
DATA FRAGMENTATION AI3D ALLOCATION FOR

PC-E3ASED DISTRIJ3UTED DATABASE DESIGN’

Minyoung lb, Yang-Sun Park

Computer Science Division
Department of Mathematics

Korea Military Academy
Seoul, KOREA 139-799

ABSTRACT

As the performance of PCs is improved, the
need for PC-based distributed database svstems
has been increased. Data fragmentation and
allocation is one of the major design issues for
distributed database systems. In this paper, several
factors that should be considered in constructing a
PC-based distributed database system have been
investigated, and a methodology for partitioning and
allocating data effectivelv over a network for
PC-based distributed database design is proposed.
This methodology is based on the mixed
partitioning technique using a grid approach.

1. INTRODUCTION

increased. A database system, which stores and
manages data to produce useful information, is a
computer oriented
~;~~;.s(DB~taa databigtemmanagement systsf

consisting

adminis&rtors (DBAs),
“yg& 8gdh gehbgg

years, DBS was mainly used on mini computers
and mainframes, but now it is widely used on PCs
because the performance of PCs has been unproved
and the cost of PCs came down.

However, most of the DBSs on PCs are
for a single-user and thus sharing of resources is
not considered. To make up for this weakness PCs
are connected into distributed database systems to
share resources. Research on distributed database
systems (DDBS) has been increased because
DDBSs can im rove reliability and availability and
fit more natur ali y in the decentralized structures of
many organizations [Ceri 84, Oszu 911. Data
fragmentation and allocation called data distribution
is the basi;int; cpnstfuctmg ckstnbuted database
systems. possible to construct
distributed database? syzems on PCs the research
on data distribution for PC-based distributed
database design should be emphasized. In this
Pgwq- a distribution scheme for PC based
$sz;tifr&abase. systems JS pro

entatron
P

techm ue.
P

i?
sed by usmg

e&on 2 deals
with some actors that shou d be considered for

‘This research was supported in part by KOSEF
(Korea Science & Engineering Foundation) Grant
No. 923-1100-088-l.

data distribution. In Section 3, a methodology for
generating distribution scheme by using a mixed
partitioning technique is proposed. Section 4 gives
the conclusion.

2. CFOo~SE&.3..3~ZR&TIONS

DISTRIBUTION

There are some factors that . should be
considered forxeJirsne data. drstrrbunon in
constructing drstrrbuted database
systems.

2.1 Data Fragmentation

Data fragmentation (or partitioning) is the
process that divides a logical object (relation> from
the logical schema of the database to several
ph sical objects (files) in a stored database [Nava
84f There are basically two different ways in data
fragmentation: vertical partitioning and horizontal
partitioning. Vertical partitioning is the process of
dividin attributes into groups. Previous work on
verti caf partitioning has used objective functions to
perform partitioning [Ceri 88, Corn 87, Hamm 79,
Nava 841. Since in these approaches, binary
partitioning technique should be applied recursively
and objective functions and compliment algorithms
such as SHIFT algorithm [Nava 841 are needed, we
developed a graph theoretic algorithm that
generates all meaningful vertical fragments in one
iteration [Nava 891. Horizontal partitioning is the
process of dividing tuples in a relation into groups
of tuples. In the most of the previous approaches,
the problem is that there may be lots of horizontal
partitions since at worst case a horizontal partition
can be composed of only one tuple [Ceri 82, Cer
834 Yu 851. Because of this reason a new
honzontal partitioning technique using predicate
clustering is current1
this drawback [Ra 91 . 7

being studied to overcome

Mixing the two types of partitioning has
considered to yield mixed partitioning. The need for
mixed partitioning arises in distributed databases
because database users usually access data subsets
which are both vertical and horizontal fragments of
global relations [Elma 891. The examples of the
previous work on mixed partitioning are available
in [Aper 88, Nava 901.

2.2 Data Allocation

90

Data allocation is the process of mapping
each logical fragment to one or more sites, and is
considered as one of the major desi

Y
issues for

distributed databases [Cer 83a, Cer 8 b, Corn 881.
Previous research in this area has been performed
in two ways: data allocation bv itself for
distributed database systems, and extension of the
pure data allocation problem by including the
network topology and communication channels in
the decision variables for distributed computing
areas. This paper is concerned with pure data
allocation in which the unit of allocation is the
mixed fragment which comes from the mixed
partitioning procedure in Section 3.2.1. The previous
work in this area includes research on the models
for data allocation [Cer 83b, Corn 88, Corn 891, and
research on allocation heuristics [Aper 88, Ceri 881.

z-3 LAN

When we construct a distributed databases
with PCs, the communication among them can
usually be performed by using LANs. LANs are
particular form of data communications, with
hardware and software optimized to support the
sharing of devices and information. They offer high
de ee of autonomy and versatility [Ceri 84 Patt
9Of? The technologies related to PC LANs’ have
progressed to replace mini computers, and making
it possible to connect with large databases. The
two important components compnsing a LAN are a
network operating system and a server. A network
operating system is a system software that
provides resource management for services on
server machines, and provides the user and
application software a window to the LAN
environment. The following are key features that a
NOS should support [Jord 901: (1) hardware
independence, (2) multiple server support, (3) multi
user support, (4) network management, and (5)
human engineering reflected user interface. The
details are out of the present scope of this paper.
Functions of a server are discussed in the next
section.

Z-4 Database Server I I I

A server refers to a software application
that offers a well-defined service to network users.
A server application can be run on
special-purpose hardware or an ordinary PC. Th:
most common types of servers are file servers,
print servers, and communication servers [Cart 84,
Jord 901. A database server can be. considered as a
kind of file servers, which is zcvhdgtir$o two
categories: resource-shared
client-server architecture. In resource-shs
architecture, the users mainly work on PCs and
send the results to the database server, or the
users bring data from the database server and
work within the PC. On the other hand, in
client-server architecture a database server
processes database access requests from users and
sends back the results to users. The criteria for
evaluating database servers are (1) SQL-like query

(2) various data types,. (3) data
~!!$%&+,ionsc~~Im;cord and database size limits, (5)

and failure detection (6)
%%b?ed processing support, and (7) installation
and operation, etc. [Rein 891.

3. SCHEME FOR
DISTRIBUTION
DESIGN

Based on the above considerations
develop a scheme for PC-based distribu~
database design.

3-1 Problem Description

Suppose we want to connect databases in
PCs using a LAN. There is a database server in
the LAN, which supports the distributed database
environment. Then the distribution design problem
for a PC-based distributed database system on the
LAN can be described as follows.

“PCs having data processing facility are
interconnected using LANs to form a distributed
database system. Data are distributed accordin to
the logical schema of the databases. ug- sing
appropriate partitioning techniques relations are
partitioned, and the results are allocated to the
database server and PCs in order to minimize the
total data transmission cost. If replication is need4
we allow replication of data. We, however, do not
consider network topology, communication channel,
and band width. These factors may be included in
the later stage”.

PC
Gateway

Print
- Server

Printer

PC

DBMS - Database
Server

Local
files

PC

DBMS
Gateway

Local
files

Fig. 1 PC-based distributed database
environment

Figure 1 shows our research environment.
As shown in Figure 1, we are investigating a
server based on the client-server architecture,
which processes data access requests from users,
sends back the results to the users, maintains data

consistency, and protects data collision.

3.2 A ~M+ho~olo
II$.3.~&dxon

y for
% esign

The development of the scheme for
distribution design scheme can be done in the
following two steps.

In this step, all candidate horizontal
fragments are determined by using the same
graphical technique. Note that the order of this and
the above step can be interchanged. Figure 2
shows the transaction specifications for our
example both vertical and horizontal partitioning,
and an example of grid cells resulting from this
specifications is shown in Figure 3.

(4) Grid optimization

(1) mixed partitioning and grid optimization
(2) allocation of mixed fragments

The next sections describes these steps in detail.

In this step, cells are merged so as to
minimize the global transaction processing cost. A
cost model for evaluating the benefit of merging,
and a heuristic greedy procedure to decide if and
how the calls are merged, are the major issues that
should be attacked.

3.21 Mixed partitioning and grid optimization

A mixed partitioning methodology is a
(5) Generation of fragmentation scheme

hybrid type of horizontal partitioning technique and
vertical partitioning technique. Currently mixed
partitioning has not been addressed in the
literature. Today’s methodology can produce mixed
partitioning only in one of the following two ways:
by performing horizontal partitioning followed by
vertical partitioning or by performing vertical
partitioning followed by horizontal partitioning.
Obviously, this is not adequate since it potentially
leads to different results and leaves out the
possibiity of combining fragments at a smaller
granularity to produce more efficient data
distribution. In this paper we adopt a uniform
mixed partitioning methodology which generates
optimal results called mixed fragments that are
formed by merging grid cells to miniize the
global transaction processing costs. Grid cells are
created by applying independently vertical and
horizontal partitioning algorithms to a relation. It
should be noted that the mixed fragments cannot
be otherwise produced by independent partitioning
models. The efficient algorithms for horizontal and
vertical partitioning already
respectively [Nava 89, Ra%, Ra 911.

presented

The previous step gives us two types of
merging options namely: merging of grid cells
horizontally or vertically. In this step we map the
two merging schemes to generate a set of mixed
fragments giving rise to a fragmentation scheme.

Transactions Attributes
Number of

Predicates accesses
Per time Period

al&a7

fii2$ihti
a$a7,a8
i$,$d,fi,a7ti,ti

a3:a9
a3,a4,a6,a9,alO

Fig. 2 Transaction specifications

3.2.1.1 Mixed partitioning methodology

In this section we ‘ve an overview of the
mixed partitioning
specification of

method0 ogy. It consists- of *the $
inputs, vertical

horizontal partitioning, merging of p~n”~$~
resulting in the generation of the fragmentation
scheme.

G G G
31 32

(1) Specification of inputs: The following set of
inputs need to be provided by the user in order to
come up with the mixed fragmentation scheme.

(a) schema information : relations, I I

attributes, cardinalities, attribute sizes, etc. Fig. 3 Grid creation

(bl transaction information : name,
frequency, attribute usage, etc. The attribute usage
matrix is a matrix contaming transactions as rows
and attributes as columns. Element (i,j)=l if
transaction i uses attribute j, else it is 0.

3.2.1.2 Grid optimization

The step of grid optimization is the key

(cl distribution constarints : any
predetermined partitions or fixed allocation of data.

(2) Vertical partitionin for grid
In this ste

G
aB

are determined.
1 candidate vertical fragments

e use a graphical algorithm
[Nava 891 for generating all fragments in one
iteration.

point among the above steps. This is because the
results of mixed partitioning called mixed fragments
are generated after gnd optimization. There,
however, are no cost functions proposed so far, nor
merging heuristics. Thus in this paper we propose
a feasible solution for this problem

(a) Transaction mapping

(3) Horizontal partitioning for grid

Transaction mapping is done by mapping
attributes and the predicates of the transactions
with the attributes and the predicates forming the

25

E
25

92

grid cells. Figure 4 shows the mapping of the
transactions to mid cells. The transactrons here do
not mean 100% of expected transactions, but
important transactions. Since the 80-20 rule applies
to most practical situations, it is adequate to supply
information regarding the 20% of the heavily used
transactions which account for about 80% of the
activity against the database. In this figure Hi
represents the results of horizontal partitionmg, and
Vi represents the results of vertical partitionin
For example, transaction T4 accesses attributes 5 a ,
a7 and a8, and is based on predicates p4 and p8,
whereas the grid cell Gn is formed of attributes al,
a5 and a7, and predicates p3, ~4, p6 and p8. Hence
transaction T4 access the cell Gn. Note that some
of the grid cells *are not accessed by the most
~txgtant transacbons,B~~& maoyn btiivsed -by

transactrons.
information grid cells are merged to rnini~~p~
transaction processing cost.

(b) Cost model

Now we present the cost model that is the
basis of grid optimization. To this end, we
introduce the following notation.

m : number of horizontal partitions
n : number of vertical partitions
g : number of t.ransacQons

ij : gnd cell determmed by the i-th horizontal
partition and the j-th vertical partition, where
l<ism and l<jKn.

RG : number of tuples in grid cell Gi
Lj : total length of the attribute (in bytes) of a

tuple of Gij
ct : ;zFb?fg cost of access of a tuple of the

It : total length of a tuple in the given relation
a : ratio of the cost of accessing a merged

fragment to the cost of accessing its
constituent grid cells

Cij: average cost of accessing grid cell Gi

Vl v2 v3
(al,a5,a7) (a2.a3, (a4,a6,alO)

a8,a9)

c- T4, T6,T8
T4,T6 T4,T8 T8 (a2,al,a8:al,a5:

a3,a4,a6,a9,alO)

(~5%) T5 T5, T7
c-TT5,T7

(al,a2,a3,a5,a7.
aB,a9:a3,a9)

e-TT1,‘IZ
(al,a5,a?:a2,a3,
a8,a9)

T3
c- T3

(a4,a6,alO)

Fig. 4 Transaction mapping

We assume a linear cost access model in
that the cost of accessing a grid cell Gij is given
by Cij=R~*(L&)*ct When a transaction needs to
access attributes in two horizontal cells that are not
merged, there is a need to perform ‘matching’ of
keys in the data obtained from the two cells. This
operation is a form of join and we refer to this
cost as ‘join cost’. Similary, when a transaction
needs to access tuples in two vertical cells that are
not merged. there is a cost due to the need to
perform -union of the resultant tuples which we
refer to as the ‘union cost’. On the other hand,
when a transaction needs data from only one of the
constituent cells of a fragment, there is an
additional cost due to the need to ‘project’ the
attributes and ‘select’ the tuples of the grid cell
from. the fragment as needed by a transactron.
w&ylY, we need the following addrtronal

S(f) : set of constituent grid cells of

FAf) :?ggkf of accessing only fragment f

C(f)
by k-th transaction
: average cost of accessing fragment f

Fk(fr,f2) : frequency of accessing both the
fragments fr and 5
by the k-th transaction

Jk(fr,f2) : join cost in processing fragments fl
and f2 for k-th transaction

Uk(fi,f2) : union cost in processing fragments
6 and f2 for k-th transaction

Pk(f) : projection cost in processing fragment f
for k-th transaction

Sk(f) : selection cost in processing fragment f
for k-th transaction

TCk(fr,f2) : total cost or saving for k-th transaction
by mer
vertical

‘ng fragments (horizontal or
P 6 and f2

We use the term “fragment” to denote the
result of mergin one or more vertical and/or
horizontal cells. f he two vertical fragments have
the same set of attributes (and hence same vertical
grid cells) while two horizontal fragments have the
same set of tuple ID’s (and hence same horizontal

‘d cells). The average cost of accessing fragment
r-l consisting of two or more grid cells is given by

C(f) = a C
GtiES(f)

Cij

We refer to the combined fragment obtained b
merging two fragments fr and f2 as frUf2. If SI
and VZ are two vertical fragments that can be
merged horizontally, then

TCAVr,V2) = Fk(Vr U vz)(c(v~ U v2) + Pk(vl I-J v2))

-(FrAVr)C(Vr) f Fk(V2)C(V2)+ Fk(Vr,V2)Jk(Vr,V2))

Similarly if Hr and H2 are two horizontal fragments
that can be merged vertically, then

TCk(Hr,H2) = Fk(Hr UH2)(C(Hr U Hz) + Sk(Hr U Hz))
- (Fk(Hr)C(Hr) + Fk(H2)C(H2) f Fk(Hr,Hz)Uk(Hr,Hz))

We note that it is beneficial to merge VI and V2 if

zNk:l nk(vI,v2) < 0.

Similarly it is beneficial to merge HI and Hz if

zNk=l Tck(Hl,&) < 0.

93

There is a trade-off between all these
costs. This trade-off determines an optimal
merging of grid cells. It is possible to use an
integer programmin formulation that determines an
optimal clustering o grid cells either horizontally or f
verically. But the formulation will be difficult to
solve and the solution procedure lacks intuition. For
this reason, we use a heuristic procedure thnt
performs successive merging based on the costs.

(c) Heuristic procedure for merging

Based on the cost functions we want to
merge cells as much as possible in order to
minimize the transaction processin
given relation is concerned. We p &ii

cost as the
om two kinds

of met-gin
merging. fjo;z; hg?$ld~ye& =$Y$$

the cells in the same row of the grid.

In horizontal mergn , the total number of
ways of merging is .Z:“i=i 8 i = 2” - 1 where “G
represents combination selecting i form n and n
represents the number of horizontal or vertical cells,
because the sequence of attributes has no meaning
in a relation. In our approach, however, we can
minimize the possible ways of combinations of
horizontal merging by using the ordered sequence
of fragments generated in vertcal partitioning.
Thus,
total 0 P

‘ven n candidate horizontal fragments, a
(n-1) + (n-2) + .. . + 1 = n(n-l)A!

mer ‘ng possibilities are generated. This is because,
in #ii e linearly connected spanning tree in vertical
partitioning, since a cut edge between two vertical
fragments is a bridge that has the maximum
affinity value among all connectable edges [Nava
891, we can say that a fragment is more closely
related to contiguous fragments compared to
noncontiguous fragments.

In vertical merging, cells in the same
vertical column of the grid may be merged to
produce larger fragments. Since the same graphical
partitioning approach is used for horizontal
partitioning, the total number of possilble ways of
vertical merging can be minimized in the same way
as in the horizontal merging.

Thus in our heuristic procedure, only
adjacent horizontal or vertical cells or fragments
are considered for merging. We use an iterative
greedy procedure in which we succesively merge
two adjacent fragments either horizontally or
vertically until no more saving can be obtained by
the merging process. The two adjacent horizontal
or vertical fragments that are chosen for merging
in each iteration are the pair that yield the
maximum savings by merging them together
instead of keeping them apart. The heuristic
procedure is given as follows:

Procedure MergeCells :

{ Initially each cell by itself is a fragment 1

Repeat
1. For each pair of adjacent horizontal or

vertical fragmegts Fi and F2, calculate
TC(Fi,Fz) = Z k=l TCk(Fr,Fzl, where
TCk(Fi,Fz) is as defined before.

2. If there exist at least one pair Fi and FZ
that has TC(FI,FZ) < 0, then fmd the
pair Fl and Fz that has the least value
of TC(F1,FA and merge them into a

horizontal or vertical fragment,

until No pair (Fl,Fz) exists with TC(Fl,F& < 0.

End MergeCells.

We note that in step 1, the cost calculation
is necessary only for the fragments adjoining the
merged fragment of the previous itration. Thus the
computation required in each iteration is small.

Example :

Figure 5 shows the costs of accessing each
of the horizontal fragments Hl, H2, H3, H4 and H5
(i.e. average cost of access of a tuple of the
relation times the number of tuples in the grid
cell).

They are 100, 150,. 200, 75, and 125 (i.e. cl,
CZ, c3, c4 and CS) respectively. The length of the
attributes of each of the vertical fragments are 14,
20 and 16 (i.e. k, Zz and IS) respectively. The cells
are denoted by Gil, lSS5 and lSjS3. Hence the
cost of accessing a single grid cell Gij is Cij = pi *
(lj / Z”j=i I.). Therefore the cost of accessing
cell GZ is &,2 = 150 * (20 / (14+20+16)) = 60.

grid

cost

100

200

75

125

Attributes le2nggth

(g-q--q

1
G G G

51 52 53 I

L(attributes of the jth

C ij = cost pf accessing the ith x
vertical fragment)

honzontal fragment LMl attributes)
20

i.e) C5 = 150 x =60
14 t 20 t 16

Fig. 5 Cost model for merging grid cells

In the following illustration we use the join
cost as a variabie to show how merging is
dependent upon the join cost. For simplicity in
notation we denote grid cell Gu as GL and grid cell
GE as Gz, and cost of accessing them as Cl and CZ
respectively. The fragment formed by merging cells
Gl and GZ as Giz with the cost of accessing as
Cu. The frequency of transactions accessin the
cells GJ, GZ and G12 is denoted Fn, Fzk an 8 Fm
respectively. The parameter (z is assumed to be
1.2. The projection cost is assumed to be 10.

The cost without merging is:

94

I I Server
a&=1 F&Cl = F14*C1 + F1e*G

= 35 * 28 + 25 * 28 = 1680

.Pklk=l FzCz = F24*Cz + Fza*Cz
= 35 * 40 + 15 * 40 = 2000

,%I FmJ = FmJ = 35 * J

Where J is the cost of joining the grid cells Gl and
G;! and the only transaction T4 accesses the
merged fragment with frequency 35.

The cost with the merged cells is:

.Z *kc1 FlzkClz = Fla*Clz + F12s*C12
+ F~zs*Crz

= 3: ;58;.“,1+625 * 81.6

= 6120 .

i?k=l F&/n + ,c*k=l F2~hm
= Fic*Pi,iz + Fzi*Pz/rz
= 25 * 10 + 15 * 10

= 400

Where Cl2 = a * (Cl + Cz)
= 1.2 + (28 + 40) = 81.6

We shall merge the two cells if:
1680 + 2000 + 35*J > 6120 + 400
i.e. if 35 *J > 2840 or if J > 81.11

The objective of above example was to
show that the two cells are merged on the
basis of the join cost and the frequencies of the
transactions accessing the cells. We call the results
of the merging “mixed fragments”. Figure 6 shows
one feasible result of merging.

Fig. 6 Grid optimization

3.22 Allocation of mixed fragments

After merging grid cells, the allocation of
the mixed fragments for a PC based distributed
databases can easily be performed by using the
transaction mapping information. Since the origin
sites of each transaction are fixed, the fragments
requested from only one site are allocated to the
requesting sites. However, the fragments that are
not accessed are allocated to a server for future
use. For example, fragment F4 in Figure 6 is
allocated to site Sl where transaction Tl is
originated, F5 to S2, and F6 to S3 (See Fi e 7
we assume that transaction Tl, T4, and ?i? be
originated from site Sl, etc.). Non-accessed
fragments namely Xl to X7 are all allocated to a
database server.

Sl (PC1 I
Tl,T4,T7

S2(PC2)
T2,T5,T8

Fig 7. Allocation of the commonly
accessed fragments

Now we consider the fragments that are
accessed commonly. They can be allocated to a
database server or to all the sites requestin them.
If the commonly accessed fragments are s located
to a database server, queries are sent to the server
and processed there, and then the result of the
queries are sent back to the requesting sites. The
cost for this scenario depends on the size of
results,. the frequency of requests, etc. On the other
hand, if the commonly accessed fragments are
replicated and allocated to all the requesting sites,
we should consider the update cost for updating
because an update query has effect on all copies of
a fragment. Since update cost is determined by the
number of replication and the unit cost per update,
there is a trade-off between the transmission cost
for results and update cost for the allocation of the
commonly accessed fragments. For example, Figure
7 shows the environment of the allocation of the
commonly accessed fragments in Figure 6. Note
that fragment Fl is requested from both site Sl by
transactron T4 and site S3 by transaction T6 (See
Figure 4). Suppose that Fl be allocated to the
server. Then to perform T4 we fist send T4 to
the server, and send the results of T4 back to Sl.
Update transaction T6 is performed on the server
and no side effect is produced. If, however, we
suppose that Fl be allocated to both sites Sl and
S3, then T4 is performed at Sl but update
transaction T6 gives rise to the updating for both
copies of Fl to perform update operations.

4. CONCLUSION

factors ?hat*sshEzd be considered for the p”
we investigated several

development of effective PC-based distributed
database systems. They are data fragmentation,
data allocation, LAN, and database server. Then we
proposed a methodology for PC-based distributed
database design. This methodology, which is based
on the mixed partitioning technique using a grid
ap roach can be done in the following two steps:
(lf Grid’ optimization, (2) Allocation of the mixed
fragments. For grid optimization., we developed a
cost model and pro sed a heuristic procedure for
merging grid cells. F he results of grid optimization

is called “mixed fragments” and are allocated to the
PCs on the corresponding sites by analyzing
transactions. The proposed distribution scheme can
improve the system performance by allowing data
sharing among PCs and by optimizing total
transaction processing cost.

Our work can be extended by incorporating
performance evaluation methods for merging grid
cells. We will also continue to study the
architecture and functions that a database server
should have.

RJZFERENCES

[Aper 881 Apers, P. M. G., “Data Allocation in
Distributed Database Systems,” ACM Trans. on
Database Systems, Vol. 13, No. 3, ~~263-304,
September 1988.

\&I& 841 Carter, G., Local Area Network, ICL,

[Ceri 821 Ceri, S., Negri, M., and Pelagatti, G.,
“Horizontal data Partitioning m Database Design,”
Proc. ACM SIGMOD International Conference on
Management of Data, ~~~128-136, 1982.

[Cer 83a1 Ceri, S., and Navatbe, S. B., “A
Methodology
Databases,’

to the Distribution Design of
Proc. IEEE COMPCON Conference, San

Francisco, CA., February 1983.

[Ceri 841 Ceri,. S., and Pelagatti, G., Distributed
Ftabases : Principles and Systems, McGraw Hill,
984.

[Ceri 881 Ceri, S., Perinici, B., and Wiederhold, G.,
“Optimization problems and Solution Methods in the
Desi of Data Distribution,” Working Paper,
Stangd University, 1988.

[Corn 871 Cornell, D. W., and Yu, P. S., “A
Vertical Partitioning Algorithm for Relational
Databases,” Proc. Third International Conference on
Data Engineering, pp.30-35, February 1987.

[Co? 881 Cornell, D: W., and Yu, P. S:, “Site
$eslgnmer$ for Relations and Join Operations - 111

Drstrrbuted Transaction. Processmg
E$ir;~Eit,~ Proc. Fourth International Conference

gmeenng, Los Angeles, February 1988.

[Corn 891 Cornell. D. W., and Yu, P. S., “On
Optimal Site Assignment for Relations m the
Distributed Data Environment,” IEEE Trans. on
Software Engineering, Vol. 15, No. 8, pp.1004- 1009,
August 1989.

[Elma 891 Elmasri, R., and Navatbe, S. B.,
Fundamentals of Database Systems, Benjamm
/Cummings Pubhshmg, 1989.

[Hamm 791 Hammer, M., and Niamir, B., “A
Heuristic Approach to Attribute Partitioning,” Proc.
ACM SIGMOD Intmyano& Conference on
Management of Data, Ma

Communication and Networking for the IBM 2
[Jord WI Jordan, L., and Churchill,

and Compatibles, Third Edition, Brady Books, New
York, 1990.

[Nava 841 Navathe,. S. B., Cqi,. S., Wiederhold, G.,
and Dou, J., “Ver!~~~%Mtiti~i~ Algorithms for
Database Desi
Systems, Vo1.9, 0.4, pp.690-‘/lo, Decgber 1984. 8”

Database

[Nava 8pl Navathe, S. B., and. Ra, M., “Vertical
Payo%eq for Database Des1 : A Graphical

Proc. ACM SIG&D International
Conference on Management of Data, pp.440-450,
May 1989.

[Nava 901 Navathe, S. B., Ra, M., Varadarajan,. R.,
Kar&mI+, K., and Streewastav, K., “A Mixed
f%&tgyn Methodolo for Distributed Database

1990. ’
I%-CIS TR g-17, University of Florida,

[Ozsu 911 Ozsu, M. T., and Valduriez, P., Princi les
of Distributed Database Systems, Prermce ---+a
1991.

[Patt 901 Pattipatti, K R., “A File Assignment
Problem Model for Extended Local Area network
Environments,” Th; l.l Internanon~~&F~r;;
on Distributed Co P R Systems, P ,
May 1990.

[Ra 901 Ra, M., “Data Fragmentation and Allocation
Algorithms for Distributed Database Design,”
Doctoral Dissertation, University of Florida, 1990.

Gra h-based Horizontal
f%stributecl Database

of the Korea Information Science

[Rein 89) Reiner, D. S. “PC-based Database
gyTemgent System,” ACM SIGMOD Tutorial,

[Yu 851 Yu, C. T., Suen, C., Lam, K., and Siu, M.
K., “Adaptive Record Clustering,” ACM Trans. on
ptabase Systems, Vol. 10, No. 2, pp.180-204, June

96

