiently support the fundamental concepts of object 

%etvaLprivate/3, getvalprivate/3 and erseprivatcarray/2 are built-ins to ded 
with variables local to a procedwc, but beyond the scope of M individual clause. 
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orientation. It eliminates the above restrictions through its facilities to 
dynamically build complex data struc.tures - inherited from the language 
Prolog - and to store them persistently. 

.Also, because of MegaLog’s roots in logic programming, it goes fur- 
ther beyond the current generation of object oriented data base systems, 
by providing features that in our view are fundamental. That is: to rep- 
resent knowledge associatively; to incrementally update the schema of 
knowledge/data bases; and, to keep data and procedures together and 
treat them the same. 

2.3 Evaluation Strategies 

Lengthy discussions have been pursued in the literature about the in- 
herent superiority in performance of set evaluation over tuple at a time 
evaluation [3, 12, 7, 9, 17, 26, 28, 31, 331. In an early paper [12], we 
showed by empirical means that there is no clear cut answer to the 
above question. There are cases in which it is absolutely clear that set 
evaluation techniques should he used to obtain good performance, in 
preference to tuple at a time evaluation techniques. However, in the 
above study we also found significant cases, particularly in deductive 
and object oriented type of environments, where navigational searches 
proved the opposite to be true. Thus the next important issue is how 
to provide, at the user level, syntax that is regular, simple and uniform 
to provide both evaluation strategies within the one system. We achieve 
this in MegaLog by adopting a mechanism similar to the is/2 predicate 
of Prolog for arithmetic to introduce the concepts of relation and de- 
ductive relation. Specific examples of programs using set and tuple at a 
time evaluation are given in the next section. 

3 Persistent Logic Programming 

MegaLog, as already mentioned in the previous section, has its roots 
in logic programming. It subsumes the language Prolog in a persistent 
manner. In addition to the power of expression given by Prolog as a 
general purpose host language, a number of new language constructs and 
facilities are offered. In this section, we describe the most significative 
of these facilities. 

3.1 Base Relations 

The purpose of providing the data type base rela2ion (normally referred 
to as relation) is to give users of MegnLog the facilities and performance 
of a conventional relational syslem in a well integrated deductive context. 
A relation can be explicitly defined by use of the operator <=>. If 
for example, in our airline knowledge base, each individual flight were 
represented as a tuple in a relation, we would define such a relation by 
(notice the use of default values - Isz, Asa and Def): 

flight <=> c atom( from, 20, ‘*‘), 
atom( to, 20. I+*), 
atom( day, Asz, Def), 
integer( dep. I=, -). 
integer( arr, I=, -1 I. 

The relation could then be populaled by means of the set operator 
for insertion <++ : 

flight <++ [ ( munich, frankfurt, monday, 1000. 1200), 
( frankfurt, london, Sunday, 800, 900). 
( london, glasgov, friday, 2000, 2045). 
( glasgov. dundee, monday, 1230, 1255) 1. 

Suppose that after our rela(.ion /7isht has been populated, we wanted 
to list the departure and arrival times of a.11 the flights from London to 
Glasgow departing on a Monday between 14:OO hrs and 17:OO hrs: 

?- Flights isr t dep. arrl :^: flight 
where dep =< 1400 and dep >= 1700 and from == london 
and to == glasgov and day == monday. 

printrel( Flights). 

The variable FIighfs is instantiated to the name of the result relation 
(a temporary relation generated by lhe system). If the result were to 
be kept for further work later on, perhaps in a different session, then 
a permanent relation should be created by using an atom as a name, 
instead of the variable Fliglrls. In the formulation of the query, the use 
of the projection operator : - : should also he noticed. 

The relational algebra in MegaLog is regular and orthogonal, so 
any relational expression that is allowed on the right hand side of the 
set retrieval isr operator can likewise be used with the set operators 
for insertion c++ and deletion <--. Thus, for example, to enforce 
an integrity constraint we might want to delete any entry from our 
early-Zondon-bound relation that arrives in London after 1O:OU hrs: 

?- early-london-bound <-- [from, day, dep, arrl :*: flight 
where arr > 1000 
and to == london. 

However powerful and efficient the algebramight be in evaluating uni- 
versally quantified queries, there are still the existential queries for which 
set evaluation techniques are grossly inefficient. Suppose we wanted sim- 
ply to know if there is an air connection betweeu Glasgow and Dundee: 

/* ignore date and time */ 
?- retr-tup( flight. [ glasgov, dundee I -1). 

If we wanted to make the relation jIighf transparent to Prolog pro- 
grammers, we could define t.he procedure: 

flight( From, To, Day, Dep, Arr) :- 
retr-tup( flight, [From, To, Day, Dep, Ard). 

By using a trap mechanism in MegaLog, it is possible to make all 
or specific external relations transparent to Prolog programmers. In 
subsequent examples, we assume this facility is used where the context 
makes it clear. 

It should be pointed out that the elEciency of set evaluation of range 
queries can also be obtained in tuple at a time retrievals. For example, 
the query: Is there a flight from London to Glasgow on a Monday ar- 
riving before lo:00 hrs ? - can be eficiently formulated by passing the 
evaluation of the range condition to t.he underlying file manager system 
[23, 22, 241: 

?- retr-tup( flight., [ london, glasgou, monday, Dep. Arr], 
Arr < 1000). 

3.2 Deductive Relations 

Here we generalize the above concepts. Say we want to create the deduc- 
tive relation connecf/fi. This deductive relation is defined by declaring 
it: 

?- connect <==> c from, to, day, depart, arrive]. 

Notice the absence of data type specifications. Indeed, they are not 
required. 

To populate a deductive relation, we insert clauses in it. Say that we 
wanted to state that there is a Ilight. once to the hour, starting at 8:SO 
hrs until 81:SO hrs every day, from Fmukfurt to Munich: 
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?- insert~clause((connect~frankfurt,munich.Day.Dep.~r~ :- 
day(Day) , 
period( 8:30, i:OO, 21:30, Dep). 
Arr is-time Dep + 0:SO)). 

very long periods of time possible[4]. h addition, this garbage collection 
mechanism performs dynamic clustering of complex structures. We refer 
the reader to [4] for more details3. 

and to query it: 5 Compilation and Indexing 

/* 'A flight from Frankfurt to Munich on mondays ?’ */ 
?- connect( frankfurt, munich, monday, -, -). 

The principles of compilation used by MegaLog ace in general the same 
as in a Prolog compiler, with two big exceptions: index generation and 
the use of associative instead of physical addresses in the code generated. 

/* ‘Timetable of flights from Frankfurt to Munich’ */ Base relations ace directly stored in secondary storage and the algebra 
?- Frankfurt-munich isdr for manipulating them is interpreted. The overhead of interpretation in 

[ day, depart, arrive] :-: connect where 
from == frankfurt and to == munich. 

this context is minimal and hence there is no justification in performance 
terms to write a compiler for this sublanguage. 

4 Architecture 

Users of modern information systems - in particular, users of current 
generation DBMS’s - expect an interactive interface, and uninterrupted 
operation for very prolonged periods of time. To achieve these objec- 
tives, any system which uses compilation to achieve performance must 
rely on incremental compilation techniques and sophisticated garbage 
collection techniques. This, together with the requirements for pocta- 
bility, performance, persistency, shareability of knowledge, concurrency 
and a deductive capability, led us to design an abstract machine based 
on three major components: an in/erence engine, based on a derivative 
of the Warren Abstract Machine - WAM [25, 30, 321; a retrieval engine 
built over the file manager system BANG 123, 22,241; and, a main mem- 
ory management subsystem providing support for dynamic allocation of 
memory on demand, extensible and performing full garbage collection 
(8, 4, 14, 15, 16, 211. The diagram below shows how these three compo- 
nents which form the kernel of the MegaLog system relate to each other. 
It also shows the other functional components of MegaLog’s architecture: 

Queries and Application Programs 

, 
Tools: 

Increment,al Clause Compiler 

Concurrency and Transaction Management 

Retrieval Memory Inference 

Without entering into precise details, it should be noticed the in- 
tegrating function performed hy the memory manager. It avoids the 
replication of activities usually encountered in systems constructed by 
coupling or integrating two existing systems. The common memory man- 
ager not only makes possible t,he maintenance of good locality of cefec- 
ence, but it also eliminates the duplication of buffers. More importantly, 
by providing full garbage collection, it makes continuous operation for 

In contrast, due to the complexit,y of the terms allowed in deductive 
relations, the overhead of translation would be an unacceptable burden if 
interpretation were used. This was empirically demonstrated by our pce- 
vious work on Educe [9]. Thus the deductive relations are populated by 
compilation of individual clauses, iuccementally (although it is possible 
to process them in batches as well). 

5.1 Incremelltal Colnpilatioll of Clauses 

One of the key features of compiled Prolog programs is the relatively 
good selectivity of clauses within non-deterministic procedures. This has 
been achieved thanks to adequate indices constructed during the compi- 
lation of procedures. Unfortuoately in the case of large logic knowledge 
bases, this is not realistic giveu the time it would take to do it. In 
an environment where procedures involving thousands of clauses can be 
shared and updated many times over relatively short periods of time, it 
would be unrealistic to work out new indices for the modified procedures 
each time one or more of the clauses in them ace updated. 

In MegaLog, procedures ace dynamic and their clauses can be up- 
dated individually by concurrent processes, without causing a cecompi- 
lation of whole procedures. A self adjusting (dynamic) form of indexing 
on persistent procedures is maintained. This persistent and dynamic 
form of indexing is provided by BANG [23, 22, 241, a grid type of file 
system capable of good response time on partial matching queries. See 
sub-section 5.2 below. 

The compiler for MegaLog takes clauses which ace compiled into code 
for the abstract inference machine. This code can be directly executed. 
However, it is more often the case that code is stripped of its physical 
references replacing them by associative references. For illustrative puc- 
poses, consider an arbitrary atom. This is represented in external code 
by a hash value that might even clash with the hash value for an en- 
tirely different atom. However, all references will be made physical again 
just before execution of a clause, leaving the run time loader to resolve 
the clash. These associative references indeed act as filters on retrieving 
clauses kept in persistent store. 

5.2 Indexing 

Once a clause is compiled, its object code - free of physical addresses - is 
stored in a heap file. The pointer lo the compiled code, together with a 
symbolic representation of the arguments in the head of the clause, make 
up a descriptor for the clause. This symbolic representation is produced 
in identical fashion to the associative references, discussed above. 

The descriptors for the clauses ace maintained by the BANG file 
system. This dynamic management. of iudices makes possible the com- 
pilation of logic programs on the basis of one clause at a time, i.e. the 
incremental compilation of clauses (as opposed to full procedures). Thus 
updates are performed fast and without further consequences - as ex- 
pected in a conventional data base management system. This Doint 

3Another technical report which precisely deal with this issue is in preparation 
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should be stressed, since potential users of deductive systems might not 
be aware of the impossibility of providing this functionality in systems 
based on couplings or integrations of existing inference engines and com- 
mercial DBMS. 

6 Execution of Persistent Code 

In this section we show how the compiled code, the index on descriptors 
and the relative addresses are put together for query evaluation. We 
present in some detail the tuple and set evaluation mechanisms used 
in queries over deductive relations. From this description the query 
evaluation strategy used over ordinary relations is obvious. 

6.1 Tuple at a tillle evaluatiorr 

Tuple at a time evaluation is activated by a trap which activates the 
procedure ezec/l. This procedure is made up of three parts: setting up, 
descriptor retrieval and execution. 

In the first part, preparation for retrieval of descriptors is made. This 
work is only done once. From the user’s query the relevant procedure, its 
arity and arguments are extracted. This information is used to determine 
the name of the relation that has the clause descriptors for the procedure. 
The list of arguments is used in addition to the name and arity of the 
procedure to build a basic frame from which alternative descriptors could 
be generated. 

The second part uses the basic frame and the instantiation of the 
arguments in the query to generate alternative frames for retrieving and 
testing descriptors. These frames, one at a time, are used to search for 
clause identifiers in the relation holding the descriptors relevant to the 
query. Each clause identifier corresponds to a piece of code for a clause. 
All backtracking is implemented in t,his part. 

The execution of the code takes place in the third and last part. 
The clause identifier is used to retrieve the code from the heap file. 
A request to the heap file manager loads the code and transforms the 
associative addresses into physical ones. The code is installed at an 
address selected by the heap file manager and executed. If the execution 
fails, backtracking takes place into the second part. 

The use of associative addresses eliminates the need for garbage col- 
lection of the heap file, except for the minor task of recovering the space 
occupied by deleted clauses. This activity is almost negligible in time 
since it is triggered by the direct deletion of clauses and has no other 
consequences. In fact, memory recovery only takes place once all trans- 
actions involving the deleted clause are completed. 

The memory used by the code during its execution is allocated by the 
heap file manager. The heap manager makes use of buffers and naturally 
is constantly re-using the same memory. This reduces I/O and improves 
locality of reference. It is obviously undesirable to have an excessive I/O 
traffic between main memory and disc, in particular if the number of 
bytes to move each time are few (which is typically the case for the code 
of individual clauses). BufTering by the heap manager reduces this traffic 
to a trickle. Locality of reference is already a serious problem of main 
memory Prolog systems. In part,icular the situation is aggravated by 
jumps amongst the different pieces of code for clauses within an indexed 
procedure. In MegaLog, the heap lile mauager avoids this by re-use of 
the same piece of memory, whenever possible at loading time. 

The fact that execution is based on individual clauses, with no re- 
gard to the number of clauses making up the procedure, eliminates the 
need for garbage collection of a procedure table and/or a code heap 
in main memory. In MegaLog, the procedures kept in main memory 
(non persistent procedures) make use of a procedure table and of a main 
memory heap. Since these procedures are static, not much garbage is 
generated. However, even the garbage generated by the management of 
these procedures is collected. 

6.2 Set evaluation 

Set at a time evaluation is triggered by the execution of one of the 
operators isdr/2 or expand/2. The most common of the derivatives is 
expand/Z, used to generate the extension of a deductive relation. The 
algebra expression on the right of isdr is interpreted over the relations 
containing the descriptors. The descriptors are of a fixed size for each 
derived relation and hence particularly suited for manipulation by the 
BANG file manager. This file manager is particularly efficient in han- 
dling partial match type of queries: precisely the type of queries being 
posed by the algebra of descriptors. An abbreviated form of the algo- 
rithm to evaluate the algebra expression is as follows: 

1. Transform the expression over the deductive relations to an alge- 
bra expression over the associated base relations containing the 
descriptors. 

2. Evaluate the algebra expression over the base relations containing 
the descriptors. This generates an intermediate base relation T, 
which contains the relative addresses in the heap file of the relevant 
code. This is in fact a filtering action. 

3. From the original algebra expression, generate a new expression to 
be used for tuple at a time testing. Befer to this expression as C. 

4. For each tuple in the temporary relation T, retrieve the code P 
referred to in the tuple. 

5. If the operator is isdr then test that at least one answer can be 
generated from this code (I’). To do this execute the code P and 
the checks C, in an interpretive manner. For each tuple contribut- 
ing to the answer, generate a new clause from the original clause 
associated to the code P and the checks C used during the current 
testing. Compile this new clause and store it in a new deductive 
relation. 

6. If the operator is expand, proceed similarly to the above case but, 
instead of generating the linking clause, generate all the facts asso- 
ciated with the tuple in the intermediate relation. Compile these 
facts and store them in the new persistent relation. 

7. Finally, remove the intermediate relation T. 

By use of the strategy described, the performance of set at a time 
evaluation is almost entirely dependent on the evaluation capabilities of 
the underlying engine for the relat,ional algebra of ordinary relations. 
Execution of compiled code is delayed to the last stage where it is only 
done for verification purposes. 

7 Some Results 

Initial tests have been performed on our airline knowledge base. We have 
experimented with procedures having as many as a thousand clauses 
(rules as opposed to facts). If these clauses were flattened to the cor- 
responding facts they would generate some fifteen thousand tuples of 
complex terms, including structures. The initial tests show that response 
time for tuple at a time evaluation on clauses kept in persistent store 
appears similar to its main memory counterpart. Of course, if the same 
evaluation technique were used for universally quantified queries, then 
the equivalent would not hold. For set evaluation of derived relations 
in the case of queries involving one relation of some thousand clauses, 
the time to perform any of the algebra operations is nearly always under 
half a second. For more complex queries, such as a join over the same 
relation with a pair of selection conditions, e.g.: ‘produce the timetable 
of all ihe flights from Munich to London with one change of plane in 
between’ - the time is about one second4. 

‘Sm/3,8 Mbytes of RAM and n file server a.~ external atore. 
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Tests on more conventional type of applications have been reported in 
[14]. Strictly within the functionality of commercially available DBMSs, 
MegaLog performs similarly to them. Used in an environment where the 
required indices can be predicted beforehand, it can often outperform the 
best commercially available relational DBMSs. The more so, in the cases 
in which the shape of queries to relations cannot be predicted (precisely 
the deductive case). It also outperforms them in queries involving partial 
match retrievals where the indices used by the DBMS are not optimal to 
the problem. It emphatically beats them in the case where the queries 
refer to attributes/arguments with no indices. This last case is a very 
frequent occurrence in a deductive environment (unpredictable queries 
are the norm rather than the exception). 

8 Conclusions and further work 

We have presented here a description of the design and implementation of 
the MegaLog system. The current implementation as it stands provides 
continuous operation, persistency, dynamic updates of clauses, transac- 
tions and concurrency for managing clauses in a multi-user environment5. 
A more generic form of query evaluation is provided by use of unification 
instead of (conventional) retrieval over a persistent store. The key issue 
of performance is resolved by the use of clause compilation and a suitable 
file management acting harmoniously with the execution engine. 

The evaluation techniques for queries over a logic knowledge base 
are original and they eliminate the need for garbage collection of the 
persistent store. High levels of performance operating over the external 
store are supported at run time by the filtering done by the descriptors. 
Efficient management of the descriptors is obtained by the use of the 
BANG file system and the algebra implemented on top of it. 

Other complementary features of the MegaLog system, are: a win- 
dow debugger, graphics capabilities, monitoring tools, shared memory 
management and the transactions subsystem. 

Future work includes the development of applications to explore the 
frontiers of the technology uuder discussion. In particular, it is necessary 
to discover what is the size and complexity of knowledge systems that the 
technology can efficiently support. This work is of course not separated 
from the general question of optimization techniques for logic knowledge 
base systems. 

We are confident that our basic objectives have to a large extent 
been achieved in MegaLog. Deductive languages for data bases such as 
LDL (191 can be ported to it wit,hout serious problems. In fact, we have 
implemented the SALAD [la] application of LDL on MegaLog in a very 
short time, obtaining good performance. We have also used MegaLog in 
conventional relational applications with very good results. Regarding 
object oriented data base syslems it is still too early to report results. 
However, we know of at least two projects using MegaLog to implement 
such systems. Future work will almost certainly be centred on providing 
more and better facilities for this latter purpose. 
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