
A PROTOCOL FOR CONSISTENT CHECKPOINTING RECOVERY
FOR TIME-CRITICAL DISTRIBUTED DATABASE SYSTEMS

Junguk L. Kim, Taesoon Park, Prabaharan I. Swarnam
Department of Computer *Science

Texas A&aydUnlverslty

Myung- Joon Kim
Electronics and Telecommunications Research Institute

ABSTRACT

This paper presents a checkpointing scheme which effectively
copes with media failures for a distributed database system
(DDBS), which employs the timestamp ordering scheme for
concurrency control. In our scheme, normal transactions are
executed during the checkpointing process without any inter-
ruption. The state of the database taken as a checkpoint by
all sites in the system is consistent, so that fast recovery from
media failures can be performed. Since our scheme does not
interfere with the normal transaction processing, the scheme is
essential for time-critical distributed database systems. Simu-
lation results show that our scheme outperforms the existing
schemes.
Index Terms - Distributed Databases, Checkpointing, Media
Failure, Recovery, Consistency.

1 INTRODUCTION

In a database system, failures in the system might leave the
database in an inconsistent state due to abnormal termination
of transactions. Three types of failures cause this inconsistency;
transaction failure, which is the abnormal termination of the
transactions, system failure, which causes the loss of the con-
tents in volatile storage, such as cache or main memory, and
media failure, which causes the loss of non-volatile storage, such
as the contents of database state stored in a secondary storage.

To restore the database to a correct state after such failures,
recovery techniques are used as described in [l] and [2]. The
most widely used recovery technique for failures is to recon-
struct the correct database state by using the information of
the database operations executed by the transactions, which is
usually saved in a specified secondary storage space, called a
log. Using the log information, the transaction operations are
undone and/or redone to bring the database up to the most re-
cent consistent state. However, in case of a media failure, both
the database and the log in the secondary storage are lost. To
recover from this type of failure, the database state is periodi-
cally copied into a secure storage, which is assumed not to be

affected by any type of failure; we call this copy a checkpoint.
For the system to resume its computation correctly, the correct
and consistent state of the database must be checkpointed.

The data items of a database in a distributed database system
(DDBS), are replicated and located over the different sites and
a global transaction may access the data items in several sites
and update them. Hence, the checkpointing in a distributed
database system is quite complicated since the atomicity of the
global transaction must be reflected in the checkpoint. That is,
if a site 5’; takes a checkpoint after a global transaction T(a)
has updated the database at Si, while another site Sj takes the
checkpoint before T(a) has updated the database at Sj, then
the global checkpoint produced is inconsistent and a recovery
with this checkpoint may produce another inconsistent state.
Moreover, if T(a) reads one or more data items modified by
another transaction, say T(b), then the effects of T(b) at all
sites must also be reflected in the checkpoint for the checkpoints
taken to be consistent. Hence, to avoid these inconsistencies, a
system-wide coordination for checkpointing is required.

The checkpointing for DDBS has been extensively stud-
ied and various methods have been proposed and are classi-
fied, based on how the coordination among the sites are per-
formed, into non-synchronized and synchronized [3]. In the
non-synchronized schemes, each site takes a checkpoint when it
finds its local database to be consistent, without respect to the
global state of the distributed database. The globally consis-
tent state of the DDB is then constructed during the recovery
process by finding the consistent set of checkpoints among the
saved ones [4]. In [5] and [6] the checkpointing is performed
as part of the transaction-commit process and the recovery is
performed by finding the set of transactions and their depen-
dents whose operations have to be discarded and the respective
sites, at which these transactions operated on, are informed to
discard the effects of these transactions. Possible drawbacks
of the above methods are that each site should maintain more
than one checkpoint and may take a longer time to recover due
to information exchange for finding a globally consistent point.

The checkpointing in the synchronized schemes is performed
in coordination between the sites to result in a single checkpoint

which is globally consistent. [7] and [S] suggested schemes which
produces globally consistent checkpoints, but the initiation of
transactions during the checkpointing process at the sites are
delayed until the checkpointing process has been completed. A
site initialization method adopted to take checkpoints was pro-
posed in [9], where taking of globally consistent checkpoints may
delay transaction processing and may cause unnecessary aborts
due to deadlocks. In another synchronized scheme, proposed in
[3], the transactions to be included in the checkpoint are iden-
tified and the transactions that arrived after the checkpoint
initiation at some sites but which should have been included in
the checkpoint, are aborted. To avoid this delay and abortion of
transactions, the idea to deviate the database during the check-
pointing process was proposed by Fischer, et. al., which would
minimize interruption of transaction processing [lo]. This idea
was used by two schemes which tried to minimize the transac-
tion processing interruption [ll] and [12].

[ll, 131 suggested a scheme where the largest timestamp of
the transactions ongoing at the time of checkpoint initiation is
found and the updates of transactions which have a lower times-
tamp than this selected value are included in the checkpoint.
However, the transactions which should have been included in
the checkpoint but arrive at a site after it takes a checkpoint,
are aborted. In the scheme proposed in [14], the transactions
carry the last checkpoint number of the originating site and the
data items carry the last checkpoint number of the transaction
which updated it, to detect consistency among checkpoints and
to avoid interruption of transaction processing. However, it is
possible that a few transactions may be aborted if they were
initiated before the checkpointing process and their subtrans-
actions arrived at sites after the data items at those sites had
been checkpointed.

In this paper, we suggest a synchronized scheme for taking
globally consistent checkpoints. Our scheme has been designed
for a system employing the timestamp ordering policy for con-
currency control. Our scheme uniformly identifies, using the
largest timestamp value among active transactions, the trans-
actions which are active at the time of checkpointing initiation
at all sites, as well as all the transactions on which such active
transactions depend identified. After all these identified trans-
actions complete their execution at all sites, the checkpoints are
taken including the effects of only the identified transactions *.
As a result, the global consistency among the checkpoints taken
at each site is maintained. Moreover, our checkpointing scheme
does not interfere with the normal transaction execution by us-
ing the database deviation concept suggested in [lo]; that is, no
transactions are aborted or interrupted due to the checkpoint-
ing process. Our scheme is particularly essential for the systems
which executes the time critical transactions. Extensive simu-
lation was performed to compare our scheme with the scheme
proposed in [ll] and the scheme proposed in [7]. The simulation
results show that our scheme outperforms both these scheme in
all the cases where the simulation parameters were varied.

The rest of this paper is organized as follows: In Section ‘2,
we explain the system model; The notion of globally consistent
checkpointing and the problems in achieving a globally consis-
tent checkpoint are identified in Section 3; We then present our
globally consistent and non-intrusive checkpointing scheme in
Section 4; In Section 5 we present. the simulation results of our

‘We reasonably assume no long-lived transactions in the system which
is not quite suitable for the timestamp ordering concurrency controt policy

228

scheme and two other existing schemes and we conclude the
paper in Section 6.

2 SYSTEM MODEL

We consider a database system whose data items, the small-
est accessible units by transactions, are physically distributed
among N sites in the system and are replicated if necessary. The
sites are connected through a communica.tion network and the
message exchange between the processes residing on different
sites are assumed to be reliable, i.e., the message which is sent
by a site is delivered uncorrupted to the destined site within an
arbitrary but finite time period. However, the message delivery
order need not be maintained.

A transaction is the basic consistent unit of user activity to
access the data items and consists of a set of subtransactions,
which may be executed at several different sites. The site which
is responsible for initiation and termination of a transaction
is called the coordinator and the participating sites are called
cohorts. For the termination of a transaction, we assume the
two-phase commit protocol; that is, at the time of transaction
completion, the coordinator asks the intention of commit or
abort of each cohort and based on the intentions collected from
all cohorts, the coordinator makes a decision and then all the
cohorts follow the decision 1151.

In our system model, we do not impose any restriction on
when to flush the updates of transactions in the cache or
main memory into the database state in the secondary storage.
Hence, a recovery from a transaction failure or a site failure
(not a media failure) may have to undo and/or redo the log

IW
A set of transactions can be executed concurrently at a site,

and for these concurrent transactions to be executed serializ-
ably, the basic timestamp ordering concurrency control policy
is assumed to be employed at each site [17]. For this, each
transadtion initiated at a site carries the logical clock value at

the time of initiation of that site as its timestamp and all its
subtransactions carry the same timestamp. The logical clock
value at each site is maintained by the clock rule proposed in

P81.
Each transaction can be uniquely identified by its timestamp

concatenated with the identifier of its initiating site and all of
its subtransactions carry the same identifier. For convenience,
we use the following notations in this paper; a transaction with
identifier a is denoted by T(a), and a subtransaction of T(a),
which is executed at a site S;, is denoted by T;(a). Similarly, a
set of data items updated by T(a) is denoted by D(a), and a
set of data items updated by T’(a) is denoted by D;(a). Note
that Bi(a) C B(U).

At site Sk, Tk(a) is said to be directly dependent on Tk(b), if
Tk(a) reads a data item updated by Tk(b), and this dependency
relation is denoted by Tk(b) + Tk(a). Similarly, the transitive
dependency, which is the transitive closure of the direct depen-

dency, is defined as follows: if Th(c) + Tk(b) and Tk(b) + Tk(u),
then Tk(a) is said to be transitively dependent on Tk(c) and this
dependency relation is denoted by Tk(c) +* Tk(a). Moreover,
if for any k, Tk(b) + Tk(a), then T(b) + T(a); and if for any

k, Tk(c) -,* Tk(a), then T(c) +* T(a)-

3 pC~tX&STENT GLOBAL CHECK-

A global checkpoint of the system is defined as a collection
of local checkpoints, one from each site; that is, GCP(t) =

(W~),Jh(% "., LN(t)), where GCP(t) is a global checkpoint
having a unique identifier t and Li(t) is a local checkpoint at
site Si. GCP(t) must be consistent in order for the system
to restore the correct database state on recovery from a media
failure.

One of the conditions for a GCP(t) to be consistent is that
the atomicity of each transaction (subtransaction) at a site Si
must be reflected in L;(t), because a transaction is a basic con-
sistent unit of the database operation. That is, if any update of
a transaction is included in L;(t), then all the updates by that
transaction must be included in L;(t). Similarly, a transaction
must also be globally atomic, i.e., if any updates by a subtrans-
action Z’i(u) at site Si are reflected in L;(t), then the updates of
all other subtransactions of T(a) must also be reflected in the
corresponding local checkpoint of GCP(t).

Another consistency constraint is that if the updates of a
transaction, say Z’i(a), is reflected in Li(t), then every transac-
tion on which Z’i(a) depends at site Si, say T’(b), must reflect
its updates in Li(t). This constraint is quite necessary because,
by reflecting the updates of Z’;(a) in L;(t), the partial effect of
Z’i(b) is implicitly reflected on Li(t). Then, for preserving the
atomicity of the transaction T(b), all effects of Z’;(b) must be
included in Li(t).

More formally, the consistent global checkpoint can be de-
fined as follows:
Definition 1: A global checkpoint GCP(t) is said to be
consistent if and only if the following conditions are satisfied :

Cl: For any dataitem x E Di(U), if the update of x is reflected
in Iii(t), then for every data item y E D;(u), the update of
y must be reflected in Li(t).

C2: For any data item z E D;(a), if the update of z is reflected
in L;(t), then for every data item y E D(a), the update of
y must must be reflected in GCP(t) at the corresponding
sites.

C3: If the updates of Di(a) are reflected in Li(t), then for
every Z’i(b), for which Z’i(6) +* T;(u), the updates of D;(b)
must be reflected in L;(t). 0

The partial state of the database in the cache or main mem-
ory is assumed to be flushed into the secondary memory at
any time, hence, it is not straightforward to catch the locally
consistent state of the database instantly, as required in Con-
dition Cl. To cope with this problem, the concept of database
deviation was introduced in [lo], [ll] and [12]. That is, after
a checkpointing is initiated at S;, the values of updated data
items at the site are recorded in a separate data area with the
timestamp of the transactions which updated that data item.
We call this data area to store the data items to be deviated
at Siy the Deviated Database Area of Si (DDAi), which can
be in the main and/or secondary memory. Moreover, all read
operations must be consistently performed with the data items
recorded in DDAi. Hence, when the transactions to be included
in GCP(t) are consistently identified, only the updates made by

229

Figure 1: Inconsistent Checkpoint

those transactions can be separated and reflected in GCP(t).
Let OTL; be the set of transactions which are on-going at site

,Si when a global checkpointing for GCP(t) is initiated. Then,
every T;(a) in OTLi must be included in GCP(t), since their
partial effect might already have been reflected in the database
state, and to satisfy the condition C2, every subtransaction of
T(u) m&t also be included in GCP(t). Those transactions are
uniformly identified by the largest timestamp among the on-
going transactions of all sites in the system, in [ll]. TO collect
the largest timestamp, two phases are used: the first phase to
collect the largest timestamp among the transactions in OTL;
for every S; in the system and the second phase to inform the
largest timestamp among the collected ones. Then, by includ-
ing all the transactions having the timestamp lower than the
selected one into GCP(t), the condition C2 and also the con-
dition C3 can be satisfied at all sites, because all transactions
on which the transactions in OTL; depend must have lower
timestamps than the selected one.

However, there is still some possibility of inconsistency, since
some subtransactions of a transaction T(u) E OTLi may arrive
at another site, Sj, after all the transactions to be included
in Lj(t) are already identified, as shown in Figure 1. Then,
T(a) can result in an inconsistent GCP{t) since its updates are
included in I/i(t) but not in Lk(t). To cope with this possi-
ble inconsistency problem, such transactions are identified and
aborted in 1111, hence this checkpointing scheme does not sat-
isfy the non-intrusive property as claimed. Moreover, to iden-
tify such transactions before their executions begin, two-phase
initiations are used for each transaction initiation, hence, the
initiation of normal transactions are delayed and the response
time must be higher.

Hence, we introduce our non-intrusive and globally consis-
tent checkpointing scheme, which consists of three phases: in
the first phase, the transactions to be included in GCP(t) are
identified, any subtransactions which might cause the inconsis-
tency problem are identified in the second phase, and finally in
the third phase, each site actually takes its checkpoint. The de-
tailed description of our checkpointing scheme is shown in the
next section.

4 CHECKPOINTING RECOVERY

4.1 Checkpointing Scheme

In this section, we present our non-intrusive checkpointing
scheme, in which a designated site, called checkpointing coordi-
nator, initiates a checkpointing periodically and all other sites
in the system, called checkpointing cohorts, participate in the

checkpointing process to produce a consistent global checkpoint.
Our scheme consists of three major phases: In the first phase,

the transactions in OTL are identified at all sites in the system,
by using the timestamp values of the on-going transactions at
each site when the global checkpointing is initiated, and the
timestamp value is informed to the coordinator. In the sec&d
phase, the coordinator after collecting the timestamp values
from all the sites, selects the largest value among them, and
forces every site to include the updates of transactions having
a lower timestamp value than the selected one in the GCP(t).
Since we assume the timestamp ordering concurrency control
policy, the dependency happens according to the timestamp
order. That is, the transactions on which Ti(a) depends must
have a lower timestamp value than Ti(a). Hence, when the
largest timestamp value is selected, every site updates its local
clock value to the one higher than the selected one. By doing
so, we can guarantee that the transactions in OTL cannot be
dependent on the transactions initiated after this point of time,
since the former transactions have a timestamp value lower than
the latter ones. However, there are still some active transac-
tions, having a lower timestamp than the selected one, which
is spawning the new subtransactions during the checkpointing
coordination, and hence, we have to wait until all these trans-
actions complete, for consistent checkpointing. Finally, in the
third phase, each site then takes the checkpoint which forms a
consistent GCP(t).

For simplicity, we assume page level concurrency control, that
is, a data item corresponds to a data page, and we also assume
no site failures during the checkpointing coordination process
in this section. Our algorithm, however, can be easily extended
to handle other levels of concurrency control with slight mod-
ification in DDA space management. Handling of site failures
will be discussed in the subsection 4.3. We now describe the
tasks in the checkpointing process in detail by explaining each
checkpointing phase:
Phase I:

(1) The checkpointing coordinator sends the checkpoint&g ini-
tiation message, CHCKINIT, to all the sites in the system.

(2) Upon receipt of CHCKINIT, each of the cohorts, say Sj,
sets the value of CLTj as the current local clock value and
responds to the coordinator with CLTj. Note that all the
active transactions at site Sj have timestamps lower than
or equal to the value of CLTj.

(3) Each site Si then creates OTL;, which is the set of identj-
fiers of the transactions which are on-going at that time.

(4) Each site Si begins to deviate its database. DDAi is im-
plemented aa a set of linked lists of data pages updated by
the transactions with higher timestamps than CLTi (one
list per each data item), and maintained in the main mem-
ory until it reaches a certain limit. That is, the deviated
data pages in the buffer space are marked and the buffer
manager does not select those pages for replacement, un-
less the buffer space allocated for the DDA; space reaches
a limit. If the limit is reached, those data pages are flushed
into the DDA; residing on disk. For efficient access to the
data pages in DDAi in the disk, DDA page map table is
maintained in the main memory. The detailed description
of database deviation managed by the buffer manager are

as follows:

l When a transaction Ti(a) with a higher timestamp
than CLTi wants to update a data page containing x:

- If that page is not found in the buffer, the DDA
page map table is first checked. If an entry for
any updated version of x is found in DDA page
map table, then the most recent version of z
in DDAi is fetched. Otherwise, the data page
in normal database area is fetched. Once the
page is updated, it is marked as Deviated Data
Pages(DDP).

- If the page is found in the buffer, Ti(a) cannot
directly update the page due to the database de-
viation, unless the page has not been updated
yet. If that page has been read only, then Ti(a)
updates that page and marked as DDP. Other-
wise, the page is copied into another data page
in the main memory and the updates is made on
the new page, and the link between two pages
are maintained if old page has been updated by
a transaction with higher timestamp than CLTi.

l When a transaction T;(a) with a higher timestamp
than CLT; wants to read a data page containing x:

- If that page is not found in the buffer, the DDA
page map table is first checked. If an entry for
any updated version of x is found in DDA page
map table, then the most recent version of 2 in
DDAi is fetched for read. Otherwise, the data
page in normal database area is fetched. This
fetched page need not to be marked as DDP, be-
cause it is read only.

- If the page is found in the buffer, z(a) read from
the most recent version of the page.

. When a transaction T;(a) with a lower timestamp
than CLTi wants to read or update a data page con-
taining x, the operation is performed on the pages in
the normal database area.
Note that if the requesting transaction T;(a) has
timestamp lower than CLTi and there is any version
of z found in DDAi in the main memory or in the
disk, then T;(a) must be aborted due to the concur-
rency control.

Phase II:

(1) After receiving CLTj from every site Sj, the coordinator
selects the largest value among CLTjs and CLTi, and its-
signs the value as the globally laqest timestamp (GLT).

(2) It then adjusts its local clock with the value of GLT, and
broadcasts GLT to all the checkpoint cohorts.

(3) Upon receipt of GLT, each cohort adjusts its current local
clocks with the value of GLT, if its current local clock value
is lower than GLT. Note that all the transactions initiated
after this point have a larger timestamp than GLT.

(4) Each site Si then adjusts its OTLi to include the identifiers
of the transactions which are on-going at this time and
have a lower timestamp value than GLT. Note that these

230

transactions are finally included in GCP(t).

(5) For each data item in DDA;, if the timestamp of an up-
dating transaction is smaller than GLT, the updates are
reflected in the normal database space and deleted from
DDA; by unmarking the data page if it is in the main mem-
ory, or by discarding the space if it is in the disk. That is,
the DDA; now maintsins only the updated versions of data
items which are not included in GCP(t). Moreover, for the
updated versions of data items remaining in DDAi, only
the most recent version of the data items are maintained
from this phase, by deleting the older versions.

(6) Si then waits until all transactions in OTL complete their
execution and then sends a CHCKOK message to the co-
ordinator.

Phase III:

(1) After the checkpoint coordinator receives the CHCKOK
from all the cohorts, it broadcasts a CHCKCOMMIT mes-
sage, which informs the sites to begin taking the actual
checkpoint.

(2) Upon receiving the CHCKCOMM~T message, each site S;
begins taking the checkpoint using the following procedure

A new checkpoint is taken at the site by copying the
database state in the second&y memory into a secure
storage, and associates a new identifier for the global
checkpoint. This copying operation is performed con-
currently with the normal data base execution not to
interfere with the normal transaction processing.

The current state of the database in the main memory
is reflected into the database residing in the secondary
memory or into the checkpointed database in the se-
cure storage, according to the timestamp of the trans-
action which updates the data page most recently,
when the page has to be flushed out for the replace-
ment .

4.2 Correctness

We first show that our checkpointing scheme produces a globally
consistent checkpoint.
Theorem 1: A global checkpoint GCP(t) created under our
scheme is consistent,
Proof : Assume that GCP(t) is not consistent. Zt then should
have violated at least one of the conditions Cl, C2 and C3.
Case 1) Suppose that condition C2 is violated. In this case,
without loss of generality, we can assume that Ti(a) was in-
cluded in L;(t) and Tjfa) was not included in Lj(Z), for T(a).
Since both of the transactions have the same timestamp, they
must be included in GCP(t) in both sites, unless Tj(a) arrives
at a site Sj after the checkpointing is terminated. In order for
Ti(U) to be included in Li(t), it should have been in adjusted
OTLi. Since all the transactions in 0T.L; complete their execu-
tion when informing the CHCKoK, Ti(a) should have already
completed its execution, before the transmission of CHCKOK.
Then, under our assumption of two-phase commit protocol, it is
not possible for r’(a) to arrive at site Sj after the termination
of the checkpointing. A contradiction.

Case 2) Suppose that C3 is violated. There should have been
transactions T;(a) not included at L;(t) and Ti(b) included at
L;(t), such that T;(a) +* Ti(b) and timestamp of Ti(b) is lower
than GLT. Since we assume the timestamp ordering concur-
rency control policy, the timestamp of T;(a) must be less than
Ti(b). Hence, the timestamp of Z’i(o) is less than GLT, and it
must have been decided that T;(a) should be in GCP(t). More-
over, the checkpointing is actually taken when all the transac-
tions, having smaller timestamp than GLT, have completed,
hence, T;(a) should have been committed. Then, Ti(a) should
have been included in L;(t). A contradiction.
Case 3) Suppose that condition Cl is violated by T;(a). The
updated versions of the data items accessed by Z’;(u) are made
in DDAi, after a checkpointing is initiated. Hence, if Ti(a)
is decided to be in GCP(t), all updated version in DDAi of
Ti(a) should have been transferred to the normal database area
before L;(t) was taken. A contradiction.
Therefore, our checkpointing scheme produces a consistent
global checkpoint. 0

We now show that our checkpointing scheme terminates
within a finite period of time.
Theorem 2: A global checkpointing coordination under our
scheme will terminate within a finite period of time.
Proof : The first phase of our checkpointing scheme consists
of collecting the current local clock values from all sites. Since
no site failures are assumed during the checkpointing and the
message delay is also assumed to be finite, the clock vitlue can
be collected within a finite time. The second phase can fin-
ish when all the transactions having a smaller timestamp than
GLT are completed at aJl sites. Since every site changes its
clock value, when it receives GLT from the coordinator, with
the value larger than GLT, the transactions having a lower
timestamp value than GLT can be initiated only before this
point of time. Hence, each site can have a finite number of such
transactions and the execution time for these transactions is
finite. Hence, the second phase can also be completed within
a finite time. When the third phase begins, all transactions
to be included in the checkpoint should have already commit-
ted. The time to deliver the CHCKCXJMMIT messages and the
checkpoint saving time at each site in the third phase are also
finite. Therefore, our global checkpointing coordination process
can be completed within a finite period of time. c1

4.3 Recovery and Failure Handling

When a site S’i recovers from a media fitilure, it first restores
its recent checkpoint, hi(t), and forces all other sites to restore
their checkpoints corresponding to GCP(t). For the consistent
recovery from a media failure, it is necessary for any GCP(t) to
be consistent. However, if any of the sites fail during the global
checkpointing and cannot take a checkpoint, then the global
checkpoint produced cannot be used for the recovery since some
committed transactions which are included in a &i(t) are not
included in the most recent checkpoint of that failed site (i.e.
violation of C2 of the definition of consistency).

We here assume that the failure of a site can be detected
by other sites within a finite time. Hence, in our scheme, the
failures during the global checkpointing are handled as follows:

l If a checkpointing cohort fails during the first or second
phase of the checkpointing: Then, the checkpointing coor-

231

dinator broadcasts the checkpointing abort message instead
of G&T or CHCKCOMMIT

l If a checkpointing cohort fails during the third phase of
the checkpointing: To handle this problem, we can intro-
duce one more phase in our checkpointing scheme to ensure
the completion of the checkpointing. After each site actu-
ally saves its checkpoint on a stable storage, it sends the

checkpointing complete message to the coordinator. The
coordinator after collecting this message from all the sites
in the system sends the final checkpointing commit mes-
sage to all of them. Upon the receipt of the final checkpoint
commit, each site discards the old checkpoint and mark the
new checkpoint as a globally consistent checkpoint. Hence,
each site in the system need to maintain only one check-
point which is globally consistent.

l If a checkpointing coordinator fails during the checkpoint-
ing: Then, all the checkpointing cohorts decide to abort
the on-going checkpointing process.

5 DISCUSSION

Extensive simulation was performed to compare the perfor-
mance of our scheme with two other schemes proposed in [7]
and [ll]. For simplicity, we denote the scheme suggested in
[111 as scheme S, the scheme mentioned in [7] as scheme I and
our scheme as scheme K. Scheme I blocks the initiation of new
transactions, once the checkpointing is initiated at each site.
After the transactions which are active at the time of check-
pointing initiation have completed their execution, the check-
point is taken and the transactions which have arrived during
the checkpointing can get serviced. Scheme S uses a two-phase
checkpointing mechanism, where it collects the largest times-
tamp of the ongoing transactions in the system and all updates
by transactions with a timestamp lower than this largest value
is included in the checkpoint. However, in this scheme, some
transactions which initiated before the checkpointing may get
aborted if its subtransactions arrive at some remote sites after
their checkpointings are completed.

5.1 Simulation Model

A distributed database system with 10 sites connected through
a general network was simulated. Each site consists of a CPU,
a main memory, a disk, and a secure storage device for the
checkpoint, each of which is managed by a scheduler, buffer
manager, disk manager, and recovery manager, respectively. In
our simulation, it is assumed that CPU and disk processing time
for data item is 5 milliseconds and 24 milliseconds respectively.
It is also assumed that 128 pages of buffer space is available in
the main memory for data caching, and the buffer management
policy is LRU. The granularity of the data items accessed by
the transactions is assumed to be pages. The database residing
at each site is assumed to have 5000 data items.

A global transaction is initiated at each site with an interar-
rival time which follows an exponential distribution with a rate
Xt and spawns subtransactions at other sites. The number of
sites for subtransactions and to which the subtransactions are
sent are randomly selected for each transaction. Each subtrans-
action consists of a sequence of write requests for data items.
A normal distribution with a mean Nd and standard deviation

Man ROSDO~Y Time(mr.)

1.6~

0.61 , . , . , . ,
0.0 0.1 0.2 0.3 0.4 O.!

(b)

Figure 2: Mean Transaction Response Time and Number of
Transaction Restart Vs. Transaction Arrival Rate

6, is used to choose the number of data items that a transac-
tion accesses. We assume the two-phase commit procedure for
each global transaction, for all schemes. In scheme S, the two-
phase initiation mechanism is also used for transactions during
the checkpointing process. However, there is no restriction for
initiation of subtransactions in scheme K and scheme I.

Message transmission delay of a link in the network follows
an exponential distribution with a rate X,, and to be more real-
istic, the delay is bounded by a certain minimum and maximum
values.

The checkpointing process is initiated by one designated site
with a fixed time interval. The DDA space management during
the checkpointing coordination exactly follows the algorithm
described in section 4, and the same management scheme is
also simulated for scheme K and scheme S. No site failure is
assumed in the current simulation. The simulation program is
written in C language and was executed on Sun Spare stations
under Sun OS 4.1.1.

5.2 Simulation Results

The main performance index used in our simulation is the mean
response time of the transactions executed during the check-
pointing coordination process. This performance index of the
three schemes is compared through simulation by varying the
parameters, such as transaction arrival rate at each site(&), the

232

Comnicatio” Lwlay,ms.,

lb)

Figure 3: Mean Transaction Response Time and Number Of
Transaction Restart Vs. Communication Delay

mean communication delay of the network(&) and the mean
number of data items accessed by each subtransaction at a
site(Nd). In our simulation, the effect of the actual checkpoint
saving time is not considered, since all three schemes have the
same overhead for saving the checkpoint.

We first compare the mean response time of the schemes by
varying the value of Xt, from 0.01 transactions/second to 0.4
transactions/second. Figure 2.a shows the mean response times
of the schemes where k is 50 millisecond, Nd is 6 and 6d is 2.
It can be seen that scheme K outperforms the other schemes
throughout the variation in Xt. The relatively poor performance
of scheme I is due to the fact that the initiations of new transac-
tions are blocked during the checkpointing coordination. Since
the waiting time for the transaction to be initiated is consid-
ered in the response time, the transactions under the scheme
I experienced the longest response time in all cases. We can
also notice that the performance difference becomes larger for
scheme I as the transaction arrival rate increases. As the trans-
action arrival rate becomes higher, there can be more active
transactions at the time of checkpointing initiation, which has
to complete their execution to take a checkpoint, and hence,
the checkpointing coordination time becomes longer, which in
turn cause longer delay for the newly arrived transactions.

The performance difference between scheme K and scheme
S is mainly due to the communication delay experienced for
two-phase initiation in scheme S. Another factor affecting the
performance difference between scheme K and scheme S is the
restart during the checkpointing coordination in scheme S, be-

NaOlOOP

5

- .scklm. K
l

3

2

1

0 B
01) 0.1 0.2 0.3 0.4 0.

NaOlDDP - SEllam. I(
2

0 l!cl
1

6 0.0 0.1 0.2 0.3

*r.n..tion Alxi”.l *.t.,,*.a., ~-ur.ie~i.n D.1.y ,m,.,

(d) (b)

Figure 4: Number Of Deviated .Data Pages Vs. Transaction
Arrival Rate and Communication Delay

cause the response time of those transactions includes the time
spent for two-phase initiation before its abort. Figure 2.b shows
the number of restarts in scheme S for each site per check-
point against the transaction arrival rate. Since the number of
restarts increase according to the the transaction arrival rate,
the performance difference between scheme K and scheme S
widens slightly, as the transaction arrival rate increases.

In Figure 3.a the response time is compared with different
communication delay time, when Xt is 0.1 transactions/second,
Nd is 6 and & is 2. Communication delay affects the response
time of the transaction because of the two-phase commit, which
is common for all three scheme, hence, the increase in commu-
nication delay causes the longer response time. In scheme S, the
communication delay also affects the time for two-phase initi-
ation, and hence, the performance difference between scheme
K and scheme S become larger as the communication delay in-
creases. Moreover, as the communication delay increases, the
possibility that subtransaction initiation requests sent by the
global transactions arrive at the remote sites after their check-
pointings is increased. This increase in the number of transac-
tion restarts per checkpoint at each site can be seen in Figure
3.b. This steep increase in the transaction restarts explains the
rapidly widening gap between scheme K and scheme S in Figure
3.a.

From the simulation results, our scheme is found to outper-
form the other schemes in terms of response time, and the per-
formance difference becomes larger as the transaction arrival
rate and the communication delay increases. Such performance
difference exists mainly because our scheme never blocks/aborts
the transactions and does not requires the two-phase initia-
tion to achieve a consistent checkpoint, thus providing a non-
intrusive checkpointing.

Another factors to be considered for performance of the sys-
tem is the storage overhead and the number of messages ex-
changed during the checkpointing. Since our checkpointing co-
ordination requires one more phase compared with the scheme
S, extra space and messages are required during that phase.
To validate our scheme, we also count the average number of
deviated data pages maintained for phase III of our scheme
throughout the simulation. Figure 4.a shows the number of de-
viated data pages per each site and each checkpointing against
the transaction arrival rate, and Figure 4.b shows the same per-

233

formance indices against the communication delay. As shown in
both figures, the space overhead is not that severe in our simula-
tion environment. Moreover, the number of messages required
for phase III of our checkpointing process is 2*N, where N is
the number of sites in the system, and hence the total number
of messages exchanged during our checkpointing process is still

O(N).

6 CONCLUSIONS

In this paper, we presented a checkpointing scheme for media
failure in a distributed database system with timestamp order-
ing concurrency control, which can be executed concurrently
with normal transaction processing, that is, no transactions are
aborted or no transaction initiations are delayed due to the
checkpointing process. Our scheme always produces a globally
consistent checkpoint, so that it can be used for recovery from
media failures, where all sites are forced to start from the con-
sistent checkpoints.

Our scheme identifies, in three phases, completion of the
transactions active at the time of checkpointing initiation and
the transactions on which the active transactions depend, and
hence the checkpoints can be safely taken including only the ef-
fects of those transactions. For this, the transactions executing
during the checkpointing period are provided with a deviated
database area, so that each update of newly initiated transac-
tions, after the initiation of checkpointing, are saved separately
and only the updates of necessary transactions can be appro-
priately included in the checkpoint. The overhead involved in
providing this service is some space requirement to retain each
value of a data item updated by the active transactions, during
the first two phases of the checkpointing scheme. As shown in
simulation results, the space required in our scheme during the
first phase of the checkpointing coordination is almost equal
to the scheme proposed in [ll]. Moreover, the maximum dif-
ference in space required by our scheme over [ll] during the
second phase and third phase is not great.

In summary, our scheme does not impose any restriction in
initiating subtransactions through a two-phase initiation mech-
anism, which is required for the scheme in Ill]. The global
transaction in our scheme is not forced to send the subtrans-
actions to the sites at the start of the transactions, but the
scheme in [ll] requires that the global transactions send the
subtransactions at the beginning of its execution.

References

[l] Verhofstad, J.S.M., ‘Recovery Techniques for Database
Systems,” ACM Computing .!$rveys Vol.10, No.2, pp. 167-
195, June 1978.

PI

[31

Haerder, T. and Reuter, A., “Principles of Transaction-
Oriented Database Recovery,” ACM Computing Surveys,
Vol.15 No.4, pp. 287-317, December 1983.

Dadam, P. and Schlageter, G., “Reconstruction of Consis-
tent Global States in Distributed Databases,” Information

Processing, North-Holland Publishing Company, Amster-
dam, pp. 191-201, 1980.

141

[51

bl

I71

bl

RI

PO1

WI

wj

P31

I141

D51

P61

P71

WI

Dadam, P. and Schlageter, G., “Recovery In Distributed
Databases Basaed On Non-synchronized Local Check-
points,” Information Processing, North-Holland Publishing
Company, Amsterdam, pp. 457-462,198O.

McDermid, J., “Checkpointing and Error Recovery in Dis-
tributed Systems,” in Proceedings of the 2nd International
Conference on Distributed Computing Systems, pp. 271-
282, April 1981.

Kuss, H., “On Totally Ordering Checkpoints in Distributed
Databases,” in Proceedings of the ACM SIGMOD, pp. 293-
302, 1982.

Jouve, M., “Reliability Aspects in a Distributed Database
Management System,” in Proceedings of AICA, pp. 199-
209) 1977.

Moss, J., “Checkpoint and Restart in Distributed Trans-
action Systems,” in Proceedings of the 3rd Symposium on
Reliability in Distributed Software and Database Systems,
pp. 85-89,1983.

Attar, R., Bernstein, P., and Goodman, N., “Site Initial-
ization, Recovery, and Backup in a Distributed Database
System,” IEEE Transactions on Software Engineering,
Vol.SE-10, No.6, pp. 625-650, November. 1984.

Fischer, M., Griffeth, N., and Lynch, N., “Global States
of a Distributed System,” IEEE Tmnsactions on Software
Engineering, Vol. SE-8, No.3, pp. 198-202, May. 1982.

Son, S. and Agrawala, A., “Distributed Checkpointing for
Globally Consistent States of Databases,” IEEE Tmnsac-
tions on Software Engineering, Vo1.15, No.10, pp. 1157-
1167, October. 1989.

Lim, J. and Moon, S., “A Checkpointing Scheme for Het-
erogeneous Distributed Database Systems,” in proceedings
of the 11th International Conference on Distributed Com-
puting Systems, pp. 608-615, May 1991.

Son, S. and Agrawala, A., “A Non-Intrusive Checkpoint-
ing Scheme in Distributed Database Systems,” in Proceed-
ings of the 15th International Symposium on Fault Tolerant
Computing, pp. 99-104, 1985.

Pilarski, S. and Kameda, T., “A Novel Checkpointing
Scheme for Distributed Database Systems,” in ACM Pro-
ceedings of the 9th Principles of Database Systems, pp.
368-378,199O.

Gray, J., “Notes on data base operating systems. in: Op-
erating systems,” Lecture Notes in Computer Science 60,
pp. 393-481, 1978.

Bernstein, P., Goodman, N., and Hadzilacos, V., “Recov-
ery Algorithms For Database Systems,” Information Pro-

cessing, North-Holland Publishing Company, Amsterdam,
1983.

Eswaran, K., “The Notion of Consistency and Predicate
Locks in a Database System,” Communications of the
ACM, pp. 624-633, November 1976.

Lamport, L., “Time, Clocks and the Ordering of Events
in a Distributed System,” Communications of the ACM
21(7’), pp. 558-565, July 1978.

234

