
A Design of a Transparent Backup System
Using a Main Memory Database

Hiroki TAKAKURA Yahiko KAMBAYASHI

Integrated Media Environment Experimental Lab.,
Faculty of Engineering, Kyoto University

Sakyo, Kyoto 606-01 JAPAN

Abstract
In this paper, we mainly focus on a problem to realize high-

performance systems without sacrificing system reliability. One
solution for high-performance is to use main memory as ‘a
database storage. Since main memory cannot be free from soft-
ware bug or electricity hazard, we cannot avoid archive storages
such as disks. To reduce the time of checkpoint and recov-
ery for a main memory database, some mechanism is required.
For this purpose we have developed continuous backup RAMS
which can store their contents periodically to an archive storage
while they are used for usual process. By extending this con-
cept continuous backup disks are also designed. A transparent
backup system is organized using such RAMS and disks. As
a backup process is performed by hardware mechanism dur-
ing the execution of usual database operations, a backup pro-
cess does not require to stop a system or to keep transactions

waiting to record system status at each checkpoint and thus,
users are not aware of the existence of a backup process. Fur-
thermore, an interval between two adjacent checkpoints can be
shortened, since hardware control does not require much com-
putation overhead. This short interval contributes to reduce
recovery time.

we must still stop a system for recovery when some serious
failure occurs.

1 Introduct ion
Recently, databases have been widely used in systems of var-

To realize high reliance a fault-tolerant system employs a
dual system approach which avoids time-consuming recovery
process[CER85][KIM84]. In that system data are available re-
gardless of any single failure of a system. Repairs can be done
without affecting availability of data and it is assumed that
repairs can be completed before next failure. It is required,
however, to record system status for multiple failure cases.

A fault-tolerant system is designed to be based on the disk
resident database, since main memory in general does not have
enough reliability compared with a disk, even if it is nonvolatile.
The disk resident system has a serious drawback due to disk
I/O bottleneck to realize a high performance system.

A highly reliable main memory database system which has
both properties of high performance and high reliance should
be developed to solve these problems. In order to realize
such systems continuous backup RAMS are designed by the
authors[KAMSl]. These RAMS can store their contents to
archive storage while they are used for usual process.

In this paper, continuous backup disks are introduced which
are extensions of continuous backup RAMS. A system archi-
tecture to reduce overhead for recovery using such RAMS and
disks is discussed.

ious fields such as online process control. This kind of systems
must have the property of a real-time system, i.e. all processes
can be finished before predefined deadline, and also must have
the property of a fault-tolerant system where control opera-
tions should not stop even if a system fails, since the process of
a plant cannot be stopped instantaneously. If a system cannot
decide an appropriate action to prevent a plant from being run-
away within predetermined time or if a system stops for even
a very short period, then it may become unable to control a
whole plant and we may suffer a great loss. For such applica-
tions, a high performance and highly reliable system must be
realized.

We supposed only the case where current data are lost by
some failure such as system failure and media failure, and at
least one checkpoint data can be available. Transaction failure
is not considered here, since it does not make data lost and
should be recovered by database management system.

Conventional checkpoint and recovery processes are as fol-
lows.

A) At each checkpoint, dirty pages or whole database pages
are dumped to an archive storage, such as tapes or disks.

B) While database operations are performed, log records are
stored in a stable storage (tapes or disks).

To achieve high performance, a lot of papers have been pub- C) In case of system failure, the status at the latest check-
lished on query processing, concurrency control, database ma- point is transferred to a system from its archive storage
chines and main memory databases. One should notice, how- and a system can restart from this checkpoint. In case of
ever, that even if high speed database operations are realized media failure, a system must be repaired at first.

178

D) Using log records after this checkpoint, the status of a
system can be recovered just before the point when failure
happened.

Overhead at each step is as follows.

a) A system have to be stopped while dumping checkpoint
data or transactions which require to write dumping pages
must wait until dump of these pages completes.

b) To take log records requires CPU consumption and re-
sults in system overhead.

c) After failure the checkpoint status needs to be reloaded
to a system. The reloading usually takes time.

d) In addition to the reloading time, the computation time
is also required for D).

Use of reliable main memory which consists of the battery
backed-up RAM or electrically erasable ROM (Flash Memory)
can avoid the dumping operation. Combined with battery op-
erated disks[COP89] a reliable storage system may be able to
be organized. Even if such a system is used, recovery process
cannot be avoided. Examples are failures caused by memory
peripheral circuit failure and by software bugs

In order to reduce the time required for c) and d), incre-
mental reloading[LEH87] can be used, where data are recov-
ered only when they are required for. the first time. Even in
such a system the time to load essential data such as database
management system, operating system, etc., is needed before
restarting a system.

Our system reduces these overheads as follows.

at) A continuous backup RAM and a continuous backup disk
are used to get the status of each checkpoint without stop-
ping a system or keeping transactions waiting, since they
are controlled by simple hardware mechanism which works
independently of database process.

br) Although details are not discussed in this paper, we are
currently designing hardware mechanism to get log records
efficiently, which will contribute to reduce software over-
head. The outline of log record structure will be mentioned
in Section 2.

cl) Our system has redundant main memory and disk which
store the status at the latest checkpoint. By connecting
these main memory and disk, the status of a system at
this checkpoint can be recovered. The reloading time is
unnecessary.

dr) As a system is not required much overhead to take check-
point data, the interval between two consecutive check-
points, which contributes to reducing the average time re-
quired for D), can be reduced.

The organization of this paper as follows. In Section 2 basic
concepts required to describe our system are given. Organi-
zation of continuous backup memories and that of continuous
backup disks, which are the major components of our system,
are discussed in Sections 3 and 4, respectively. The overall
system architecture and the recovery process are discussed in
Section 5. Performance evaluation is carried out in Section 6.

2 Basic Concepts
In this section necessary basic terms and a problem are dis-

cussed.

Hot Spot Data(80/20-Rule)
The access of database may concentrate in very small part

of database. In typical database systems, it is known that
about 80 percent of access concentrates in about 20 percent of
database (80/26Rule)(GAW85]. Such data are called hotspot
data.

A Partial Main Memory Database
A main memory database originally means that whole

database is resided in main memory[EICbS][EIC87]. Although
a main memory database is one effective solution to realize
high performance database systems, it is not currently realistic
because of cost and capacity limitation.

In such a case, we propose a partial main memory database
where hotspot data are resided in main memory and another
data are read from a disk on demand. To use a partial main
memory database may be one answer to solve these limitations
and it can realize high performance without using the very large
memory required for a main memory database. We expect,
however, that a main memory database can be realized in the
near future.

Write-Ahead Logging(WAL)
Some systems such as IBM ARIES[MOH89] are based on

the write-ahead logging (WAL) protocol where a’log record
must save in a stable storaie before a dirty page is reflected to
database. In the system where physical log records are used,
in-place updating that a dirty page is written back to the same
nonvolatile storage location from where it was read must be
performed[MOH89].

Checkpoint and Recovery
At recovery possible latest contents of main memory and a

disk should be calculated using checkpoint data and log records.
Although to reduce this calculation’overhead checkpoint should
be taken as frequently as possible, frequent checkpoint opera-
tions cause more overhead to a system, since in the conven-
tional database system these operations are controlled by soft-
ware and, thus, require CPU which is also used for database
operations.

A Problem between Backup and Logging
Some papers on backup of a main memory database claim

that they can be used in both original and partial main mem-
ory database systems. Most of them use physical logs and
suppose that whole or a part of main memory is nonvolatile.
The physical log can be used in a main memory database sys-
tem because this system can guarantee in-place updating, but
a partial main memory database system, like our system, can-
not use such a physical log, since hotspot pages are removed
from main memory when they become non-hotspot and, thus,
in-place updating cannot be guaranteed.

Although logical log can be avoid this problem, since it can
indicate data object by their logical name, this log causes an
another problem when a backup operation is performed asyn-
chronous with database operations. In case that a page is
backed up during it is being updated by one logical opera-
tion, a system cannot recover from failure using a logical log,

179

ReadtW&e<w,--RR’ , CMP ,

(a) Normal operation

Read/Write<

(b) Checkpoint

(c) Transmission

Figure 1: Two-Plane Backup System

since already reflected part cannot be distinguished from not
reflected part.

To avoid these problem, we have been studying a new log
management system. The outline of this system is as follows.
To manage a log record of non-hotspot data, our system uses
conventional log management method, like ARIES, except that
only a physical log record is used. Every log record is assigned
unique log sequence number (LSN) and every data page has
page&N field which contains LSN that describe the latest
update log record to the page[MOH89].

To manage the log record of hotspot data, our system uses a
new log management system which is controlled by hardware
to reduce the overhead. The log record has similar format as
that of non-hotspot data. Each transaction produces at most
a 256hyte log record which contains transaction’s ID, address
of a main memory page, and after and before images of the
record.

Our system needs log records describing data replacement
between new hotspot page and non-hotspot page which were
hotspot and resided in main memory. This log record contains
disk address of the new hotspot page.

3 Continuous Backup FLAM

In this section three methods to realize continuous backup
RAMS are summarized[KAMSl]. The first one is shown in
Figure 1.

3.1 Two-Plane Backup System

A system consists of three memory planes, main memory
plane (MMP), backup memory plane (BMP) and checkpoint
memory plane (CMP). A disks is attached to CMP which is

used to store main memory contents. Figure l(a) sh.ows the

Random
access
port

Figure 2: The Structure of Dual-Port RAM

Dual-Port DRAM CMP

Re

Figure 3: Organization of Continuous Backup RAMS Using
Dual-Port RAMS

situation for normal access. At a checkpoint, BMP is discon-
nected from CPU which works for database process and starts
to transmit its contents to CMP (Figure l(b)). After trans-
mission, BMP is again connected to CPU and CMP stores its
contents in a disk (Figure l(c)). The system performs write
operations to both MMP and BMP, and read operations to
MMP. Contents of MMP are transmitted to BMP by DMA
(direct memory access) control concurrently with these read
and write operations in a time-shared manner. After transmis-
sion contents of MMP and BMP become identical, since write
operations during transmission are also applied to BMP. As the
DMA transmission is performed simultaneously with database
operations, database operation becomes slower when it com-
petes with the DMA operation for the same memory module.

3.2 Continuous Backup by Dual-Port DRAMS

Figure 2 shows a structure of dual-port DRAM, which is
developed for display memory. Memory contents can be modi-
fied through a random access port while a serial access port is
used to display its contents. One row data of a memory cell are
transmitted to a data register when row address is given to ran-
dom access port . As this mechanism is realized by hardware, it
is very much efficient. The organization of a continuous backup
system using dual-port DRAM as MMP is shown in Figure 3.
At one access only one row’s data can be transmitted to CMP.
Thus a row’s data will be stored at different time . Let TT~~,,=
be the time required to transmit all contents to CMP. The data
transmission for t;, ith checkpoint time, must be started before
ti - T~rans. Write operations after ti - Tpans are stored in

180

ReadWrite
< r

MMP

(a) Normal operation

(h) Checkpoint

Re

(c) Checkpoint

Figure 4: Double Buffer Backup System

Log Memory. At ti, all write operations performed between

ti - T~ran. and t; are stored in Log Memory. Using contents
of Log Memory, contents of CMP must be modified and then
memory contents at ti are obtained. After this operation CMP
stores the data at the checkpoint ti. During this modification
process failure of dual-port DRAM may occur. In such a case
both CMP and Log Storage must be used in order to get correct
data values for recovery.

3.3 Double Buffer Backup Method

A problem of using currently available dual-port DRAMS is
that access speed is slow, since it is designed for conventional
TV systems such as NTSC. The access cycle for random access
port is about 200[ns]. For HDTV (High Definition Television)
random access port would become faster. We expect such dual-
port RAMS will be available in the near future.

Double buffer backup is developed to simulate the operation
of dual-port DRAM, in order to realize the high-speed oper-
ation. The architecture is shown in Figure 4(a). This is a
hardware version of the double buffer algorithm. A part of
MMP’s contents is transmitted to one buffer and at the same
time contents of the other are sent out to CMP. Two buffers

are alternatively used (Figure 4(c)). Compared with a two-
plane backup system, hardware cost can be reduced, although
modification by Log Memory is a little bit complicated.

4 Continuous Backup for Disk

We can design continuous backup disk similar to memories
discussed in previous section when a partial main memory sys-
tem is used. One typical characteristics of disk should be con-
sidered; one sequential access is much faster then a number of
direct random access to retrieve the same amount of data.

4.1 Two-Disk Backup System

The organization is similar to the system shown in Figure
1. Here, MMP, BMP and CMP are disks and Log Memory
discussed in Section 3.2 is required. After transmission, BMP
catches MMP up using Log Memory data, since transmission
from MMP to BMP competes usual data access and causes
MMP many random accesses. As the sequential access is pre-
ferred, contents of Log Memory must be sorted in order to
reduce the time required for catching up.

4.2 Simulation of Dual-Port DRAM

A dual-port disk can be developed, if it has one extra read
head. One head is used for usual read/write purpose, while
other head is used for sequential access to read backup data.
One cylinder is considered to correspond to one row of dual-
port DRAM. Differently from dual-port DRAMS, while sequen-
tial access port is used to read backup data, write operations
using usual port must be prohibited and stored in main mem-
ory, since the magnetic field generated by usual port’s head
may affect data read from the sequential access port. Stored
write operations are not lost by failure, since backup operations
perform for both main memory and a disk at a checkpoint and
thus they are also stored as checkpoint data of main memory.
Read operations through both ports can be performed simul-
taneously.

Since to develop a new hardware is not the cost effective,
currently available disk using disk cache can be used. Figure 5
shows an organization of such a system, here cache is assumed
to have its own backup disk. During the sequential read to
cylinders, all requests for the read and the write are stored in
cache. Only data existing in cache can be read. Sequential

ReadlWrite

1

1 Disk 1

Figure 5: Simulation of Dual-Port RAMS by a Disk

181

access are done continuously and after sequential access com-
pletes all the requests in cache must be applied.

5 Organization of a Transparent Backup
Database System

By combining previous discussion we will discuss how to or-
ganize a transparent backup database system in this section.

It is assumed that checkpoints are denoted by 11, t2, - . . , ti.
For simplicity it is assumed that the system status can be com-
pletely described by (1) contents of CPU registers, (2) contents
of main memory, and (3) contents of disk. Let Rt, Mt, and Dt
are these contents at time t.

Figure 6 shows basic organization of a transparent backup
database system and its recovery process. The effective con-
nection is shown by bold lines. Let us assume that the current
time t satisfies 1; 5 t < t;+l (i.e., the latest checkpoint is t;).

In Figure 6(a) the current contents are stored in disk and
main memory shown in the left side. Right side disk and main
memory store the data at the checkpoint 2i. The small disk
attached to right main memory holds memory image of Mti,
which will be used for recovery process of main memory. After
system failure, main memory and disk storing checkpoint data
are used as shown in Figure 6(b). Thus reloading is not fe-
quired. Disk and main memory in the left side can be used to
store the next checkpoint data. The status of CPU registers is
assumed to be also stored in main memory as a part of check-
point data, since only several steps of instructions are required
to store them.

Since a system is not safe if the crash occurs while taking the
next checkpoint, an additional set of main memory and disk is
needed. There are two cases, i) the additional set also stores
Dti and Mii (duplicated backup) or ii) Dt;-, and Mt,-, .

The whole system organization is outlined in Figure 7. Mem-
ories in Systems II and III are alternatively used to store mem-
ory data at checkpoint (CMP), so that data at the two consecu-
tive checkpoints can be stored. A memory in System I are used
to store the current state of Fain memory (MMP and BMP).
Log Storage stores all log records for main memory and disk
after ti-1. Since transmission of contents of System I is con-

b&kJ &I&
(a) Normal operation

I 1

L--J CPU
I

Figure 6: Basic Organization of a Transparent Backup
Database System

6
System I System II

6
System III

(a) Normal operation

System I System II
(b) Checkpoint

System III

Figure 7: Organization of a Transparent Backup Database Sys-
tem

trolled by DMACs (Direct Memory Access Controller) which
are connected with sub buses shown in Figure 7, this transmis-
sion does not cause any contention with main bus access.

If some crash occurs System II is used and system can restart
from the checkpoint t;. If another crash occurs before ti+l Sys-
tem III has to be used. Using Log Storage contents of System
III can be modified to very close to the crash time. If further
crash occurs before t;+l, a system must reload from an archive
storage, which stores sampled checkpoint data. In such a case
recovery becomes slow, but we believe that such a case rarely
happens.

6 Evaluations of a Transparent Backup
Database System

In this section we discuss performance evaluation of our sys-
tem on the time to take checkpoint data and to recover from
failure. The evaluation is based on TPC benchmark B[GRASl].

6.1 Outline of TPC Benchmark B

In TPC benchmark B each transaction updates four
databases; Account, Branch, Teller and History. Basically, the
size of databases, except for History, is in proportion to the
number of transaction throughput(tps). History disk must be
large enough to store records which are produced for the eight
hour running. The profile of a transaction is as follows.

Begin transaction.
Update a record of Account.
Update a record of Teller.
Update a record of Branch.
Insert a record into History.

Commit transaction.

The definition of databases is shown in Table 1.

182

Database] Record length] Number of recordltps

21

Table 1: Definition of Databases

I
I , LJu11c I ‘-‘..--?nt] A few years later

Bit per inch
I Track inch

1 50000 1 70000
per 1 2000 1 3000

5000 I Rotation lrpml 1 3600 1
I Serial data transfer rate 1 15Mbjs I 35Mb/s I

Table 2: Disk Technology

Number of tracks] Number of sector 1 Capacity per a surface
2000 108 I 1OOMB

Table 3: 3.5 Inch Disk Drive Specification

6.2 Specification of Disks

The current and near future disk technology are shown in
Table 2. The future 3.5-inch disk specification expected form
Table 2 is shown in Table 3. The seek time is supposed to be
calculated with a following formula(STRSS],

Here, a = 5[ms], b = 0.5[ms] and i denotes distance from start-
ing cylinder to destination cylinder.

6.3 Performance of Checkpoint Operations

In this section, the time to take checkpoint is estimated.
Main memory (disk) is supposed to be divided into several
blocks (drives) and backup operation of each main memory
block (drive) is also supposed to be performed parallel.

At first, the time to back up disk contents is estimated. It
is supposed that contents stored in a track can be read while a
disk makes one rotation. Time to transfer data between disks
is,

Ncyhier * (Tseek + T~otcztion) * Nsurface

Here, hroylinder denotes the number of cylinders and Nsurface
denotes the number of disk surfaces of a drive. Tseek represents
seek time calculated using the formula discussed section 6.2
where i = 1 and T&,&&,,, represents rotation time. From Table
2, the expression above becomes,

35 . Nsurfacc[S]

The result is shown in Figure 8.
Our checkpointing method need not to optimize disk access

scheduling, since only sequential access is performed by hard-
ware control.

Next, the time to back up main memory contents is esti-
mated. Here, a dual-port DRAM backup system is supposed
to be used. The size of a main memory block is denoted by
S&,&. The access cycle of serial access port is denoted by
Tseriol and the bus size of each block is denoted by SE,,, . When
Serial-Cycle = 49[ns] and Bus-Size = 4[byte], the time to

183

take checkpoint is,

The result is shown in Figure 9.

6.4 Performance of Recovery Operations

Considering the characteristic of the TPC benchmark, all
records of Branch and Teller are hotspot and should be resided
in main memory. In this paper 80 percent of transactions is
supposed to access the hotspot records of Account. In respect
to the TPC benchmark, the access pattern of Account is uni-
form, i.e. there is no hotspot record in Account, but when it is
supposed, large main memory on which 20 percent of databases
can be resided is needed. The evaluation of recovery under this
supposition shows temperate results. Each record of History is
produced and stored in the database only once, so History has
no hotspot record.

The interval of two adjacent checkpoints is denoted by T[s].
During T, at most tps . T transactions commit. In our log
management system, each transaction produces at most four
256-byte log records.

In our system, the incremental recovery where only hotspot
data are recovered immediately is performed. In this paper,
the time to recover hotspot data is discussed. The recovery is
supposed to be the time to read log records from Log Storage
(disk), because our system need not to reload hotspot data and
this time is the most part of recovery procedure. Then, the
recovery time becomes maximum when a failure occurs just
before the checkpoint and its time is,

tps . T . (1 + 1 + 0.8) . &OS
Rseriai

N 156 . tps . T[ps]

Here, Rs~,;~~ represents the access rate to read disk data serially
and SL, represents the size of a log record.

The result from this expression is shown in Figure 10. The
minimum recovery time is O[s] when the latest checkpoint data
can be used immediately (a failure occurs just after the check-
point).

This result shows that if the system cannot stop even for
a few seconds the incremental recovery where most needed
hotspot data are recovered immediately must be performed,
or the system must restart using only contents of the check-
point abandoning log utilization. We cannot think, however,
that such a system is reliable.

7 Concluding Remarks

In tltis paper a new approach to reduce the overhead of a
recovery process is introduced. Since a highly available sys-
tem is essential for various applications, we can design a super
highly available system by combining the currently available
technologies, for example a fault-tolerant system and a disk ar-
ray technology. Using a disk array total time for backup can
be reduced due to their parallel processing property. Although
a triple redundant system is expensive, we expect this technol-
ogy will be practically used, since the annual reduction of cost
of the disk for one bit is said to be about 40% and that of the
memory chip is about 25%.

300

200

100

0'
I I I I I I I I I I >

1 2 3 4 5 6 7 8 9 10

Surface-Num
The capacity of one surface is 100 Mbytes

Figure 8: Surface Number vs Backup Time (Disk)

Backup time [ms]
4

10000

t

I I I I I I I I I I >
1

2 4 0 16 32 64 126 256 512 1024

Block-Size [Mbyte]

Figure 9: Block Size vs Backup Time (Main Memory)

The authors have been discussing on the use of flush memory
which is a kind of EEPROM as. an archive storage. This ap-
proach is expected to realize efficient checkpoint and recovery
procedures[TAK93].

Acknowledgment
We would like to express our sincere appreciation to Pro-

fessor Kazuo Iwama of Kyushu University for his constructive
criticism and valuable insight.

References
[BAR911

[BER87]

N.S. Barghouti, G.E. Kaiser, “Concurrency Control
for Advanced Database Applications,” ACM Com-
puting Surveys, Vol.23, No.3, 1991, pp.269-317.

P.A. Bernstein, V. Hadzilacos, N. Goodman, “Con-
currency Control and Recovery in Database Sys-
tems,” Addison Wesley, 1987.

[CER85]

[COP89]

[DEW841

[EIC86]

[EIC87)

S. Ceri, G. Pelagatti, “Distributed Databases Prin-
ciples and Systems,” McGraw-Hill Book Company,
1985, pp.292-298.

G.Copeland, T.Keller, R.Krishnamurthy, M.Smith,
“The Case For Safe RAM,” Proc. of the 15th Inter-
national Conf. on VLDB, 1989, pp.327-335.

D. Dewitt, et al, “Implementation Techniques for
Main Memory Database Systems,” Proc. of ACM
SIGMOD Conf., 1984, pp.l-8.

M.H. Eich, “Main Memory Database Recovery,”
ACM FJCC, 1986, pp.1226-1232.

M.H. Eich, “A Classification and Comparison of
Main Memory Database Recovery Techniques,”
Proc. IEEE 3rd Conf. on Data Engineering, 1987,
pp.332-339.

184

Recovery time [s]

t

Checkpoint interval [min]

[EIC88]

[EIC89]

[GAW85)

[GRAS11

[GRUsl]

[HAG861

[KAMsi]

[KIM841

Figure 10: Checkpoint Interval vs Recovery Time
(Worst Case)

M.H. Eich, *MARS : The Design of a Main Memory
Database Machine,” Database Machines and Knowl-
edge Base Machines, Kluwer Academic Publishers,
1988, pp.325-338.

M.H. Eich, “Main Memory Database Research
Directions,” Proc. 6th International Workshop,
IWDM‘89, 1989, ~~-251-268.

D. Gawlick, “Processing Hot Spots’ in High Per-
formance Systems,” Proc. of IEEE Spring Computer
Conference, 1985, pp.249-251.

Jim Gray, “The Benchmark Handbook,” Morgan
Kaufmann Publishers, 1991, pp.19-117.

L. Gruenwalld, M.H. Eich, “MMDB Reload Algo-
rithms,” Proc. of ACM SIGMOD International Conf.
on Management of Data, 1991, pp.397-405.

R.B.Hagmann, “A Crash Recovery Scheme for a
Memory-Resident Database System,” IEEE Trans.
on Computers, Vol. C-35, No.9, September, 1986,
pp.839-843.

Y. Kambayashi, H. Takakura, “Realization of
Continuously Backed-up RAMS for High-Speed
Database Recovery,” Database Systems for Ad-
vanced Applications ‘91, World Scientific, 1992,
pp.236-242.

W. Kim, “High Available Systems for Database Ap-
plication,” ACM Computing Surveys, Vo1.16, No.1,
1984, pp.71-98.

[KUMSl]

[LEH~~]

[LEH89]

[MOH89]

[MOHSO]

[STR83]

[TAK93]

V. Kumar, A. Burger, “Performace Measurement
of Some Main Memory Database Recovery Algo-
rithms,” Proc. 7th Int. Conf. Data Engineering,
1991, ~~3.436-443.

T.J. Lehman, M.J. Carey “A Recovery Algorithm
for A High-Performance Memory-Resident Database
System,” Proc. ACM SIGMOD Conf., 1987, pp104-
117.

T.J. Lehman, M.J. Carey “A Concurrency Control
Algorithm for Memory-Resident Database Systems,”
Proc. 3rd International Conf, FODO, 1989, pp.490-
504.

C. Mohan, D. Haderle, B. Lindsay, H. Piahesh, P.
Schwarz, “ARIES: A Transaction Recovery Method
Supporting Fine-Granularity Locking and Partial
Rollbacks Using Write-Ahead Logging,” IBM Re-
search Report RJ6649, IBM Almaden Research Cen-
ter, January 1989; Revised April 1991.

C. Mohan, K. Treiber, R. Obermarck, “Algorithms
for the Management Remote Backup Data Base for
Disaster Recovery,” IBM Research Report RJ7885R,
IBM Almaden Research Center, December 1990; Re-
vised June 1991.

R.A. Scranton, D.A. Thompson, D.W. Hunter,
“The Access Time Myth,” IBM Technology Report,
RC10197, September, 1983.

H. Takakura, Y. Kambayashi, “Continuous Backup
Systems Utilizing Flash Memory, ” Conf. on Data
Engineering, 1993 (to appear).

185

