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ABSTRACT 

This paper presents a checkpointing scheme which effectively 
copes with media failures for a distributed database system 
(DDBS), which employs the timestamp ordering scheme for 
concurrency control. In our scheme, normal transactions are 
executed during the checkpointing process without any inter- 
ruption. The state of the database taken as a checkpoint by 
all sites in the system is consistent, so that fast recovery from 
media failures can be performed. Since our scheme does not 
interfere with the normal transaction processing, the scheme is 
essential for time-critical distributed database systems. Simu- 
lation results show that our scheme outperforms the existing 
schemes. 
Index Terms - Distributed Databases, Checkpointing, Media 
Failure, Recovery, Consistency. 

1 INTRODUCTION 

In a database system, failures in the system might leave the 
database in an inconsistent state due to abnormal termination 
of transactions. Three types of failures cause this inconsistency; 
transaction failure, which is the abnormal termination of the 
transactions, system failure, which causes the loss of the con- 
tents in volatile storage, such as cache or main memory, and 
media failure, which causes the loss of non-volatile storage, such 
as the contents of database state stored in a secondary storage. 

To restore the database to a correct state after such failures, 
recovery techniques are used as described in [l] and [2]. The 
most widely used recovery technique for failures is to recon- 
struct the correct database state by using the information of 
the database operations executed by the transactions, which is 
usually saved in a specified secondary storage space, called a 
log. Using the log information, the transaction operations are 
undone and/or redone to bring the database up to the most re- 
cent consistent state. However, in case of a media failure, both 
the database and the log in the secondary storage are lost. To 
recover from this type of failure, the database state is periodi- 
cally copied into a secure storage, which is assumed not to be 

affected by any type of failure; we call this copy a checkpoint. 
For the system to resume its computation correctly, the correct 
and consistent state of the database must be checkpointed. 

The data items of a database in a distributed database system 
(DDBS), are replicated and located over the different sites and 
a global transaction may access the data items in several sites 
and update them. Hence, the checkpointing in a distributed 
database system is quite complicated since the atomicity of the 
global transaction must be reflected in the checkpoint. That is, 
if a site 5’; takes a checkpoint after a global transaction T(a) 
has updated the database at Si, while another site Sj takes the 
checkpoint before T(a) has updated the database at Sj, then 
the global checkpoint produced is inconsistent and a recovery 
with this checkpoint may produce another inconsistent state. 
Moreover, if T(a) reads one or more data items modified by 
another transaction, say T(b), then the effects of T(b) at all 
sites must also be reflected in the checkpoint for the checkpoints 
taken to be consistent. Hence, to avoid these inconsistencies, a 
system-wide coordination for checkpointing is required. 

The checkpointing for DDBS has been extensively stud- 
ied and various methods have been proposed and are classi- 
fied, based on how the coordination among the sites are per- 
formed, into non-synchronized and synchronized [3]. In the 
non-synchronized schemes, each site takes a checkpoint when it 
finds its local database to be consistent, without respect to the 
global state of the distributed database. The globally consis- 
tent state of the DDB is then constructed during the recovery 
process by finding the consistent set of checkpoints among the 
saved ones [4]. In [5] and [6] the checkpointing is performed 
as part of the transaction-commit process and the recovery is 
performed by finding the set of transactions and their depen- 
dents whose operations have to be discarded and the respective 
sites, at which these transactions operated on, are informed to 
discard the effects of these transactions. Possible drawbacks 
of the above methods are that each site should maintain more 
than one checkpoint and may take a longer time to recover due 
to information exchange for finding a globally consistent point. 

The checkpointing in the synchronized schemes is performed 
in coordination between the sites to result in a single checkpoint 



which is globally consistent. [7] and [S] suggested schemes which 
produces globally consistent checkpoints, but the initiation of 
transactions during the checkpointing process at the sites are 
delayed until the checkpointing process has been completed. A 
site initialization method adopted to take checkpoints was pro- 
posed in [9], where taking of globally consistent checkpoints may 
delay transaction processing and may cause unnecessary aborts 
due to deadlocks. In another synchronized scheme, proposed in 
[3], the transactions to be included in the checkpoint are iden- 
tified and the transactions that arrived after the checkpoint 
initiation at some sites but which should have been included in 
the checkpoint, are aborted. To avoid this delay and abortion of 
transactions, the idea to deviate the database during the check- 
pointing process was proposed by Fischer, et. al., which would 
minimize interruption of transaction processing [lo]. This idea 
was used by two schemes which tried to minimize the transac- 
tion processing interruption [ll] and [12]. 

[ll, 131 suggested a scheme where the largest timestamp of 
the transactions ongoing at the time of checkpoint initiation is 
found and the updates of transactions which have a lower times- 
tamp than this selected value are included in the checkpoint. 
However, the transactions which should have been included in 
the checkpoint but arrive at a site after it takes a checkpoint, 
are aborted. In the scheme proposed in [14], the transactions 
carry the last checkpoint number of the originating site and the 
data items carry the last checkpoint number of the transaction 
which updated it, to detect consistency among checkpoints and 
to avoid interruption of transaction processing. However, it is 
possible that a few transactions may be aborted if they were 
initiated before the checkpointing process and their subtrans- 
actions arrived at sites after the data items at those sites had 
been checkpointed. 

In this paper, we suggest a synchronized scheme for taking 
globally consistent checkpoints. Our scheme has been designed 
for a system employing the timestamp ordering policy for con- 
currency control. Our scheme uniformly identifies, using the 
largest timestamp value among active transactions, the trans- 
actions which are active at the time of checkpointing initiation 
at all sites, as well as all the transactions on which such active 
transactions depend identified. After all these identified trans- 
actions complete their execution at all sites, the checkpoints are 
taken including the effects of only the identified transactions *. 
As a result, the global consistency among the checkpoints taken 
at each site is maintained. Moreover, our checkpointing scheme 
does not interfere with the normal transaction execution by us- 
ing the database deviation concept suggested in [lo]; that is, no 
transactions are aborted or interrupted due to the checkpoint- 
ing process. Our scheme is particularly essential for the systems 
which executes the time critical transactions. Extensive simu- 
lation was performed to compare our scheme with the scheme 
proposed in [ll] and the scheme proposed in [7]. The simulation 
results show that our scheme outperforms both these scheme in 
all the cases where the simulation parameters were varied. 

The rest of this paper is organized as follows: In Section ‘2, 
we explain the system model; The notion of globally consistent 
checkpointing and the problems in achieving a globally consis- 
tent checkpoint are identified in Section 3; We then present our 
globally consistent and non-intrusive checkpointing scheme in 
Section 4; In Section 5 we present. the simulation results of our 

‘We reasonably assume no long-lived transactions in the system which 
is not quite suitable for the timestamp ordering concurrency controt policy 

228 

scheme and two other existing schemes and we conclude the 
paper in Section 6. 

2 SYSTEM MODEL 

We consider a database system whose data items, the small- 
est accessible units by transactions, are physically distributed 
among N sites in the system and are replicated if necessary. The 
sites are connected through a communica.tion network and the 
message exchange between the processes residing on different 
sites are assumed to be reliable, i.e., the message which is sent 
by a site is delivered uncorrupted to the destined site within an 
arbitrary but finite time period. However, the message delivery 
order need not be maintained. 

A transaction is the basic consistent unit of user activity to 
access the data items and consists of a set of subtransactions, 
which may be executed at several different sites. The site which 
is responsible for initiation and termination of a transaction 
is called the coordinator and the participating sites are called 
cohorts. For the termination of a transaction, we assume the 
two-phase commit protocol; that is, at the time of transaction 
completion, the coordinator asks the intention of commit or 
abort of each cohort and based on the intentions collected from 
all cohorts, the coordinator makes a decision and then all the 
cohorts follow the decision 1151. 

In our system model, we do not impose any restriction on 
when to flush the updates of transactions in the cache or 
main memory into the database state in the secondary storage. 
Hence, a recovery from a transaction failure or a site failure 
(not a media failure) may have to undo and/or redo the log 

IW 
A set of transactions can be executed concurrently at a site, 

and for these concurrent transactions to be executed serializ- 
ably, the basic timestamp ordering concurrency control policy 
is assumed to be employed at each site [17]. For this, each 
transadtion initiated at a site carries the logical clock value at 

the time of initiation of that site as its timestamp and all its 
subtransactions carry the same timestamp. The logical clock 
value at each site is maintained by the clock rule proposed in 

P81. 
Each transaction can be uniquely identified by its timestamp 

concatenated with the identifier of its initiating site and all of 
its subtransactions carry the same identifier. For convenience, 
we use the following notations in this paper; a transaction with 
identifier a is denoted by T(a), and a subtransaction of T(a), 
which is executed at a site S;, is denoted by T;(a). Similarly, a 
set of data items updated by T(a) is denoted by D(a), and a 
set of data items updated by T’(a) is denoted by D;(a). Note 
that Bi(a) C B(U). 

At site Sk, Tk(a) is said to be directly dependent on Tk(b), if 
Tk(a) reads a data item updated by Tk(b), and this dependency 
relation is denoted by Tk(b) + Tk(a). Similarly, the transitive 
dependency, which is the transitive closure of the direct depen- 

dency, is defined as follows: if Th(c) + Tk(b) and Tk(b) + Tk(u), 
then Tk(a) is said to be transitively dependent on Tk(c) and this 
dependency relation is denoted by Tk(c) +* Tk(a). Moreover, 
if for any k, Tk(b) + Tk(a), then T(b) + T(a); and if for any 

k, Tk(c) -,* Tk(a), then T(c) +* T(a)- 



3 pC~tX&STENT GLOBAL CHECK- 

A global checkpoint of the system is defined as a collection 
of local checkpoints, one from each site; that is, GCP(t) = 

(W~),Jh(% "., LN(t)), where GCP(t) is a global checkpoint 
having a unique identifier t and Li(t) is a local checkpoint at 
site Si. GCP(t) must be consistent in order for the system 
to restore the correct database state on recovery from a media 
failure. 

One of the conditions for a GCP(t) to be consistent is that 
the atomicity of each transaction (subtransaction) at a site Si 
must be reflected in L;(t), because a transaction is a basic con- 
sistent unit of the database operation. That is, if any update of 
a transaction is included in L;(t), then all the updates by that 
transaction must be included in L;(t). Similarly, a transaction 
must also be globally atomic, i.e., if any updates by a subtrans- 
action Z’i(u) at site Si are reflected in L;(t), then the updates of 
all other subtransactions of T(a) must also be reflected in the 
corresponding local checkpoint of GCP(t). 

Another consistency constraint is that if the updates of a 
transaction, say Z’i(a), is reflected in Li(t), then every transac- 
tion on which Z’i(a) depends at site Si, say T’(b), must reflect 
its updates in Li(t). This constraint is quite necessary because, 
by reflecting the updates of Z’;(a) in L;(t), the partial effect of 
Z’i(b) is implicitly reflected on Li(t). Then, for preserving the 
atomicity of the transaction T(b), all effects of Z’;(b) must be 
included in Li(t). 

More formally, the consistent global checkpoint can be de- 
fined as follows: 
Definition 1: A global checkpoint GCP(t) is said to be 
consistent if and only if the following conditions are satisfied : 

Cl: For any dataitem x E Di(U), if the update of x is reflected 
in Iii(t), then for every data item y E D;(u), the update of 
y must be reflected in Li(t). 

C2: For any data item z E D;(a), if the update of z is reflected 
in L;(t), then for every data item y E D(a), the update of 
y must must be reflected in GCP(t) at the corresponding 
sites. 

C3: If the updates of Di(a) are reflected in Li(t), then for 
every Z’i(b), for which Z’i(6) +* T;(u), the updates of D;(b) 
must be reflected in L;(t). 0 

The partial state of the database in the cache or main mem- 
ory is assumed to be flushed into the secondary memory at 
any time, hence, it is not straightforward to catch the locally 
consistent state of the database instantly, as required in Con- 
dition Cl. To cope with this problem, the concept of database 
deviation was introduced in [lo], [ll] and [12]. That is, after 
a checkpointing is initiated at S;, the values of updated data 
items at the site are recorded in a separate data area with the 
timestamp of the transactions which updated that data item. 
We call this data area to store the data items to be deviated 
at Siy the Deviated Database Area of Si (DDAi), which can 
be in the main and/or secondary memory. Moreover, all read 
operations must be consistently performed with the data items 
recorded in DDAi. Hence, when the transactions to be included 
in GCP(t) are consistently identified, only the updates made by 
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Figure 1: Inconsistent Checkpoint 

those transactions can be separated and reflected in GCP(t). 
Let OTL; be the set of transactions which are on-going at site 

,Si when a global checkpointing for GCP(t) is initiated. Then, 
every T;(a) in OTLi must be included in GCP(t), since their 
partial effect might already have been reflected in the database 
state, and to satisfy the condition C2, every subtransaction of 
T(u) m&t also be included in GCP(t). Those transactions are 
uniformly identified by the largest timestamp among the on- 
going transactions of all sites in the system, in [ll]. TO collect 
the largest timestamp, two phases are used: the first phase to 
collect the largest timestamp among the transactions in OTL; 
for every S; in the system and the second phase to inform the 
largest timestamp among the collected ones. Then, by includ- 
ing all the transactions having the timestamp lower than the 
selected one into GCP(t), the condition C2 and also the con- 
dition C3 can be satisfied at all sites, because all transactions 
on which the transactions in OTL; depend must have lower 
timestamps than the selected one. 

However, there is still some possibility of inconsistency, since 
some subtransactions of a transaction T(u) E OTLi may arrive 
at another site, Sj, after all the transactions to be included 
in Lj(t) are already identified, as shown in Figure 1. Then, 
T(a) can result in an inconsistent GCP{t) since its updates are 
included in I/i(t) but not in Lk(t). To cope with this possi- 
ble inconsistency problem, such transactions are identified and 
aborted in 1111, hence this checkpointing scheme does not sat- 
isfy the non-intrusive property as claimed. Moreover, to iden- 
tify such transactions before their executions begin, two-phase 
initiations are used for each transaction initiation, hence, the 
initiation of normal transactions are delayed and the response 
time must be higher. 

Hence, we introduce our non-intrusive and globally consis- 
tent checkpointing scheme, which consists of three phases: in 
the first phase, the transactions to be included in GCP(t) are 
identified, any subtransactions which might cause the inconsis- 
tency problem are identified in the second phase, and finally in 
the third phase, each site actually takes its checkpoint. The de- 
tailed description of our checkpointing scheme is shown in the 
next section. 

4 CHECKPOINTING RECOVERY 

4.1 Checkpointing Scheme 

In this section, we present our non-intrusive checkpointing 
scheme, in which a designated site, called checkpointing coordi- 
nator, initiates a checkpointing periodically and all other sites 
in the system, called checkpointing cohorts, participate in the 



checkpointing process to produce a consistent global checkpoint. 
Our scheme consists of three major phases: In the first phase, 

the transactions in OTL are identified at all sites in the system, 
by using the timestamp values of the on-going transactions at 
each site when the global checkpointing is initiated, and the 
timestamp value is informed to the coordinator. In the sec&d 
phase, the coordinator after collecting the timestamp values 
from all the sites, selects the largest value among them, and 
forces every site to include the updates of transactions having 
a lower timestamp value than the selected one in the GCP(t). 
Since we assume the timestamp ordering concurrency control 
policy, the dependency happens according to the timestamp 
order. That is, the transactions on which Ti(a) depends must 
have a lower timestamp value than Ti(a). Hence, when the 
largest timestamp value is selected, every site updates its local 
clock value to the one higher than the selected one. By doing 
so, we can guarantee that the transactions in OTL cannot be 
dependent on the transactions initiated after this point of time, 
since the former transactions have a timestamp value lower than 
the latter ones. However, there are still some active transac- 
tions, having a lower timestamp than the selected one, which 
is spawning the new subtransactions during the checkpointing 
coordination, and hence, we have to wait until all these trans- 
actions complete, for consistent checkpointing. Finally, in the 
third phase, each site then takes the checkpoint which forms a 
consistent GCP( t). 

For simplicity, we assume page level concurrency control, that 
is, a data item corresponds to a data page, and we also assume 
no site failures during the checkpointing coordination process 
in this section. Our algorithm, however, can be easily extended 
to handle other levels of concurrency control with slight mod- 
ification in DDA space management. Handling of site failures 
will be discussed in the subsection 4.3. We now describe the 
tasks in the checkpointing process in detail by explaining each 
checkpointing phase: 
Phase I: 

(1) The checkpointing coordinator sends the checkpoint&g ini- 
tiation message, CHCKINIT, to all the sites in the system. 

(2) Upon receipt of CHCKINIT, each of the cohorts, say Sj, 
sets the value of CLTj as the current local clock value and 
responds to the coordinator with CLTj. Note that all the 
active transactions at site Sj have timestamps lower than 
or equal to the value of CLTj. 

(3) Each site Si then creates OTL;, which is the set of identj- 
fiers of the transactions which are on-going at that time. 

(4) Each site Si begins to deviate its database. DDAi is im- 
plemented aa a set of linked lists of data pages updated by 
the transactions with higher timestamps than CLTi (one 
list per each data item), and maintained in the main mem- 
ory until it reaches a certain limit. That is, the deviated 
data pages in the buffer space are marked and the buffer 
manager does not select those pages for replacement, un- 
less the buffer space allocated for the DDA; space reaches 
a limit. If the limit is reached, those data pages are flushed 
into the DDA; residing on disk. For efficient access to the 
data pages in DDAi in the disk, DDA page map table is 
maintained in the main memory. The detailed description 
of database deviation managed by the buffer manager are 

as follows: 

l When a transaction Ti(a) with a higher timestamp 
than CLTi wants to update a data page containing x: 

- If that page is not found in the buffer, the DDA 
page map table is first checked. If an entry for 
any updated version of x is found in DDA page 
map table, then the most recent version of z 
in DDAi is fetched. Otherwise, the data page 
in normal database area is fetched. Once the 
page is updated, it is marked as Deviated Data 
Pages( DDP). 

- If the page is found in the buffer, Ti(a) cannot 
directly update the page due to the database de- 
viation, unless the page has not been updated 
yet. If that page has been read only, then Ti(a) 
updates that page and marked as DDP. Other- 
wise, the page is copied into another data page 
in the main memory and the updates is made on 
the new page, and the link between two pages 
are maintained if old page has been updated by 
a transaction with higher timestamp than CLTi. 

l When a transaction T;(a) with a higher timestamp 
than CLT; wants to read a data page containing x: 

- If that page is not found in the buffer, the DDA 
page map table is first checked. If an entry for 
any updated version of x is found in DDA page 
map table, then the most recent version of 2 in 
DDAi is fetched for read. Otherwise, the data 
page in normal database area is fetched. This 
fetched page need not to be marked as DDP, be- 
cause it is read only. 

- If the page is found in the buffer, z(a) read from 
the most recent version of the page. 

. When a transaction T;(a) with a lower timestamp 
than CLTi wants to read or update a data page con- 
taining x, the operation is performed on the pages in 
the normal database area. 
Note that if the requesting transaction T;(a) has 
timestamp lower than CLTi and there is any version 
of z found in DDAi in the main memory or in the 
disk, then T;(a) must be aborted due to the concur- 
rency control. 

Phase II: 

(1) After receiving CLTj from every site Sj, the coordinator 
selects the largest value among CLTjs and CLTi, and its- 
signs the value as the globally laqest timestamp (GLT). 

(2) It then adjusts its local clock with the value of GLT, and 
broadcasts GLT to all the checkpoint cohorts. 

(3) Upon receipt of GLT, each cohort adjusts its current local 
clocks with the value of GLT, if its current local clock value 
is lower than GLT. Note that all the transactions initiated 
after this point have a larger timestamp than GLT. 

(4) Each site Si then adjusts its OTLi to include the identifiers 
of the transactions which are on-going at this time and 
have a lower timestamp value than GLT. Note that these 

230 



transactions are finally included in GCP(t). 

(5) For each data item in DDA;, if the timestamp of an up- 
dating transaction is smaller than GLT, the updates are 
reflected in the normal database space and deleted from 
DDA; by unmarking the data page if it is in the main mem- 
ory, or by discarding the space if it is in the disk. That is, 
the DDA; now maintsins only the updated versions of data 
items which are not included in GCP(t). Moreover, for the 
updated versions of data items remaining in DDAi, only 
the most recent version of the data items are maintained 
from this phase, by deleting the older versions. 

(6) Si then waits until all transactions in OTL complete their 
execution and then sends a CHCKOK message to the co- 
ordinator. 

Phase III: 

(1) After the checkpoint coordinator receives the CHCKOK 
from all the cohorts, it broadcasts a CHCKCOMMIT mes- 
sage, which informs the sites to begin taking the actual 
checkpoint. 

(2) Upon receiving the CHCKCOMM~T message, each site S; 
begins taking the checkpoint using the following procedure 

A new checkpoint is taken at the site by copying the 
database state in the second&y memory into a secure 
storage, and associates a new identifier for the global 
checkpoint. This copying operation is performed con- 
currently with the normal data base execution not to 
interfere with the normal transaction processing. 

The current state of the database in the main memory 
is reflected into the database residing in the secondary 
memory or into the checkpointed database in the se- 
cure storage, according to the timestamp of the trans- 
action which updates the data page most recently, 
when the page has to be flushed out for the replace- 
ment . 

4.2 Correctness 

We first show that our checkpointing scheme produces a globally 
consistent checkpoint. 
Theorem 1: A global checkpoint GCP(t) created under our 
scheme is consistent, 
Proof : Assume that GCP(t) is not consistent. Zt then should 
have violated at least one of the conditions Cl, C2 and C3. 
Case 1) Suppose that condition C2 is violated. In this case, 
without loss of generality, we can assume that Ti(a) was in- 
cluded in L;(t) and Tjfa) was not included in Lj(Z), for T(a). 
Since both of the transactions have the same timestamp, they 
must be included in GCP(t) in both sites, unless Tj(a) arrives 
at a site Sj after the checkpointing is terminated. In order for 
Ti(U) to be included in Li(t), it should have been in adjusted 
OTLi. Since all the transactions in 0T.L; complete their execu- 
tion when informing the CHCKoK, Ti(a) should have already 
completed its execution, before the transmission of CHCKOK. 
Then, under our assumption of two-phase commit protocol, it is 
not possible for r’(a) to arrive at site Sj after the termination 
of the checkpointing. A contradiction. 

Case 2) Suppose that C3 is violated. There should have been 
transactions T;(a) not included at L;(t) and Ti(b) included at 
L;(t), such that T;(a) +* Ti(b) and timestamp of Ti(b) is lower 
than GLT. Since we assume the timestamp ordering concur- 
rency control policy, the timestamp of T;(a) must be less than 
Ti(b). Hence, the timestamp of Z’i(o) is less than GLT, and it 
must have been decided that T;(a) should be in GCP(t). More- 
over, the checkpointing is actually taken when all the transac- 
tions, having smaller timestamp than GLT, have completed, 
hence, T;(a) should have been committed. Then, Ti(a) should 
have been included in L;(t). A contradiction. 
Case 3) Suppose that condition Cl is violated by T;(a). The 
updated versions of the data items accessed by Z’;(u) are made 
in DDAi, after a checkpointing is initiated. Hence, if Ti(a) 
is decided to be in GCP(t), all updated version in DDAi of 
Ti(a) should have been transferred to the normal database area 
before L;(t) was taken. A contradiction. 
Therefore, our checkpointing scheme produces a consistent 
global checkpoint. 0 

We now show that our checkpointing scheme terminates 
within a finite period of time. 
Theorem 2: A global checkpointing coordination under our 
scheme will terminate within a finite period of time. 
Proof : The first phase of our checkpointing scheme consists 
of collecting the current local clock values from all sites. Since 
no site failures are assumed during the checkpointing and the 
message delay is also assumed to be finite, the clock vitlue can 
be collected within a finite time. The second phase can fin- 
ish when all the transactions having a smaller timestamp than 
GLT are completed at aJl sites. Since every site changes its 
clock value, when it receives GLT from the coordinator, with 
the value larger than GLT, the transactions having a lower 
timestamp value than GLT can be initiated only before this 
point of time. Hence, each site can have a finite number of such 
transactions and the execution time for these transactions is 
finite. Hence, the second phase can also be completed within 
a finite time. When the third phase begins, all transactions 
to be included in the checkpoint should have already commit- 
ted. The time to deliver the CHCKCXJMMIT messages and the 
checkpoint saving time at each site in the third phase are also 
finite. Therefore, our global checkpointing coordination process 
can be completed within a finite period of time. c1 

4.3 Recovery and Failure Handling 

When a site S’i recovers from a media fitilure, it first restores 
its recent checkpoint, hi(t), and forces all other sites to restore 
their checkpoints corresponding to GCP(t). For the consistent 
recovery from a media failure, it is necessary for any GCP(t) to 
be consistent. However, if any of the sites fail during the global 
checkpointing and cannot take a checkpoint, then the global 
checkpoint produced cannot be used for the recovery since some 
committed transactions which are included in a &i(t) are not 
included in the most recent checkpoint of that failed site (i.e. 
violation of C2 of the definition of consistency). 

We here assume that the failure of a site can be detected 
by other sites within a finite time. Hence, in our scheme, the 
failures during the global checkpointing are handled as follows: 

l If a checkpointing cohort fails during the first or second 
phase of the checkpointing: Then, the checkpointing coor- 
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dinator broadcasts the checkpointing abort message instead 
of G&T or CHCKCOMMIT 

l If a checkpointing cohort fails during the third phase of 
the checkpointing: To handle this problem, we can intro- 
duce one more phase in our checkpointing scheme to ensure 
the completion of the checkpointing. After each site actu- 
ally saves its checkpoint on a stable storage, it sends the 

checkpointing complete message to the coordinator. The 
coordinator after collecting this message from all the sites 
in the system sends the final checkpointing commit mes- 
sage to all of them. Upon the receipt of the final checkpoint 
commit, each site discards the old checkpoint and mark the 
new checkpoint as a globally consistent checkpoint. Hence, 
each site in the system need to maintain only one check- 
point which is globally consistent. 

l If a checkpointing coordinator fails during the checkpoint- 
ing: Then, all the checkpointing cohorts decide to abort 
the on-going checkpointing process. 

5 DISCUSSION 

Extensive simulation was performed to compare the perfor- 
mance of our scheme with two other schemes proposed in [7] 
and [ll]. For simplicity, we denote the scheme suggested in 
[ 111 as scheme S, the scheme mentioned in [7] as scheme I and 
our scheme as scheme K. Scheme I blocks the initiation of new 
transactions, once the checkpointing is initiated at each site. 
After the transactions which are active at the time of check- 
pointing initiation have completed their execution, the check- 
point is taken and the transactions which have arrived during 
the checkpointing can get serviced. Scheme S uses a two-phase 
checkpointing mechanism, where it collects the largest times- 
tamp of the ongoing transactions in the system and all updates 
by transactions with a timestamp lower than this largest value 
is included in the checkpoint. However, in this scheme, some 
transactions which initiated before the checkpointing may get 
aborted if its subtransactions arrive at some remote sites after 
their checkpointings are completed. 

5.1 Simulation Model 

A distributed database system with 10 sites connected through 
a general network was simulated. Each site consists of a CPU, 
a main memory, a disk, and a secure storage device for the 
checkpoint, each of which is managed by a scheduler, buffer 
manager, disk manager, and recovery manager, respectively. In 
our simulation, it is assumed that CPU and disk processing time 
for data item is 5 milliseconds and 24 milliseconds respectively. 
It is also assumed that 128 pages of buffer space is available in 
the main memory for data caching, and the buffer management 
policy is LRU. The granularity of the data items accessed by 
the transactions is assumed to be pages. The database residing 
at each site is assumed to have 5000 data items. 

A global transaction is initiated at each site with an interar- 
rival time which follows an exponential distribution with a rate 
Xt and spawns subtransactions at other sites. The number of 
sites for subtransactions and to which the subtransactions are 
sent are randomly selected for each transaction. Each subtrans- 
action consists of a sequence of write requests for data items. 
A normal distribution with a mean Nd and standard deviation 

Man ROSDO~Y Time(mr.) 

1.6~ 

0.61 , . , . , . , 
0.0 0.1 0.2 0.3 0.4 O.! 

(b) 

Figure 2: Mean Transaction Response Time and Number of 
Transaction Restart Vs. Transaction Arrival Rate 

6, is used to choose the number of data items that a transac- 
tion accesses. We assume the two-phase commit procedure for 
each global transaction, for all schemes. In scheme S, the two- 
phase initiation mechanism is also used for transactions during 
the checkpointing process. However, there is no restriction for 
initiation of subtransactions in scheme K and scheme I. 

Message transmission delay of a link in the network follows 
an exponential distribution with a rate X,, and to be more real- 
istic, the delay is bounded by a certain minimum and maximum 
values. 

The checkpointing process is initiated by one designated site 
with a fixed time interval. The DDA space management during 
the checkpointing coordination exactly follows the algorithm 
described in section 4, and the same management scheme is 
also simulated for scheme K and scheme S. No site failure is 
assumed in the current simulation. The simulation program is 
written in C language and was executed on Sun Spare stations 
under Sun OS 4.1.1. 

5.2 Simulation Results 

The main performance index used in our simulation is the mean 
response time of the transactions executed during the check- 
pointing coordination process. This performance index of the 
three schemes is compared through simulation by varying the 
parameters, such as transaction arrival rate at each site(&), the 
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Figure 3: Mean Transaction Response Time and Number Of 
Transaction Restart Vs. Communication Delay 

mean communication delay of the network(&) and the mean 
number of data items accessed by each subtransaction at a 
site(Nd). In our simulation, the effect of the actual checkpoint 
saving time is not considered, since all three schemes have the 
same overhead for saving the checkpoint. 

We first compare the mean response time of the schemes by 
varying the value of Xt, from 0.01 transactions/second to 0.4 
transactions/second. Figure 2.a shows the mean response times 
of the schemes where k is 50 millisecond, Nd is 6 and 6d is 2. 
It can be seen that scheme K outperforms the other schemes 
throughout the variation in Xt. The relatively poor performance 
of scheme I is due to the fact that the initiations of new transac- 
tions are blocked during the checkpointing coordination. Since 
the waiting time for the transaction to be initiated is consid- 
ered in the response time, the transactions under the scheme 
I experienced the longest response time in all cases. We can 
also notice that the performance difference becomes larger for 
scheme I as the transaction arrival rate increases. As the trans- 
action arrival rate becomes higher, there can be more active 
transactions at the time of checkpointing initiation, which has 
to complete their execution to take a checkpoint, and hence, 
the checkpointing coordination time becomes longer, which in 
turn cause longer delay for the newly arrived transactions. 

The performance difference between scheme K and scheme 
S is mainly due to the communication delay experienced for 
two-phase initiation in scheme S. Another factor affecting the 
performance difference between scheme K and scheme S is the 
restart during the checkpointing coordination in scheme S, be- 
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Figure 4: Number Of Deviated .Data Pages Vs. Transaction 
Arrival Rate and Communication Delay 

cause the response time of those transactions includes the time 
spent for two-phase initiation before its abort. Figure 2.b shows 
the number of restarts in scheme S for each site per check- 
point against the transaction arrival rate. Since the number of 
restarts increase according to the the transaction arrival rate, 
the performance difference between scheme K and scheme S 
widens slightly, as the transaction arrival rate increases. 

In Figure 3.a the response time is compared with different 
communication delay time, when Xt is 0.1 transactions/second, 
Nd is 6 and & is 2. Communication delay affects the response 
time of the transaction because of the two-phase commit, which 
is common for all three scheme, hence, the increase in commu- 
nication delay causes the longer response time. In scheme S, the 
communication delay also affects the time for two-phase initi- 
ation, and hence, the performance difference between scheme 
K and scheme S become larger as the communication delay in- 
creases. Moreover, as the communication delay increases, the 
possibility that subtransaction initiation requests sent by the 
global transactions arrive at the remote sites after their check- 
pointings is increased. This increase in the number of transac- 
tion restarts per checkpoint at each site can be seen in Figure 
3.b. This steep increase in the transaction restarts explains the 
rapidly widening gap between scheme K and scheme S in Figure 
3.a. 

From the simulation results, our scheme is found to outper- 
form the other schemes in terms of response time, and the per- 
formance difference becomes larger as the transaction arrival 
rate and the communication delay increases. Such performance 
difference exists mainly because our scheme never blocks/aborts 
the transactions and does not requires the two-phase initia- 
tion to achieve a consistent checkpoint, thus providing a non- 
intrusive checkpointing. 

Another factors to be considered for performance of the sys- 
tem is the storage overhead and the number of messages ex- 
changed during the checkpointing. Since our checkpointing co- 
ordination requires one more phase compared with the scheme 
S, extra space and messages are required during that phase. 
To validate our scheme, we also count the average number of 
deviated data pages maintained for phase III of our scheme 
throughout the simulation. Figure 4.a shows the number of de- 
viated data pages per each site and each checkpointing against 
the transaction arrival rate, and Figure 4.b shows the same per- 

233 



formance indices against the communication delay. As shown in 
both figures, the space overhead is not that severe in our simula- 
tion environment. Moreover, the number of messages required 
for phase III of our checkpointing process is 2*N, where N is 
the number of sites in the system, and hence the total number 
of messages exchanged during our checkpointing process is still 

O(N). 

6 CONCLUSIONS 

In this paper, we presented a checkpointing scheme for media 
failure in a distributed database system with timestamp order- 
ing concurrency control, which can be executed concurrently 
with normal transaction processing, that is, no transactions are 
aborted or no transaction initiations are delayed due to the 
checkpointing process. Our scheme always produces a globally 
consistent checkpoint, so that it can be used for recovery from 
media failures, where all sites are forced to start from the con- 
sistent checkpoints. 

Our scheme identifies, in three phases, completion of the 
transactions active at the time of checkpointing initiation and 
the transactions on which the active transactions depend, and 
hence the checkpoints can be safely taken including only the ef- 
fects of those transactions. For this, the transactions executing 
during the checkpointing period are provided with a deviated 
database area, so that each update of newly initiated transac- 
tions, after the initiation of checkpointing, are saved separately 
and only the updates of necessary transactions can be appro- 
priately included in the checkpoint. The overhead involved in 
providing this service is some space requirement to retain each 
value of a data item updated by the active transactions, during 
the first two phases of the checkpointing scheme. As shown in 
simulation results, the space required in our scheme during the 
first phase of the checkpointing coordination is almost equal 
to the scheme proposed in [ll]. Moreover, the maximum dif- 
ference in space required by our scheme over [ll] during the 
second phase and third phase is not great. 

In summary, our scheme does not impose any restriction in 
initiating subtransactions through a two-phase initiation mech- 
anism, which is required for the scheme in Ill]. The global 
transaction in our scheme is not forced to send the subtrans- 
actions to the sites at the start of the transactions, but the 
scheme in [ll] requires that the global transactions send the 
subtransactions at the beginning of its execution. 
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