Towards Dynamics Animation on
Object-Oriented Animation
Database System “MOVE”

Kunihiko Kaneko, Susumu Kuroki,
and Akifumi Makinouchi

Department of Computer Science and Communication Engineering
Kyushu University, 6-10-1 Hakozaki, Higashi-Ku Fukuoka, 812 Japan

ABSTRACT

The authors present why and how to develop three di-
mensional animation database system MOVE. Three di-
mensional animation system is an important application
of mutilmedia database system, because many animators
and engineers want the management facility of animation
data.

The authors designed MOVE in object-oriented way.
They implemented three dimensional animation database
schema on a conventional Object-Oriented Database Man-
agement System (OODBMS). The schema contains some
basic classes for three dimeunsional computer graphics such
as vector operations, three dimensional object, polygon-
meshed curved surface, and local illumination model.
They also implemented basic algorithm like the Z-buffer al-
gorithm and scan-line algorithm. Using MOVE, users can
combine hasic computer graphics ohjects and can build a
scene. They can also extend these classes without knowing
the details of MOVE.

And interface between simulation program and com-
puter graphics routines is discussed here from the point
of view of kinematic constraint and dynamics simulation.

Keywords : animation database, computer
animation, computer graphies, animation data model,
object-oriented database, multimedia database system

1 INTRODUCTION

Recently, three-dimensional computer animation became
an important research issue and have been worked by many
researchers. The application areas of computer animation
spread from art and entertainment to CAD, robotics and

three-dimensional vohumetric simulation. Three
dimensional animation is comprehensive enough to show
three dimensional mechanical parts, robot manipulators,
physical phenomena and so on.

The most important purpose of computer animation sys-
tems is to generate a realistic animation automatically.
The most attractive way of simulation is to analyze the
dynamism of a physical phenomenon by the law of physics
and to simulate it automatically by a computer. The an-
imators need not specify the details of motion as long
as satisfiable solution is generated by such simulation.
At present, many animation systems are being developed
based on this idea. For example, hand animation[5], facial
animation[20] are produced according to this idea.

Roughly speaking, computer animation involves follow-
ing three activities: 1) modeling animated entity 2) motion
specification and 3) image rendering[14]. In the case of
simulation-based animation, animators specify the shape,
spatial layout, attributes of the surrounding surfaces (
i.e. color, texture, and so on) of three dimensional ob-
ject, light-sources, and virtual-camera in modeling activ-
ity. And they specify how animated entities change their
states by implementing simulation routines in motion spec-
ification activity. These information about the model and
the motion are stored in a computer. And image rendering
is performed by a computer automatically. In this activ-
ity, the computer calls simulation routines and calculates
the states of animated entities at every frame and then
generates images from these data.

Thalmann et.al. pointed out that the concept of state
variable of animated entities is useful to unify various ani-
mation algorithms such as keyframe, parametric interpola-
tion, kinematic simulation, dynamics simulation and other
simulation-based algorithms[11]. In their idea, the mo-
tion of an animated entity is represented by a set of state
variables that change by the progress of time. From their
points of view, modeling is to determine what kind of state
variables the animated entities have and what the initial
values of these variables are. Also the motion specification
is to specify how the state variables change.

Management of the date of such sets of state variables
is one of the main problems of animation systems. So,

animation database system is necessary, because it is im-
portant to manage the animation data easily. In animation
database, state variables are defined as database schema,
and each value of state variables is stored as a database
record.

Moreover, animation systems should allow the anima-
tors and engineers to access these state variables, because
many animators and engineers often want to use the an-
imation data which they previously made. So animation
data. should be stored in such a way that it is easy for
them to use the data repeatedly. In addition, it is de-
sirable that the animation systems provide flexible data
definition mechanism. For example, the users want to use
more flexible data definition mechanism when they design
new three dimensional primitive objects, new illumination
model, and simulation routines. The solution is to make
these model extensible.

Recently, several computer graphics packages are de-
veloped such as MIT X-Window({25], PEX][24], and
RenderMan[23]. These systems don’t have animation data
model, and they don’t have the management facility of
animafion data. And they can’t store animation data to
secondary storage device. For example, Renderman has
current-transform and object-handle mechanism to ma-
nipulate animated entities, buf it doesn’t have animation
data model. PEX has locator mechanism to manipulate
three dimensional objects, but it doesn’t mention about
data storage to secondary storage device.

That is why computer animation will become an impor-
tant application of multi-media database systems. KUNII
et.al. developed animation their database system based
on relational data model[17]{27]. They studied about their
animation data model[17], management of geometric and
motion dataf18], and dynamics-based algorithms[26]. And
they expressed the data-independence of their system, but
they didn’t pay much attention to the extensibility.

Among animation systems, some lack the data manage-
ment, mechanism, and others lack the extensibility. This
doesn’t indicates that an extensible animation model has
not been implemented. So the authors propose new exten-
sible animation data model.

Many researchers have pointed out that object-oriented
concepts are useful for animation data modeling[12] [13].
So, the authors are now designing and Implementing new
three dimensional animation database system MOVE in
object-oriented way. They are developing MOVE using an
Object-Oriented Database System (OODBMS). The pur-
pose of system development is to examine about animation
data model and its extensibility. In MOVE, all the state
variables of every animated entities are managed by sys-
tem. And every data is object. And the basic unit of data
management is also object.

The authors implemented basic classes for three di-
mensional computer graphics, such as vector operations,
three dimensional object, polygon-meshed curved surface,
and local illumination model. These classes are imple-
mented as database schema of the conventional OODBMS

ONTOS[19] using programming language C++[2]. These
basic concepts are introduced in section 2 as well as system
architecture of MOVE.

In section 3, the idea of scene object of MOVE is dis-
cussed. A scene object is a frame of an animation, and
the data of the scene object are used to produce the im-
age. The users of MOVE can get an image easily through
constructing scene object from basic objects prepared by
MOVE.

In section 4, the design and implementation of some
classes, such as solid object, surface object, surface-shader
object, light-source object and camera object are explained.
System extensibility of MOVE is also discussed, such as
user-defined three dimensional primitive object, and ex-
tensible illumination model.

In section 5, the authors discuss about the object-
orientation and instancing mechanism of MOVE.

Finally, interface between simulation program and com-
puter graphics routines is also discussed from the point of
view of kinematic constraint and dynamics in section 6.

2 ANIMATION DATABASE SYSTEM
“MOVE"

2.1 General Facilities of MOVE

Animation database systems should have computer graph-
ics facilities, animation facilities and system extensibility.
In this subsection, these facilities are introduced briefly.

1. Scene object
A scene object is a frame of an animation. The users
of MOVE can get an image using a scene object in this
way: First, the user constructs a scene object with
the basic objects of MOVE. After the user completes
the scene object, MOVE generates an image from the
scene object.

2. Vector operations
All the geometric data of MOVE are vectors and
points in three dimensional world. Mathemati-
cally, these data are represented by vectors in affine
space[6]. So, MOVE supports affine vectors and their
transformations.

3. Three dimensional object
MOVE manages the data of three dimensional objects
with curved-surface. The authors assume that all the
objects are solid objects. Modeling the soft-objects is
our future works.

4. Virtual camera
Virtual-camera mechanism transforms three dimen-
sional objects into two dimensional computer screen.
This mechanism models perspective transformation
and deformation. It is a good approximation of the
camera with a simple lens.

5. Light-source
The environment of a three dimensional world which

vectora < Vector3 —s- UnitVector3
ec AffinePoint3 —e Point3

AboutYAxis

Perspecu've :ra:as::’“on AboutXaxis
Transform Geometrical alation AboulZAxis
Color Projection Scaling ZeroTransform

ldentity

Torus
, EWipsoid —= Sphere

o ol Cone — Cylinder
Instance Prism—e Block—= Cube
Panoramic Camera
Cameraé FisheyeCamera
PinholeCamera
AmblentLight
l.ightSouﬂ:eu< DistantLight
PointLight
SolidDB
Scene
image

Figure 1: The class hierarchy of MOVE

affects the appearance of animated entities can be rep-
resented by a set of light-sources. MOVE has three
kinds of light-source models: point light, distant light
and ambient light.

6. Local illumination model

To make the computer-generated images realistic, it is
important to simulate the illumination and reflection
precisely. The color at one pixel of image is calculated
from the information about the geometry of three di-
mensional object, virtual camera, light sources and
surface attributes. The equations of the local illumi-
nation model are implemented in MOVE.

~3

Extensible model

The users of MOVE can define the classes of user-
defined three dimensional primitive object, and illu-
mination model (i.e. surface attributes, light-source
and virtual camera).

8. Animation support
From the point of simulation-based animation, the in-
terface between a scene objects and their own motion
law is necessary. MOVE manages such relationships.

2.2 System Architecture of MOVE

The prototype of MOVE has been implemented on a
SUN SparcStation 2 workstation. The classes of three di-
mensional computer graphics are developed by SUN C++
ver.2.1. The authors designed classes of MOVE based
on object-oriented concepts using Coad-Yordon’s object-
oriented analysis[22]. Figure 1 shows the class hierarchy
of MOVE.

The class definition consists of approximately 12,000
lines. The database schema, specified by these classes def-
inition is managed by the object-oriented database man-
agement system ONTOS. The C++ code are compiled and
resulting object files are collected as the library.

application program

of MOVE .
_______ user-defind
‘ ¥ class
MOVE
preprocessor
ﬂ e —— ONTOS K Database
T utility schema
ONTOS :
preprocessor |,
|suN C++ compiler | ONTOS DBMS
L}
- ‘ - class libray
A—— £ MOVE
application program Database

Figure 2: An application development in MOVE

Figure 3: The model of three dimensional world

Users can create animation data in MOVE. Almost all
the animation data are stored in database, and the others
are on memory. Users can refrieve animation data which
are previously made. And users can invoke the image ren-
dering routines specifying what scene object they want to
render. The produced image is also stored in database
ONTOS.

MOVE maintains the relationships between 1)three di-
mensional objects and illumination model data, 2) ani-
mated entities and simulation routine and 3) animation
data and rendering data.

Figure 2 shows the interfaces between MOVE and users.
The user can define a new class which make up for the
MOVE’s weak points. The user can define the class by
C++ and combine the class and MOVE classes. And the
user can use the new class as well as MOVE classes. Such
extensibility is one of the features of MOVE.

3 SCENE OBJECT

In MOVE, a scene object is a frame of an animation. A
scene object contains all the model data that are necessary
to generate an image. A scene object contains a pointer

.O cylinder
cylinder -

block [=fensy ~
scene o\ [ooe 1 O block

l?:ht_hlf; . llght ist
camera »,\‘ B -__’o 1 lght 1
light1

) light2
O light3

object name

<> object
El—lﬂ'"'b reference

Figure 4: The structure of scene object

%, camers

to the image object, too. The model data is the informa-
tion about three dimensional world, and it consists of a
set of three dimensional object, light-sources and a virtual
camera (Figure 3). So, if the user wants to specify a scene
object, the user has to specify three dimensional object,
light-source objects and a camera object.

The user creates three dimensional objects and light-
source objects using instancing mechanism of correspond-
ing classes such as the classes Cylinder, Block, Cone and
PointLightSource. Then users combine these objects
and build a scene object. These basic computer graph-
ics classes are convenient building blocks. The instancing
mechanism is described in section 6.

A scene object has a hierarchical structure(Figure 4). A
scene object has four pointers as follows, They are: 1) a
pointer to a list of three dimensional object, 2) a pointer
to a list of light object, 3) a pointer to a camera object,
and 4) a pointer to an image object. Here, a list of a three
dimensional object is itself an object. And the object has
a list of pointers to some three dimensional objects. A list
of light object is also an object. And the object has a list
of pointers to light objects, too. And the image object has
a back pointer to the scene object.

When the user creates a scene object, MOVE initializes
these data automatically: 1) List object of three dimen-
sional object. list object of light-sources, camera object
and image object are created. 2) The pointers of the scene
object are set. 3) The contents of two list objects remain
to be empty. 4) The contents of image object is also empty.
Now, list object of three dimensional object and list object
of light-sources are ready to use. The user can add some
corresponding objects to the list objects.

A scene object has two methods. One is the method
render() aud the another is the method instancing().
The method render() is to render an image, and the
method instancing() is to create a copy of an object.
When the user has defined an object and invokes the

1 |
Vectord ~ Transform
double x,y,z, W ouble m|]
Vectord crossProduct() Point3 trasform(Point3&)
double length() Pointd invgrgsTrgngfgrms Point3&)
Vector4 direction() I] |
weo [Perspective | [Geometrical | [Projection]
- L 1 1L]
IAffine’ointal [B L T]

I Transform | [Rotation]
L J L]

Identity
(enghy=1 | w=1 n —_]E
- 1 il
[[Onitvectors] | F’°"‘3|| AboutXAxis | [AboutyAxis | [AboutzAxs]
L] I 5L | |

ZeroTransform

Figure 5: The class design of classes for vector and matrix
operations

method render() of the object, the rendering routines
are called and the rendering routines store the final image
as an image object. And the user updates the scene object
and invoke the method render (), the contents of image
data is substituted by a different image data. When the
user wants to avoid such substitution, the user invokes the
method instancing() to make a copy of the object.

4 CLASS DESIGN DETAILS

4.1 Vector Operations

class operations mathematical
expression

Vectord addition v + U2
(x,y.2,0) subtraction v — Vg

multiplication k-vw-k

division k/v

inner product Uy - V2

outer product v X U2
Point3 addition p+uv,v+p
(x,y.2,1) subtraction p—v
Transform | transformation of a point | M - a
(4x4matrix) || inverted transformation [M~!-a

of a point

composed transformation | M; - Mo

v, 01,V : vector k : floating point number
P : point a : vector in the affine
M, My, My : transformation space

Table 1 : Vector operations

MOVE has classes for representation and transforma-
tion of a vector. In a three dimensional world, a vector
and a point are quite another, because they have different
operators { see Table 5). So, a vector belongs to the class
Vector3 and a point belongs to the class Point3.

The vector transformation and the point transforma-
tion can be treated similarly using the homogeneous

*?
oo
three

dimensional ~» Surfaces — Polygons — Vertices
object

Figure 6: Polygonal approximation of three dimensional
object

cyl_faces

N

top_face

cylinder cylinder_face

surf list[}°
location L__j
sub_objs @

4 bottom_face

N—

Figure 7: Data structure of three dimensional object in
MOVE

co-ordinate system[6]. The class Vector4 represents a
vector in the affine space. The classes Vector3 and
Point3 are derived from the class Vector4. The meth-
ods transform() and inverseTransform() are defined
as methods of the class Transform. These methods take
as an argument an object sometimes in class Vector4 and
sometimes in the derived classes of the class Vector4. This
is why the class Transform represents the both of Vector3
transformation and Point3 transformation.

In detail, there twelve kinds of transformation in MOVE
(Table 6). The derived classes may have more efficient
transformation algorithm than the parent class. For ex-
ample, the inverted transformation of a vector often needs
the inverse matrix. It is time-consuming to calculate the
inverse matrix. Besides, if the transformation is orthogo-
nal (i.e. rotation or translation), the inverse matrix is
expressed by transposed matrix. It is not time-consuming
to calculate the transposed matrix at all. That is why the
authors implemented twelve transformation classes.

4.2 The Model of Three Dimensional Object

Three dimensional objects with curved-surfaces are ap-
proximated by polygonal facets. For example, a cylinder
could be approximated by an octahedron (Figure 6).

There are several researches about the object-
oriented representation of three dimensional geometric
objects[3][16]. They focused on data representation and
query language, but they paid few attention to the hier-

Figure 8: The rendered image of a robot manipulator

base location of

base (waist)

bOdy location of
@. body (shoulder)
upper_arm
location of
6- upper_arm (elbow)
fore_arm ‘
location of
O @ fore_arm (wrist)
Surface lists
Figure 9: The data structure of the robot manipulator
archical structure, instancing and user-defined primitive
object. That is why the authors designed the class Solid.
The data structure are shown in Figure 7. An object
cylinder contains all the geometric information about it-
self. An object cylinder is defined by a pointer surf_list
to a list of a surfaces, a pointer location to matrix which
specifies the cylinder’s co-ordinate system, and a pointer
sub_objs to a list of pointers (in this case, null).
MOVE can represent a segmented figure of rigid bod-
ies using Solid object. A robot manipulator is a typical
example of the segmented figure of rigid bodies (Figure
8). The manipulator is made up of four parts. They are
base, body, upper.arm and fore_arm. If the body moves,
upper_arm and fore_arm also move according to the mo-
tion of body (Figure 9). But the movement of base is
not affected by body. The location of each part is auto-
matically calculated according to the spatial relationships
among the neighbor parts.
Users can combine three dimensional objects to build
a structured object. MOVE has seven primitive three di-

mensional classes - Block, Cube, Cone, Cylinder, Torus,
Ellipsoid and Sphere (Figure 10). Users can define a

| | I Tl -
Cube Cylinder Ellipsoid user-defined class
T of a new primitive

Spheres solid

Figure 10: The class hierarchy for representing a solid

new class of three dimensional primitive object: 1) The
user defines new class. 2) The user defines the construc-
tor, which is a special method. The constructor is always
invoked when a instance is created. 3) The user specifies
the shape of the object in constructor. For example, the
user specifies the shape of a cylinder as follows:

SampleSolid::SampleSolid(int resolution)
{

for (i = 0; i <= resolution ; ++i)
Surface* s->push(x[i],y[il,z[i]);

this->addSurface(s);

}

Finally, the user can define a class of a primitive three
dimensional object without knowing the details of the class
Solid such as geometric modeling and rendering process.

4.3 lllumination Model

Kajiya has pointed out that the illumination process can
be formulated as an integral equation[8]. A typical local
reflection model is as follows:

i(z,2') = /r(z,m’,z")l(;z:’,x”)da:"

Here, i(z,2') is the intensity of light which is incident
from the point z’ and reaches the point z. The function
r(z,2’,2") is the surface bidirectional reflectance function
and the function I(2’,z”) is the incoming light intensity
distribution.

The functions r(z,z’,2"”) and [(¢',2") is implemented
separately.

The routine for the term r(z,z’,z") is called surface
shader. And the routine for term I(x', z") is called light-
source shader.

Light-source shader and surface shader are also objects
in MOVE. It is impossible to solve above integral equa-
tion and to calculates the solution precisely from two ob-
jects, light-source shader and surface shader. So, the au-
thors made one assumption about light shader. The light
shaders are approximated by four coefficients, ambient,
intensity, direction and color. All the information about
light-sources are obtained through these three methods.
The assumption is too restrictive to model natural light-
source, but the illumination model based on this assump-
tion is good approximation of natural illumination process.

LightSource

]

boolean on_off;

double ambient() AmbientLight

double intensity(Point3&)
Vector3 direction(Point3&)
Color color()

double ambient_intensity
Color ambient_color

<~ e

DistantlLight PointLight

double light_intensity
Color light_color
Point3 from

Point3 to

double light_intensity
Color light_color
Point3 from

Figure 11: The design of light-source classes

4.3.1 LightSource object

Figure 11 shows the design of the class LightSource. The
class LightSource is a super class for other light-source
classes.

e ambient light
An ambient light is uniformly incident and is reflected
equally in all directions by the surface.

o distant light
All the rays of a distant light come from the same
direction. The sun is an example of distant light-
source.

¢ point light
The rays of a point light-source come from a single
point.

The implementation of four methods ambient(),
intensity(), direction() and color() represent the
character of each light-source. For example, in the case
of a point light, the intensity of light is:

I

l.’L",CL‘” - -
12" = e

This equation can be implemented as follows:

double PointLight::intensity{ Point3& p)
{
return light.intensity /
4 * pi * (p-from } * (p-from);

+;

surface shading function what is
material r{z, 2, 2") = in DB
constant K, K,

matte K, + K,0 K., Ky
metal K, + K, cos" o K, K,
plastic K, + K8+ K,cos" o | K,, Kq, K,
texture map || f(z') Sz

Table 2 : Five primitive SurfaceShader object

Figure 12: The eyepoint and viewplane camera model. a)
without a lens. b) with a simple lens.

4.3.2 SurfaceShader object

The class SurfaceShader represents a material of sur-
face. Five typical sub classes of SurfaceShader, constant,
matte, metal, plastic and texture map are appeared in Ta-
ble 2. The parameters are stored in the databade (in the
case of texture map shader, sampled values of f(2') are
stored).

Shading classes are defined corresponding to each kind
of shading functions. The user can define a new class of
surface shader by specifying new shading function.

4.4 Camera object

There are several camera models proposed[4]. Our cam-
era model consists of the eyepoint and viewing transfor-
mation A Camera object can change the type of the lens
(Figure 12).

5 OBJECT INSTANCING

When the user create a new object, instancing mechanism
is always used. MOVE has two kinds of instancing mecha-
nisms. One is a class constructor and the other is a virtual
constructor.

The class constructor is an ordinal constructor in C++.
The wirtual constructor allows the user to construct a
new scene object from other objects already stored in the
database. The class constructor requires the name of the
class which is to be constructed. So, the user can’t use the
class constructor to create a new object from other objects
in the database, because the user can’t know the name of
the class until run-time. But, the virtual constructor is im-
plemented as object’s method instancing(). The users
don’t have to know the name of class.

In the virtual constructor method, the same size of mem-
ory as the original object are allocated and the contents
are copied. The pointer to the table of method (i.e. wvtbl
) are also copyed.

6 Towards Dynamics Animation
The following procedure generates a series of a hundred of

images (i.e. animation). It can be written simply using
instancing mechanism.

hand fore-arm

upper-arm

body

fixed-base
Figure 13: The kinematic structure of the robot

damper

fixed base T
]

where O = ——WWW—

spring
(1)
&

motor

rigid bedy

Figure 14: Dynamics elements

initialize scene[100] and current_scene;
for (1 =0; 1 < 100; ++i)

sceneli] = current_scene.instancing();
update current_scene;

The “update current scene’ involves kinematic con-
straints(Figure 13) and Dynamics elements(Figure 14).
Arnaldi et al. discussed about the importance of dynamics
in animation[1].

Our basic idea is to extend the Solid class and to define
new classes for kinematic and dynamics simulation. The
manipulator has 4 degrees of freedom, then the manipu-
lator can by represented by four variables. The new class
maintains the relationships between the four variables and
the location of each segment. The relationships between
a motor and each segment are also maintained. These are
all in object-oriented way.

7 CONCLUSION

In the area of simulation-based computer animation, ani-
mation systems manage all the state variables and physical
laws of animated entities. To manage animation data eas-
ily, animation database is necessary.

The authors designed new animation data model us-
ing object-oriented concepts. They authors implemented
new animation database system and tested our animation
model.

Several interface classes have been defined. Program-
mers of MOVE can define a new class using programming
language C++. If the definition matches the interface

class, the users can use the new class as well as pre-defined
class.

The authors discussed about the extensibility of MOVE
in defining classes of three dimensional primitive objects
and illumination models. The next step of MOVE is kine-
matic constraints and dynamics animation using MOVE’s
extensibility.

ACKNOWLEDGMENT

The authors would like to thank Yusuke Kondo and
Katuhiko Kikkawa Yusuke Kondo converted the classes in
C++ into the database classes. Katuhiko Kikkawa tested
the rendering routines in the MOVE. This work was par-
tially supported by the Japanese Ministry of Education,
Science and Culture under Grant-in-Aid for Scientific Re-
search(B) (Grant-No. 03858007).

REFERENCES

[1] Arnaldi B, Dumont G, Hégron G, Magnenat-Thalmann
N, Thalmann D, “Animation control with dynamics
In: State-of-the-art in computer animation”, Springer,
pp.113-124, 1989.

Bjarne Stroustrup, “the C++ Programming Language
2nd edition”, Addison-Wesley, 1991.

[3] Eric Grant, Phil Ambum, and Turner Whitted, “Fi-
ploiting Classes in Modeling and Display Software”,
IEEE CG & A, November, pp.13-20, 1986.

[4] Geoff Wyvill and Craig McNaughton, “Optical Mod-
els. In:CG International '90°, Springer-Verlag, 1990:
[5] Hans Rijpkema and Michael Girard, “Computer Ani-
mation of Knowledge-Based Human Grasping”, ACM
Computer Graphics, vol.25, no.4, pp.339-348, July,
1991.

(6] James Foley, Andries van Dam, Steven Feiner, John
Hughes, ” Computer Graphics Principles and Practice
2nd edition”, Addison-Wesley, 1990.

James K. Hahn, “Realistic Animation of Rigid Bod-
ies”, ACM Computer Graphics, vol.22, no.4, pp.299-
308, August, 1988.

(8] Kajiya, James T., “The Rendering Equation”, ACM
Computer Graphics 20(4), pp. 143-149, August, 1986.

[9] W. Kim and F. H. Lochovsky, “Object-Oriented Con-
cepts, Databases, and Applications’, ACM Press, 1988.
[10] Kunihiko Kaueko, Susumu Kuroki, and Akifumi Maki-
nouchi, “Design of 3D CG Data Model of “MOVE”
Animation Database System”, Proc. the 2nd Far-East
Workshop on Future Database System, Kyoko, 1992.
[11] D Thalmann, “Motion Control: From Keyframe to
Task-Level Animation In: State-of-the-art in computer
animation”, Springer, pp.3-18, 1989.

10

[12] Mangnenat-Thalmann N, Thalmann D, “The Use of
High-Level 3D Graphical Types in the MIRA Anima-
tion System”, IEEE CG & A, pp.9-16, 1983.

Magnenat-Thalmann N, Thalmann D, “CINEMIRA:
a 3D computer animation language based on actor and
camera data types’, Technical Report, University of
Montreal, 1984.

[13)

[14] N.Magnenat Thalmann, D.Thalmann, “Computer An-
imation. Theory and Practice. Second Revised Edi-
tion” , Spring-Verlag, 1990.

[15] Mark Green and Hangiu Sun, “A Language and Sys-
tem for Procedural Modeling and Motion”, IEEE CG

& A, November, pp.52-64,1988.

Mohammed Mahieddine and Jean Claude Lafon, “An
Object-Oriented Approach for Modeling Animated En-
tities In: Computer Animation’90 ", Springer-Verlag,
pp.177-187, 1990.

(16]

[17] Myeong W. Lee and Tosiyasu L.Kunii, “Design Method-
ology for Computer Animation Database System”, Proc.
DASFAA, pp.73-79,1989.

[18] Myeong W. Lee and Tosiyasu L.Kunii, “Animation
Platform: A Data Management System for Modeling
Moving ObjectsIn: Computer Animation’91", Springer-
Verlag, pp.169-186, 1991.

[19] Ontologic Inc., “Ontos Object Database version 2.0
Developer’s Guide”, Ontologic Inc., Burlingtion Mass,
Feb., 1991.

[20] Parke FI, “Parameterized Models for Facial Anima-
tion”, IEEE Computer Graphics and Applications,
vol. 2, no. 9, pp. 61-68, 1982.

[21] Perlin, k., “An Image Synthesizer”, ACM Computer
Graphics, 19(3), pp.287-291, 1985.

[22] Peter Coad, Edward Yourdon, “Object-Oriented Anal-

ysis 2nd edition”, Prentice Hall, 1991.

[23] Pixar Corporation, “The RenderMan Interface Ver-

sion 3.0", Pixar Corporation, San Rafael CA, May,

1988.

R.J.Rost, “PEX Introduction and Overview, PEX Ver-
sion 3.20°, MIT X Consortium, 1988.

Scheifler, R.W., J. Gettys, and R. Newman, “X Win-
dow System”, 1988.

[24]
[25]

[26] Toshiyasu L.Kunii and Linig Sun, “Dynamic Analysis-
Based Human Animation In:CG International 90",

Springer-Verlag, pp.3-15, 1990.

{27] Tsukasa Noma and Tosiyasu L. Kunii, *“ANIMENGINE:
An Engineering Animation System”, IEEE CG & A,
October, pp.24-33, 1985.

