
- MegaLog -

A platform for developing

Knowledge Base Mana,gement Systems

Jorge R. Rocca
ECRC

Arabellastr. 17
D-SO00 Miinchen Sl, Germany

Abstract. This is an overvic~w of McgaLog - a platform on which
nezt generation Knowledge/Dala Base Management Systems could be
built. To achieve this purpose, th.e requirements of object oriented and
of deductive K/DBMSs were considered in the design of MegaLog, and
feaiures to support them efliciexllu were built into it. This is indeed an
assertion that there is no contradiction in the fundamental principles
on which ihese two types of Ii/DBMS rest. On the contrary, there are
many important elements in. common, alrd those principles that are nol
common arc at the very least complcmenlary lo each other.

The original contributions in the destgn and implementation of Mega-
Log are threefold: the commott platform approach discussed above, the
techniques that make possible the persistence of programs and data for
shared and concurrent usage ou a large scale, and finally but not least
important - the use, scale and scope to wlriclr conventional lechniques in
the fields of logic programming and of data bases have been applied.

1 Introduction

For a number of years now, research in the field of knowledge/data
bases has focused on making the technology of modern programming
languages available to knowledge/data base users. Research work on
object oriented data bases has mainly concentrated on bringing high
level concepts found in languages such as SmallTalk and C++ into the
next generation of data base systems [34, 20, 271. Rowever this has not
been an exclusive aim of the object oriented research community, but
also of many other researchers. In a broader sense, one finds this trend
in the research efforts of the knowledge/data base community at large.
Newly developed systems, or syslems still in the process of design clearly
show this tendency. Systems derived from relational technology such as
Starburst [18] and POSTGRES [29] are exa.mples. The ultimate aim of
this effort in our opinion is to totally eliminate the distinction in the
treatment given to data and programs.

In the last few years, researchers iu the field of persistent program-
ming languages have sought to eliminate the language ‘impedance mis-
match’ caused by the different. treatment given to data and programs,
by making the programming language persist [l]. Although significant
progress has been made in this direction, the levels of performance of
the experimental systems built so far, among other factors, rule them
out for practical applications which require a scaling factor beyond the
boundaries of current main memory technology.

DATABASE SYSTEMS FOR ADVANCED APPLICATIONS '91
Ed. A. Makinouchi
@World Scientific Publishing Co.

At least in theoretical terms, logic programming provides an ideal ba-
sis to develop a persistent programming environment which in addition
can support the high level concepts found in object oriented systems.
At a simple level Zaniolo [35] h as shown how this can be done. In
particular, Horn clauses seen as a uniform representation for data and
procedures allow for the manipulation of structurally highly complex
terms (whether they are used as data or procedures is irrelevant). More-
over, logic programming provides one extra feature which is important
by itself - deduction.

In general, deduction and object orientation are complementary to
each other and their coming together in a common knowledge/data base
platform is highly desirable. However, t,he issue of performance remains
a fundamental one.

In MegaLog our objective has been to construct an efficient platform
to provide support for navigalional and set evaluation strategies simul-
taneously over highly complex data and/or procedures. In addition, we
have sought to provide mechanisms wilh which to efficiently support the
high level concepts found in object oriented and deductive systems. In

our view, the fullfilment of these requirements not only makes possi-
ble the successful development of object oriented and/or deductive data
base systems as the next technology in data base systems, but also allows
the co-existence and sharing of data and programs amongst K/DBMSs
based npon different data models. It also provides support for the em-
ulation of applications developed for the older generation of relational
and navigational data base systems.

The results obtained with the development of MegaLog rest on re-
search work on a number of experimental systems that preceded it. In
Educe [12, 10, 11, 91 we studied the problems of coupling and integrat-
ing logic programming systems with a relational DBMS. We showed the
relevance of the technologies to t.he problem at hand. However, we also
showed the inadequacies of coupling or integrations of existing systems
- in particular, the inability of the DBMS to manage rules efficiently in
persistent store. In Educe, we experimented with keeping rules in source
form in the relational engine. In the ICB-Prolog compiler [4, 5, 61 we
designed and built the basic inference machinery to operate over data
intensive applications for a Prolog system. In Educe* [13, 141 we ex-
panded the functionality of KB-Prolog with a basic relational sub-system
which was syntactically and semanlically integrated with the inference
engine. MegaLog and its programming language represent the latest
stage of development of this work.

This paper introduces the subject with a presentation of the techno-
logical background of MegaLog. It continues with the genera1 principles
of design and an overview of the implementation. Then, it presents and
discusses the techniques of incremental compilation of Horn clauses in
the context of persistence and the mechanisms used to execute them.
Conclusions are presented based on performance figures obtained from
benchmarks and applications.

2 The background of MegaLog

Logic programming in general aud the language Prolog in particular
have proved their worth in practice in l.he implementation of deductive
systems and expert systems of small scale. Because of these results, it
has often been claimed that a good way in which to build a platform for

374

the next generation of KBMSs could be to use Prolog as a front-end to
a relational DBMS [2G, 12, 10, 01. The mechanism suggested is either a
coupling or an integration of a Prolog interpreter/compiler to an existing
relational DBMS. It is our view Lhat, his is a rather poor solution, if any
at all. The syntax and semantics of the language Prolog fall short of
the requirements to scale up lhcl technology. Three problem areas have
already been recognized:

1. Performance and reliability. 111 l.he context of persistence, major
deficiencies in performance are soon noticed by users of these hy-
brid systems. A particular aspect of this which has perhaps not
until now been clearly isolated is the way in which the performance
of these systems degrades to the point of collapse after a relatively
short period of operation. This is caused by the inability of the
component systems to share basic control information. For exam-
ple, the appearance of a cut in a Prolog program should cause a
release of buffers, cursors and other resources by the underlying
DBMS.

2. Power of expression and evaluation machinery. The research work
on so called recursive systems [2] points to yet worse situations. In
a coupling/integration, the mismatch between the expressive power
of the programming language and that of the evaluation machinery
very often leads to programmers being allowed to express what the
underlying execution machinery cannot properly evaluate.

3. Mismatch of the run time support engines. Similarly, the two in-
dependently developed mechanisms for run time support, i.e. the
unification and relational engines, fail to solve practical problems
such as the ones caused by the simultaneous use of two different
data type systems and two different implementations of common
types (121.

Because of these problems and encouraged by our experience devel-
oping Educe* [13, 141 we concluded that is was necessary to develop a
new system from scratch, starting only from the principles of data base
and logic programming technologies. However, to achieve the ultimate
objective of providing the plalform ouLlined in the introduction, some
fundamental issues beyond the ‘impedance mismatch’ problem need to
be addressed. Among the most important of them are: deduction rules;
complex objects handling, encapsulation and inheritance; and evaluation
strategies.

2.1 Rules in Persistent Store

Although relational DBMSs are particularly successful in handling sim-
ple factual information, their usability is at best questionable when the
nature of the information to be handled increases in complexity. Thus
for example, the capability to maintain rules in persistent and shareable
store is beyond the functionality of relational DBMSs. To see the appli-
cability of this facility, consider an airline data base. Say we want keep
information on flights. For example, we want to state that there is a
flight from London to Glasgow once every two hours, every working day
of the week, between eight o’clock in the morning and eight o’clock in
the evening. This can be expressed in MegaLog by use of a rule - the
first clause in the deductive relation connect:

connect(london, glasgow, Day, Depart, Arrive) :-
work-day(Day),
period(8:00, 20:00, 2:00, Depart).
add-tima(Depart, O:SO, Arrive).

connect(glasgov, dundee, Wednesday, 11320. 12:OS).

At this point, we depart from the vision of separating programs from
facts (second clause) and we rely on deduclion as a generalization of the
concept of retrieval used in data bases. This, in our new formulation
of the airline knowledge base, avoids the need to keep one entry in the
connecl relation for each flight between two cities. Now, only a few
clauses in the connect relation aze sufficient to summarize all of them ‘.

More importantly though, if the airline decides to update the howl-
edge base, say by increasing the numbers of flights London - Glasgow
from only work days (Monday to Friday) to-daily, that is easily done bY
replacing the first clause above with:
connrct(london. glasgou. Day, Depart, Arrive) :-

day(Day),
period(8:O0. 20:00, 2~00. Depart),
add-time4 Depart, 0:50. Arrive).

2.2 Objects

The concept of organizing/modelling knowledge around collections of ob-
jects and their mutual relationships is the central one in object-oriented
languages. Communication between objects is allowed only by means of
message passing. It is this paradigm that makes the implementation of
individual objects independent of the implementation of other objects -
in other words, a high level of modularity is achieved. Clearly, this char-
acteristic is highly desirable in knowledge and data base management
systems.

Similarly, because of its contribution to the organizing/modeling of
knowledge, one would like to find support for class inheritance in knowl-
edge and data base management systems. This makes possible the shar-
ing of existing methods by newly created classes of objects.

MegaLog inherits from Prolog very rich facilities for dynamically
building complex structures - logic terms. These terms give to users
of MegaLog the possibility of representing complex objects. Similarly,
efficient implementations of particular types of encapsulation and inheri-
tance are supported at the level of the Megatog abstract machine. Thus
for example, at the architecture level, one abstract machine word maps
to two words in the host machine running MegaLog. This extra support
for tagging and classification, used in conjunction with other primitives
provided by MegaLog, gives potential implementors of knowledge/data
base systems a powerful mechanism for handling subtypes, inheritance
and/or signature analysis. At a more simplistic level, it is also possi-
ble within MegaLog to define the operators with and isa proposed by
Zaniolo [35] to implement inheritance and encapsulation. For example,
in MegaLog one could define the class air-route and then, the sub-class
directair-route with inherits the methods of air-rot&:

?- air-route(Ho) with
C(nes(From, To, Stops) :-

aetval-privatec No, air-route.
a,route(From, To, Stops))),

(route(Route) :-
getval-private(No, air-route.

a-routa(From. To, Stopa)),
conc(Stops, [To], X),
cond [FromI, X. Route)),

(delete :-
erase-private-array(No, air-route/O))

I,

direct-air-routa with
[(nea(From, To) :-

air-route(No) :neu(From, To. n>)
1.

?- direct-air-route(No1 isa air,route(No).

Although the significance of the above concepts for the development
and maintenance of knowledge/data bases is now widely accepted, the
mechanisms provided in the current generation of object oriented data
bases are in our view restrictive in two important aspects: only deter-
ministic procedural methods are allowed; and intensional objects are not
supported.

MegaLog not only makes possible the implementation of the function-
ality required to efficiently support the fundamental concepts of object

%etvaLprivate/3, getvalprivate/3 and erseprivatcarray/2 are built-ins to ded
with variables local to a procedwc, but beyond the scope of M individual clause.

375

-

orientation. It eliminates the above restrictions through its facilities to
dynamically build complex data struc.tures - inherited from the language
Prolog - and to store them persistently.

.Also, because of MegaLog’s roots in logic programming, it goes fur-
ther beyond the current generation of object oriented data base systems,
by providing features that in our view are fundamental. That is: to rep-
resent knowledge associatively; to incrementally update the schema of
knowledge/data bases; and, to keep data and procedures together and
treat them the same.

2.3 Evaluation Strategies

Lengthy discussions have been pursued in the literature about the in-
herent superiority in performance of set evaluation over tuple at a time
evaluation [3, 12, 7, 9, 17, 26, 28, 31, 331. In an early paper [12], we
showed by empirical means that there is no clear cut answer to the
above question. There are cases in which it is absolutely clear that set
evaluation techniques should he used to obtain good performance, in
preference to tuple at a time evaluation techniques. However, in the
above study we also found significant cases, particularly in deductive
and object oriented type of environments, where navigational searches
proved the opposite to be true. Thus the next important issue is how
to provide, at the user level, syntax that is regular, simple and uniform
to provide both evaluation strategies within the one system. We achieve
this in MegaLog by adopting a mechanism similar to the is/2 predicate
of Prolog for arithmetic to introduce the concepts of relation and de-
ductive relation. Specific examples of programs using set and tuple at a
time evaluation are given in the next section.

3 Persistent Logic Programming

MegaLog, as already mentioned in the previous section, has its roots
in logic programming. It subsumes the language Prolog in a persistent
manner. In addition to the power of expression given by Prolog as a
general purpose host language, a number of new language constructs and
facilities are offered. In this section, we describe the most significative
of these facilities.

3.1 Base Relations

The purpose of providing the data type base rela2ion (normally referred
to as relation) is to give users of MegnLog the facilities and performance
of a conventional relational syslem in a well integrated deductive context.
A relation can be explicitly defined by use of the operator <=>. If
for example, in our airline knowledge base, each individual flight were
represented as a tuple in a relation, we would define such a relation by
(notice the use of default values - Isz, Asa and Def):

flight <=> c atom(from, 20, ‘*‘),
atom(to, 20. I+*),
atom(day, Asz, Def),
integer(dep. I=, -).
integer(arr, I=, -1 I.

The relation could then be populaled by means of the set operator
for insertion <++ :

flight <++ [(munich, frankfurt, monday, 1000. 1200),
(frankfurt, london, Sunday, 800, 900).
(london, glasgov, friday, 2000, 2045).
(glasgov. dundee, monday, 1230, 1255) 1.

Suppose that after our rela(.ion /7isht has been populated, we wanted
to list the departure and arrival times of a.11 the flights from London to
Glasgow departing on a Monday between 14:OO hrs and 17:OO hrs:

?- Flights isr t dep. arrl :^: flight
where dep =< 1400 and dep >= 1700 and from == london
and to == glasgov and day == monday.

printrel(Flights).

The variable FIighfs is instantiated to the name of the result relation
(a temporary relation generated by lhe system). If the result were to
be kept for further work later on, perhaps in a different session, then
a permanent relation should be created by using an atom as a name,
instead of the variable Fliglrls. In the formulation of the query, the use
of the projection operator : - : should also he noticed.

The relational algebra in MegaLog is regular and orthogonal, so
any relational expression that is allowed on the right hand side of the
set retrieval isr operator can likewise be used with the set operators
for insertion c++ and deletion <--. Thus, for example, to enforce
an integrity constraint we might want to delete any entry from our
early-Zondon-bound relation that arrives in London after 1O:OU hrs:

?- early-london-bound <-- [from, day, dep, arrl :*: flight
where arr > 1000
and to == london.

However powerful and efficient the algebramight be in evaluating uni-
versally quantified queries, there are still the existential queries for which
set evaluation techniques are grossly inefficient. Suppose we wanted sim-
ply to know if there is an air connection betweeu Glasgow and Dundee:

/* ignore date and time */
?- retr-tup(flight. [glasgov, dundee I -1).

If we wanted to make the relation jIighf transparent to Prolog pro-
grammers, we could define t.he procedure:

flight(From, To, Day, Dep, Arr) :-
retr-tup(flight, [From, To, Day, Dep, Ard).

By using a trap mechanism in MegaLog, it is possible to make all
or specific external relations transparent to Prolog programmers. In
subsequent examples, we assume this facility is used where the context
makes it clear.

It should be pointed out that the elEciency of set evaluation of range
queries can also be obtained in tuple at a time retrievals. For example,
the query: Is there a flight from London to Glasgow on a Monday ar-
riving before lo:00 hrs ? - can be eficiently formulated by passing the
evaluation of the range condition to t.he underlying file manager system
[23, 22, 241:

?- retr-tup(flight., [london, glasgou, monday, Dep. Arr],
Arr < 1000).

3.2 Deductive Relations

Here we generalize the above concepts. Say we want to create the deduc-
tive relation connecf/fi. This deductive relation is defined by declaring
it:

?- connect <==> c from, to, day, depart, arrive].

Notice the absence of data type specifications. Indeed, they are not
required.

To populate a deductive relation, we insert clauses in it. Say that we
wanted to state that there is a Ilight. once to the hour, starting at 8:SO
hrs until 81:SO hrs every day, from Fmukfurt to Munich:

376

?- insert~clause((connect~frankfurt,munich.Day.Dep.~r~ :-
day(Day) ,
period(8:30, i:OO, 21:30, Dep).
Arr is-time Dep + 0:SO)).

very long periods of time possible[4]. h addition, this garbage collection
mechanism performs dynamic clustering of complex structures. We refer
the reader to [4] for more details3.

and to query it: 5 Compilation and Indexing

/* 'A flight from Frankfurt to Munich on mondays ?’ */
?- connect(frankfurt, munich, monday, -, -).

The principles of compilation used by MegaLog ace in general the same
as in a Prolog compiler, with two big exceptions: index generation and
the use of associative instead of physical addresses in the code generated.

/* ‘Timetable of flights from Frankfurt to Munich’ */ Base relations ace directly stored in secondary storage and the algebra
?- Frankfurt-munich isdr for manipulating them is interpreted. The overhead of interpretation in

[day, depart, arrive] :-: connect where
from == frankfurt and to == munich.

this context is minimal and hence there is no justification in performance
terms to write a compiler for this sublanguage.

4 Architecture

Users of modern information systems - in particular, users of current
generation DBMS’s - expect an interactive interface, and uninterrupted
operation for very prolonged periods of time. To achieve these objec-
tives, any system which uses compilation to achieve performance must
rely on incremental compilation techniques and sophisticated garbage
collection techniques. This, together with the requirements for pocta-
bility, performance, persistency, shareability of knowledge, concurrency
and a deductive capability, led us to design an abstract machine based
on three major components: an in/erence engine, based on a derivative
of the Warren Abstract Machine - WAM [25, 30, 321; a retrieval engine
built over the file manager system BANG 123, 22,241; and, a main mem-
ory management subsystem providing support for dynamic allocation of
memory on demand, extensible and performing full garbage collection
(8, 4, 14, 15, 16, 211. The diagram below shows how these three compo-
nents which form the kernel of the MegaLog system relate to each other.
It also shows the other functional components of MegaLog’s architecture:

Queries and Application Programs

,
Tools:

Increment,al Clause Compiler

Concurrency and Transaction Management

Retrieval Memory Inference

Without entering into precise details, it should be noticed the in-
tegrating function performed hy the memory manager. It avoids the
replication of activities usually encountered in systems constructed by
coupling or integrating two existing systems. The common memory man-
ager not only makes possible t,he maintenance of good locality of cefec-
ence, but it also eliminates the duplication of buffers. More importantly,
by providing full garbage collection, it makes continuous operation for

In contrast, due to the complexit,y of the terms allowed in deductive
relations, the overhead of translation would be an unacceptable burden if
interpretation were used. This was empirically demonstrated by our pce-
vious work on Educe [9]. Thus the deductive relations are populated by
compilation of individual clauses, iuccementally (although it is possible
to process them in batches as well).

5.1 Incremelltal Colnpilatioll of Clauses

One of the key features of compiled Prolog programs is the relatively
good selectivity of clauses within non-deterministic procedures. This has
been achieved thanks to adequate indices constructed during the compi-
lation of procedures. Unfortuoately in the case of large logic knowledge
bases, this is not realistic giveu the time it would take to do it. In
an environment where procedures involving thousands of clauses can be
shared and updated many times over relatively short periods of time, it
would be unrealistic to work out new indices for the modified procedures
each time one or more of the clauses in them ace updated.

In MegaLog, procedures ace dynamic and their clauses can be up-
dated individually by concurrent processes, without causing a cecompi-
lation of whole procedures. A self adjusting (dynamic) form of indexing
on persistent procedures is maintained. This persistent and dynamic
form of indexing is provided by BANG [23, 22, 241, a grid type of file
system capable of good response time on partial matching queries. See
sub-section 5.2 below.

The compiler for MegaLog takes clauses which ace compiled into code
for the abstract inference machine. This code can be directly executed.
However, it is more often the case that code is stripped of its physical
references replacing them by associative references. For illustrative puc-
poses, consider an arbitrary atom. This is represented in external code
by a hash value that might even clash with the hash value for an en-
tirely different atom. However, all references will be made physical again
just before execution of a clause, leaving the run time loader to resolve
the clash. These associative references indeed act as filters on retrieving
clauses kept in persistent store.

5.2 Indexing

Once a clause is compiled, its object code - free of physical addresses - is
stored in a heap file. The pointer lo the compiled code, together with a
symbolic representation of the arguments in the head of the clause, make
up a descriptor for the clause. This symbolic representation is produced
in identical fashion to the associative references, discussed above.

The descriptors for the clauses ace maintained by the BANG file
system. This dynamic management. of iudices makes possible the com-
pilation of logic programs on the basis of one clause at a time, i.e. the
incremental compilation of clauses (as opposed to full procedures). Thus
updates are performed fast and without further consequences - as ex-
pected in a conventional data base management system. This Doint

3Another technical report which precisely deal with this issue is in preparation

377

should be stressed, since potential users of deductive systems might not
be aware of the impossibility of providing this functionality in systems
based on couplings or integrations of existing inference engines and com-
mercial DBMS.

6 Execution of Persistent Code

In this section we show how the compiled code, the index on descriptors
and the relative addresses are put together for query evaluation. We
present in some detail the tuple and set evaluation mechanisms used
in queries over deductive relations. From this description the query
evaluation strategy used over ordinary relations is obvious.

6.1 Tuple at a tillle evaluatiorr

Tuple at a time evaluation is activated by a trap which activates the
procedure ezec/l. This procedure is made up of three parts: setting up,
descriptor retrieval and execution.

In the first part, preparation for retrieval of descriptors is made. This
work is only done once. From the user’s query the relevant procedure, its
arity and arguments are extracted. This information is used to determine
the name of the relation that has the clause descriptors for the procedure.
The list of arguments is used in addition to the name and arity of the
procedure to build a basic frame from which alternative descriptors could
be generated.

The second part uses the basic frame and the instantiation of the
arguments in the query to generate alternative frames for retrieving and
testing descriptors. These frames, one at a time, are used to search for
clause identifiers in the relation holding the descriptors relevant to the
query. Each clause identifier corresponds to a piece of code for a clause.
All backtracking is implemented in t,his part.

The execution of the code takes place in the third and last part.
The clause identifier is used to retrieve the code from the heap file.
A request to the heap file manager loads the code and transforms the
associative addresses into physical ones. The code is installed at an
address selected by the heap file manager and executed. If the execution
fails, backtracking takes place into the second part.

The use of associative addresses eliminates the need for garbage col-
lection of the heap file, except for the minor task of recovering the space
occupied by deleted clauses. This activity is almost negligible in time
since it is triggered by the direct deletion of clauses and has no other
consequences. In fact, memory recovery only takes place once all trans-
actions involving the deleted clause are completed.

The memory used by the code during its execution is allocated by the
heap file manager. The heap manager makes use of buffers and naturally
is constantly re-using the same memory. This reduces I/O and improves
locality of reference. It is obviously undesirable to have an excessive I/O
traffic between main memory and disc, in particular if the number of
bytes to move each time are few (which is typically the case for the code
of individual clauses). BufTering by the heap manager reduces this traffic
to a trickle. Locality of reference is already a serious problem of main
memory Prolog systems. In part,icular the situation is aggravated by
jumps amongst the different pieces of code for clauses within an indexed
procedure. In MegaLog, the heap lile mauager avoids this by re-use of
the same piece of memory, whenever possible at loading time.

The fact that execution is based on individual clauses, with no re-
gard to the number of clauses making up the procedure, eliminates the
need for garbage collection of a procedure table and/or a code heap
in main memory. In MegaLog, the procedures kept in main memory
(non persistent procedures) make use of a procedure table and of a main
memory heap. Since these procedures are static, not much garbage is
generated. However, even the garbage generated by the management of
these procedures is collected.

6.2 Set evaluation

Set at a time evaluation is triggered by the execution of one of the
operators isdr/2 or expand/2. The most common of the derivatives is
expand/Z, used to generate the extension of a deductive relation. The
algebra expression on the right of isdr is interpreted over the relations
containing the descriptors. The descriptors are of a fixed size for each
derived relation and hence particularly suited for manipulation by the
BANG file manager. This file manager is particularly efficient in han-
dling partial match type of queries: precisely the type of queries being
posed by the algebra of descriptors. An abbreviated form of the algo-
rithm to evaluate the algebra expression is as follows:

1. Transform the expression over the deductive relations to an alge-
bra expression over the associated base relations containing the
descriptors.

2. Evaluate the algebra expression over the base relations containing
the descriptors. This generates an intermediate base relation T,
which contains the relative addresses in the heap file of the relevant
code. This is in fact a filtering action.

3. From the original algebra expression, generate a new expression to
be used for tuple at a time testing. Befer to this expression as C.

4. For each tuple in the temporary relation T, retrieve the code P
referred to in the tuple.

5. If the operator is isdr then test that at least one answer can be
generated from this code (I’). To do this execute the code P and
the checks C, in an interpretive manner. For each tuple contribut-
ing to the answer, generate a new clause from the original clause
associated to the code P and the checks C used during the current
testing. Compile this new clause and store it in a new deductive
relation.

6. If the operator is expand, proceed similarly to the above case but,
instead of generating the linking clause, generate all the facts asso-
ciated with the tuple in the intermediate relation. Compile these
facts and store them in the new persistent relation.

7. Finally, remove the intermediate relation T.

By use of the strategy described, the performance of set at a time
evaluation is almost entirely dependent on the evaluation capabilities of
the underlying engine for the relat,ional algebra of ordinary relations.
Execution of compiled code is delayed to the last stage where it is only
done for verification purposes.

7 Some Results

Initial tests have been performed on our airline knowledge base. We have
experimented with procedures having as many as a thousand clauses
(rules as opposed to facts). If these clauses were flattened to the cor-
responding facts they would generate some fifteen thousand tuples of
complex terms, including structures. The initial tests show that response
time for tuple at a time evaluation on clauses kept in persistent store
appears similar to its main memory counterpart. Of course, if the same
evaluation technique were used for universally quantified queries, then
the equivalent would not hold. For set evaluation of derived relations
in the case of queries involving one relation of some thousand clauses,
the time to perform any of the algebra operations is nearly always under
half a second. For more complex queries, such as a join over the same
relation with a pair of selection conditions, e.g.: ‘produce the timetable
of all ihe flights from Munich to London with one change of plane in
between’ - the time is about one second4.

‘Sm/3,8 Mbytes of RAM and n file server a.~ external atore.

378

Tests on more conventional type of applications have been reported in
[14]. Strictly within the functionality of commercially available DBMSs,
MegaLog performs similarly to them. Used in an environment where the
required indices can be predicted beforehand, it can often outperform the
best commercially available relational DBMSs. The more so, in the cases
in which the shape of queries to relations cannot be predicted (precisely
the deductive case). It also outperforms them in queries involving partial
match retrievals where the indices used by the DBMS are not optimal to
the problem. It emphatically beats them in the case where the queries
refer to attributes/arguments with no indices. This last case is a very
frequent occurrence in a deductive environment (unpredictable queries
are the norm rather than the exception).

8 Conclusions and further work

We have presented here a description of the design and implementation of
the MegaLog system. The current implementation as it stands provides
continuous operation, persistency, dynamic updates of clauses, transac-
tions and concurrency for managing clauses in a multi-user environment5.
A more generic form of query evaluation is provided by use of unification
instead of (conventional) retrieval over a persistent store. The key issue
of performance is resolved by the use of clause compilation and a suitable
file management acting harmoniously with the execution engine.

The evaluation techniques for queries over a logic knowledge base
are original and they eliminate the need for garbage collection of the
persistent store. High levels of performance operating over the external
store are supported at run time by the filtering done by the descriptors.
Efficient management of the descriptors is obtained by the use of the
BANG file system and the algebra implemented on top of it.

Other complementary features of the MegaLog system, are: a win-
dow debugger, graphics capabilities, monitoring tools, shared memory
management and the transactions subsystem.

Future work includes the development of applications to explore the
frontiers of the technology uuder discussion. In particular, it is necessary
to discover what is the size and complexity of knowledge systems that the
technology can efficiently support. This work is of course not separated
from the general question of optimization techniques for logic knowledge
base systems.

We are confident that our basic objectives have to a large extent
been achieved in MegaLog. Deductive languages for data bases such as
LDL (191 can be ported to it wit,hout serious problems. In fact, we have
implemented the SALAD [la] application of LDL on MegaLog in a very
short time, obtaining good performance. We have also used MegaLog in
conventional relational applications with very good results. Regarding
object oriented data base syslems it is still too early to report results.
However, we know of at least two projects using MegaLog to implement
such systems. Future work will almost certainly be centred on providing
more and better facilities for this latter purpose.

Acknowledgements. Members of the MegaLog team - past and present,
have spent several years in transforming t,he concepts presented here into
reality. Particularly significant contribulions to the implementation of
the system were made by Michael Dahmen, Philip Pearson, Geoffrey
Macartney and Peter Bailey. Mike Freeston has also contributed enor-
mously with his work on BANG and in discussions directly related to this
work. More recently, Luis Hermosilla has contributed in benchmarking
and tuning the system. hfany others have also contributed by providing
graphics and applications, and by tt?sting and debugging.

References

[I] M. Atkinson, P. Bailey, II. Chisholrn, P. Cockshot, and R. Morrison.
PS-Algal: A language for Persistent Programming. In lOtA Aus-
tralian National Computer Conference, pages 70-79, Melbourne,
September 1983.

[2] F. Bancilhon and R. Ramakrishuan. An amateur’s introduction to
recursive query processing strategies. In Carlo Zaniolo, editor, Proc.
of the ACM-SIGMOD Conf. on Management of Data, pages 16-52,
Washington, D.C., USA, May 1986.

[3] A. Boas, P. Boas, and C. Doedens. Extending a Relational Database
with Logic Programming Facilities. Technical report, IBM INS-
Development Center - The Netherlands, 1964.

[4] J. Bocca and P. Bailey. Logic Languages and Relational DBMSs
- The point of convergence. In M. Atkinson, P. Buneman, and
M. Morrison, editors, Proc. Appin If Workshop on Persistent Ob-
jecl Stores, pages 346-362, Computing SC. Department - Glasgow
University, UK, August 1987.

[5] J. Bocca, M. Dahmen, M. Freeston, G. Macartney, and P. Pearson.
KB-PROLOG, A Prolog for Very Large Khowledge Bases. In Pro-
ceedings of the Seventh British National Conference on Databases
(BNCOD-7), Edinburgh, U.K., July 1989.

[6] J. Bocca, M. Dahmen, G. Macartney, and P. Pearson. Kb-prolog
user manual. Technical Report KB-31, ECRC, April 89.

[7] J. Bocca, H. Decker, J-M. Nicolas, L. Vieille, and M. Wallace. Some
steps towards a DBMS based KBMS. In H-J. Kugler, editor, Proc.
10th World Compuler Congress, Dublin, Ireland, September 1986.
IFIP.

[8] J. Bocca, M. Meier, and Villeneuve D. The specification of a com-
piler with high performance and funtionality - SEPIA Prolog. Tech-
nical Report IRPC-1, ECRC, May 1$X37.

[9] J. Bocca and P. Pearson. On Prolog-DBMS Connections: A Step
Forward from EDUCE. In P. Gray and R. Lucas, editors, Proc.
Workshop on Prolog and Data Bases, Coventry, England, December
1987.

[lo] Jorge Bocca. EDUCE - A Marriage of Convenience: Prolog and
a Relational DBMS. In R. Keller, editor, Proc. ‘86 SLP Third
IEEE Symposium on Logic Programming, Salt Lake City, Utah,
USA, September 1986 IEEE.

[ll] Jorge Bocca. EDUCE - User Manual. Technical Report Internal
KB Report, ECRC, 1986.

[12] Jorge Bocca. On the Evaluation Strategy of EDUCE. In Carlo
Zaniolo, editor, Proc. 1986 ACM-SIGMOD International Conf. on
Management of Data, Washington, D.C., USA, May 1986. ACM.

[13] Jorge Bocca. - Educe* - A logic programming system for imple-
menting KBMS’s. In Proeeedinqs of the Sevenih British National
Conference on Databases (BNCOD-7), Edinburgh, U.K., July 1989.

[14] Jorge Bocca. Compilatiou of Logic Programs to Implement Very
Large Knowledge Base Systems - A Case Study: Educe*. In Pro-
ceedings of the Sixth Inlernnlional Conference on Data Engineering,
Los Angeles, California, USA, February 1990. IEEE.

[15] Maurice Bruynooghe. The memory management of Prolog impte-
mentations. In Logic Programming, pages 83-98, 1982.

[16] Maurice Bruynooghe. A uote on garbage collection in Prolog inter-
preters. In Proceedings of !he First International Logic Program-
ming Conference, pages 52-55, Marseille, September 1982.

379

t171 C. L. Chang and A. Walker. PROSQL: A PROLOG Program-
ming Interface with SQL/DS. In Proc. of fhe First Inf. Workshop
on Expert Database Systems, Kiawah Island, South Caroline, USA,
October 1984.

D81 W. Chang, G. M. Lohman, J. McPherson, P. F. Wilms, G. Lapis,
B. Lindsay, H. Pirahesh, M. J. Carey, and E. Shekita. Starburst
Mid-Flight: As the Dust Clears. IEEE Tmnsac~ions on Knowledge
and Dais Engineering, 2(1):143-162, 1990.

WI D. Chimenti, R. Gamboa, R. Krishnamurthy, S. Naqvi, S. Tsur,
and C. Zaniolo. The LDL System Prototype. IEEE TmnsacSions
on Knowledge and Data Engineering, 2(1):76-90, 1990.

DOI 0. Deux et al. The Story of 02. IEEE Transactions on Knowledge
and Data Engineering, 2(1>:91-108, 1990.

WI Tick Evan. Memory Performance of Prolog Architeciures. Kluwer
Academic Publishers, 101 Philip Drive, Assinippi Park, Norwell,
Massachusetts 02061, USA, 1988.

IW Mike Freeston. Grid files for efficient Prolog clause access. In
P. Gray and R. Lucas, editors, Proc. Workshop on Prolog and Data
Bases, Coventry, England, December 1987.

1231 Mike Freeston. The BANG File: A New Kind of Grid File. In
U. Dayal and I. Traiger, editors, Proc. 1987 ACM-SIGMOD Inter-
national Conf on Manngemenf of Data, San Francisco, USA, May
1987. ACM.

P41 Mike Freeston. Advances on the design of the BANG File. In 3rd
International Conference on Foundations of Data Organization and
Algoritms [FODO), Paris, France, June 1989.

1251 J. Gabriel, T. Lindholm, E. L. Lusk, and R. A. Overbeek. A Tu-
torial on the Warren Abstract Machine for Computational Logic.
Technical Report ANL-84-84, Argonne National Laboratory, 1984.

1261 I Y.E. Ioannidis, J. Chen, M.A. Friedman, and M.M Tsangaris.
BERMUDA - An Architectural Perspective on Interfacing Prolog
to a Database Machine. In L. Kerschberg, editor, Proc. of the 2nd
International Conference on Experl Database Systems, pages 91-
106, Tysons Corner, Virginia, USA, April 1988.

(271 W. Kim, J. F. Garza, N. Ballou, and D. Woelk. Architecture of the
ORION Next-Generation Database System. IEEE Tmnsactions on
Knowledge and Data Engineering, 2(1):109-124, 1990.

[28] E. Sciore and D. S. Warren. Towards an integrated Database-Prolog
system. In Proceedings Firsi International Workshop on Expert
Database Systems, pages 801-815, Kiawah Island, South Carolina,
USA, October 1984.

[29] M. Stonebraker, L. A. Rowe, and M. Hirohama. The Implementa-
tion of POSTGRES. IEEE Transactions on Knowledge and Data
Engineering, 2(1):125-142, 1990.

[30] H. Touati and A. Despain. An empirical study of the Warren Ab-
stract Machine. In Proc. Symposium on Logic Programming ‘8’7,
pages 114-124, San Francisco - USA, September 1987.

[31] Y. Vassiliou, J. Clifford, and hf. Jarke. Access to specific declarative
Knowledge by Expert Systems: The impact of Logic Programming.
Decision Support Systems, l(i), 1984.

[32] David II. D. Warren. An Abstract Prolog Instruction Set. Technical
Report tn309, SRI, October 1983.

[33] David II. D. Warren. Logic Programming and Knowledge Bases. In
Proc. of the Islamorada Workshop on Large Scale Knowledge Base
and Reasoning Systems, pages 69-72, Islamorada, Florida, USA,
February 1985.

[341

I351

K. Wilkinson, P. Lyngboeck, and W. Hssan. The Iris Architecture
and Implementation. IEEE Transaciions on Knowledge and Data
Engineering, 2(1):63-75, 1990.

Carlo Zaniolo. Object-Oriented programming in Prolog. In Proc.
International Symposium on Logic Progmmming, pages 265-270,
Atlanta City, N. J., February 1984.

