
Scheduling and Concurrency Control for Real-Time Database Systems

Sang H. Son and Seog Park?

Department of Computer Science, University of Virginia, Charlottesville, VA 22903, USA
t Department of Computer Science, Sogang University, Seoul, Korea

Abstract

The design and implementation of real-time data-
base systems presents many new and challenging prob-
lems. Compared with traditional databases, real-time
database systems have a distinct feature: they must satisfy
timing constraints associated with transactions. Transac-
tions in real-time database systems should be scheduled
considering both data consistency and timing constraints.
In this paper we describe characteristics and requirements
of real-time database systems such as timing constraints,
correctness criteria and predictability. Also we address
the issues associated with transaction scheduling and con-
currency control and present a scheduling algorithm for
distributed real-time database systems. The protocol does
not assume any knowledge about the data requirements or
the execution time of each transaction. This makes the
protocol widely applicable, since in many actual environ-
ments such information may not be readily avaiable.

1. Introduction

A real-time database system (RTDBS) has (at least
some) transactions with explicit timing constraints such
as deadlines. The correctness of the system depends not
only on the logical results but also on the time within
which the results are produced. In RTDBS, transactions
must be scheduled in such a way that they can be com-
pleted before their corresponding deadlines expire. For
example, both the update and query on the tracking data
for a missile must be processed within given deadlines.

Real-time database systems are becoming increas-
ingly important in a wide range of applications, such as
aerospace and weapon systems, computer integrated
manufacturing, robotics, nuclear power plants, network
management, and traffic control systems. Unfortunately,
conventional database systems are not designed for time-
critical applications and they lack features required for
supporting real-time transactions. They are designed to
provide good average performance, while possibly

This work was supported in part by ONR, by DOE, by IBM, and
by CIT.

yielding unacceptable worst-case response times. It has
been generally recognized that there is a lack of basic
theory for RTDBS since the traditional models are not
adequate for time-critical applications. Researchers
pointed to the need for basic research in database systems
that satisfy timing constraints in collecting, updating, and
retrieving shared data [Abb92, Buc89, Gra92, Har90,
Hua9 1, Kor90, Lin89, Sha91, Son88, Son90, Son9 11.

Transactions in real-time database systems can be
categorized as hard and soft transactions. We define hard
real-time transactions as those transactions whose timing
constraints must he guaranteed. Missing deadlines of this
type of transaction may result in catastrophic conse-
quences. In contrast, soft real-time transactions have tim-
ing constraints, but there may still be some justification in
completing the transactions after deadline. Catastrophic
consequences do not result. if soft real-time transactions
miss their deadlines. Soft real-time transactions are
scheduled taking into account their timing requirements,
but they are not guaranteed to make their deadlines.
There are many real-time systems that need database sup-
port for both types of transactions.

The reasons why conventional database systems
are not used in real-time applications include their poor
performance and lack of predictability. In conventional
database systems, transaction processing requires access
to a database stored on secondary storage; thus transac-
tion response time is limited by disk access delays, which
can be in the order of milliseconds. Still these databases
are fast enough for traditional applications in which a
response time of a few seconds is often acceptable. How-
ever, those systems may not be able to provide a response
fast enough for high-performance real-time applications.
One approach to achieve high performance is to replace
slow devices (e.g., a disk) by a high speed version (e.g., a
large RAM). Another alternative is to use application-
specific knowledge (e.g., semantic information associated
with transactions and data) to increase the degree of con-
currency.

Since an RTDBS is often used in safety-critical
applications, it must provide predictable performance.
An unpredictable system can do more harm than good
under abnormal conditions. There are many reasons why
traditional database systems show unpredictable

219

performance. For example, to ensure the data con-
sistency, traditional database systems often block certain
transactions from reading or updating certain data if these
data are locked by other transactions. Blocking will cause
transactions to be delayed. Even worse, it is often
difficult for a transaction to predict how long the delay
will be since the blocking transactions themselves in turn
may be blocked by other transactions. Consequently, the
response time for a transaction in conventional database
systems is often unpredictable.

Hard real-time transactions must be guaranteed that
their deadlines are always met. To make such a strong
guarantee, we cannot simply use the best-effort schedul-
ing protocols. We must have scheduling protocols which
can control the locking behaviors to guarantee the locking
delays. To do this, RTDBS must have advance
knowledge of the resource and data requirements of tran-
sactions. The priority ceiling protocols may reject the
locking requests of transactions if doing so may cause
more urgent transactions to have uncontrollable locking
delays [Shag1 , Son90b]. Using priority-based scheduling
algorithms with predefined resource usage patterns, these
protocols can guarantee that all transactions with shared
resources can always meet their deadlines as long as
some well-defined schedulability conditions are satisfied.
A drawback of the priority ceiling protocols is that they
require knowledge of all transactions that will be exe-
cuted in the future. This is too harsh a condition for most
database systems to satisfy.

In addition to timing constraints of transactions
such as deadlines, criticalness which represents the
importance of transactions should be considered in com-
puting the priority of transactions. Therefore, proper
management of priorities and conflict resolution in real-
time transaction processing am essential for predictability
and responsiveness of RTDBS.

One of the challenges of RTDBS is the creation of
a theory for real-time scheduling and concurrency control
protocols that maximizes both concurrency and resource
utilization subject to three constraints: data consistency,
transaction correctness, and transaction deadlines
CStan881. Several recent projects have investigated the
issue of adding real-time constraints into database sys-
tems to facilitate efficient and correct management of
timing constraints in RTDBS [Buc89, Gra92, Son88,
Son91, Son92cl. There are several difficulties in achiev-
ing this goal. A database access operation, for example,
takes a highly variable amount of time depending on
whether disk I/O, logging, buffering, etc. are required.
Furthermore, concurrency control may cause aborts or
delays of indeterminate length. In this paper we address
the issues associated with transaction scheduling and con-
currency control, and present a scheduling algorithm for
distributed real-time database systems.

2. Scheduling and Concurrency Control
Conventional real-time systems take into account

timing constraints of individual tasks, but ignore data
consistency problems. Also, they typically deal with sim-
ple tasks that have predictable data requirements. In real-
time task scheduling, it is usually assumed that all tasks
are preemptable. But preempting a task that uses a file
resource in exclusive mode of writing may result in sub-
sequent tasks reading inconsistent information.

In contrast to real-time systems, conventional data-
base systems do notemphasize the notion of timing con-
straints or deadlines for transactions. The performance
goal is to reduce response times of transactions by using a
serialization order among conflicting transactions. Thus,
when a decision of database scheduling is made, indivi-
dual timing constraints are ignored. For example, most
commonly used two-phase locking (2PL) protocol
[Bern871 synchronizes concurrent data access of transac-
tions by blocking and roll-back, and might violate timing
constraints of transactions.

The goal of scheduling in RTDBS is twofold: to
meet timing constraints and to enforce data consistency.
Real-time task scheduling methods can be extended for
real-time transaction scheduling, yet concurrency control
protocols are still needed for operation scheduling to
maintain data consistency. However, the integration of
the two mechanisms in RTDBS is not straightforward.
The general approach is to utilize existing concurrency
control protocols, especially 2PL, and to apply time-
critical transaction scheduling methods that favor more
urgent transactions lAbb92, Gra92, Sha91, Son9OJ. Such
approaches have the inherent disadvantage of being lim-
ited by the concurrency control protocol upon which they
depend, since all existing concurrency control methods
synchronize concurrent data access of transactions by the
combination of two measures: blocking and roll-backs of
transactions. Both are barriers to meeting time-critical
schedules.

Concurrency control protocols induce a serializa-
tion order among conflicting transactions. For a con-
currency control protocol to accommodate timing con-
straints of transactions, the serialization order it produces
should reflect the priority of transactions. However, this
is often hindered by the past execution history of transac-
tions. A higher priority transaction may have no way to
precede a lower priority transaction in the serialization
order due to previous conflicts. For example, let T, and
TL be two transactions with TH having a higher priority.
If TL writes a data object x before TH reads it, then the
serialization order between TH and TL is determined as
TL + TH. TH can never precede T, in the serialization
order as long as both reside in the execution history.
Most of the current (real-time) concurrency control proto-
cols resolve this conflict either by blocking rH until Tt
releases the writelock or by aborting TL in favor of the

220

higher priority transaction TH. Blocking a transaction
may cause priority inversion. Priority inversion is said to
occur when a high priority transaction is blocked by
lower priority transactions [Sha91]. Priority inversion is
contrary to the requirement of real-time scheduling.
Aborting is also not desirable because it degrades the sys-
tem performance and may lead to violations of timing
constraints. Furthermore, some aborts can be wasteful
when the transaction which caused the abort is also
aborted due to another conflict.

Abbott and Garcia-Molina have proposed a
restart-based 2PL [Abb92]. It incorporates priority infor-
mation in lock setting so that transactions with higher
priority will be given a preference. Whenever a higher
priority transaction is in conflict with a lower priority
transaction, the lower priority transaction will be aborted
and restarted later on. One of the weaknesses of this
scheme is the impact of restarts on scheduling other tran-
sactions to meet their timing constraints. Restarting a
transaction could be very costly in terms of wasted
resources, and a large number of restarts will increase the
workload of the system and may cause other transactions
to miss their deadlines. To reduce the number of restarts,
the conditional restart protocol is proposed, in which the
lower priority transaction will have to be restarted only if
the slack time of the higher priority transaction is smaller
than the remaining execution time of the lower priority
transaction that holds the lock [Abb92]. There are few
problems with this protocol. First, the effectiveness of
this checking is greatly affected by the probability of
blocking of the lower priority transaction. Second, the
scheduler should have the information such as the execu-
tion time and slack time. In real-time database systems,
such information is hard to get due to the dynamic nature
of resource demands and data-dependent execution path
of transactions. Furthermore, priority inversion and
deadlock is still possible, although they have a lesser
degree of impact.

For conventional database systems, it has been
shown that optimal performance may be achieved by
compromising blocking and roll-back [Yu90]. For
RTDBS, we may expect similar results. Aborting a few
low priority transactions and restarting them later may
allow high priority transactions to meet their deadlines,
resulting in improved system performance.

To improve the timeliness of RTDBS, it is highly
desirable to take timing requirements of transactions into
consideration for scheduling decisions. An optimistic
approach [Kung811 is a possible way to achieve this goal.
Due to its validation phase conflict resolution, it can be
ensured that eventually discarded transactions do not
abort other transactions and timing requirements of tran-
saction are considered.

The key component of optimistic concurrency con-
trol protocols is the validation phase where a

transaction’s destiny is determined. In the optimistic
approach, write requests issued by transactions are not
immediately processed on data objects but are deferred
until the transaction submits a commit request, at which
time the transaction must go through the validation phase.
Because write operations effectively occur at commit
time, the serialization order selected by an optimistic con-
currency control protocol is the order in which the tran-
sactions actually commit through validation phase. Tran-
saction validation can be performed in one of the two
ways: forward validation and backward validation.

In optimistic concurrency control protocols that
perform backward validation, the validating transaction
either commits or aborts depending on whether it has
conflicts with transactions that have already committed.
Thus, this validation scheme does not allow us to take
transaction characteristics into account. In forward vali-
dation, however, either the validating transaction or
conflicting ongoing transactions can be aborted to resolve
conflicts. This validation scheme is advantageous in
RTDBS, because it may be preferable not to commit the
validating transaction, depending on the timing charac-
teristics of the validating transaction and the conflicting
ongoing transactions. A number of real-time concurrency
control methods based on the optimistic approach using
forward validation have been studied [Ha&O, Hua91,
Son92J. Few of them (e.g., OPT-WAIT protocol in
[Har90]) incorporate priority-based conflict resolution
mechanisms, such as priority wait, that make low priority
transactions wait for conflicting high priority transactions
to complete. However, this approach of detecting
conflicts during validation phase degrades system predic-
tability, since it may be too late to restart the transaction
and meet the deadline.

A scheduling algorithm can solve this problem if a
lock-based concurrency control protocol supports a
mechanism to adjust dynamically the serialization order
of active transactions. The integrated scheduler presented
in the next section integrates a priority-based locking
with an optimistic approach.

Another important issue that needs further study is
a notion of “correct execution” in transaction processing,
different from serializability. As observed by Bernstein
[Bem87], serializability may be too strong as a correct-
ness criterion for concurrency control in database systems
with timing constraints, because of the limitation on con-
currency.

Based on the argument that timing constraints may
be more important than data consistency in RTDBS,
attempts have been made to satisfy timing constraints by
sacrificing database consistency temporarily to some
degree [Lin89, Vrb88]. It is based on a new consistency
model of real-time databases, in which maintaining exfer-
nul dam consistency (values of data objects represent
correct values of external world outside the database) has

221

priority over maintaining internal data consistency (no
data that vioiates consistency constraints). Although in
some applications weaker consistency is acceptable, a
general-purpose consistency criterion that is less stringent
than serializability has not yet been proposed. The prob-
lem is that temporary inconsistencies may affect active
transactions and so the commitment of these transactions
may still need to be delayed until the inconsistencies are
removed, otherwise even committed transactions may
need to be rolled back. However, in real-time systems,
some actions are irreversible.

The use of semantic information in transaction
scheduling and multiversion data is often proposed for
RTDBS applications ILin89, Son88, Song901. Multiple
versions are useful in situations that require the monitor-
ing of data as values are changing with time. In such
situations, the trends exhibited by the values of the data
can be used to initiate proper actions [Kor90]. Examples
include falling values in stock-market trading and rising
temperature of a furnace in a nuclear reactor. Another
objective of using multiple versions is to increase the
degree of concurrency and to reduce the possibility of
transaction rejection by providing a succession of views
of data. There are several problems that must be solved
in order to use multiple versions effectively. For example,
the selection of old versions for a transaction must ensure
the required consistency of the state seen by the transac-
tion.

3. The Integrated Real-Time Locking Protocol

3.1. Basic Concepts

An RTDBS is often used by applications such as
tracking. Since we cannot predict how many objects need
to be tracked and when they appear, we assume randomly
arriving transactions. Each transaction is assigned an ini-
tial priority and a start-timestamp when it is submitted to
the system. The initial priority can be based on the dead-
line and the criticalness of the transaction. The start-
timestamp is appended to the initial priority to form the
actual priority that is used in scheduling. When we refer
to the priority of a transaction, we always mean the actual
priority with the start-timestamp appended. Since the
start-timestamp is unique, so is the priority of each tran-
saction. The priority of transactions with the same initial
priority is distinguished by their start-timestamps.

With two-phase locking and priority assignment,
we can encounter the problem of priority inversion. What
we need is a concurrency control algorithm that allows
transactions to meet the timing constraints as much as
possible without reducing the concurrency level of the
system in the absence of any a priori information. The
integrated real-time locking protocol presented in this
paper meets these goals. It has the flavor of both locking
and optimistic methods.

Transactions write into the database only after they
are committed. By using a priority-dependent locking
protocol, the serialization order of active transactions is
adjusted dynamically, making it possible for transactions
with higher priorities to be executed first so that higher
priority transactions are not blocked by uncommitted
lower priority transactions, while lower priority transac-
tions may not have to be aborted even in face of
conflicting operations. The adjustment of the serializa-
tion order can be viewed as a mechanism to support
time-critical scheduling.

All transactions that can be scheduled are placed in
a ready queue, R Q. Only transactions in R-Q are
scheduled for exe&&on. When a transaction is blocked,
it is removed from R-Q. When a transaction is
unblocked, it is inserted into R-Q again, but may still be
waiting to be assigned the CPU. A transaction is said to
lx suspended when it is not executing, but still in R-Q.
When a transaction is doing I/O operations, it is blocked.
Once it completes, it is usually unblocked.

The execution of each transaction is divided into
three phases: the read phase, the wait phase and the write
phase. During the read phase, a transaction reads from
the database and writes to its local workspace. After it
completes, it waits for its chance to commit in the wait
phase. If it is committed, it switches into the write phase
during which all its updates are made permanent in the
database. A transaction in any of the three phases is
called active. We take an approach of integrated
schedulers in that it uses 2PL for read-write conflicts and
the Thomas’ Write Rule (TWR) for write-write conflicts.
The TWR ignores a write request that has arrived late,
rather than rejects it [Bern87].

In the protocol, there are various data structures
that need to be read and updated in a consistent manner.
Therefore we assume the existence of critical sections to
guarantee that only one process at a time updates these
data structures. We assume critical sections of various
classes to group the various data structures and allow
maximum concurrency. We also assume that each
assignment statement of global data is executed atomi-
cally.

3.2. Read Phase

The read phase is the normal execution of a tran-
saction except that write operations are performed on
private data copies in the local workspace of the transac-
tion instead of on data objects in the database. We call
such write operations prewrites, denoted by pw&l. A
write request from a transaction is performed by a
prewrite operation. Since each transaction has its own
local workspace, a prewrite operation does not write into
the database, and if a transaction previously wrote a data
object, subsequent read operations to the same data object
retrieve the value from the local workspace.

The read-prewrite or prewrite-read conflicts
between active transactions are synchronized during this
phase by a priority-based locking protocol. Before a
transaction can perform a read (resp. prewrite) operation
on a data object, it must obtain the read (resp. write) lock
on that data object first. A read (resp. write) lock on x by
transaction T is denoted by rlock(T,x) (resp. wlock(T,x)).
If a transaction reads a data object that has been written
by itself, it gets the private copy in its own workspace
and no read lock is needed. In the rest of the paper, when
we refer to read operations, we exclude such read opera-
tions because they do not induce any dependencies
among transactions.

The locking protocol is based on the principle that
higher priority transactions should complete before lower
priority transactions. That is, if two transactions conflict,
the higher priority transaction should precede the lower
priority transaction in the serialization order. Using an
appropriate CPU scheduling policy for RTDBS, a high
priority transaction can be scheduled to commit before a
low priority transaction in most cases. If a low priority
transaction does complete before a high priority transac-
tion, it is required to wait until it is sure that its commit-
ment will not lead to the higher priority transaction being
aborted.

Suppose active transaction T1 has higher priority
than active transaction Tz. We have four possible
conflicts and the transaction dependencies they require in
the serialization order as follows:

The resulting serialization order is T1 + T2, which
satisfies the priority order, and hence it is not necessary to
adjust the serialization order.

(2) PWT, 1~ 1 I rT2 b 1
Two different serialization orders can be induced with
this conflict; T2 + TI with immediate reading, and
T1 + T, with delayed reading. Certainly, the latter
should be chosen for priority scheduling. The delayed
reading means that rT2[x] is blocked by the write lock of
T1 on x.

(3) rTz [x 1 , pwT, ix 1

The resulting serialization order is T2 + T1, which
violates the priority order. If T2 is in the read phase, it is
aborted because otherwise T, must commit before T, and
thus block T1. If T2 is in its wait phase, avoid aborting
T2 until TI commits, in the hope that T2 gets a chance to
commit before T1 commits. If T1 commits, T2 is aborted.
But if T1 is aborted by some other conflicting transaction,
then Tz is committed. With this policy, we can avoid
unnecessary and useless aborts, while satisfying priority
scheduling.

(4) PW~[XI , rT,bl
Two different serialization orders can be induced with
this conflict; T1 + T2 with immediate reading, and
T2 + T, with delayed reading. If T2 is in its write
phase, delaying T1 is the only choice. This blocking is
not a serious problem for T1 because T2 is expected to
finish writing x soon. T1 can read x as soon as T2
finishes writing x in the database, not necessarily after T2
completes the whole write phase. If Tz is in its read or
wait phase, choose immediate reading.

As transactions are being executed and conflicting
operations occur, all the information about the induced
dependencies in the serialization order needs to be
retained. To do this, we retain two sets for each fransac-
tion, before-tram-set and after-trans-set, and a count,
before-count. The set before-tram-set (resp. qfter-trans-
set) contains all the active lower priority transactions that
must precede (resp. follow) this transaction in the seriali-
zation order. The before-count is the number of the
higher priority transactions that precede this transaction
in the serialization order. When a conflict occurs
between two transactions, their dependency is set and
their values of before-trans-set, after-trans-set, and
before-count will be changed accordingly.

By summarizing what we discussed above, we
define the real-time locking protocol as follows:

LPI. Transaction T requests a read lock on data object
X.

for all transactions t with wlock(t,x) do
if (priority (t) > priority (T)

or t is in write phase)
I* Case 2,4 *I

then deny the lock and exit:
endif

enddo
for all transactions t with wlock(t,x) do

I* Case 4 */
if t is in before-trans-setT then abort t;
eke if (t is not in aftt?r-tram-st?tT)

then
inCh& t in afkr -trim -s&T;
before -count, := before-count, + 1;

endif
endif

enddo
grunt the lock;

LP2. Transaction T requests a write lock on data
object x.

for all transactions t with rlock(t,x) do
if priority (t) > priority (T)
then I* Case 1 *I

223

if (T is mt in after-tram-set,)
then

include t in after -trans -set,;
before -coun tT := before -countT + 1;

endif
else

it t is in wait phase I* Case 3 *I
then
if (t is in after-trans-se&T)

then abort t;
else

include t in before -tram-s+;
endif
else if t is in read phase

then abort t;
endif

endif
endif

enddo
grant the lock;

LPI and LP2 arc actually two procedures of the
lock manager that are executed when a lock is requested.
When a lock is denied due to a conflicting lock, the
request is suspended until that conflicting lock is released.
Then the locking protocol is invoked once again from the
very beginning to decided whether the lock can be
granted now. With our locking protocol, a data object
may be both read locked and write locked by several tran-
sactions simultaneously.

3.3. Wait and Write Phases
The wait phase allows a transaction to wait until it

can commit. A transaction can commit only if all tran-
sactions with higher priorities that must precede it in the
serialization order are either committed or aborted. Since
before-count is the number of such transactions, the tran-
saction can commit only if its before-count becomes zero.
A transaction in the wait phase may be aborted due to two
reasons; if a higher priority transaction requests a
conflicting lock, or if a higher priority transaction that
must follow this transaction in the serialization order
commits first. Once a transaction in the wait phase gets
its chance to commit, i.e. its before-count goes to zero, it
switches to the write phase and release all its read locks.
The transaction is assigned a final-timestamp, which is
the absolute serialization order.

Once a transaction is in the write phase, it is con-
sidered to be committed. All committed transactions are
serialized by the final-timestamp order. Updates are
made permanent to the database while applying Thomas’
Write Rule (TWR) for write-write conflicts [Bern87].
After each operation the corresponding write lock is
released.

4. Extension for -Distributed Systems
In this section, we extend the integrated scheduler

for distributed database systems. We do not consider
recovery protocols for site or communication link failures
in this paper. We assume that the execution of a distri-
buted transaction T involves several sites and there is an
agent (process) for T at all sites where T accesses data
items. Each agent receives read and write requests from
the home site of T, performs the operations and sends the
results back to the home site. For a write request, the
agent writes to the local workspace as in a centralized
system. Similar to a centralized system, each agent main-
tains its local before-trans-set, after-trans-set and before-
count for the transaction T it represents. Each site main-
tains its local read phase, wait phase, and write phase.
Suppose each site has a unique site number. To produce
unique priority for transactions originating at different
sites, the home site number is appended as well as the
start-timestamp to the initial priority of a transaction.

When a site receives the first read or write request
of a transaction from its home site, a new agent is created
for its execution. The locking protocol works in the same
way as a centralized system using the local information at
the site. To detect transactions that are doomed to be
aborted, local before-trans-set and after-trans-set of each
agent are sent back to the home agent when they are
changed. Such information can be sent with the reply
messages for read or write requests to reduce the com-
munication overhead. The home agent of each transaction
changes its before-trans-set and after-trans-set according
to its local information and information sent back from
other sites. In this way, transactions that are in both
before-trans-set and after-trans-set of a transaction can be
detected and aborted. The home agents of these aborted
transactions may be at different sites. The common sites
of two transactions are the sites at which both access
some data. For one transaction to send an abort command
to another transaction, it only has to send the command to
one of their common sites. A common site must know the
home site of the aborted transaction. Each agent can also
send its local before-trans-set and after-trans-set after a
certain number of changes in order to reduce the number
of messages. There is a trade-off between communication
cost and resource contention because it is desirable to
abort a failed transaction as soon as possible without
much overhead.

A transaction in a distributed database system is a
logically atomic operation: it must be processed at all
sites or none of them. Thus a commit or abort operation
of a transaction must be processed at all sites where the
transaction is executed to ensure a consistent termination.
In a centralized system, a transaction in the wait phase is
committed when its beforecount becomes zero. In a dis-
tributed system, a transaction can be committed if
before-count goes to zero at all sites where it has an

224

agent. This is not simple because local before-count of a
transaction can be incremented by other high priority
transactions at any time. If we freeze before-count for
transactions in the wait phase, high priority transactions
may be blocked by low priority transactions that are in
the wait phase. This is obviously undesirable. Also, if we
allow before-count to be changed all the time, a transac-
tion can never be committed because the home agent may
never be certain that the local before-counts of the tran-
saction at all sites are zero. Our solution to this problem is
a compromise - a short term freeze. A rransaction in the
wait phase can be switched into the semicommitted state,
in which its before-count is frozen for a short period of
time so that its before-count can only be decreased but
not increased. High priority transactions may have to be
blocked during this short period.

When a transaction has finished its read phase, the
home agent sends a read phase termination message to all
participating agents. This message also contains the site
addresses of all agents who will participate in the tenni-
nation protocol. Upon receiving this message, each agent
switches into the wait phase and sends back an ack-
nowledgment along with the local before-count. After
receiving acknowledgments from all agents, the home
agent then waits until the before-count of all agents
becomes zero in order to initiate an attempt to commit.
During this waiting period, each agent reports to the
home site whenever its before-count switches from one to
zero or from zero to one.

Each commit attempt is a variant of the two-phase
commit (2PC) protocol. If before-counts of all agents
including the home agent are zero, then the home agent
initiates a commit attempt by sending a TRY-COMMIT
message to all agents. If an agent finds its before-count to
be zero, it switches into the semicommitted state and
sends back a reply to the home agent. Only when all
agents are in the semicommitted state, can the home
agent decide to commit the transaction. Then the home
agent sends a COMMIT message to all agents. The com-
mit attempt will fail if at least one agent finds its before-
count greater than zero, If it fails, then the failed agent
sends an ATTEMPT-FAIL message to all other agents,
which takes them back to the wait phase. Then the home
agent has to wait for the next chance to initiate another
commit attempt. This process goes on until either a com-
mit attempt succeeds or the transaction is aborted by a
high priority transaction.

Only the transactions in the wait phase can be
switched into the semicommitted state. A transaction in
the semicommitted state is different from one that is in
the wait phase in two aspects. First, when an agent is in
the semicommitted state, agents in the read phase for
other transactions cannot increase its before-count. If the
commit attempt fails, then this agent is changed back
from the semicommitted state to the wait phase, and the

higher priority transaction is unblocked and the locking
protocol is invoked again to decide if the lock is available
now. In this way, high priority transactions may be
blocked by uncommitted low priority transactions only
for their commit attempt periods. Second, a transaction in
the semicommitted state cannot be aborted. This may
require high priority transactions to delay commit opem-
tions. The only reason to cause a transaction to be aborted
in the semicommitted state is the commitment of another
higher priority transaction whose before-trans-set con-
tains this transaction.

To commit a transaction, the home agent sends the
commit command and a final-timestamp to all agents.
With serial commitment of conflicting transactions, a
correct timestamp assignment policy only has to ensure
that at each site, if transaction T1 commits and is
assigned a final-timestamp before another transaction Ts,
the final-timestamp of T2 will be greater than that of Tr.
Each site should maintain the largest final-timestamp,
max_ts, ever assigned to a committed transaction on that
site. When an agent switches into the semicommitted
state, it sends this max ts to the home agent. The home
agent assigns a final-Gkestamp that is greater than any
max-ts of the agents. This timestamp can always be made
unique by appending either the transaction identifier or
home site number to it.

5. Conclusions

In this paper, we have discussed characteristics and
requirements of RTDBS such as correctness criteria,
predictability, and timing constraints. We also addressed
the issues associated with transaction scheduling and con-
currency control for RTDBS. We focused on the opera-
tion scheduling aspect of time-critical scheduling, and
introduced an integrated scheduler for conflict resolution,
which integrates a priority-based locking with an optimis-
tic approach.

In the integrated scheduler, the execution of a tran-
saction is divided into read, wait, and write phases, in a
way similar to optimistic concurrency control mechan-
isms. By delaying write operations of transactions, the
restrictions imposed by past execution history on the seri-
alization order can be relaxed. We introduced the
priority-dependent locking protocol, which dynamically
adjusts the serialization order of active transactions. We
assume the priority of a transaction reflects its timing
constraints such as deadline and criticalness.

This integrated scheduler incurs less blocking and
aborts than the 2PL protocol with high priority scheme
[Son92b]. Also it can reduce the number of late restarts
and the number of conflicting transactions over that of the
Wait-50 protocol lJ%u90], since it analyzes read-write
conflicts among transactions as early as possible, and
resolves them by giving preference to higher priority
transactions without unnecessarily delaying conflict

225

resolution. It features the ability to allow transactions to
meet their timing constraints as much as possible without
reducing the concurrency level of the system. It works in
applications that require handling of unpredictable data.
The scheduler has been extended for distributed database
systems. We am currently working on the implementation
details of the distributed version of the scheduler. Other
issues that need further investigation include scheme for
efficient dynamic priority assignment, extensions to
periodic transaction model, and methods to combine it
with time-critical CPU scheduling.

[Abb92]

[Bern871

lBuc891

[G&2]

[HaMY

[Hua9 1]

Kmg811

[Kol90]

lLin89]

[ShBl]

REFERENCES

Abbott, R. and H. Garcia-Molina, “Scheduling
Real-Time Transactions: A Performance
Evaluation,” ACM Trans. on Database Sys-
tems, vol. 17, no. 3, pp 513-560, Sept. 1992.
Bernstein, P., V. Hadzilacos, and N. Good-
man, Concurrency Control and Recovery in
Database Systems, Addison-Wesley, 1987.
Buchmann, A. et al., “Time-Critical Database
Scheduling: A Framework for Integrating
Real-Time Scheduling and Concurrency Con-
trol,” 5rh Data Engineering Conference, Feb.
1989.
Graham, M., “Issues in Real-Time Data
Management,” Journal of Real-Time Systems,
vol. 4, Sept. 1992, pp 185-202.
Haritsa, J., M. Carey, and M. Livny,
“Dynamic Real-Time Optimistic Concurrency
Control,” Real-Time Systems Symposium,
Orlando, Florida, Dec. 1990.
Huang, J., J. Stankovic, K. Ramamritham, and
D. Towsley, “Experimental Evaluation of
Real-Time Optimistic Concurrency Control
Schemes,” VLDB Conference, Sept. 1991.
Kung, H. and J. Robinson, “On Optimistic
Methods for Concurrency Control,” ACM
Trans. on Database Syst., vol. 6, no. 2, pp
213-226, June 1981.
Korth, H., “Triggered Real-Time Databases
with Consistency Constraints,” 16th VLDB
Conference, Brisbane, Australia, Aug. 1990.
Lin, K., “Consistency issues in real-time data-
base systems,” Proc. 22nd Hawaii Intl. Conf
System Sciences, Hawaii, Jan. 1989.
Sha, L., R. Rajkumar, S. H. Son, and C.
Chmg, “A Real-Time Locking Protocol,”
IEEE Transactions on Computers, vol. 40, no.
7, July 1991, pp 793-800.

[Son881

[Sot&Q]

[Son9ObJ

[Son911

[Son921

[Son92bl

[Son92c]

W-m@01

[Stan881

[Vrb881

mw

Son, S. H., guest editor, ACM SIGMOD
Record 17, 1, Special Issue on Real-Time
Database Systems, March 1988.
Son, S. H. and J. Lee, “Scheduling Real-Time
Transactions in Distributed Database Sys-
tems,” 7th IEEE Workshop on Real-Time
Operating Systems and Software, Charlottes-
ville, Virginia, May 1990, pp 39-43.
Son, S. H. and C. Chang, “Performance
Evaluation of Real-Time Locking Protocols
using a Distributed Software Prototyping
Environment,” 10th International Conference
on Distributed Computing Systems, Paris,
France, June 1990, pp 124-131.
Son, S. H., C. Iannacone, and M. Paris,
“RTDB: A Real-Time Database Manager for
Time-Critical Applications,” Euromicro
Workshop on Real-Time Systems, Paris,
France, June 1991, pp 207-2 14.
Son, S. H., J. Lee, and Y. Lin, “Hybrid Proto-
cols using Dynamic Adjustment of Serializa-
tion Order for Real-Time Concurrency Con-
trol,” Journal of Real-Time Systems, vol. 4,
Sept. 1992, pp 269-276.
Son, S. H., S. Park, and Y. Lin, “An Integrated
Real-Time Locking Protocol,” Eighth IEEE
International Conference on Data Engineer-
ing, Phoenix, Arizona, February 1992, pp
527-534.

Son, S. H., R. Cook, J. Lee, and H. Oh, “New
Paradigms for Real-Time Database Systems,”
in Real-Time Programming, K. Ramamritham
and W. Halang (Editors), Pergamon Press,
1992.
Song, X. and J. Liu, “Performance of Mul-
tiversion Concurrency Control Algorithms in
Maintaining Temporal Consistency”, COMP-
SAC ‘90, pp 132-139, October 1990.
Stankovic, J., “Misconceptions about Real-
Time Computing,” IEEE Computer 2I, 10,
October 1988, pp 10-19.
Vrbsky, S. and K. J. Lin, “Recovering Impre-
cise Transactions with Real-Time Con-
straints,” Symp. Reliable Distributed Systems.
Oct. 1988, pp 185-193.
Yu, P. and D. Dias, “Concurrency Control
using Locking with Deferred Blocking,” 6th
Intl. Conf. Data Engineering., Los Angeles,
Feb. 1990, pp 30-36.

226

