
THE DiNG - A PARALLEL MULTIATTRIBUTE FILE
SYSTEM FOR DEDUCTIVE DATABASE MACHINES

T.A. Mueck

Dept. of Information Systems
University of Vienna

Liebigg. 4/3-4
1010 Vienna, Austria

mueck@ifs.univie.ac.at

ABSTRACT

We investigate the main requirements for mass storage sub-
systems with regard to the needs of deductive database
machines. In particular, we focus in this paper
. on fully integrated index data structures, namely a mul-

tiattribute search structure based on a grid file derivate
and

. on certain hardware requirements, i.e., redundant arrays
of inexpensive disks in order to avoid a disk I/O
bottleneck during rule processing.

The former requirement is motivated by an example, in par-
ticular by a closer look at the execution of Datalog-* rule
sets. As a solution, we propose the DiNG file system as
speciaiised mass storage subsystem for high performance
deductive database machines. The DiNG file system is a
highly parallel me system which supports symmetric mul-
tiattribute queries against fact- and rulebases. At the
moment, the DiNG file system is operational on an experi-
mental shared nothing MIMD machine, namely an eight-
processor/eight-disk intel iPSC/2.

1. INTRODUCTION

During the last decade, considerable research effort has been
invested into parallel rule base processing in deductive data-
bases (see [WDSY91] and [GaST90] for recent results) and
in deductive database machines (DDBM) based on parallel
hardware platforms in general (see -881 and
[GRBB88]). Until now, not so much attention has been paid
to questions regarding the mass storage components of such
systems. In most cases, standard mass storage subsystems
commercial relational DBMS have been used. However,
due to the fact- and rulebase size of large scale practical
applications and to the recent advent of real-time expert sys-
tems, the special requirements for mass storage subsystems
(MSSS) used by DDBM have to be investigated. In other
words, specialised high performance MSSS have to be
designed and implemented according to the particular needs
of DDBM. The main design goal has to be best possible
mass storage support for upper layer components like infer-
ence engines.
In this paper, we give an outline of MSSS requirements as
far as DDBM are concerned, motivate these requirements by
means of an example, namely the execution of Datalogl*
rule sets, and propose the DiNG file system as an appropri-
ate MSSS for high performance DDBM. The DiNG file sys-

tem is the first operational component of a new federated
DBMS system, namely the PARABASE architecture as
described in [Muec92] and in [KoMV92]. The PARABASE
research effort focuses on shared nothing MIMD machines
used as high performance DBMS servers participating in
distributed workstation environments, in particular on a pro-
totype designed and implemented for an iPSC/2 hypercube
machine linked into an TCP/IP based network. Our intention
in this paper is to show that the highly parallel lile system
of the PARABASE project is an efficient choice for a
MSSS in deductive database environments. In particular,
we argue that a specialised parallel file system is needed to
process exact match, partial match and range queries against
fact sets as low level lile system operations instead of con-
ventional low level read/write operations against flat files
(see [Witzgl] for an outline of the file system and
[MuSc91] for a description of the data structure).
After a brief requirement specification and an additional
motivation for multiattribute search structures in Sections 2
and 3, the current hardware platform and the corresponding
system software environment is described in Section 4. A
sketchy description of the underlying index data structure is
given in Section 5. This section might be skipped if the
reader is not interested in the details of multiattribute search
structures, since the following section does not rely on this
material. Section 6 deals with a number of technical issues
regarding the parallel lile system. In particular, the basic
structure, the data distribution policy and interprocess com-
munication pattern are addressed. Section 7 provides conclu-
sions and a short outlook at work in progress.

2. REQUIREMENTS FOR THE MASS STORAGE
SUBSYSTEMS OF DDBM

From out point of view, there are two main requirements for
a mass storage subsystem (MSSS) to be used in the context
of a deductive database machine. Both requirements are
equally important with respect to the overall usability and
performance of the MSSS although they are quite different
with respect to the architectural layers of a DDBM (the first
is somewhat hardware-oriented whereas the second leads to
search structure considerations).
At first, a MSSS to be used in a DDBM should be able to
operate disk arrays in an application-transparent fashion.
The reason is very simple and refers to the increasing
discrepancy between enhancements in CPU power and disk

I/O bandwidth. The former are impressing both with respect
to functionality and speed whereas the latter are rather mod-
est. Conseqently, RAID technologies (see [WeZS91] for an
example) can be used to achieve a better balance between
CPU power and I/O bandwidth. However, the existence of
disk arrays has to be application-transparent, since an appli-
cation designer is usually not interested in the hardware-
technical details of the underlying MSSS. This is certainly
not a specific requirement for DDBM (it could be stated as
well for any MSSS to be used by data intensive applica-
tions), nevertheless, a reasonable combined disk I/O
bandwidth is a crucial point for real-life sized fact bases
including several billions of tuples, i.e., several gigabytes of
data.
Secondly, an appropriate MSSS has to support symmetric
multiattribute search operations, i.e., queries which are
specified with respect to several key attributes. In the fol-
lowing section, an example is used to provide additional
motivation for this requirement. Basically, any inference
process issues a considerable number of queries to be exe-
cuted in large fact sets which are usually represented by k-
tuples. Most of these queries refer either to all or at least to
several values of the k-tuples. In other words, a distinction
between primary and secondary keys in the context of query
execution (like for example in commercial database environ-
ments) is not meaningful. Consequently, the MSSS has to
be build upon a multikey index data structure which yields
an efficient multiattribute clustering and allows therefore
fast multiattribute search operations (we elaborate on this
issue in the next section).
With respect to these requirements, we use
. a shared nothing MIMD hardware platform with multi-

ple disk arrays (i.e., the possibility to access one SCSI
disk array per computing node) in order to provide
sufficient disk I/O bandwidth for the handling of large
deductive databases and

. a state-of-the-art multikey index data structure based on
a grid file derivate as basic tile structure which is
intended to speed up symmetric multiattribute search
operations.

In an overall DDBM architecture, the hardware platform
together with the MSSS can be used either as high perfor-
mance fact- and rulebase server to be accessed via TCP/IP
or directly as a low-level retrieval machine for a parallel
inference engine running on the same hardware platform.
Neither of these architectural alternatives yields a significant
change in the requirements stated above.

3. MULTIATTRIBUTE SEARCH OPERATIONS IN
FACT- AND RULEBASES - AN EXAMPLE

From several alternatives, a recent Datalog variant has been
chosen as demonstration example in favour of multiattribute
query support to be offered to inference engines running on
top of the MSSS. In particular, the evaluation of Datalogy*
rule sets (SW [AbSi91]) is investigated. The choice is nearly
arbitrary, since all inference schemes lead to similar query
request patterns. Informally, Datalop* allows negative
literals both in the head and in the body of a rule. Conse-
quenfly, a rule contains several literals of the form
f (arg 1, ..) or -f (arg 1, . .) and has therefore the general
structure

bLfh(~r&l~ -) * ~dfbl(“‘&1.19 -h . . [llfbn(argbn.l, -)

As usual, any argument might be either a variable (denoted
by a capital letter) or a constant (denoted by an integer).
The semantics of rule instantiations are straightforward.
Each variable has to be bound in such a way that
. positive liter&s in the body correspond to facts stored

in the factbase and
. negative literals in the body correspond to facts not

stored in the factbase.
Additionally, for each rule instantiation, a positive literal in
the head means a fact insertion upon rule execution whereas
a negative literal corresponds to a fact deletion. This rather
informal description can be illustrated by the following pro-
gram fragment representing an operational semantics
specification for Datalop* rulebase execution. The com-
ments used to indent@ execution phases are subsequently
referenced in an example.

rb-exec(IN rs : rulebase, IN-OUT fb: factbase)
{ inst: set of instantiated rule heads;

i: instantiated rule head
LOOP
{ // instantiation

inst + all heads of rule instantiations
with respect to rs and@

// check if tixpoint
FOREACH i IN inst

lF ((i is positive) AND (i nUfb)) OR
((i is negative) AND (i NOT lNfb))
inst * inst \ {i}

lF inst = {) EXIT;
f/ remove pairwise inverse heads
FOREACH i IN inst

IF 4 IN inst
inst * inst \ {i -C}

I/ execute heads
FOREACH i IN inst

IF i is positive
fbe=fbuCil

ELSE
fi e=fb\Cil

I
I

Figure 1: D&doe* operational semantics
The following example of a rulebase execution is rather
simple, since all rules contain only positive literals. How-
ever, using negative literals in the example would only
increase the complexity without any additional contribution
to the requirement motivation. In other words, a need for
multiattribute search operation support can be demonstrated
even by such a simple rulebase. In particular, we consider
the following input to rb_exec():

RULEBASE FACTBASE
aKY,Z) e= WLY), cW,Z). b(W 424) d(l) e(l) f(2)
c(3,x) (= d(X), e(X). W3 d(2)
c(3,x) * f(x).

Figure 2: debase and fuctbuse example

116

to be launched during rule instantiation and execution. The
instantiation process is admittedly naive, i.e., non-optimised,
but illustrative as far as multiattribute query requests are
concerned.

Phase I: rule instantiation
atX,Y,Z) * W&Y), cW,Z).

query1 b(*,*) * t WV), WV) I; t&e b(V)
aW,Z) (= b(1,2), cW3.

query2 c(2,*) * (c(2,4) }; take c(2,4),
query2 exhausted, terminate

a(L2,4) e= bu,2h ~(2~4).
insert into inst values (+,a,1,2,4)
resume queryl; take b(2,3),
query 1 exhausted, terminate

aW,Z) * b(W), c(3,Z).
query3 c(3,*) * C I;
query3 exhausted, terminate

a(2,3,Z) * fail.
no query open for a(X,Y,Z)

~(3~x1 e= NW, e(x).
query4 dt*) * C d(l), d(2) I; take d(l)

c(3,U * d(l), e(x).
query5 e(1) * { e(1)]; take e(l),
query5 exhausted, terminate

c(3A * d(l), e(l).
insert into inst values (+,c,3,1,-)
resume query4; take d(2),
query4 exhausted, terminate

~(3~2) e= d(2), e(x).
query6 e(2) * t I;
query6 exhausted, terminate

c(3,2) e fail.
no query open for c(3,X)

c(3,W e= f(x).
query7 f(*) * 1 69 I: take f(2),
query7 exhausted, terminate

c(3,2) e= f(2).
insert into inst values (+,c,3,2,-)
no query open for c(3,X)

inst = { a(1,2,4), c(3,1), c(3,2))

Phase II: checking if a fIxpoint has been reached
query8 aU,W * C I;
query9 ~(3~1 * I I;
wry10 ~(3~2) =$ i 3;
inst = { a(1,2,4), c(3,1), c(3,2) }

Phase Ilk checking for pairwise inverse heads
query11 inst(-,a,1,2,4) * { };
query12 inst(-,c,3,1,-) * { };
query13 inst(-,c,3,2,-) =+ { };
inst = C a(1,2,4), c(3,1), c(3,2) }

Phase IV: factbase update
insert into a values (1,2,4)
insert into c values (3,l)
insert into c values (3,2)

Figure 3: execution trace with respect to MS&S requests
Although this execution trace is significantly abridged (it
represents only the first interation of the LOOP-processing),
it contains a considerable number of mass storage requests
even for a very small fact- and rulebase. Considering the
number of query/update requests in real-life deductive data-
base processing within gigabyte fact- and rulebases, the per-
formance of the underlying MSSS becomes a crucial issue
for the overall performance of a DDBM.

4. HARDWARE ENVIRONMENT, SYSTEM SOFT-
WARE AND OVERALL ARCHITECTURE

Currently, an eight processor intel iPSC/2 hypercube
machine is used as shared nothing MIMD platform. The
iPSC/2 is mainly intended as MSSS server to be accessed
via standard TCP/IP connections. In a normal scenario,
several workstations running local applications are allowed
to access shared data sets (relational databases, fact- and
rulebases, object collections ..) maintained by the mass
storage server. This is related to the so called federated
DBMS paradigm. In such architectures, several clients use
their private databases (PDB) on local machines and a
number of shared databases (SDB) on one or more host
machines. The high-level data exchange protocol is simple.
Data sets (tuple sets, fact- and rule sets, object sets, . ..) can
be transferred to or from a shared database employing a
simple yet elegant exchange mechanism, namely the
CHECK-IN and CHECK-OUT protocol known from
[Kimgl]. This concept is based on a data set transfer from a
shared database to a private database (CHECK-OUT), an
eventually long lasting data manipulation phase and a final
retransmission of the data set to the shared database
(CHECK-IN).
System software includes UNIX System V at the “system
resource manager” (SRM), an i386 based workstation which
serves as a front end system to the actual hypercube, a
UNIX derivate called Nx/2 as symmetric no& operating
system and the intel supplied “concurrent file system” (CFS,
see per891 for details) used to operate the disk array. The
DiNG tie system is meant to replace the CFS in all cases.
However, the current file system prototype is still using
low-level disk access functionality (basically raw device
handling) provided by the CFS.
In contrast to ordinary iPSC/2 or iPSC/860 platforms, all
processors of this configuration serve both as computing
nodes and as I/O nodes. Each node is equipped with a stan-
dard SCSI controller and, at least at the present moment,
with one 65OMB SCSI disk. The next hardware extension
should include several disks per controller device in order to
take full advantage of the SCSI bus bandwidth. The archi-
tectural distinction between computing nodes accessible for
application processes and mass storage nodes (so called I/O
nodes) only accessible via file system calls (as used by intel
for NlC applications) would be counterproductive for a
mass storage oriented project and has been omitted for that
reason.

117

Consequently, the current hardware configuration looks
this:

AT&T S ys V Workstation

SRM

i “lifeline”
TCP/IP

node structure in detail:

DirectConnect
node interconnection

Figure 4: iPSCI2 hardware con$guration
The different communication hardware technologies dep-
icted in Figure 4, namely standard Ethernet for client-server
communication, intel proprietary DirectConnect for node-
node communication and SCSI for node-controller commun-
ication, yield to challenging problems with respect to
bandwidth balancing. Additionally, considering the rapid
change in communication hardware and the resulting rapid
change of bandwidth ratios between the communication
layers (client-server, node-to-node, node-controller), any
parallel DBMS architecture has to provide means for optim-
isations in case of changing bandwidth ratios.
The important point with respect to this hardware and sys-
tem software configuration is obviously not performance.
In fact, it is the possibility to design, implement and evalu-
ate different parallelisation concepts in a common frame-
work, namely a shared nothing MIMD machine running a
symmetric node operating system based on well-known
architectural concepts.

5. A PARALLEL NON-STANDARD FILE SYSTEM
FOR LARGE FACT- AND RULEBASES

Replacing stable and well-known standard MSSS, like for
example the UNIX file system, by novel MSSS prototypes
is a resource-consuming process which has to be motivated.
Consequently, this section contains a short rationale for
non-standard lile systems to be used by data intensive
clients. This rationale is given prior to the description of the
DiNG internal data structures. The presentation of several
technical core issues like data distribution and communica-
tion structure in a parallel environment is delayed to the
next section.

5.1. Non-standard file systems for data intensive appli-
cations - a rationale
Standard UNIX file systems as well as state-of-the-art paral-
lel file systems (see [Pier891) maintain flat files, i.e.,
unstructured byte strings held on mass storage devices.
Common access primitives on such files are read, write and

seek. The operating system supports atomic data transfer
actions for continuous byte segments belonging to files. In
other words, each file system read or write call issued by an
application is intended to transfer a certain amount of unin-
terpreted data from a mass storage device into the applica-
tion address space or vice versa. In most cases, the contiuu-
ous byte segments to be transferred are specified as a
number of bytes relative to a so called Jile pointer. The cru-
cial point is that all the data have to be uninterpreted, i.e.,
without any structure or semantics, as far as the file system
itself is concerned. In any other case, the flexibility of the
data type JiZe and the general usability for all kinds of appli-
cations would vanish.
This type of mass storage subsystem is well established and
absolutely sufficient for non-database environments, espe-
cially for numerical computing. However, data intensive
applications which have to rely on high-performance per-
sistent storage management subunits (e.g. all kinds of data-
base management systems and all kinds of software data-
base machines) reveal the inherent weaknesses of flat file
systems very quickly. Recalling the example contained in
the previous section, we already motivated a strong need for
access operations which act directly on sets of facts and/or
rules. In case of performance critical data intensive applica-
tions, a set of specialised query/update operations have to be
implemented in order to replace the standard access opera-
tions acting on continuous byte segments, Jn Section 4, we
showed that the inference engine of a DDBM issues a large
number of mass storage requests for fact and/or rule sets
fulfilling certain logical conditions defined over certain
attributes of the data.
From our point of view, a file system designed to process
such requests with reasonable performance has to include
two key features, namely internal (in the sense of tightly
integrated) multikey indices and parallel request processing.
The former supports fast symmetric multiattribute search
operations whereas the latter helps to bypass the ever
present disk I/O bottleneck. Additionally, the design of a
non-standard MSSS requires a decision whether the per-
sistent storage management system should use internal index
structures on top of the common flat jiIe system or instead of
the flat file system. The second alternative implies a com-
plete logical bypass of the original file system which actu-
ally ends up in a physical replacement in most cases since
the partitioning of mass storage devices for different hle
systems seems to be rather unattractive for various reasons.
Some basic performance considerations favour the second
alternative, even in spite of the need for additional develop-
ment work. Intuitively, each additional layer in a persistent
storage management system consumes a certain fraction of
the overall system power, therefore the integration of the
basic data storage functionality and of the index mainte-
nance functionality yields significant performance improve-
ments .
Consequently, the new DiNG 6le system is meant to replace
the current flat file system (in particular the CFS) in case of
data intensive applications. It has to provide flat file system
capabilities as well as the tuple set capabilities outlined
above. Fortunately, CFS source code has been already sup-
plied by Intel, therefore an integration of DiNG 6le and flat
file functionality does not end up in too much additional
effort at the moment.

118

5.2. Distributed and nested grid files as internal data
structure
Following from the above, a file system prototype based on
distributed and nested grid files (called DiNG tiles in the
sequel, see [Witzgl] or FluSc91] for details) has .been
implemented. It supports fact and/or rule insert and delete
operations as well as parallel exact match, partial match and
range queries quasi at system call level.
Distributed and nested grid files are a multikey index struc-
ture designed for MSSS on shared nothing MlMD machines,
i.e., an index structure which allows for parallel queries
against key attribute sets. Prior to the description of the
DiNG file system, a few words about the underlying basic
data structure, i.e., nested grid files as presented in [Free871
or [Free89], seem to be appropriate.

The key idea common to all grid file design approaches is
the interpretation of n-tuples as elements of an n-
dimensional space. This space, called data space in the
sequel, has to be successively partitioned into smaller sub-
spaces as the number of tuples increases. The resulting set
of smaller subspaces used to give a partitioning of the initial
data space has to be mapped to a totally ordered set, namely
the disk block address space. This is to ensure that each
relevant subspace of the n-dimensional data space
corresponds to one physically transferable storage unit, i.e.,
a disk block, since any possible n-tuple has to be stored in
one of the allocated disk blocks if passed to the mass
storage subsystem for insertion. In the original grid tile
design (see [NiHS84]), the geometric contents of any two
subspaces have to be disjoint. With respect to a reasonable
directory expansion behaviour in case of non-uniformly dis-
tributed or correlated raw data, the nested grid file approach
relaxes this condition to some extent. The relaxed partition-
ing condition reads as follows: if any two hyperrectangles
intersect, one has to enclose the other. The resulting parti-
tioning schema, which in turn determines the geometric
shape of the subspaces, is conceptually simple. Basically, it
is a buddy system with subsequent binary partitioning of
the initial data space. All hyperrectangles are created as a
result of alternating and cyclic binary domain splitting as
depicted for the 2-dimensional case in Figure 5(a) below.
Region numbers are created by successive bit interleaving of
the domain subinterval bit signatures. The interleaving
sequence is given by the cyclic domain split sequence, i.e.,
l.bit of domainI, l-bit of domain . . l.bit of domain , 2.bit
of damain , 2.btt of domain . . 2.&t of domain andnso on.
Figure S(bj illustrates the bit%&erleaving concep’t.

first split second split

(a) successive data space partitioning

third split

block region identifier
(interleaved bit signatures) ...’ .. .;___ . . /’ :’ ‘l ;: ‘... ““‘.ll

,!

r-l
0 El .lloo

I
ooo).:~~

I I

'0 ' 1
I

’ 00 ’ 01 ’ 10 ’ 11 ’

1 11

IF 10

0 01

00

domain subinterval
bit signatures

(b) hyperrectangle identification
Figure 5: Partitioning and subspace identi)ication
The physical directory structure is implemented as height-
balanced multiway tree. Figure 6 shows a small file (very
much resembling the example of Figure 5a), both in its
geometrical and in its data structure oriented representation.
As depicted, the file consists of one directory bucket and
four data buckets.

.X
directory (4 region entries)

‘., logical region < block region
logical region = block region (no region enclosed)

Figure 6: Nested grid file example
A search for tuple X in Figure 6 includes a directory traver-
sal to find the subspace identifier corresponding to the
enclosing block region. The data bucket reference attached
to the region identifier provides access to the data bucket in
which X is actually stored. However, a closer look at the
search process reveals that the smallest enclosing subspace
has to be found. Tuple X is contained in three subspaces (-,
11 and 1100) but actually stored in the data bucket refer-
enced by the smallest enclosing region (1100 in this case).
A detailed discussion of the reasons for this kind of data
space organisation is beyond the scope of this paper. Basi-
cally, the region nesting is motivated by a graceful perfor-
mance degradation in case of non-uniformly distributed raw
data. Standard grid file organisations exhibit an unacceptable
(i.e., exponential) worst case behavior with respect to direc-
tory expansion.
This symmetric multikey approach is in strong contrast to
B+-tree approaches, which either favour certain attributes or
attribute combinations or force a database administrator to
use an unacceptably large number of index structures for

119

one single file. In particular, 2*-l B+-trees would be needed
for a IYe with n key attributes. Additionally, the attribute
sequence in a compound single-key index is not even con-
sidered in this figure although it is of prime relevance for
any query optimiser.

6. THE DiNG FILE SYSTEM - STRUCTURE, DATA
DISTRIBUTION AND COMMUNICATION

After the motivation for the design and implementation of a
non-standard file system and the brief outline of the under-
lying basic data structure, the technical characteristics of the
resulting parallel file system can be described. In particular,
we elaborate on the actual file system structures, i.e., on
superblock and i-node maintenance, on the current data dis-
tribution policies and on the inter-node communication
structure of the MSSS processes with regard to client appli-
cations.

6.1. The client-server structure of the file system
The basic mass storage block allocation, handling and
administration schema of the DiNG file system is conceptu-
ally simple and similar to the UNIX mass storage block
administration. At that level, the main differences between a
standard parallel tile system and the DiNG 6le system stem
from the separate handling of data blocks and index block.
Free space administration is done with bit map structures,
i.e., the MSSS control process maintains a super block, an
i-node bit map, a bit map for data and index block, a list of
i-nodes and a list of block containing data blocks as well as
index blocks. Since data blocks and index blocks are han-
dled by different subprocesses of the file system, a
differentiation between the two block classes is necessary
even at this lowest level of block administration. At the
moment, the block buffer cache employs a standard hash
table based LRU displacement strategy (see mane921 for
example). Other displacement strategies are currently con-
sidered, however, a detailed discussion of buffer cache con-
siderations would be beyond the scope of this report.
Readers interested in this topic may refer to @luSc913.
At this point, the internal process structure of one of the
parallel MSSS processes (depicted in Figure 7 below) has to
be described. However, the discussion of the control flow
and the data flow between the subprocesses and the client
processes in case of fact- and/or rule insert requests or
query requests is delayed to Subsection 6.2.
Each DiNG file system client has to use a client library
which is responsible for correct protocol handling and
appropriate message formats. This library provides access to
the local file system server, i.e., the MSSS process located
on the same node as the client process. In other words, all
MSSS requests issued by any client process are initially
handled by the local MSSS process. Subsequent parallel
processing is transparent to the client, since requests are
passed to and results are obtained from the local server.

I client process

ie MSSS data

MSSS requests
--------- ____________________--------------

t

Figure 7: MSSS process subcomponents
The client library has a counterpart in the MSSS process,
namely the client message handling library used by the
MSSS control process. The control process uses a second
message handling module, namely the control message han-
dling library for all internal communications with other con-
trol processes on different nodes. Besides all coordination
and control tasks in the context of insert, delete and query
request handling, the control process manipulates directly all
index blocks. In other words, the control process executes
all index searches and passes the resulting data block
numbers subsequently to the fetch & send process, which is
responsible for data block handling. A third process, the so
called get & send process is responsible for all query result
deliveries. It collects all query subresults from all
fetch & send processes, i.e., from the local as well as from
all other fetch & send processes on different nodes and
passes the collected data to the client process.
The data distribution policy can be described as round robin
distribution. Each insert request
INSERT <fact or rule> INTO <tile>
is passed to the local control process and triggers a lookup
operation in the corresponding i-node which yields the
appropriate node number for the next insert into <tile>. In
particular, if lust-P(<fYe>) denotes the number of the MSSS
process which received the last tuple previously inserted
into <file> and if p denotes the number of operational server
processes, the expression (lust-P(<tile>)+l modulo p) yields
the number of the MSSS process which is going to receive
the fact or rule for insertion. If the calculated process
number refers to the local node, the correct data block
number is determined, the fact or rule together with the data
block number is passed to the fetch & send process and
finally inserted by this process. If the calculated process
number refers to a different node, the control process passes
the data item to the corresponding control process which
takes the appropriate steps for local insertion. All further
implementation details of the distribution process (e.g. the
node counter update per sle) are omitted in here. In fact,
their contribution would be rather limited in the context of
this paper.

120

As a result of this distribution schema, each DiNG lile is
spread over all available nodes. In other words, each logical
DiNG 8le as seen from a client’s point of view consists of a
number of physical DiNG ties. The contents, i.e., the tuple
set of one logical file equals the union of all corresponding
physical ties.

6.2. Control and data flow during query execution
Control flow and data flow in the context of query execu-
tions represent probably the most interesting parts of the
interprocess communication in the tile system.
The following description refers to the process structure dis-
cussed in Subsection 6.1 and to Figure 8 below, which dep-
icts the situation in case of a query execution.

collected query data
-5

i , y query request, ---____-___--___________________________--- &--- ----

-0
query data
collection

control Proc. I

remote node f

Figure 8: Query execution
A particular query request on no& i is launched via au
appropriate library call, received by a client message han-
dling function and passed to the local control process on
node i. This responsible control process sends the query
request to all other control processes (phase 1). All control
processes perform an index search on their local part of the
DiNG tile (see above) in parallel and extract all relevant
data block numbers from the index (phase 2) and pass these
numbers to the corresponding fetch & send processes. All
fetch & send processes fetch the appropriate data blocks in
parallel and send the retrieved data to the get & send pro-
cess on node i (phase 3). As soon as the get & send buffer
area on node i is f%d, the get 8z send process broadcasts

some kind of <stop-transmission signal to all
fetch & sendf&s processes. Subsequently, it engages in the
data delivery to the client process (phase 4). As soon as the
get & send buffer contents has been delivered, a
restart-transmission signal is broadcasted by the
get & send process and the receiving fetch & send processes
restart their delivery operations. This protocol iterates in
phase 3 and phase 4, until all the data qualified by the query
request has been delivered.

7. CONCLUSIONS

A non-standard parallel file system, namely the DiNG file
system, is proposed as mass storage subsystem for deductive
database machines. We argue that the DiNG file system
meets two crucial performance requirements for specialised
MSSS to be used as part of deductive database environ-
ments. J.n particular, the DiNG tile system takes advantage
of disk arrays in shared nothing MJMD configurations and
uses multikey indices as internal search structure. The need
for high-performance MSSS is demonstrated by an example,
namely the inference procedure for Datalop* rulebases.
The DiNG file system adheres to a strict client-server archi-
tecture and is structurally tailored for recent microkernel
approaches on highly parallel platforms (like for example
the MACH kernel).

References

[AbSi9 l]

[Free871

[Free891

[GaST90]

[GRBB88]

[Kim911

S. Abiteboul and E. Simon, “Fundamental pro-
perties of deterministic and nondeterministic
extensions of Dataloge,” Journal of Theoretical
Computer Science, vol. 7, no. 4 (1991).
M.W. Freeston, “The BANG file: A new kind
of grid tie,” in Proc. ACM SIGMOD Conf.,
ACM Press, San Francisco (1987).
M.W. Freeston, “Advances in the design of the
BANG file,” 3rd Jnt. Conf. on Foundations of
Data Organisation and Algorithms, Paris (1989).
S. Ganguly, A. Silberschatz, and S. Tsur, “A
Framework for the Parallel Processing of Data-
log Queries,” in Proc. ACM SIGMOD Conf. on
Mangement of Data, ACM Press, Atlantic City
(1990).
R. Gonzalez-Rubio, J. Rohmer, A. Bradier, and
B. Bergsten, “DDC: A Deductive Database
Machine,” in Database Machines and
Knowledge Base Machines, ed. H. Tanaka,
Kluwer Academic Publishers (1988).
W. Kim, “A Distributed Object-Oriented Data-
base System Supporting Shared and Private
Databases,” ACM TOZS, vol. 9, no. 1 (1991).

[KoMV92] M. Kollingbaum, T.A. Mueck, and G. Vinek,
“PARABASE - A federated DBMS architecture
supported by a shared nothing database server,”
in Proc. of the OpenForum Technical Confer-
ence, EurOpen, Utrecht (1992).

121

-88lH. Matsuda, M. Kohata, T. Masuo, Y. Kaneda,
and S. Maekawa, “Implementing parallel Pro:
log System on Multiprocessor System PARK,”
in Database Machines and Knowledge Base
Machines, ed. H. Tanaka, Kluwer Academic
Publishers (1988).

Flusc911

[Muec92]

piHS84J

[Pier891

[Tane92]

T.A. Mueck and M. Schauer, “Sorting in the
BANG file,” Tech.Rep. #109, Dept. of Informa-
tion Systems, University of Vienna (1991).
T.A. Mueck, “Using a shared nothing MlMD
machine as high performance database server,”
in 4th GI-Workshop on Foundations of DB Sys-
tems, ECRC-92-13, ed. U. Lipeck, European
Computer-Industry Research Centre (1992).
J. Nievergelt, H. Hinterberger, and K.C. Sevcik,
“The Grid File: An Adaptable, Symmetric Mul-
tikey File Structure,” ACM-TODS, vol. 9, no. 1,
pp. 38-71 (1984).
P.A. Pierce, “A Concurrent File System for a
Highly Parallel Mass Storage Subsystem,” in
Proc. of the 4th Conf. on Hypercubes, Con-
current Computers and Applications, Pasadena
(1989).
A.S. Tanenbaum, Modern Operating Systems,
Prentice Hall, Englewood Cliffs (1992).

[WeZS91] G. We&urn, P. Zabback, and P. Scheuermann,
“Dynamic File Allocation in Disk Arrays,” in
Proc. ACM SIGMOD Conf. on Mangement of
Data, ACM Press, Denver (1991).

[witz91] J. Witzmann, “The DING file system,” Master
Thesis, Dept. of Information Systems, Univer-
sity of Vienna (1991).

[WDSY91] 0. Wolfson, H.M. Dewan, S.J. Stolfo, and Y.
Yemini, “Incremental Evaluation of Rules and
its Relationship to Parallelism,” in Proc. ACM
SIGMOD Conf. on Mangement of Data, ACM
Press, Denver (1991).

122

