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Abstract 
In this paper, we mainly focus on a problem to realize high- 

performance systems without sacrificing system reliability. One 
solution for high-performance is to use main memory as ‘a 
database storage. Since main memory cannot be free from soft- 
ware bug or electricity hazard, we cannot avoid archive storages 
such as disks. To reduce the time of checkpoint and recov- 
ery for a main memory database, some mechanism is required. 
For this purpose we have developed continuous backup RAMS 
which can store their contents periodically to an archive storage 
while they are used for usual process. By extending this con- 
cept continuous backup disks are also designed. A transparent 
backup system is organized using such RAMS and disks. As 
a backup process is performed by hardware mechanism dur- 
ing the execution of usual database operations, a backup pro- 
cess does not require to stop a system or to keep transactions 

waiting to record system status at each checkpoint and thus, 
users are not aware of the existence of a backup process. Fur- 
thermore, an interval between two adjacent checkpoints can be 
shortened, since hardware control does not require much com- 
putation overhead. This short interval contributes to reduce 
recovery time. 

we must still stop a system for recovery when some serious 
failure occurs. 

1 Introduct ion 
Recently, databases have been widely used in systems of var- 

To realize high reliance a fault-tolerant system employs a 
dual system approach which avoids time-consuming recovery 
process[CER85][KIM84]. In that system data are available re- 
gardless of any single failure of a system. Repairs can be done 
without affecting availability of data and it is assumed that 
repairs can be completed before next failure. It is required, 
however, to record system status for multiple failure cases. 

A fault-tolerant system is designed to be based on the disk 
resident database, since main memory in general does not have 
enough reliability compared with a disk, even if it is nonvolatile. 
The disk resident system has a serious drawback due to disk 
I/O bottleneck to realize a high performance system. 

A highly reliable main memory database system which has 
both properties of high performance and high reliance should 
be developed to solve these problems. In order to realize 
such systems continuous backup RAMS are designed by the 
authors[KAMSl]. These RAMS can store their contents to 
archive storage while they are used for usual process. 

In this paper, continuous backup disks are introduced which 
are extensions of continuous backup RAMS. A system archi- 
tecture to reduce overhead for recovery using such RAMS and 
disks is discussed. 

ious fields such as online process control. This kind of systems 
must have the property of a real-time system, i.e. all processes 
can be finished before predefined deadline, and also must have 
the property of a fault-tolerant system where control opera- 
tions should not stop even if a system fails, since the process of 
a plant cannot be stopped instantaneously. If a system cannot 
decide an appropriate action to prevent a plant from being run- 
away within predetermined time or if a system stops for even 
a very short period, then it may become unable to control a 
whole plant and we may suffer a great loss. For such applica- 
tions, a high performance and highly reliable system must be 
realized. 

We supposed only the case where current data are lost by 
some failure such as system failure and media failure, and at 
least one checkpoint data can be available. Transaction failure 
is not considered here, since it does not make data lost and 
should be recovered by database management system. 

Conventional checkpoint and recovery processes are as fol- 
lows. 

A) At each checkpoint, dirty pages or whole database pages 
are dumped to an archive storage, such as tapes or disks. 

B) While database operations are performed, log records are 
stored in a stable storage (tapes or disks). 

To achieve high performance, a lot of papers have been pub- C) In case of system failure, the status at the latest check- 
lished on query processing, concurrency control, database ma- point is transferred to a system from its archive storage 
chines and main memory databases. One should notice, how- and a system can restart from this checkpoint. In case of 
ever, that even if high speed database operations are realized media failure, a system must be repaired at first. 
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D) Using log records after this checkpoint, the status of a 
system can be recovered just before the point when failure 
happened. 

Overhead at each step is as follows. 

a) A system have to be stopped while dumping checkpoint 
data or transactions which require to write dumping pages 
must wait until dump of these pages completes. 

b) To take log records requires CPU consumption and re- 
sults in system overhead. 

c) After failure the checkpoint status needs to be reloaded 
to a system. The reloading usually takes time. 

d) In addition to the reloading time, the computation time 
is also required for D). 

Use of reliable main memory which consists of the battery 
backed-up RAM or electrically erasable ROM (Flash Memory) 
can avoid the dumping operation. Combined with battery op- 
erated disks[COP89] a reliable storage system may be able to 
be organized. Even if such a system is used, recovery process 
cannot be avoided. Examples are failures caused by memory 
peripheral circuit failure and by software bugs 

In order to reduce the time required for c) and d), incre- 
mental reloading[LEH87] can be used, where data are recov- 
ered only when they are required for. the first time. Even in 
such a system the time to load essential data such as database 
management system, operating system, etc., is needed before 
restarting a system. 

Our system reduces these overheads as follows. 

at) A continuous backup RAM and a continuous backup disk 
are used to get the status of each checkpoint without stop- 
ping a system or keeping transactions waiting, since they 
are controlled by simple hardware mechanism which works 
independently of database process. 

br) Although details are not discussed in this paper, we are 
currently designing hardware mechanism to get log records 
efficiently, which will contribute to reduce software over- 
head. The outline of log record structure will be mentioned 
in Section 2. 

cl) Our system has redundant main memory and disk which 
store the status at the latest checkpoint. By connecting 
these main memory and disk, the status of a system at 
this checkpoint can be recovered. The reloading time is 
unnecessary. 

dr) As a system is not required much overhead to take check- 
point data, the interval between two consecutive check- 
points, which contributes to reducing the average time re- 
quired for D), can be reduced. 

The organization of this paper as follows. In Section 2 basic 
concepts required to describe our system are given. Organi- 
zation of continuous backup memories and that of continuous 
backup disks, which are the major components of our system, 
are discussed in Sections 3 and 4, respectively. The overall 
system architecture and the recovery process are discussed in 
Section 5. Performance evaluation is carried out in Section 6. 

2 Basic Concepts 
In this section necessary basic terms and a problem are dis- 

cussed. 

Hot Spot Data(80/20-Rule) 
The access of database may concentrate in very small part 

of database. In typical database systems, it is known that 
about 80 percent of access concentrates in about 20 percent of 
database (80/26Rule)(GAW85]. Such data are called hotspot 
data. 

A Partial Main Memory Database 
A main memory database originally means that whole 

database is resided in main memory[EICbS][EIC87]. Although 
a main memory database is one effective solution to realize 
high performance database systems, it is not currently realistic 
because of cost and capacity limitation. 

In such a case, we propose a partial main memory database 
where hotspot data are resided in main memory and another 
data are read from a disk on demand. To use a partial main 
memory database may be one answer to solve these limitations 
and it can realize high performance without using the very large 
memory required for a main memory database. We expect, 
however, that a main memory database can be realized in the 
near future. 

Write-Ahead Logging( WAL) 
Some systems such as IBM ARIES[MOH89] are based on 

the write-ahead logging (WAL) protocol where a’log record 
must save in a stable storaie before a dirty page is reflected to 
database. In the system where physical log records are used, 
in-place updating that a dirty page is written back to the same 
nonvolatile storage location from where it was read must be 
performed[MOH89]. 

Checkpoint and Recovery 
At recovery possible latest contents of main memory and a 

disk should be calculated using checkpoint data and log records. 
Although to reduce this calculation’overhead checkpoint should 
be taken as frequently as possible, frequent checkpoint opera- 
tions cause more overhead to a system, since in the conven- 
tional database system these operations are controlled by soft- 
ware and, thus, require CPU which is also used for database 
operations. 

A Problem between Backup and Logging 
Some papers on backup of a main memory database claim 

that they can be used in both original and partial main mem- 
ory database systems. Most of them use physical logs and 
suppose that whole or a part of main memory is nonvolatile. 
The physical log can be used in a main memory database sys- 
tem because this system can guarantee in-place updating, but 
a partial main memory database system, like our system, can- 
not use such a physical log, since hotspot pages are removed 
from main memory when they become non-hotspot and, thus, 
in-place updating cannot be guaranteed. 

Although logical log can be avoid this problem, since it can 
indicate data object by their logical name, this log causes an 
another problem when a backup operation is performed asyn- 
chronous with database operations. In case that a page is 
backed up during it is being updated by one logical opera- 
tion, a system cannot recover from failure using a logical log, 
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Figure 1: Two-Plane Backup System 

since already reflected part cannot be distinguished from not 
reflected part. 

To avoid these problem, we have been studying a new log 
management system. The outline of this system is as follows. 
To manage a log record of non-hotspot data, our system uses 
conventional log management method, like ARIES, except that 
only a physical log record is used. Every log record is assigned 
unique log sequence number (LSN) and every data page has 
page&N field which contains LSN that describe the latest 
update log record to the page[MOH89]. 

To manage the log record of hotspot data, our system uses a 
new log management system which is controlled by hardware 
to reduce the overhead. The log record has similar format as 
that of non-hotspot data. Each transaction produces at most 
a 256hyte log record which contains transaction’s ID, address 
of a main memory page, and after and before images of the 
record. 

Our system needs log records describing data replacement 
between new hotspot page and non-hotspot page which were 
hotspot and resided in main memory. This log record contains 
disk address of the new hotspot page. 

3 Continuous Backup FLAM 

In this section three methods to realize continuous backup 
RAMS are summarized[KAMSl]. The first one is shown in 
Figure 1. 

3.1 Two-Plane Backup System 

A system consists of three memory planes, main memory 
plane (MMP), backup memory plane (BMP) and checkpoint 
memory plane (CMP). A disks is attached to CMP which is 

used to store main memory contents. Figure l(a) sh.ows the 

Random 
access 
port 

Figure 2: The Structure of Dual-Port RAM 

Dual-Port DRAM CMP 

Re 

Figure 3: Organization of Continuous Backup RAMS Using 
Dual-Port RAMS 

situation for normal access. At a checkpoint, BMP is discon- 
nected from CPU which works for database process and starts 
to transmit its contents to CMP (Figure l(b)). After trans- 
mission, BMP is again connected to CPU and CMP stores its 
contents in a disk (Figure l(c)). The system performs write 
operations to both MMP and BMP, and read operations to 
MMP. Contents of MMP are transmitted to BMP by DMA 
(direct memory access) control concurrently with these read 
and write operations in a time-shared manner. After transmis- 
sion contents of MMP and BMP become identical, since write 
operations during transmission are also applied to BMP. As the 
DMA transmission is performed simultaneously with database 
operations, database operation becomes slower when it com- 
petes with the DMA operation for the same memory module. 

3.2 Continuous Backup by Dual-Port DRAMS 

Figure 2 shows a structure of dual-port DRAM, which is 
developed for display memory. Memory contents can be modi- 
fied through a random access port while a serial access port is 
used to display its contents. One row data of a memory cell are 
transmitted to a data register when row address is given to ran- 
dom access port . As this mechanism is realized by hardware, it 
is very much efficient. The organization of a continuous backup 
system using dual-port DRAM as MMP is shown in Figure 3. 
At one access only one row’s data can be transmitted to CMP. 
Thus a row’s data will be stored at different time . Let TT~~,,= 
be the time required to transmit all contents to CMP. The data 
transmission for t;, ith checkpoint time, must be started before 
ti - T~rans. Write operations after ti - Tpans are stored in 
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Figure 4: Double Buffer Backup System 

Log Memory. At ti, all write operations performed between 

ti - T~ran. and t; are stored in Log Memory. Using contents 
of Log Memory, contents of CMP must be modified and then 
memory contents at ti are obtained. After this operation CMP 
stores the data at the checkpoint ti. During this modification 
process failure of dual-port DRAM may occur. In such a case 
both CMP and Log Storage must be used in order to get correct 
data values for recovery. 

3.3 Double Buffer Backup Method 

A problem of using currently available dual-port DRAMS is 
that access speed is slow, since it is designed for conventional 
TV systems such as NTSC. The access cycle for random access 
port is about 200[ns]. For HDTV (High Definition Television) 
random access port would become faster. We expect such dual- 
port RAMS will be available in the near future. 

Double buffer backup is developed to simulate the operation 
of dual-port DRAM, in order to realize the high-speed oper- 
ation. The architecture is shown in Figure 4(a). This is a 
hardware version of the double buffer algorithm. A part of 
MMP’s contents is transmitted to one buffer and at the same 
time contents of the other are sent out to CMP. Two buffers 

are alternatively used (Figure 4(c)). Compared with a two- 
plane backup system, hardware cost can be reduced, although 
modification by Log Memory is a little bit complicated. 

4 Continuous Backup for Disk 

We can design continuous backup disk similar to memories 
discussed in previous section when a partial main memory sys- 
tem is used. One typical characteristics of disk should be con- 
sidered; one sequential access is much faster then a number of 
direct random access to retrieve the same amount of data. 

4.1 Two-Disk Backup System 

The organization is similar to the system shown in Figure 
1. Here, MMP, BMP and CMP are disks and Log Memory 
discussed in Section 3.2 is required. After transmission, BMP 
catches MMP up using Log Memory data, since transmission 
from MMP to BMP competes usual data access and causes 
MMP many random accesses. As the sequential access is pre- 
ferred, contents of Log Memory must be sorted in order to 
reduce the time required for catching up. 

4.2 Simulation of Dual-Port DRAM 

A dual-port disk can be developed, if it has one extra read 
head. One head is used for usual read/write purpose, while 
other head is used for sequential access to read backup data. 
One cylinder is considered to correspond to one row of dual- 
port DRAM. Differently from dual-port DRAMS, while sequen- 
tial access port is used to read backup data, write operations 
using usual port must be prohibited and stored in main mem- 
ory, since the magnetic field generated by usual port’s head 
may affect data read from the sequential access port. Stored 
write operations are not lost by failure, since backup operations 
perform for both main memory and a disk at a checkpoint and 
thus they are also stored as checkpoint data of main memory. 
Read operations through both ports can be performed simul- 
taneously. 

Since to develop a new hardware is not the cost effective, 
currently available disk using disk cache can be used. Figure 5 
shows an organization of such a system, here cache is assumed 
to have its own backup disk. During the sequential read to 
cylinders, all requests for the read and the write are stored in 
cache. Only data existing in cache can be read. Sequential 

ReadlWrite 

1 

1 Disk 1 

Figure 5: Simulation of Dual-Port RAMS by a Disk 
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access are done continuously and after sequential access com- 
pletes all the requests in cache must be applied. 

5 Organization of a Transparent Backup 
Database System 

By combining previous discussion we will discuss how to or- 
ganize a transparent backup database system in this section. 

It is assumed that checkpoints are denoted by 11, t2, - . . , ti. 
For simplicity it is assumed that the system status can be com- 
pletely described by (1) contents of CPU registers, (2) contents 
of main memory, and (3) contents of disk. Let Rt, Mt, and Dt 
are these contents at time t. 

Figure 6 shows basic organization of a transparent backup 
database system and its recovery process. The effective con- 
nection is shown by bold lines. Let us assume that the current 
time t satisfies 1; 5 t < t;+l (i.e., the latest checkpoint is t;). 

In Figure 6(a) the current contents are stored in disk and 
main memory shown in the left side. Right side disk and main 
memory store the data at the checkpoint 2i. The small disk 
attached to right main memory holds memory image of Mti, 
which will be used for recovery process of main memory. After 
system failure, main memory and disk storing checkpoint data 
are used as shown in Figure 6(b). Thus reloading is not fe- 
quired. Disk and main memory in the left side can be used to 
store the next checkpoint data. The status of CPU registers is 
assumed to be also stored in main memory as a part of check- 
point data, since only several steps of instructions are required 
to store them. 

Since a system is not safe if the crash occurs while taking the 
next checkpoint, an additional set of main memory and disk is 
needed. There are two cases, i) the additional set also stores 
Dti and Mii (duplicated backup) or ii) Dt;-, and Mt,-, . 

The whole system organization is outlined in Figure 7. Mem- 
ories in Systems II and III are alternatively used to store mem- 
ory data at checkpoint (CMP), so that data at the two consecu- 
tive checkpoints can be stored. A memory in System I are used 
to store the current state of Fain memory (MMP and BMP). 
Log Storage stores all log records for main memory and disk 
after ti-1. Since transmission of contents of System I is con- 

b&kJ &I& 
(a) Normal operation 

I 1 

L--J CPU 
I 

Figure 6: Basic Organization of a Transparent Backup 
Database System 
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(b) Checkpoint 
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Figure 7: Organization of a Transparent Backup Database Sys- 
tem 

trolled by DMACs (Direct Memory Access Controller) which 
are connected with sub buses shown in Figure 7, this transmis- 
sion does not cause any contention with main bus access. 

If some crash occurs System II is used and system can restart 
from the checkpoint t;. If another crash occurs before ti+l Sys- 
tem III has to be used. Using Log Storage contents of System 
III can be modified to very close to the crash time. If further 
crash occurs before t;+l, a system must reload from an archive 
storage, which stores sampled checkpoint data. In such a case 
recovery becomes slow, but we believe that such a case rarely 
happens. 

6 Evaluations of a Transparent Backup 
Database System 

In this section we discuss performance evaluation of our sys- 
tem on the time to take checkpoint data and to recover from 
failure. The evaluation is based on TPC benchmark B[GRASl]. 

6.1 Outline of TPC Benchmark B 

In TPC benchmark B each transaction updates four 
databases; Account, Branch, Teller and History. Basically, the 
size of databases, except for History, is in proportion to the 
number of transaction throughput(tps). History disk must be 
large enough to store records which are produced for the eight 
hour running. The profile of a transaction is as follows. 

Begin transaction. 
Update a record of Account. 
Update a record of Teller. 
Update a record of Branch. 
Insert a record into History. 

Commit transaction. 

The definition of databases is shown in Table 1. 
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Database ] Record length ] Number of recordltps 

21 

Table 1: Definition of Databases 

I 
I , LJu11c I ‘-‘..--?nt ] A few years later 

Bit per inch 
I Track inch 

1 50000 1 70000 
per 1 2000 1 3000 

5000 I Rotation lrpml 1 3600 1 
I Serial data transfer rate 1 15Mbjs I 35Mb/s I 

Table 2: Disk Technology 

Number of tracks ] Number of sector 1 Capacity per a surface 
2000 108 I 1OOMB 

Table 3: 3.5 Inch Disk Drive Specification 

6.2 Specification of Disks 

The current and near future disk technology are shown in 
Table 2. The future 3.5-inch disk specification expected form 
Table 2 is shown in Table 3. The seek time is supposed to be 
calculated with a following formula(STRSS], 

Here, a = 5[ms], b = 0.5[ms] and i denotes distance from start- 
ing cylinder to destination cylinder. 

6.3 Performance of Checkpoint Operations 

In this section, the time to take checkpoint is estimated. 
Main memory (disk) is supposed to be divided into several 
blocks (drives) and backup operation of each main memory 
block (drive) is also supposed to be performed parallel. 

At first, the time to back up disk contents is estimated. It 
is supposed that contents stored in a track can be read while a 
disk makes one rotation. Time to transfer data between disks 
is, 

Ncyhier * (Tseek + T~otcztion) * Nsurface 

Here, hroylinder denotes the number of cylinders and Nsurface 
denotes the number of disk surfaces of a drive. Tseek represents 
seek time calculated using the formula discussed section 6.2 
where i = 1 and T&,&&,,, represents rotation time. From Table 
2, the expression above becomes, 

35 . Nsurfacc[S] 

The result is shown in Figure 8. 
Our checkpointing method need not to optimize disk access 

scheduling, since only sequential access is performed by hard- 
ware control. 

Next, the time to back up main memory contents is esti- 
mated. Here, a dual-port DRAM backup system is supposed 
to be used. The size of a main memory block is denoted by 
S&,&. The access cycle of serial access port is denoted by 
Tseriol and the bus size of each block is denoted by SE,,, . When 
Serial-Cycle = 49[ns] and Bus-Size = 4[byte], the time to 
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take checkpoint is, 

The result is shown in Figure 9. 

6.4 Performance of Recovery Operations 

Considering the characteristic of the TPC benchmark, all 
records of Branch and Teller are hotspot and should be resided 
in main memory. In this paper 80 percent of transactions is 
supposed to access the hotspot records of Account. In respect 
to the TPC benchmark, the access pattern of Account is uni- 
form, i.e. there is no hotspot record in Account, but when it is 
supposed, large main memory on which 20 percent of databases 
can be resided is needed. The evaluation of recovery under this 
supposition shows temperate results. Each record of History is 
produced and stored in the database only once, so History has 
no hotspot record. 

The interval of two adjacent checkpoints is denoted by T[s]. 
During T, at most tps . T transactions commit. In our log 
management system, each transaction produces at most four 
256-byte log records. 

In our system, the incremental recovery where only hotspot 
data are recovered immediately is performed. In this paper, 
the time to recover hotspot data is discussed. The recovery is 
supposed to be the time to read log records from Log Storage 
(disk), because our system need not to reload hotspot data and 
this time is the most part of recovery procedure. Then, the 
recovery time becomes maximum when a failure occurs just 
before the checkpoint and its time is, 

tps . T . (1 + 1 + 0.8) . &OS 
Rseriai 

N 156 . tps . T[ps] 

Here, Rs~,;~~ represents the access rate to read disk data serially 
and SL, represents the size of a log record. 

The result from this expression is shown in Figure 10. The 
minimum recovery time is O[s] when the latest checkpoint data 
can be used immediately (a failure occurs just after the check- 
point). 

This result shows that if the system cannot stop even for 
a few seconds the incremental recovery where most needed 
hotspot data are recovered immediately must be performed, 
or the system must restart using only contents of the check- 
point abandoning log utilization. We cannot think, however, 
that such a system is reliable. 

7 Concluding Remarks 

In tltis paper a new approach to reduce the overhead of a 
recovery process is introduced. Since a highly available sys- 
tem is essential for various applications, we can design a super 
highly available system by combining the currently available 
technologies, for example a fault-tolerant system and a disk ar- 
ray technology. Using a disk array total time for backup can 
be reduced due to their parallel processing property. Although 
a triple redundant system is expensive, we expect this technol- 
ogy will be practically used, since the annual reduction of cost 
of the disk for one bit is said to be about 40% and that of the 
memory chip is about 25%. 
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The authors have been discussing on the use of flush memory 
which is a kind of EEPROM as. an archive storage. This ap- 
proach is expected to realize efficient checkpoint and recovery 
procedures[TAK93]. 
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