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ABSTRACT 

We investigate the main requirements for mass storage sub- 
systems with regard to the needs of deductive database 
machines. In particular, we focus in this paper 
. on fully integrated index data structures, namely a mul- 

tiattribute search structure based on a grid file derivate 
and 

. on certain hardware requirements, i.e., redundant arrays 
of inexpensive disks in order to avoid a disk I/O 
bottleneck during rule processing. 

The former requirement is motivated by an example, in par- 
ticular by a closer look at the execution of Datalog-* rule 
sets. As a solution, we propose the DiNG file system as 
speciaiised mass storage subsystem for high performance 
deductive database machines. The DiNG file system is a 
highly parallel me system which supports symmetric mul- 
tiattribute queries against fact- and rulebases. At the 
moment, the DiNG file system is operational on an experi- 
mental shared nothing MIMD machine, namely an eight- 
processor/eight-disk intel iPSC/2. 

1. INTRODUCTION 

During the last decade, considerable research effort has been 
invested into parallel rule base processing in deductive data- 
bases (see [WDSY91] and [GaST90] for recent results) and 
in deductive database machines (DDBM) based on parallel 
hardware platforms in general (see -881 and 
[GRBB88]). Until now, not so much attention has been paid 
to questions regarding the mass storage components of such 
systems. In most cases, standard mass storage subsystems 
commercial relational DBMS have been used. However, 
due to the fact- and rulebase size of large scale practical 
applications and to the recent advent of real-time expert sys- 
tems, the special requirements for mass storage subsystems 
(MSSS) used by DDBM have to be investigated. In other 
words, specialised high performance MSSS have to be 
designed and implemented according to the particular needs 
of DDBM. The main design goal has to be best possible 
mass storage support for upper layer components like infer- 
ence engines. 
In this paper, we give an outline of MSSS requirements as 
far as DDBM are concerned, motivate these requirements by 
means of an example, namely the execution of Datalogl* 
rule sets, and propose the DiNG file system as an appropri- 
ate MSSS for high performance DDBM. The DiNG file sys- 

tem is the first operational component of a new federated 
DBMS system, namely the PARABASE architecture as 
described in [Muec92] and in [KoMV92]. The PARABASE 
research effort focuses on shared nothing MIMD machines 
used as high performance DBMS servers participating in 
distributed workstation environments, in particular on a pro- 
totype designed and implemented for an iPSC/2 hypercube 
machine linked into an TCP/IP based network. Our intention 
in this paper is to show that the highly parallel lile system 
of the PARABASE project is an efficient choice for a 
MSSS in deductive database environments. In particular, 
we argue that a specialised parallel file system is needed to 
process exact match, partial match and range queries against 
fact sets as low level lile system operations instead of con- 
ventional low level read/write operations against flat files 
(see [Witzgl] for an outline of the file system and 
[MuSc91] for a description of the data structure). 
After a brief requirement specification and an additional 
motivation for multiattribute search structures in Sections 2 
and 3, the current hardware platform and the corresponding 
system software environment is described in Section 4. A 
sketchy description of the underlying index data structure is 
given in Section 5. This section might be skipped if the 
reader is not interested in the details of multiattribute search 
structures, since the following section does not rely on this 
material. Section 6 deals with a number of technical issues 
regarding the parallel lile system. In particular, the basic 
structure, the data distribution policy and interprocess com- 
munication pattern are addressed. Section 7 provides conclu- 
sions and a short outlook at work in progress. 

2. REQUIREMENTS FOR THE MASS STORAGE 
SUBSYSTEMS OF DDBM 

From out point of view, there are two main requirements for 
a mass storage subsystem (MSSS) to be used in the context 
of a deductive database machine. Both requirements are 
equally important with respect to the overall usability and 
performance of the MSSS although they are quite different 
with respect to the architectural layers of a DDBM (the first 
is somewhat hardware-oriented whereas the second leads to 
search structure considerations). 
At first, a MSSS to be used in a DDBM should be able to 
operate disk arrays in an application-transparent fashion. 
The reason is very simple and refers to the increasing 
discrepancy between enhancements in CPU power and disk 



I/O bandwidth. The former are impressing both with respect 
to functionality and speed whereas the latter are rather mod- 
est. Conseqently, RAID technologies (see [WeZS91] for an 
example) can be used to achieve a better balance between 
CPU power and I/O bandwidth. However, the existence of 
disk arrays has to be application-transparent, since an appli- 
cation designer is usually not interested in the hardware- 
technical details of the underlying MSSS. This is certainly 
not a specific requirement for DDBM (it could be stated as 
well for any MSSS to be used by data intensive applica- 
tions), nevertheless, a reasonable combined disk I/O 
bandwidth is a crucial point for real-life sized fact bases 
including several billions of tuples, i.e., several gigabytes of 
data. 
Secondly, an appropriate MSSS has to support symmetric 
multiattribute search operations, i.e., queries which are 
specified with respect to several key attributes. In the fol- 
lowing section, an example is used to provide additional 
motivation for this requirement. Basically, any inference 
process issues a considerable number of queries to be exe- 
cuted in large fact sets which are usually represented by k- 
tuples. Most of these queries refer either to all or at least to 
several values of the k-tuples. In other words, a distinction 
between primary and secondary keys in the context of query 
execution (like for example in commercial database environ- 
ments) is not meaningful. Consequently, the MSSS has to 
be build upon a multikey index data structure which yields 
an efficient multiattribute clustering and allows therefore 
fast multiattribute search operations (we elaborate on this 
issue in the next section). 
With respect to these requirements, we use 
. a shared nothing MIMD hardware platform with multi- 

ple disk arrays (i.e., the possibility to access one SCSI 
disk array per computing node) in order to provide 
sufficient disk I/O bandwidth for the handling of large 
deductive databases and 

. a state-of-the-art multikey index data structure based on 
a grid file derivate as basic tile structure which is 
intended to speed up symmetric multiattribute search 
operations. 

In an overall DDBM architecture, the hardware platform 
together with the MSSS can be used either as high perfor- 
mance fact- and rulebase server to be accessed via TCP/IP 
or directly as a low-level retrieval machine for a parallel 
inference engine running on the same hardware platform. 
Neither of these architectural alternatives yields a significant 
change in the requirements stated above. 

3. MULTIATTRIBUTE SEARCH OPERATIONS IN 
FACT- AND RULEBASES - AN EXAMPLE 

From several alternatives, a recent Datalog variant has been 
chosen as demonstration example in favour of multiattribute 
query support to be offered to inference engines running on 
top of the MSSS. In particular, the evaluation of Datalogy* 
rule sets (SW [AbSi91]) is investigated. The choice is nearly 
arbitrary, since all inference schemes lead to similar query 
request patterns. Informally, Datalop* allows negative 
literals both in the head and in the body of a rule. Conse- 
quenfly, a rule contains several literals of the form 
f (arg 1, ..) or -f (arg 1, . .) and has therefore the general 
structure 

bLfh(~r&l~ -) * ~dfbl(“‘&1.19 -h . . [llfbn(argbn.l, -) 

As usual, any argument might be either a variable (denoted 
by a capital letter) or a constant (denoted by an integer). 
The semantics of rule instantiations are straightforward. 
Each variable has to be bound in such a way that 
. positive liter&s in the body correspond to facts stored 

in the factbase and 
. negative literals in the body correspond to facts not 

stored in the factbase. 
Additionally, for each rule instantiation, a positive literal in 
the head means a fact insertion upon rule execution whereas 
a negative literal corresponds to a fact deletion. This rather 
informal description can be illustrated by the following pro- 
gram fragment representing an operational semantics 
specification for Datalop* rulebase execution. The com- 
ments used to indent@ execution phases are subsequently 
referenced in an example. 

rb-exec(IN rs : rulebase, IN-OUT fb: factbase) 
{ inst: set of instantiated rule heads; 

i: instantiated rule head 
LOOP 
{ // instantiation 

inst + all heads of rule instantiations 
with respect to rs and@ 

// check if tixpoint 
FOREACH i IN inst 

lF ((i is positive) AND (i nUfb)) OR 
((i is negative) AND (i NOT lNfb)) 
inst * inst \ {i} 

lF inst = {) EXIT; 
f/ remove pairwise inverse heads 
FOREACH i IN inst 

IF 4 IN inst 
inst * inst \ {i -C} 

I/ execute heads 
FOREACH i IN inst 

IF i is positive 
fbe=fbuCil 

ELSE 
fi e=fb\Cil 

I 
I 

Figure 1: D&doe* operational semantics 
The following example of a rulebase execution is rather 
simple, since all rules contain only positive literals. How- 
ever, using negative literals in the example would only 
increase the complexity without any additional contribution 
to the requirement motivation. In other words, a need for 
multiattribute search operation support can be demonstrated 
even by such a simple rulebase. In particular, we consider 
the following input to rb_exec(): 

RULEBASE FACTBASE 
aKY,Z) e= WLY), cW,Z). b(W 424) d(l) e(l) f(2) 
c(3,x) (= d(X), e(X). W3 d(2) 
c(3,x) * f(x). 

Figure 2: debase and fuctbuse example 
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to be launched during rule instantiation and execution. The 
instantiation process is admittedly naive, i.e., non-optimised, 
but illustrative as far as multiattribute query requests are 
concerned. 

Phase I: rule instantiation 
atX,Y,Z) * W&Y), cW,Z). 

query1 b(*,*) * t WV), WV) I; t&e b(V) 
aW,Z) (= b(1,2), cW3. 

query2 c(2,*) * ( c(2,4) }; take c(2,4), 
query2 exhausted, terminate 

a(L2,4) e= bu,2h ~(2~4). 
insert into inst values (+,a,1,2,4) 
resume queryl; take b(2,3), 
query 1 exhausted, terminate 

aW,Z) * b(W), c(3,Z). 
query3 c(3,*) * C I; 
query3 exhausted, terminate 

a(2,3,Z) * fail. 
no query open for a(X,Y,Z) 

~(3~x1 e= NW, e(x). 
query4 dt*) * C d(l), d(2) I; take d(l) 

c(3,U * d(l), e(x). 
query5 e(1) * { e(1) ]; take e(l), 
query5 exhausted, terminate 

c(3A * d(l), e(l). 
insert into inst values (+,c,3,1,-) 
resume query4; take d(2), 
query4 exhausted, terminate 

~(3~2) e= d(2), e(x). 
query6 e(2) * t I; 
query6 exhausted, terminate 

c(3,2) e fail. 
no query open for c(3,X) 

c(3,W e= f(x). 
query7 f(*) * 1 69 I: take f(2), 
query7 exhausted, terminate 

c(3,2) e= f(2). 
insert into inst values (+,c,3,2,-) 
no query open for c(3,X) 

inst = { a(1,2,4), c(3,1), c(3,2) ) 

Phase II: checking if a fIxpoint has been reached 
query8 aU,W * C I; 
query9 ~(3~1 * I I; 
wry10 ~(3~2) =$ i 3; 
inst = { a(1,2,4), c(3,1), c(3,2) } 

Phase Ilk checking for pairwise inverse heads 
query11 inst(-,a,1,2,4) * { }; 
query12 inst(-,c,3,1,-) * { }; 
query13 inst(-,c,3,2,-) =+ { }; 
inst = C a(1,2,4), c(3,1), c(3,2) } 

Phase IV: factbase update 
insert into a values (1,2,4) 
insert into c values (3,l) 
insert into c values (3,2) 

Figure 3: execution trace with respect to MS&S requests 
Although this execution trace is significantly abridged (it 
represents only the first interation of the LOOP-processing), 
it contains a considerable number of mass storage requests 
even for a very small fact- and rulebase. Considering the 
number of query/update requests in real-life deductive data- 
base processing within gigabyte fact- and rulebases, the per- 
formance of the underlying MSSS becomes a crucial issue 
for the overall performance of a DDBM. 

4. HARDWARE ENVIRONMENT, SYSTEM SOFT- 
WARE AND OVERALL ARCHITECTURE 

Currently, an eight processor intel iPSC/2 hypercube 
machine is used as shared nothing MIMD platform. The 
iPSC/2 is mainly intended as MSSS server to be accessed 
via standard TCP/IP connections. In a normal scenario, 
several workstations running local applications are allowed 
to access shared data sets (relational databases, fact- and 
rulebases, object collections ..) maintained by the mass 
storage server. This is related to the so called federated 
DBMS paradigm. In such architectures, several clients use 
their private databases (PDB) on local machines and a 
number of shared databases (SDB) on one or more host 
machines. The high-level data exchange protocol is simple. 
Data sets (tuple sets, fact- and rule sets, object sets, . ..) can 
be transferred to or from a shared database employing a 
simple yet elegant exchange mechanism, namely the 
CHECK-IN and CHECK-OUT protocol known from 
[Kimgl]. This concept is based on a data set transfer from a 
shared database to a private database (CHECK-OUT), an 
eventually long lasting data manipulation phase and a final 
retransmission of the data set to the shared database 
(CHECK-IN). 
System software includes UNIX System V at the “system 
resource manager” (SRM), an i386 based workstation which 
serves as a front end system to the actual hypercube, a 
UNIX derivate called Nx/2 as symmetric no& operating 
system and the intel supplied “concurrent file system” (CFS, 
see per891 for details) used to operate the disk array. The 
DiNG tie system is meant to replace the CFS in all cases. 
However, the current file system prototype is still using 
low-level disk access functionality (basically raw device 
handling) provided by the CFS. 
In contrast to ordinary iPSC/2 or iPSC/860 platforms, all 
processors of this configuration serve both as computing 
nodes and as I/O nodes. Each node is equipped with a stan- 
dard SCSI controller and, at least at the present moment, 
with one 65OMB SCSI disk. The next hardware extension 
should include several disks per controller device in order to 
take full advantage of the SCSI bus bandwidth. The archi- 
tectural distinction between computing nodes accessible for 
application processes and mass storage nodes (so called I/O 
nodes) only accessible via file system calls (as used by intel 
for NlC applications) would be counterproductive for a 
mass storage oriented project and has been omitted for that 
reason. 
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Consequently, the current hardware configuration looks 
this: 

AT&T S ys V Workstation 

SRM 

i “lifeline” 
TCP/IP 

node structure in detail: 

DirectConnect 
node interconnection 

Figure 4: iPSCI2 hardware con$guration 
The different communication hardware technologies dep- 
icted in Figure 4, namely standard Ethernet for client-server 
communication, intel proprietary DirectConnect for node- 
node communication and SCSI for node-controller commun- 
ication, yield to challenging problems with respect to 
bandwidth balancing. Additionally, considering the rapid 
change in communication hardware and the resulting rapid 
change of bandwidth ratios between the communication 
layers (client-server, node-to-node, node-controller), any 
parallel DBMS architecture has to provide means for optim- 
isations in case of changing bandwidth ratios. 
The important point with respect to this hardware and sys- 
tem software configuration is obviously not performance. 
In fact, it is the possibility to design, implement and evalu- 
ate different parallelisation concepts in a common frame- 
work, namely a shared nothing MIMD machine running a 
symmetric node operating system based on well-known 
architectural concepts. 

5. A PARALLEL NON-STANDARD FILE SYSTEM 
FOR LARGE FACT- AND RULEBASES 

Replacing stable and well-known standard MSSS, like for 
example the UNIX file system, by novel MSSS prototypes 
is a resource-consuming process which has to be motivated. 
Consequently, this section contains a short rationale for 
non-standard lile systems to be used by data intensive 
clients. This rationale is given prior to the description of the 
DiNG internal data structures. The presentation of several 
technical core issues like data distribution and communica- 
tion structure in a parallel environment is delayed to the 
next section. 

5.1. Non-standard file systems for data intensive appli- 
cations - a rationale 
Standard UNIX file systems as well as state-of-the-art paral- 
lel file systems (see [Pier891 ) maintain flat files, i.e., 
unstructured byte strings held on mass storage devices. 
Common access primitives on such files are read, write and 

seek. The operating system supports atomic data transfer 
actions for continuous byte segments belonging to files. In 
other words, each file system read or write call issued by an 
application is intended to transfer a certain amount of unin- 
terpreted data from a mass storage device into the applica- 
tion address space or vice versa. In most cases, the contiuu- 
ous byte segments to be transferred are specified as a 
number of bytes relative to a so called Jile pointer. The cru- 
cial point is that all the data have to be uninterpreted, i.e., 
without any structure or semantics, as far as the file system 
itself is concerned. In any other case, the flexibility of the 
data type JiZe and the general usability for all kinds of appli- 
cations would vanish. 
This type of mass storage subsystem is well established and 
absolutely sufficient for non-database environments, espe- 
cially for numerical computing. However, data intensive 
applications which have to rely on high-performance per- 
sistent storage management subunits (e.g. all kinds of data- 
base management systems and all kinds of software data- 
base machines) reveal the inherent weaknesses of flat file 
systems very quickly. Recalling the example contained in 
the previous section, we already motivated a strong need for 
access operations which act directly on sets of facts and/or 
rules. In case of performance critical data intensive applica- 
tions, a set of specialised query/update operations have to be 
implemented in order to replace the standard access opera- 
tions acting on continuous byte segments, Jn Section 4, we 
showed that the inference engine of a DDBM issues a large 
number of mass storage requests for fact and/or rule sets 
fulfilling certain logical conditions defined over certain 
attributes of the data. 
From our point of view, a file system designed to process 
such requests with reasonable performance has to include 
two key features, namely internal (in the sense of tightly 
integrated) multikey indices and parallel request processing. 
The former supports fast symmetric multiattribute search 
operations whereas the latter helps to bypass the ever 
present disk I/O bottleneck. Additionally, the design of a 
non-standard MSSS requires a decision whether the per- 
sistent storage management system should use internal index 
structures on top of the common flat jiIe system or instead of 
the flat file system. The second alternative implies a com- 
plete logical bypass of the original file system which actu- 
ally ends up in a physical replacement in most cases since 
the partitioning of mass storage devices for different hle 
systems seems to be rather unattractive for various reasons. 
Some basic performance considerations favour the second 
alternative, even in spite of the need for additional develop- 
ment work. Intuitively, each additional layer in a persistent 
storage management system consumes a certain fraction of 
the overall system power, therefore the integration of the 
basic data storage functionality and of the index mainte- 
nance functionality yields significant performance improve- 
ments . 
Consequently, the new DiNG 6le system is meant to replace 
the current flat file system (in particular the CFS) in case of 
data intensive applications. It has to provide flat file system 
capabilities as well as the tuple set capabilities outlined 
above. Fortunately, CFS source code has been already sup- 
plied by Intel, therefore an integration of DiNG 6le and flat 
file functionality does not end up in too much additional 
effort at the moment. 
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5.2. Distributed and nested grid files as internal data 
structure 
Following from the above, a file system prototype based on 
distributed and nested grid files (called DiNG tiles in the 
sequel, see [Witzgl] or FluSc91] for details) has .been 
implemented. It supports fact and/or rule insert and delete 
operations as well as parallel exact match, partial match and 
range queries quasi at system call level. 
Distributed and nested grid files are a multikey index struc- 
ture designed for MSSS on shared nothing MlMD machines, 
i.e., an index structure which allows for parallel queries 
against key attribute sets. Prior to the description of the 
DiNG file system, a few words about the underlying basic 
data structure, i.e., nested grid files as presented in [Free871 
or [Free89], seem to be appropriate. 

The key idea common to all grid file design approaches is 
the interpretation of n-tuples as elements of an n- 
dimensional space. This space, called data space in the 
sequel, has to be successively partitioned into smaller sub- 
spaces as the number of tuples increases. The resulting set 
of smaller subspaces used to give a partitioning of the initial 
data space has to be mapped to a totally ordered set, namely 
the disk block address space. This is to ensure that each 
relevant subspace of the n-dimensional data space 
corresponds to one physically transferable storage unit, i.e., 
a disk block, since any possible n-tuple has to be stored in 
one of the allocated disk blocks if passed to the mass 
storage subsystem for insertion. In the original grid tile 
design (see [NiHS84] ), the geometric contents of any two 
subspaces have to be disjoint. With respect to a reasonable 
directory expansion behaviour in case of non-uniformly dis- 
tributed or correlated raw data, the nested grid file approach 
relaxes this condition to some extent. The relaxed partition- 
ing condition reads as follows: if any two hyperrectangles 
intersect, one has to enclose the other. The resulting parti- 
tioning schema, which in turn determines the geometric 
shape of the subspaces, is conceptually simple. Basically, it 
is a buddy system with subsequent binary partitioning of 
the initial data space. All hyperrectangles are created as a 
result of alternating and cyclic binary domain splitting as 
depicted for the 2-dimensional case in Figure 5(a) below. 
Region numbers are created by successive bit interleaving of 
the domain subinterval bit signatures. The interleaving 
sequence is given by the cyclic domain split sequence, i.e., 
l.bit of domainI, l-bit of domain . . l.bit of domain , 2.bit 
of damain , 2.btt of domain . . 2.&t of domain andnso on. 
Figure S(bj illustrates the bit%&erleaving concep’t. 

first split second split 

(a) successive data space partitioning 

third split 

block region identifier 
(interleaved bit signatures) ...’ .. .; . . .... . . ..___ . . /’ :’ ‘l ;: ‘... ““‘.ll 

,! 

r-l 
0 El .lloo 

I 
ooo).:~~ 

I I 

'0 ' 1 
I 

’ 00 ’ 01 ’ 10 ’ 11 ’ 

1 11 

IF 10 

0 01 

00 

domain subinterval 
bit signatures 

(b) hyperrectangle identification 
Figure 5: Partitioning and subspace identi)ication 
The physical directory structure is implemented as height- 
balanced multiway tree. Figure 6 shows a small file (very 
much resembling the example of Figure 5a), both in its 
geometrical and in its data structure oriented representation. 
As depicted, the file consists of one directory bucket and 
four data buckets. 

.X 
directory (4 region entries) 

‘., logical region < block region 
logical region = block region (no region enclosed) 

Figure 6: Nested grid file example 
A search for tuple X in Figure 6 includes a directory traver- 
sal to find the subspace identifier corresponding to the 
enclosing block region. The data bucket reference attached 
to the region identifier provides access to the data bucket in 
which X is actually stored. However, a closer look at the 
search process reveals that the smallest enclosing subspace 
has to be found. Tuple X is contained in three subspaces (-, 
11 and 1100) but actually stored in the data bucket refer- 
enced by the smallest enclosing region (1100 in this case). 
A detailed discussion of the reasons for this kind of data 
space organisation is beyond the scope of this paper. Basi- 
cally, the region nesting is motivated by a graceful perfor- 
mance degradation in case of non-uniformly distributed raw 
data. Standard grid file organisations exhibit an unacceptable 
(i.e., exponential) worst case behavior with respect to direc- 
tory expansion. 
This symmetric multikey approach is in strong contrast to 
B+-tree approaches, which either favour certain attributes or 
attribute combinations or force a database administrator to 
use an unacceptably large number of index structures for 
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one single file. In particular, 2*-l B+-trees would be needed 
for a IYe with n key attributes. Additionally, the attribute 
sequence in a compound single-key index is not even con- 
sidered in this figure although it is of prime relevance for 
any query optimiser. 

6. THE DiNG FILE SYSTEM - STRUCTURE, DATA 
DISTRIBUTION AND COMMUNICATION 

After the motivation for the design and implementation of a 
non-standard file system and the brief outline of the under- 
lying basic data structure, the technical characteristics of the 
resulting parallel file system can be described. In particular, 
we elaborate on the actual file system structures, i.e., on 
superblock and i-node maintenance, on the current data dis- 
tribution policies and on the inter-node communication 
structure of the MSSS processes with regard to client appli- 
cations. 

6.1. The client-server structure of the file system 
The basic mass storage block allocation, handling and 
administration schema of the DiNG file system is conceptu- 
ally simple and similar to the UNIX mass storage block 
administration. At that level, the main differences between a 
standard parallel tile system and the DiNG 6le system stem 
from the separate handling of data blocks and index block. 
Free space administration is done with bit map structures, 
i.e., the MSSS control process maintains a super block, an 
i-node bit map, a bit map for data and index block, a list of 
i-nodes and a list of block containing data blocks as well as 
index blocks. Since data blocks and index blocks are han- 
dled by different subprocesses of the file system, a 
differentiation between the two block classes is necessary 
even at this lowest level of block administration. At the 
moment, the block buffer cache employs a standard hash 
table based LRU displacement strategy (see mane921 for 
example). Other displacement strategies are currently con- 
sidered, however, a detailed discussion of buffer cache con- 
siderations would be beyond the scope of this report. 
Readers interested in this topic may refer to @luSc913. 
At this point, the internal process structure of one of the 
parallel MSSS processes (depicted in Figure 7 below) has to 
be described. However, the discussion of the control flow 
and the data flow between the subprocesses and the client 
processes in case of fact- and/or rule insert requests or 
query requests is delayed to Subsection 6.2. 
Each DiNG file system client has to use a client library 
which is responsible for correct protocol handling and 
appropriate message formats. This library provides access to 
the local file system server, i.e., the MSSS process located 
on the same node as the client process. In other words, all 
MSSS requests issued by any client process are initially 
handled by the local MSSS process. Subsequent parallel 
processing is transparent to the client, since requests are 
passed to and results are obtained from the local server. 

I client process 

ie MSSS data 

MSSS requests 
--------- ____________________-------------- 

t 
--------- 

Figure 7: MSSS process subcomponents 
The client library has a counterpart in the MSSS process, 
namely the client message handling library used by the 
MSSS control process. The control process uses a second 
message handling module, namely the control message han- 
dling library for all internal communications with other con- 
trol processes on different nodes. Besides all coordination 
and control tasks in the context of insert, delete and query 
request handling, the control process manipulates directly all 
index blocks. In other words, the control process executes 
all index searches and passes the resulting data block 
numbers subsequently to the fetch & send process, which is 
responsible for data block handling. A third process, the so 
called get & send process is responsible for all query result 
deliveries. It collects all query subresults from all 
fetch & send processes, i.e., from the local as well as from 
all other fetch & send processes on different nodes and 
passes the collected data to the client process. 
The data distribution policy can be described as round robin 
distribution. Each insert request 
INSERT <fact or rule> INTO <tile> 
is passed to the local control process and triggers a lookup 
operation in the corresponding i-node which yields the 
appropriate node number for the next insert into <tile>. In 
particular, if lust-P(<fYe>) denotes the number of the MSSS 
process which received the last tuple previously inserted 
into <file> and if p denotes the number of operational server 
processes, the expression (lust-P(<tile>)+l modulo p) yields 
the number of the MSSS process which is going to receive 
the fact or rule for insertion. If the calculated process 
number refers to the local node, the correct data block 
number is determined, the fact or rule together with the data 
block number is passed to the fetch & send process and 
finally inserted by this process. If the calculated process 
number refers to a different node, the control process passes 
the data item to the corresponding control process which 
takes the appropriate steps for local insertion. All further 
implementation details of the distribution process (e.g. the 
node counter update per sle) are omitted in here. In fact, 
their contribution would be rather limited in the context of 
this paper. 
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As a result of this distribution schema, each DiNG lile is 
spread over all available nodes. In other words, each logical 
DiNG 8le as seen from a client’s point of view consists of a 
number of physical DiNG ties. The contents, i.e., the tuple 
set of one logical file equals the union of all corresponding 
physical ties. 

6.2. Control and data flow during query execution 
Control flow and data flow in the context of query execu- 
tions represent probably the most interesting parts of the 
interprocess communication in the tile system. 
The following description refers to the process structure dis- 
cussed in Subsection 6.1 and to Figure 8 below, which dep- 
icts the situation in case of a query execution. 

collected query data 
-5 

i , y query request, ---____-___--___________________________--- &--- ---- 

-0 
query data 
collection 

control Proc. I 

remote node f 

Figure 8: Query execution 
A particular query request on no& i is launched via au 
appropriate library call, received by a client message han- 
dling function and passed to the local control process on 
node i. This responsible control process sends the query 
request to all other control processes (phase 1). All control 
processes perform an index search on their local part of the 
DiNG tile (see above) in parallel and extract all relevant 
data block numbers from the index (phase 2) and pass these 
numbers to the corresponding fetch & send processes. All 
fetch & send processes fetch the appropriate data blocks in 
parallel and send the retrieved data to the get & send pro- 
cess on node i (phase 3). As soon as the get & send buffer 
area on node i is f%d, the get 8z send process broadcasts 

some kind of <stop-transmission signal to all 
fetch & sendf&s processes. Subsequently, it engages in the 
data delivery to the client process (phase 4). As soon as the 
get & send buffer contents has been delivered, a 
restart-transmission signal is broadcasted by the 
get & send process and the receiving fetch & send processes 
restart their delivery operations. This protocol iterates in 
phase 3 and phase 4, until all the data qualified by the query 
request has been delivered. 

7. CONCLUSIONS 

A non-standard parallel file system, namely the DiNG file 
system, is proposed as mass storage subsystem for deductive 
database machines. We argue that the DiNG file system 
meets two crucial performance requirements for specialised 
MSSS to be used as part of deductive database environ- 
ments. J.n particular, the DiNG tile system takes advantage 
of disk arrays in shared nothing MJMD configurations and 
uses multikey indices as internal search structure. The need 
for high-performance MSSS is demonstrated by an example, 
namely the inference procedure for Datalop* rulebases. 
The DiNG file system adheres to a strict client-server archi- 
tecture and is structurally tailored for recent microkernel 
approaches on highly parallel platforms (like for example 
the MACH kernel). 
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