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Abstract 

The design and implementation of real-time data- 
base systems presents many new and challenging prob- 
lems. Compared with traditional databases, real-time 
database systems have a distinct feature: they must satisfy 
timing constraints associated with transactions. Transac- 
tions in real-time database systems should be scheduled 
considering both data consistency and timing constraints. 
In this paper we describe characteristics and requirements 
of real-time database systems such as timing constraints, 
correctness criteria and predictability. Also we address 
the issues associated with transaction scheduling and con- 
currency control and present a scheduling algorithm for 
distributed real-time database systems. The protocol does 
not assume any knowledge about the data requirements or 
the execution time of each transaction. This makes the 
protocol widely applicable, since in many actual environ- 
ments such information may not be readily avaiable. 

1. Introduction 

A real-time database system (RTDBS) has (at least 
some) transactions with explicit timing constraints such 
as deadlines. The correctness of the system depends not 
only on the logical results but also on the time within 
which the results are produced. In RTDBS, transactions 
must be scheduled in such a way that they can be com- 
pleted before their corresponding deadlines expire. For 
example, both the update and query on the tracking data 
for a missile must be processed within given deadlines. 

Real-time database systems are becoming increas- 
ingly important in a wide range of applications, such as 
aerospace and weapon systems, computer integrated 
manufacturing, robotics, nuclear power plants, network 
management, and traffic control systems. Unfortunately, 
conventional database systems are not designed for time- 
critical applications and they lack features required for 
supporting real-time transactions. They are designed to 
provide good average performance, while possibly 
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yielding unacceptable worst-case response times. It has 
been generally recognized that there is a lack of basic 
theory for RTDBS since the traditional models are not 
adequate for time-critical applications. Researchers 
pointed to the need for basic research in database systems 
that satisfy timing constraints in collecting, updating, and 
retrieving shared data [Abb92, Buc89, Gra92, Har90, 
Hua9 1, Kor90, Lin89, Sha91, Son88, Son90, Son9 11. 

Transactions in real-time database systems can be 
categorized as hard and soft transactions. We define hard 
real-time transactions as those transactions whose timing 
constraints must he guaranteed. Missing deadlines of this 
type of transaction may result in catastrophic conse- 
quences. In contrast, soft real-time transactions have tim- 
ing constraints, but there may still be some justification in 
completing the transactions after deadline. Catastrophic 
consequences do not result. if soft real-time transactions 
miss their deadlines. Soft real-time transactions are 
scheduled taking into account their timing requirements, 
but they are not guaranteed to make their deadlines. 
There are many real-time systems that need database sup- 
port for both types of transactions. 

The reasons why conventional database systems 
are not used in real-time applications include their poor 
performance and lack of predictability. In conventional 
database systems, transaction processing requires access 
to a database stored on secondary storage; thus transac- 
tion response time is limited by disk access delays, which 
can be in the order of milliseconds. Still these databases 
are fast enough for traditional applications in which a 
response time of a few seconds is often acceptable. How- 
ever, those systems may not be able to provide a response 
fast enough for high-performance real-time applications. 
One approach to achieve high performance is to replace 
slow devices (e.g., a disk) by a high speed version (e.g., a 
large RAM). Another alternative is to use application- 
specific knowledge (e.g., semantic information associated 
with transactions and data) to increase the degree of con- 
currency. 

Since an RTDBS is often used in safety-critical 
applications, it must provide predictable performance. 
An unpredictable system can do more harm than good 
under abnormal conditions. There are many reasons why 
traditional database systems show unpredictable 
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performance. For example, to ensure the data con- 
sistency, traditional database systems often block certain 
transactions from reading or updating certain data if these 
data are locked by other transactions. Blocking will cause 
transactions to be delayed. Even worse, it is often 
difficult for a transaction to predict how long the delay 
will be since the blocking transactions themselves in turn 
may be blocked by other transactions. Consequently, the 
response time for a transaction in conventional database 
systems is often unpredictable. 

Hard real-time transactions must be guaranteed that 
their deadlines are always met. To make such a strong 
guarantee, we cannot simply use the best-effort schedul- 
ing protocols. We must have scheduling protocols which 
can control the locking behaviors to guarantee the locking 
delays. To do this, RTDBS must have advance 
knowledge of the resource and data requirements of tran- 
sactions. The priority ceiling protocols may reject the 
locking requests of transactions if doing so may cause 
more urgent transactions to have uncontrollable locking 
delays [Shag1 , Son90b]. Using priority-based scheduling 
algorithms with predefined resource usage patterns, these 
protocols can guarantee that all transactions with shared 
resources can always meet their deadlines as long as 
some well-defined schedulability conditions are satisfied. 
A drawback of the priority ceiling protocols is that they 
require knowledge of all transactions that will be exe- 
cuted in the future. This is too harsh a condition for most 
database systems to satisfy. 

In addition to timing constraints of transactions 
such as deadlines, criticalness which represents the 
importance of transactions should be considered in com- 
puting the priority of transactions. Therefore, proper 
management of priorities and conflict resolution in real- 
time transaction processing am essential for predictability 
and responsiveness of RTDBS. 

One of the challenges of RTDBS is the creation of 
a theory for real-time scheduling and concurrency control 
protocols that maximizes both concurrency and resource 
utilization subject to three constraints: data consistency, 
transaction correctness, and transaction deadlines 
CStan881. Several recent projects have investigated the 
issue of adding real-time constraints into database sys- 
tems to facilitate efficient and correct management of 
timing constraints in RTDBS [Buc89, Gra92, Son88, 
Son91, Son92cl. There are several difficulties in achiev- 
ing this goal. A database access operation, for example, 
takes a highly variable amount of time depending on 
whether disk I/O, logging, buffering, etc. are required. 
Furthermore, concurrency control may cause aborts or 
delays of indeterminate length. In this paper we address 
the issues associated with transaction scheduling and con- 
currency control, and present a scheduling algorithm for 
distributed real-time database systems. 

2. Scheduling and Concurrency Control 
Conventional real-time systems take into account 

timing constraints of individual tasks, but ignore data 
consistency problems. Also, they typically deal with sim- 
ple tasks that have predictable data requirements. In real- 
time task scheduling, it is usually assumed that all tasks 
are preemptable. But preempting a task that uses a file 
resource in exclusive mode of writing may result in sub- 
sequent tasks reading inconsistent information. 

In contrast to real-time systems, conventional data- 
base systems do notemphasize the notion of timing con- 
straints or deadlines for transactions. The performance 
goal is to reduce response times of transactions by using a 
serialization order among conflicting transactions. Thus, 
when a decision of database scheduling is made, indivi- 
dual timing constraints are ignored. For example, most 
commonly used two-phase locking (2PL) protocol 
[Bern871 synchronizes concurrent data access of transac- 
tions by blocking and roll-back, and might violate timing 
constraints of transactions. 

The goal of scheduling in RTDBS is twofold: to 
meet timing constraints and to enforce data consistency. 
Real-time task scheduling methods can be extended for 
real-time transaction scheduling, yet concurrency control 
protocols are still needed for operation scheduling to 
maintain data consistency. However, the integration of 
the two mechanisms in RTDBS is not straightforward. 
The general approach is to utilize existing concurrency 
control protocols, especially 2PL, and to apply time- 
critical transaction scheduling methods that favor more 
urgent transactions lAbb92, Gra92, Sha91, Son9OJ. Such 
approaches have the inherent disadvantage of being lim- 
ited by the concurrency control protocol upon which they 
depend, since all existing concurrency control methods 
synchronize concurrent data access of transactions by the 
combination of two measures: blocking and roll-backs of 
transactions. Both are barriers to meeting time-critical 
schedules. 

Concurrency control protocols induce a serializa- 
tion order among conflicting transactions. For a con- 
currency control protocol to accommodate timing con- 
straints of transactions, the serialization order it produces 
should reflect the priority of transactions. However, this 
is often hindered by the past execution history of transac- 
tions. A higher priority transaction may have no way to 
precede a lower priority transaction in the serialization 
order due to previous conflicts. For example, let T, and 
TL be two transactions with TH having a higher priority. 
If TL writes a data object x before TH reads it, then the 
serialization order between TH and TL is determined as 
TL + TH. TH can never precede T, in the serialization 
order as long as both reside in the execution history. 
Most of the current (real-time) concurrency control proto- 
cols resolve this conflict either by blocking rH until Tt 
releases the writelock or by aborting TL in favor of the 
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higher priority transaction TH. Blocking a transaction 
may cause priority inversion. Priority inversion is said to 
occur when a high priority transaction is blocked by 
lower priority transactions [Sha91]. Priority inversion is 
contrary to the requirement of real-time scheduling. 
Aborting is also not desirable because it degrades the sys- 
tem performance and may lead to violations of timing 
constraints. Furthermore, some aborts can be wasteful 
when the transaction which caused the abort is also 
aborted due to another conflict. 

Abbott and Garcia-Molina have proposed a 
restart-based 2PL [Abb92]. It incorporates priority infor- 
mation in lock setting so that transactions with higher 
priority will be given a preference. Whenever a higher 
priority transaction is in conflict with a lower priority 
transaction, the lower priority transaction will be aborted 
and restarted later on. One of the weaknesses of this 
scheme is the impact of restarts on scheduling other tran- 
sactions to meet their timing constraints. Restarting a 
transaction could be very costly in terms of wasted 
resources, and a large number of restarts will increase the 
workload of the system and may cause other transactions 
to miss their deadlines. To reduce the number of restarts, 
the conditional restart protocol is proposed, in which the 
lower priority transaction will have to be restarted only if 
the slack time of the higher priority transaction is smaller 
than the remaining execution time of the lower priority 
transaction that holds the lock [Abb92]. There are few 
problems with this protocol. First, the effectiveness of 
this checking is greatly affected by the probability of 
blocking of the lower priority transaction. Second, the 
scheduler should have the information such as the execu- 
tion time and slack time. In real-time database systems, 
such information is hard to get due to the dynamic nature 
of resource demands and data-dependent execution path 
of transactions. Furthermore, priority inversion and 
deadlock is still possible, although they have a lesser 
degree of impact. 

For conventional database systems, it has been 
shown that optimal performance may be achieved by 
compromising blocking and roll-back [Yu90]. For 
RTDBS, we may expect similar results. Aborting a few 
low priority transactions and restarting them later may 
allow high priority transactions to meet their deadlines, 
resulting in improved system performance. 

To improve the timeliness of RTDBS, it is highly 
desirable to take timing requirements of transactions into 
consideration for scheduling decisions. An optimistic 
approach [Kung811 is a possible way to achieve this goal. 
Due to its validation phase conflict resolution, it can be 
ensured that eventually discarded transactions do not 
abort other transactions and timing requirements of tran- 
saction are considered. 

The key component of optimistic concurrency con- 
trol protocols is the validation phase where a 

transaction’s destiny is determined. In the optimistic 
approach, write requests issued by transactions are not 
immediately processed on data objects but are deferred 
until the transaction submits a commit request, at which 
time the transaction must go through the validation phase. 
Because write operations effectively occur at commit 
time, the serialization order selected by an optimistic con- 
currency control protocol is the order in which the tran- 
sactions actually commit through validation phase. Tran- 
saction validation can be performed in one of the two 
ways: forward validation and backward validation. 

In optimistic concurrency control protocols that 
perform backward validation, the validating transaction 
either commits or aborts depending on whether it has 
conflicts with transactions that have already committed. 
Thus, this validation scheme does not allow us to take 
transaction characteristics into account. In forward vali- 
dation, however, either the validating transaction or 
conflicting ongoing transactions can be aborted to resolve 
conflicts. This validation scheme is advantageous in 
RTDBS, because it may be preferable not to commit the 
validating transaction, depending on the timing charac- 
teristics of the validating transaction and the conflicting 
ongoing transactions. A number of real-time concurrency 
control methods based on the optimistic approach using 
forward validation have been studied [Ha&O, Hua91, 
Son92J. Few of them (e.g., OPT-WAIT protocol in 
[Har90]) incorporate priority-based conflict resolution 
mechanisms, such as priority wait, that make low priority 
transactions wait for conflicting high priority transactions 
to complete. However, this approach of detecting 
conflicts during validation phase degrades system predic- 
tability, since it may be too late to restart the transaction 
and meet the deadline. 

A scheduling algorithm can solve this problem if a 
lock-based concurrency control protocol supports a 
mechanism to adjust dynamically the serialization order 
of active transactions. The integrated scheduler presented 
in the next section integrates a priority-based locking 
with an optimistic approach. 

Another important issue that needs further study is 
a notion of “correct execution” in transaction processing, 
different from serializability. As observed by Bernstein 
[Bem87], serializability may be too strong as a correct- 
ness criterion for concurrency control in database systems 
with timing constraints, because of the limitation on con- 
currency. 

Based on the argument that timing constraints may 
be more important than data consistency in RTDBS, 
attempts have been made to satisfy timing constraints by 
sacrificing database consistency temporarily to some 
degree [Lin89, Vrb88]. It is based on a new consistency 
model of real-time databases, in which maintaining exfer- 
nul dam consistency (values of data objects represent 
correct values of external world outside the database) has 

221 



priority over maintaining internal data consistency (no 
data that vioiates consistency constraints). Although in 
some applications weaker consistency is acceptable, a 
general-purpose consistency criterion that is less stringent 
than serializability has not yet been proposed. The prob- 
lem is that temporary inconsistencies may affect active 
transactions and so the commitment of these transactions 
may still need to be delayed until the inconsistencies are 
removed, otherwise even committed transactions may 
need to be rolled back. However, in real-time systems, 
some actions are irreversible. 

The use of semantic information in transaction 
scheduling and multiversion data is often proposed for 
RTDBS applications ILin89, Son88, Song901. Multiple 
versions are useful in situations that require the monitor- 
ing of data as values are changing with time. In such 
situations, the trends exhibited by the values of the data 
can be used to initiate proper actions [Kor90]. Examples 
include falling values in stock-market trading and rising 
temperature of a furnace in a nuclear reactor. Another 
objective of using multiple versions is to increase the 
degree of concurrency and to reduce the possibility of 
transaction rejection by providing a succession of views 
of data. There are several problems that must be solved 
in order to use multiple versions effectively. For example, 
the selection of old versions for a transaction must ensure 
the required consistency of the state seen by the transac- 
tion. 

3. The Integrated Real-Time Locking Protocol 

3.1. Basic Concepts 

An RTDBS is often used by applications such as 
tracking. Since we cannot predict how many objects need 
to be tracked and when they appear, we assume randomly 
arriving transactions. Each transaction is assigned an ini- 
tial priority and a start-timestamp when it is submitted to 
the system. The initial priority can be based on the dead- 
line and the criticalness of the transaction. The start- 
timestamp is appended to the initial priority to form the 
actual priority that is used in scheduling. When we refer 
to the priority of a transaction, we always mean the actual 
priority with the start-timestamp appended. Since the 
start-timestamp is unique, so is the priority of each tran- 
saction. The priority of transactions with the same initial 
priority is distinguished by their start-timestamps. 

With two-phase locking and priority assignment, 
we can encounter the problem of priority inversion. What 
we need is a concurrency control algorithm that allows 
transactions to meet the timing constraints as much as 
possible without reducing the concurrency level of the 
system in the absence of any a priori information. The 
integrated real-time locking protocol presented in this 
paper meets these goals. It has the flavor of both locking 
and optimistic methods. 

Transactions write into the database only after they 
are committed. By using a priority-dependent locking 
protocol, the serialization order of active transactions is 
adjusted dynamically, making it possible for transactions 
with higher priorities to be executed first so that higher 
priority transactions are not blocked by uncommitted 
lower priority transactions, while lower priority transac- 
tions may not have to be aborted even in face of 
conflicting operations. The adjustment of the serializa- 
tion order can be viewed as a mechanism to support 
time-critical scheduling. 

All transactions that can be scheduled are placed in 
a ready queue, R Q. Only transactions in R-Q are 
scheduled for exe&&on. When a transaction is blocked, 
it is removed from R-Q. When a transaction is 
unblocked, it is inserted into R-Q again, but may still be 
waiting to be assigned the CPU. A transaction is said to 
lx suspended when it is not executing, but still in R-Q. 
When a transaction is doing I/O operations, it is blocked. 
Once it completes, it is usually unblocked. 

The execution of each transaction is divided into 
three phases: the read phase, the wait phase and the write 
phase. During the read phase, a transaction reads from 
the database and writes to its local workspace. After it 
completes, it waits for its chance to commit in the wait 
phase. If it is committed, it switches into the write phase 
during which all its updates are made permanent in the 
database. A transaction in any of the three phases is 
called active. We take an approach of integrated 
schedulers in that it uses 2PL for read-write conflicts and 
the Thomas’ Write Rule (TWR) for write-write conflicts. 
The TWR ignores a write request that has arrived late, 
rather than rejects it [Bern87]. 

In the protocol, there are various data structures 
that need to be read and updated in a consistent manner. 
Therefore we assume the existence of critical sections to 
guarantee that only one process at a time updates these 
data structures. We assume critical sections of various 
classes to group the various data structures and allow 
maximum concurrency. We also assume that each 
assignment statement of global data is executed atomi- 
cally. 

3.2. Read Phase 

The read phase is the normal execution of a tran- 
saction except that write operations are performed on 
private data copies in the local workspace of the transac- 
tion instead of on data objects in the database. We call 
such write operations prewrites, denoted by pw&l. A 
write request from a transaction is performed by a 
prewrite operation. Since each transaction has its own 
local workspace, a prewrite operation does not write into 
the database, and if a transaction previously wrote a data 
object, subsequent read operations to the same data object 
retrieve the value from the local workspace. 



The read-prewrite or prewrite-read conflicts 
between active transactions are synchronized during this 
phase by a priority-based locking protocol. Before a 
transaction can perform a read (resp. prewrite) operation 
on a data object, it must obtain the read (resp. write) lock 
on that data object first. A read (resp. write) lock on x by 
transaction T is denoted by rlock(T,x) (resp. wlock(T,x)). 
If a transaction reads a data object that has been written 
by itself, it gets the private copy in its own workspace 
and no read lock is needed. In the rest of the paper, when 
we refer to read operations, we exclude such read opera- 
tions because they do not induce any dependencies 
among transactions. 

The locking protocol is based on the principle that 
higher priority transactions should complete before lower 
priority transactions. That is, if two transactions conflict, 
the higher priority transaction should precede the lower 
priority transaction in the serialization order. Using an 
appropriate CPU scheduling policy for RTDBS, a high 
priority transaction can be scheduled to commit before a 
low priority transaction in most cases. If a low priority 
transaction does complete before a high priority transac- 
tion, it is required to wait until it is sure that its commit- 
ment will not lead to the higher priority transaction being 
aborted. 

Suppose active transaction T1 has higher priority 
than active transaction Tz. We have four possible 
conflicts and the transaction dependencies they require in 
the serialization order as follows: 

The resulting serialization order is T1 + T2, which 
satisfies the priority order, and hence it is not necessary to 
adjust the serialization order. 

(2) PWT, 1~ 1 I rT2 b 1 
Two different serialization orders can be induced with 
this conflict; T2 + TI with immediate reading, and 
T1 + T, with delayed reading. Certainly, the latter 
should be chosen for priority scheduling. The delayed 
reading means that rT2[x] is blocked by the write lock of 
T1 on x. 

(3) rTz [x 1 , pwT, ix 1 

The resulting serialization order is T2 + T1, which 
violates the priority order. If T2 is in the read phase, it is 
aborted because otherwise T, must commit before T, and 
thus block T1. If T2 is in its wait phase, avoid aborting 
T2 until TI commits, in the hope that T2 gets a chance to 
commit before T1 commits. If T1 commits, T2 is aborted. 
But if T1 is aborted by some other conflicting transaction, 
then Tz is committed. With this policy, we can avoid 
unnecessary and useless aborts, while satisfying priority 
scheduling. 

(4) PW~[XI , rT,bl 
Two different serialization orders can be induced with 
this conflict; T1 + T2 with immediate reading, and 
T2 + T, with delayed reading. If T2 is in its write 
phase, delaying T1 is the only choice. This blocking is 
not a serious problem for T1 because T2 is expected to 
finish writing x soon. T1 can read x as soon as T2 
finishes writing x in the database, not necessarily after T2 
completes the whole write phase. If Tz is in its read or 
wait phase, choose immediate reading. 

As transactions are being executed and conflicting 
operations occur, all the information about the induced 
dependencies in the serialization order needs to be 
retained. To do this, we retain two sets for each fransac- 
tion, before-tram-set and after-trans-set, and a count, 
before-count. The set before-tram-set (resp. qfter-trans- 
set) contains all the active lower priority transactions that 
must precede (resp. follow) this transaction in the seriali- 
zation order. The before-count is the number of the 
higher priority transactions that precede this transaction 
in the serialization order. When a conflict occurs 
between two transactions, their dependency is set and 
their values of before-trans-set, after-trans-set, and 
before-count will be changed accordingly. 

By summarizing what we discussed above, we 
define the real-time locking protocol as follows: 

LPI. Transaction T requests a read lock on data object 
X. 

for all transactions t with wlock(t,x) do 
if (priority (t) > priority (T) 

or t is in write phase) 
I* Case 2,4 *I 

then deny the lock and exit: 
endif 

enddo 
for all transactions t with wlock(t,x) do 

I* Case 4 */ 
if t is in before-trans-setT then abort t; 
eke if (t is not in aftt?r-tram-st?tT) 

then 
inCh& t in afkr -trim -s&T; 
before -count, := before-count, + 1; 

endif 
endif 

enddo 
grunt the lock; 

LP2. Transaction T requests a write lock on data 
object x. 

for all transactions t with rlock(t,x) do 
if priority (t) > priority (T) 
then I* Case 1 *I 
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if (T is mt in after-tram-set,) 
then 

include t in after -trans -set,; 
before -coun tT := before -countT + 1; 

endif 
else 

it t is in wait phase I* Case 3 *I 
then 
if (t is in after-trans-se&T) 

then abort t; 
else 

include t in before -tram-s+; 
endif 
else if t is in read phase 

then abort t; 
endif 

endif 
endif 

enddo 
grant the lock; 

LPI and LP2 arc actually two procedures of the 
lock manager that are executed when a lock is requested. 
When a lock is denied due to a conflicting lock, the 
request is suspended until that conflicting lock is released. 
Then the locking protocol is invoked once again from the 
very beginning to decided whether the lock can be 
granted now. With our locking protocol, a data object 
may be both read locked and write locked by several tran- 
sactions simultaneously. 

3.3. Wait and Write Phases 
The wait phase allows a transaction to wait until it 

can commit. A transaction can commit only if all tran- 
sactions with higher priorities that must precede it in the 
serialization order are either committed or aborted. Since 
before-count is the number of such transactions, the tran- 
saction can commit only if its before-count becomes zero. 
A transaction in the wait phase may be aborted due to two 
reasons; if a higher priority transaction requests a 
conflicting lock, or if a higher priority transaction that 
must follow this transaction in the serialization order 
commits first. Once a transaction in the wait phase gets 
its chance to commit, i.e. its before-count goes to zero, it 
switches to the write phase and release all its read locks. 
The transaction is assigned a final-timestamp, which is 
the absolute serialization order. 

Once a transaction is in the write phase, it is con- 
sidered to be committed. All committed transactions are 
serialized by the final-timestamp order. Updates are 
made permanent to the database while applying Thomas’ 
Write Rule (TWR) for write-write conflicts [Bern87]. 
After each operation the corresponding write lock is 
released. 

4. Extension for -Distributed Systems 
In this section, we extend the integrated scheduler 

for distributed database systems. We do not consider 
recovery protocols for site or communication link failures 
in this paper. We assume that the execution of a distri- 
buted transaction T involves several sites and there is an 
agent (process) for T at all sites where T accesses data 
items. Each agent receives read and write requests from 
the home site of T, performs the operations and sends the 
results back to the home site. For a write request, the 
agent writes to the local workspace as in a centralized 
system. Similar to a centralized system, each agent main- 
tains its local before-trans-set, after-trans-set and before- 
count for the transaction T it represents. Each site main- 
tains its local read phase, wait phase, and write phase. 
Suppose each site has a unique site number. To produce 
unique priority for transactions originating at different 
sites, the home site number is appended as well as the 
start-timestamp to the initial priority of a transaction. 

When a site receives the first read or write request 
of a transaction from its home site, a new agent is created 
for its execution. The locking protocol works in the same 
way as a centralized system using the local information at 
the site. To detect transactions that are doomed to be 
aborted, local before-trans-set and after-trans-set of each 
agent are sent back to the home agent when they are 
changed. Such information can be sent with the reply 
messages for read or write requests to reduce the com- 
munication overhead. The home agent of each transaction 
changes its before-trans-set and after-trans-set according 
to its local information and information sent back from 
other sites. In this way, transactions that are in both 
before-trans-set and after-trans-set of a transaction can be 
detected and aborted. The home agents of these aborted 
transactions may be at different sites. The common sites 
of two transactions are the sites at which both access 
some data. For one transaction to send an abort command 
to another transaction, it only has to send the command to 
one of their common sites. A common site must know the 
home site of the aborted transaction. Each agent can also 
send its local before-trans-set and after-trans-set after a 
certain number of changes in order to reduce the number 
of messages. There is a trade-off between communication 
cost and resource contention because it is desirable to 
abort a failed transaction as soon as possible without 
much overhead. 

A transaction in a distributed database system is a 
logically atomic operation: it must be processed at all 
sites or none of them. Thus a commit or abort operation 
of a transaction must be processed at all sites where the 
transaction is executed to ensure a consistent termination. 
In a centralized system, a transaction in the wait phase is 
committed when its beforecount becomes zero. In a dis- 
tributed system, a transaction can be committed if 
before-count goes to zero at all sites where it has an 
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agent. This is not simple because local before-count of a 
transaction can be incremented by other high priority 
transactions at any time. If we freeze before-count for 
transactions in the wait phase, high priority transactions 
may be blocked by low priority transactions that are in 
the wait phase. This is obviously undesirable. Also, if we 
allow before-count to be changed all the time, a transac- 
tion can never be committed because the home agent may 
never be certain that the local before-counts of the tran- 
saction at all sites are zero. Our solution to this problem is 
a compromise - a short term freeze. A rransaction in the 
wait phase can be switched into the semicommitted state, 
in which its before-count is frozen for a short period of 
time so that its before-count can only be decreased but 
not increased. High priority transactions may have to be 
blocked during this short period. 

When a transaction has finished its read phase, the 
home agent sends a read phase termination message to all 
participating agents. This message also contains the site 
addresses of all agents who will participate in the tenni- 
nation protocol. Upon receiving this message, each agent 
switches into the wait phase and sends back an ack- 
nowledgment along with the local before-count. After 
receiving acknowledgments from all agents, the home 
agent then waits until the before-count of all agents 
becomes zero in order to initiate an attempt to commit. 
During this waiting period, each agent reports to the 
home site whenever its before-count switches from one to 
zero or from zero to one. 

Each commit attempt is a variant of the two-phase 
commit (2PC) protocol. If before-counts of all agents 
including the home agent are zero, then the home agent 
initiates a commit attempt by sending a TRY-COMMIT 
message to all agents. If an agent finds its before-count to 
be zero, it switches into the semicommitted state and 
sends back a reply to the home agent. Only when all 
agents are in the semicommitted state, can the home 
agent decide to commit the transaction. Then the home 
agent sends a COMMIT message to all agents. The com- 
mit attempt will fail if at least one agent finds its before- 
count greater than zero, If it fails, then the failed agent 
sends an ATTEMPT-FAIL message to all other agents, 
which takes them back to the wait phase. Then the home 
agent has to wait for the next chance to initiate another 
commit attempt. This process goes on until either a com- 
mit attempt succeeds or the transaction is aborted by a 
high priority transaction. 

Only the transactions in the wait phase can be 
switched into the semicommitted state. A transaction in 
the semicommitted state is different from one that is in 
the wait phase in two aspects. First, when an agent is in 
the semicommitted state, agents in the read phase for 
other transactions cannot increase its before-count. If the 
commit attempt fails, then this agent is changed back 
from the semicommitted state to the wait phase, and the 

higher priority transaction is unblocked and the locking 
protocol is invoked again to decide if the lock is available 
now. In this way, high priority transactions may be 
blocked by uncommitted low priority transactions only 
for their commit attempt periods. Second, a transaction in 
the semicommitted state cannot be aborted. This may 
require high priority transactions to delay commit opem- 
tions. The only reason to cause a transaction to be aborted 
in the semicommitted state is the commitment of another 
higher priority transaction whose before-trans-set con- 
tains this transaction. 

To commit a transaction, the home agent sends the 
commit command and a final-timestamp to all agents. 
With serial commitment of conflicting transactions, a 
correct timestamp assignment policy only has to ensure 
that at each site, if transaction T1 commits and is 
assigned a final-timestamp before another transaction Ts, 
the final-timestamp of T2 will be greater than that of Tr. 
Each site should maintain the largest final-timestamp, 
max_ts, ever assigned to a committed transaction on that 
site. When an agent switches into the semicommitted 
state, it sends this max ts to the home agent. The home 
agent assigns a final-Gkestamp that is greater than any 
max-ts of the agents. This timestamp can always be made 
unique by appending either the transaction identifier or 
home site number to it. 

5. Conclusions 

In this paper, we have discussed characteristics and 
requirements of RTDBS such as correctness criteria, 
predictability, and timing constraints. We also addressed 
the issues associated with transaction scheduling and con- 
currency control for RTDBS. We focused on the opera- 
tion scheduling aspect of time-critical scheduling, and 
introduced an integrated scheduler for conflict resolution, 
which integrates a priority-based locking with an optimis- 
tic approach. 

In the integrated scheduler, the execution of a tran- 
saction is divided into read, wait, and write phases, in a 
way similar to optimistic concurrency control mechan- 
isms. By delaying write operations of transactions, the 
restrictions imposed by past execution history on the seri- 
alization order can be relaxed. We introduced the 
priority-dependent locking protocol, which dynamically 
adjusts the serialization order of active transactions. We 
assume the priority of a transaction reflects its timing 
constraints such as deadline and criticalness. 

This integrated scheduler incurs less blocking and 
aborts than the 2PL protocol with high priority scheme 
[Son92b]. Also it can reduce the number of late restarts 
and the number of conflicting transactions over that of the 
Wait-50 protocol lJ%u90], since it analyzes read-write 
conflicts among transactions as early as possible, and 
resolves them by giving preference to higher priority 
transactions without unnecessarily delaying conflict 
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resolution. It features the ability to allow transactions to 
meet their timing constraints as much as possible without 
reducing the concurrency level of the system. It works in 
applications that require handling of unpredictable data. 
The scheduler has been extended for distributed database 
systems. We am currently working on the implementation 
details of the distributed version of the scheduler. Other 
issues that need further investigation include scheme for 
efficient dynamic priority assignment, extensions to 
periodic transaction model, and methods to combine it 
with time-critical CPU scheduling. 

[Abb92] 

[Bern871 

lBuc891 

[G&2] 

[HaMY 

[Hua9 1] 

Kmg811 

[Kol90] 

lLin89] 

[ShBl] 

REFERENCES 

Abbott, R. and H. Garcia-Molina, “Scheduling 
Real-Time Transactions: A Performance 
Evaluation,” ACM Trans. on Database Sys- 
tems, vol. 17, no. 3, pp 513-560, Sept. 1992. 
Bernstein, P., V. Hadzilacos, and N. Good- 
man, Concurrency Control and Recovery in 
Database Systems, Addison-Wesley, 1987. 
Buchmann, A. et al., “Time-Critical Database 
Scheduling: A Framework for Integrating 
Real-Time Scheduling and Concurrency Con- 
trol,” 5rh Data Engineering Conference, Feb. 
1989. 
Graham, M., “Issues in Real-Time Data 
Management,” Journal of Real-Time Systems, 
vol. 4, Sept. 1992, pp 185-202. 
Haritsa, J., M. Carey, and M. Livny, 
“Dynamic Real-Time Optimistic Concurrency 
Control,” Real-Time Systems Symposium, 
Orlando, Florida, Dec. 1990. 
Huang, J., J. Stankovic, K. Ramamritham, and 
D. Towsley, “Experimental Evaluation of 
Real-Time Optimistic Concurrency Control 
Schemes,” VLDB Conference, Sept. 1991. 
Kung, H. and J. Robinson, “On Optimistic 
Methods for Concurrency Control,” ACM 
Trans. on Database Syst., vol. 6, no. 2, pp 
213-226, June 1981. 
Korth, H., “Triggered Real-Time Databases 
with Consistency Constraints,” 16th VLDB 
Conference, Brisbane, Australia, Aug. 1990. 
Lin, K., “Consistency issues in real-time data- 
base systems,” Proc. 22nd Hawaii Intl. Conf 
System Sciences, Hawaii, Jan. 1989. 
Sha, L., R. Rajkumar, S. H. Son, and C. 
Chmg, “A Real-Time Locking Protocol,” 
IEEE Transactions on Computers, vol. 40, no. 
7, July 1991, pp 793-800. 

[Son881 

[Sot&Q] 

[Son9ObJ 

[Son911 

[Son921 

[ Son92bl 

[Son92c] 

W-m@01 

[Stan881 

[Vrb881 

mw 

Son, S. H., guest editor, ACM SIGMOD 
Record 17, 1, Special Issue on Real-Time 
Database Systems, March 1988. 
Son, S. H. and J. Lee, “Scheduling Real-Time 
Transactions in Distributed Database Sys- 
tems,” 7th IEEE Workshop on Real-Time 
Operating Systems and Software, Charlottes- 
ville, Virginia, May 1990, pp 39-43. 
Son, S. H. and C. Chang, “Performance 
Evaluation of Real-Time Locking Protocols 
using a Distributed Software Prototyping 
Environment,” 10th International Conference 
on Distributed Computing Systems, Paris, 
France, June 1990, pp 124-131. 
Son, S. H., C. Iannacone, and M. Paris, 
“RTDB: A Real-Time Database Manager for 
Time-Critical Applications,” Euromicro 
Workshop on Real-Time Systems, Paris, 
France, June 1991, pp 207-2 14. 
Son, S. H., J. Lee, and Y. Lin, “Hybrid Proto- 
cols using Dynamic Adjustment of Serializa- 
tion Order for Real-Time Concurrency Con- 
trol,” Journal of Real-Time Systems, vol. 4, 
Sept. 1992, pp 269-276. 
Son, S. H., S. Park, and Y. Lin, “An Integrated 
Real-Time Locking Protocol,” Eighth IEEE 
International Conference on Data Engineer- 
ing, Phoenix, Arizona, February 1992, pp 
527-534. 

Son, S. H., R. Cook, J. Lee, and H. Oh, “New 
Paradigms for Real-Time Database Systems,” 
in Real-Time Programming, K. Ramamritham 
and W. Halang (Editors), Pergamon Press, 
1992. 
Song, X. and J. Liu, “Performance of Mul- 
tiversion Concurrency Control Algorithms in 
Maintaining Temporal Consistency”, COMP- 
SAC ‘90, pp 132-139, October 1990. 
Stankovic, J., “Misconceptions about Real- 
Time Computing,” IEEE Computer 2I, 10, 
October 1988, pp 10-19. 
Vrbsky, S. and K. J. Lin, “Recovering Impre- 
cise Transactions with Real-Time Con- 
straints,” Symp. Reliable Distributed Systems. 
Oct. 1988, pp 185-193. 
Yu, P. and D. Dias, “Concurrency Control 
using Locking with Deferred Blocking,” 6th 
Intl. Conf. Data Engineering., Los Angeles, 
Feb. 1990, pp 30-36. 

226 


