
A Token-Based Synchronization Scheme using Epsilon-Serializability and Its Performance 
for Real-Time Distributed Database Systems 

Sang H. Son and Spiros Kouloumbis 

Computer Science Department 

University of Virginia 
Charlottesville, VA 22903, USA 

ABSTRACT 
Schedulers for real-time distributed replicated data- 

bases must satisfy timing constraints of transactions and 
preserve data consistency. In this paper, we present a rep- 
lication control algorithm, which integrates real-time 
scheduling and replication control. The algorithm adopts 
a token-based scheme for replication control and 
attempts to incorporate the urgency of real-time transac- 
tions into the conflict resolution policies. The algorithm 
employs epsilon-serializability, new correctness crite- 
rion which is less stringent than conventional one-copy- 
serializability. The performance of the algorithm is eval- 
uated using a simulation environment. 

1. Introduction 

In real-time distributed database systems, transac- 
tions must be scheduled to meet the timing constraints 
and to ensure data consistency [Son90]. Real-time task 
scheduling can be used to enforce timing constraints, 
while concurrency control is employed to maintain data 
consistency. Unfortunately, the integration of the two 
mechanisms is non trivial because of the trade-offs 
involved. Serializability may be too strong as a correct- 
ness criterion for concurrency control in database sys- 
tems with timing constraints, for serializability limits 
concurrency. As a consequence, data consistency might 
be compromised to satisfy timing constraints. 

In real-time scheduling, tasks are assumed to be 
independent, and the time spent synchronizing their 
access to shared data is assumed to be negligible com- 
pared with execution time. Knowledge of resource and 
data requirements of tasks is also assumed to be available 
in advance. 

In replication control methods, on the other hand, 
the objective is to provide a high degree of concurrency 
and thus faster average response time without violating 
data consistency [Son87]. Nero different policies can be 
employed in order to synchronize concurrent data access 
of transactions: blocking and aborting. However, block- 

‘Ihis work was supported in part by Ok. DOE, and IBM. 

ing may cause priority inversion in which a high priority 
transaction is blocked by lower priority transactions. 
Aborting lower priority transactions wastes the work 
done by them. Thus, both policies have negative effects 
on time-critical scheduling. 

Conventional replication control algorithms are syn- 
chronous, in the sense that they require the atomic updat- 
ing of some number of copies. This leads to reduced 
system availability and decreased throughput as the size 
of the system increases. On the other hand, asynchronous 
replication control methods that would allow more trans- 
actions to meet their deadlines suffer from a basic prob- 
lem: the system enters an inconsistent state in which 
replicated copies may not share the same value. Standard 
correcmess criteria such as the l-copy serializability 
(1SR) [Ber87] are thus hard to attaiti with asynchronous 
consistency control. 

A less stringent, general-purpose consistency crite- 
rion is necessary. The new criterion should allow more 
real-time transactions to satisfy their timing constraints 
by temporarily sacrificitig database consistency to some 
small degree. Epsilon-serializabilify (ESR) is such a cor- 
rectness criterion, offering the possibility of maintaining 
mutual consistency of replicated data asynchronously 
[pu91]. Inconsistent data may be seen by certain query 
transactions, but data will eventually converge to a con- 
sistent (1SR) state. Additionally, the degree of inconsis- 
tency can be controlled within a specified threshold. 

The goal of our work is to design a replication con- 
trol algorithm that supports transactions to meet their 
deadlines and at the same time maintains data consis- 
tency in the absence of any a priori information. Our 
algorithm is based on a token-based synchronization 
scheme for replicated data. Real-time scheduling fea- 
tures are developed on top of this platform and epsilon- 
serializability is employed as the correctness criterion. 

2. Transactions and Tokens 
The smallest unit of data accessible to the user is 

called data object. A data object is an abstraction that 
does not correspond directly to a real database item. In 
distributed database systems with replicated data objects, 

235 



a logical data object is represented by a set of one or 
more replicated physical data 0bjects.A transaction is a 
sequence of operations that takes the database from a 
consistent state to another consistent state. Two ty-pes of 
transactions are allowed in our environment: query trans- 
actions and update transactions. Query transactions con- 
sist only of read operations that access data objects and 
return their values to the user. Update transactions con- 
sist of both read and write operations. 

Transactions arriving at the system are assumed to 
be non-periodic. A globally unique timestump is gener- 
ated for each transaction lLarn78]. Each time a transac- 
tion is aborted and resubmitted, a new timestamp value 
is assigned to it. If a transaction T1 has a smaller times- 
tamp than another transaction T2, we say that T1 is the 
older transaction and Tz is the younger one. 

A token designates a read-write copy. Each logical 
data object has a predetermined number of tokens, and 
each token copy is the latest version of the data object. 
The site which has a token-copy of a logical data object 
is called a token site, with respect to the logical data 
object. In order to control the access to data objects, the 
system uses timestamps. When a write operation is suc- 
cessfully performed and the transaction is committed, a 
new version is created which replaces the previous ver- 
sion of the token copy. 

When a transaction performs a write operation to a 
physical data object, there are two values that are associ- 
ated with the data object: the ufrer-value (the new ver- 
sion) and the before-value (the old version). Because the 
before-value is available during the transaction process- 
ing, it is natural to ask if concurrency can be improved by 
giving out this value [Bay80]. 

Let Tl be the transaction which already issued an 
access request, and Tz cause the conflict. For each token 
copy of X, conflicts are resolved as the following 
[Son89]: 

(1) RW conflicr If T2 is younger than TI, then it 
waits for the termination of T1. If Tz is older than T1, then 
it reads before-value of X. 

(2) WR conflict: If T, is younger than Tl, then its 
write request is granted with the condition that Tz cannot 
commit before the termination of TI. If T2 is older than 
TI, then T2 is rejected. 

(3) WW conflict: If T2 is younger than TI, then it 
waits for the termination of T]. If T2 is older than TI, then 
T2 is rejected. 

The coordinator of an update transaction maintains 
the before-list (BL), a list of transactions which read the 
before-value of any data object in its write set, and the 
after-list (AL), a list of transactions which write the after- 

value of any data obiect in its read set. The BL and AL 
are used during the commitment phase of every update 
transaction. 

When a transaction T2 reads the before-value of a 
data object locked by T], the token-site which gives the 
before-value, conveys the identifier of T2 to the coordi- 
nator of TI. Hence, the identifier of T2 is inserted in the 
before-list of T1, which stores all the transactions that 
read the before-values of any data object in TI’s write- 
set. The transaction manager at the read-only site of T2 
also conveys the identifier of TI to the coordinator of T2. 
Actually, the identifier of TI is inserted in the after-list of 
T2, which stores all the transactions that write the after- 
value of any data object in T2’s read-set, 

When a transaction terminates (either commits or 
aborts), the coordinator of the terminating transaction 
must inform the coordinator of each transaction in its AL 
about the termination by sending Termination Messages 
(TM). On receiving a TM from the coordinator of a trans- 
action in its BL, the coordinator of the active transaction 
removes the identifier of the terminating transaction 
(sender of the TM) from the BL. A transaction can com- 
mit only when its BL is empty. By this way, we prevent 
non-serializable execution sequences to occur. 

Update transactions have their own private work- 
space where they initially apply their write operations. 
Update transactions commit by employing a two-phase 
protocol. In the first phase (vote-phase), an update trans- 
action sends an update message to each token-site of 
every data object in its write-set. The transaction waits 
until it gets a response from all the token-sites for each 
data object. If all token-sites vote YES, then the transac- 
tion enters the second phase (commit phase). It sends the 
actual value of each data object to be written to the 
respective token-sites. Update messages to non token- 
sites can be scheduled after commitment. Therefore, a 
temporary and limited difference among object replicas 
is permitted; these replicas are required to converge to 
the standard 1SR consistency as soon as all the update 
messages arrive and are processed. An update transac- 
tion that executes its commit phase can never be aborted, 
even if it potentially conflicts with another transaction. 

Query transactions fall into three different catego- 
ries as far as the correctness of their response is con- 
cerned: 

l Required consistent queries. Queries are specified 
as such when they are first submitted by the user, and 
they are always guaranteed to return consistent data; 

l Consistent queries. Their final output is correct 
regardless of any requirement by the user; 

l Possibly inconsistent queries. In case of such a 

236 



query, there exists a small possibility that returned values 
of a replicated data object might reflect an inconsistent 
state of the database. 

3. Epsilon-Serializability 

Epsilon-serializability (ESR) is a correctness crite- 
rion that enables asynchronous maintenance of mutual 
consistency of replicated data [Pugl]. A transaction with 
ESR as its correctness criterion is called an epsilon- 
transaction (ET). An ET is a query ET if it consists of 
only reads. An ET containing at least one write is an 
update ET. Query ETs may see an inconsistent data state 
produced by update ETs. The metric to control the level 
of inconsistency a query may return is called the overlap. 
It is defined as the set of all update ETs that are active and 
affecting data objects that the query seeks to access. If a 
query ET’s overlap is empty, then the query is seriahz- 
able.The overlap of an active query transaction Q can be 
used as an upper bound of error on the degree of incon- 
sistency that Q may accumulate. Given that we are inter- 
ested in how many update transactions overlap with Q 
more than which transactions those are, the term overlap, 
in its further usage, will reflect the cardinality of the set 
of update transactions that conflict with the query ET Q. 

Among several replica control methods based on 
ESR, we have chosen the ordered updates approach 
Pu911. The ordered updates approach allows more con- 
currency than 1SR in two ways. First, query ETs can be 
processed in any order because they are allowed to see 
intermediate, inconsistent results. Second, update ETs 
may update different replicas of the same object asyn- 
chronously, but in the same order. In this way, update ETs 
produce results equivalent to a serial schedule; these 
results are therefore consistent. 

There are two categories of transaction conflicts that 
we examine: conflicts between update transactions and 
conflicts between update and query transactions. 

Conjicts between update transactions can be either 
RWconflicts or WlV conflicts. Both types must be strictly 
resolved. No correctness criteria can be relaxed here, 
since execution of update transactions must remain 1SR 
in order for replicas of data objects to remain identical. 

Conficts between update and query transactions are 
of RW type. Each time a query conflicts with an update, 
we say that the query overlaps with this update, and the 
overlap counter is incremented by one. If the counter is 
still less than a specified upper bound, then both opera- 
tion requests are processed normally, the conflict is 
ignored, and no transaction is aborted. Otherwise, RW 
conflict must be resolved by using the conventional 1SR 
correctness criteria of the accommodating algorithm. 

The performance gains of the above conflict resolu- 

tion policies are numerous. Update transactions are 
rarely blocked or aborted in favor of query transactions. 
They may be delayed on behalf of other update transac- 
tions in order to preserve internal database consistency. 
On the other hand, query transactions are almost never 
blocked provided that their overlap upper bound is not 
exceeded. Finally, update transactions attain the flexibil- 
ity to write replicas in an asynchronous manner. 

4. Real-Time Issues 

In real-time databases, transactions are character- 
ized by their timing constraints and their data and com- 
putation requirements. IIming constraints are expressed 
through the release time and the deadline. Computation 
requirements for transactions are unknown, and no run- 
time estimate is available for every transaction that 
enters the system. Our goal is to minimize the number of 
transactions that miss their deadlines. 

The real-time scheduling part of our scheme has 
three components: a policy to determine which transac- 
tions are eligible for service, a policy for assigning prior- 
ities to transactions, and a policy for resolving conflicts 
between two transactions that want to lock the same data 
object, None of these policies needs any more informa- 
tion about transactions than the deadline and the name of 
the data object currently being accessed. 

All transactions which are currently not tardy are 
eligible for service. Transactions that have already 
missed their deadlines are immediately aborted. When a 
transaction is accepted for service at the local site where 
it was originally submitted, it is assigned a priority 
according to its deadline. The transaction with the earli- 
est deadline has the highest priority. This policy meshes 
efficiently with the “not tardy” eligibility policy adopted 
above, so that transactions that have already missed their 
deadlines are automatically screened out before any pri- 
ority is assigned to them. High priority is the policy that 
is employed for resolving transaction conflicts. Transac- 
tions with the highest priorities are always favored. The 
favored transaction, i.e. the winner of the conflict, gets 
the resources that it needs to proceed. The loser relin- 
quishes control of any resources that are needed by the 
winner. The loser transaction will either be aborted or 
blocked depending on the relative age of the two con- 
flicting transactions and the special provisions made by 
the replication control scheme. 

5. Replication Control Scheme 

In this section, we present the token-based replica- 
tion control scheme in detail, along with the embedded 
ESR correctness criteria and real-time constraints. 

237 



5.1 Controlling Inconsistency of Queries 

Queries are only involved in RW/WR conflicts. 
When a query transaction is submitted to the system, the 
user may quantify it with the restriction “required to be 
consistent.” Such a characterization means that all possi- 
ble future RW/WR conflicts between this query and 
update transactions will have to be resolved in a strict 
(ISR) way. In other words, consistent queries (CQs) are 
heated in the same fashion as update transactions. Values 
returned by CQs are always correct, reflecting the up-to- 
date state of the respective data objects. 

If no consistency constraints are specified explicitly 
by the user on a submitted query, then the ESR correct- 
ness criterion is employed to maintain the query’s con- 
sistency. The overlap upper bound is computed, and an 
overlap counter is initialized to zero. Each time the query 
conflicts with an update transaction over the same data 
object and the counter is less than the overlap upper 
bound, the conflict is ignored, the counter is incre- 
mented, the query reads the value of the data object in 
question and proceeds to read the next object. When the 
overlap counter is found to be equal to the upper bound, 
current and all subsequent conIIicts must be resolved in a 
strict manner, so that no more inconsistency will be accu- 
mulated on the query. 

When a query transaction eventually commits, the 
user is able to determine the degree of correctness of the 
data values returned. If the query was qualified as a CQ, 
then the user can be confident that the values returned are 
consistent. For regular query transactions, the private 
overlap counter is checked. If the counter is still zero, 
this means that no conflict has occurred throughout the 
entire execution of the query and the results must again 
be perfectly accurate. Such a query falls into the CQ 
class. An overfap counter greater than zero indicates that 
a certain number of conflicts with update transactions 
remained unresolved; the query had seen some possibly 
inconsistent states, and might yield some inaccurate data. 
This last type of query falls into the “possibly inconsis- 
tent” queries class. 

Since arbitrary queries may produce results beyond 
allowed inconsistency even within its overlap limit, it is 
important to restrict ET queries to have certain properties 
that permit tight inconsistency bounds. A first attempt in 
this approach is proposed in lI&un91]. It is beyond the 
scope of this paper to deal with such strategies. In the 
remainder of the paper, we assume that inconsistency 
bounds can be enforced by the system if necessary. 

5.2 Conflict Resolution 

Mechanisms for conflict resolution between update 
transactions comprise the core of our scheme. Query 

transactions need not be considered separately because 
queries that are forced to resolve their RW conflicts with 
update transactions can be treated as update transactions. 

We examine three separate categories of conflicts, 
and for each category we present a table of all possible 
conflicts between younger and older transactions, and 
between higher priority and lower priority transactions. 

Before we get into the detailed discussion of conflict 
resolution in each case, we must clarify what we mean by 
“conditional abort.” Let Tt be an accepted and success- 
fully processed transaction issuing a write request on 
data object X. Let T2 be another transaction attempting 
to read or write X. In the case that Tt has to be aborted 
(possibly for real-time priority reasons or to preserve 
database consistency), Tt’s phase of commitment must 
first be checked. If Tl is in the vote-phase, it can be 
aborted normally. All writes on Tt ‘s private workspace 
will be discarded, and Tt will be resubmitted, provided 
that it has not already missed its deadline. However, if Tt 
is in the commit-phase and update messages have 
already been sent to token-sites, then Tt cannot be 
aborted. Consequently, “conditional abort” refers to the 
action of aborting an update transaction T only in the 
case where T is still in the vote-phase. If T1 and T2 are in 
conflict and Tt has entered the second phase of commit- 
ment, then T2 must be aborted in order for the database 
to remain consistent. 

(1) R - W Conflict. 
Transaction T2 requests to read a data object X for 

which transaction TI has already issued a write request. 
If T2 is younger than T,, then the original token- 

based scheme (Section 2) requires that Tz must wait for 
the termination of T1 before it reads the value of X. In 
case T2 has lower priority than the priority of T1, this 
requirement does not contradict with the priority status 
and T2 can wait for TI to terminate. On the other hand, if 
T2 has higher priority than Tl, we cannot apply this rule 
and force T2 to wait. Instead, Tz must read the data object 
and proceed whereas T1 has to be conditionally aborted 
in order for the consistency of data read by T2 to be pre- 
served. 

If Tz is older than T1, then T2 should be allowed to 
read the before-value of X and proceed. T2 is then 
inserted in the before-list (BL) of TI, and TI is inserted in 
the after list of T2. According to the commitment criteria 
of the token-based scheme, T1 has to wait for T2 to termi- 
nate before it can commit. Such resolution is acceptable 
when T2 has higher priority than TI . However, in the case 
that T2 has lower priority than Tl, we conditionally abort 
T2 when TJ requests to commit in order to maintain the 
consistency of data written by TI. 

238 



(2) W - R Conflict. 
Transaction TZ requests to write data object X for 

which transaction TI has already issued a read request, 
If Tz is younger than T1, then TI should be allowed 

to read the before-value of X and T2 write an after-value 
of X. Moreover, Tl is inserted in the BL of T2, and T2 is 
inserted in the AL of Tl. In this way, Tz has to wait for 
the termination of T1 before it can commit. In the case 
that Tz has lower priority than Tl, there is no contradic- 
tion between its priority status and its obligation to be 
blocked. In the case that TZ has a higher priority than TI, 
Tl is conditionally aborted when T2 requests to commit. 

If T2 is older than Tl, then Tz should be condition- 
ally aborted and TI reads the correct, up-to-date value of 
X. Aborting Tz is perfectly justified in the case Tz has a 
lower priority. In the case that Tz has a higher priority, 
aborting T2 would violate the real-time constraints. 
Therefore, we let Tz proceed and write a new value for X 
while Tl is aborted, since it has seen a value of X that has 
already become obsolete. 

(3) W - W Conflict. 
Transaction T2 requests to write data object X for 

which transaction Tj has already issued a write request. 
If T2 is younger than T], then T2 should wait for the 

termination of T1 before it writes a new value for data 
object X. Such conflict resolution favors Tl and is com- 
patible with the situation where T2 has lower priority 
than TI. However, when T2 has a higher priority, it is not 
required to wait for the lower priority transaction T1. 
Hence, T2 will proceed, and TI will be conditionally 
aborted in order for the database to remain internally 
consistent. 

If T2 is older than T,, then T2 should be aborted. 
Note that we are interested only in the most recent value 
of X, i.e. the value written by the younger Tl transaction. 
In the case that T2 has a lower priority, the above resolu- 
tion is acceptable, since the higher priority Tl is favored 
to proceed. On the contrary, when T2 has the higher pri- 
ority, T2 must be allowed to write its own new value of 
X, and TI must be conditionally aborted for the database 
to remain consistent with respect to the data object X. 

5.3. lkansaction Commit 

The coordinator of a transaction decides to commit 
when the following conditions are satisfied: 

l The transaction must not have missed its deadline; 
l All the token-sites of each data object in the write- 

set of the transaction have precommitted (this only 
applies to update transactions); 

l There is no active transaction that has seen before- 

value of any data object in the transaction’s write-set. In 
other words, the before-list of tie transaction must be 
empty (this only applies to update transactions). 

6. Performance Results 

In this section we compare the above real-time rep- 
lication control scheme (RTS) with the respective con- 
ventional non real-time scheme (NRTS) on which our 
algorithm is based. We present a number of performance 
experiments for the two approaches under various 
assumptions about the transaction load, the percentage of 
update transactions, and the database size. 

A real-time distributed database prototyping envi- 
ronment was used to build the simulation program 
[Son92b]. The environment provides the user with mul- 
tiple threads of execution and guarantees the consistency 
of concurrently executing processes. Several requests 
can be submitted at the same time, and many read/write 
operations take place simultaneously at different sites. 

The performance metric employed is the percentage 
of transactions that missed their deadlines (% missed) 
[Abb92] in the total number of transactions that were 
submitted to the system during the simulation period. 

Certain parameters that determine system confrgura- 
tion and transaction characteristics remain fixed through- 
out the experiments: the database size (loo0 data 
objects), the transaction size (12 data objects), the com- 
putation cost per update (8 msec), the I/O cost (20 msec), 
the percentage of operations that are updates in each 
transaction (40%), the abort cost for each transaction (19 
msec), and the overlap factor (0.03, i.e. 3% of the queries 
return possibly incorrect data). These values are not 
meant to model a specific distributed database applica- 
tion, but were chosen as reasonable values within a wide 
range of possible values. In particular, we want transac- 
tions to access a relatively large fraction of the database 
(1.2%) so that conflicts occur more frequently. 

Parameters used as independent variables in one- 
variable functions describing the % missed deadlines 
performance metric are the mean inter-arrival time of 
transactions (varying between 1Omsec and 8Omsec), the 
database size (varying from 200 to 1,OOO data objects), 
and the percentage of read-only transactions submitted to 
the system (varying from 10% up to 90%). We assume 
that the database is fully replicated at all sites. A stan- 
dard, module-based formula is used to assign token-sites 
to a data object. 

6.1. Transaction Inter-arrival Time 

In this experiment we vary the inter-arrival time of 
transactions from 1Omsec (for a heavily loaded system). 



to 8Omsec (for a non saturated system state). The data- 
base has a size of l,ooO data objects and 40% of the 
transactions submitted to the system are read only. 

Figures 1 and 2 show that curves start from a high 
percentage of missed deadlines and descend until a min- 
imum percentage is reached at the vicinity of 80msec. 
When the inter-arrival time is lOmsec, the system is 
overloaded by a huge number of transactions striving to 
access a limited number of data objects (hot spots). Con- 
sequently, the number of conflicts becomes so large that 
transactions will be blocked and eventually miss their 
deadlines. As the inter-arrival time increases, the number 
of active transactions per second in the system decreases. 
Fewer transactions conflict with each other and need to 
be blocked and, as the graphs show, the vast majority of 
the transactions meet their deadlines. 

RTS performs better than NRTS in all cases. When 
we have a small number of token-sites (i.e. 1 token-site 
out of 5 sites, or 3 token-sites out of 10 sites), the RTS 
and the NRTS curves am relatively close to each other. 
The greater the number of token-sites becomes, the fur- 
ther the respective RTS and NRTS curves veer away 
from each other. Finally, when all sites are token-sites for 
each data object, we observe the maximum distance 
between the curves for the “% missed deadlines” of the 
two schemes. 

The results shown in Figures 1 and 2 clearly favor 
RTS. This was expected, since in the majority of the 
cases RTS schedules the most urgent transactions first, 
while NRTS is not at all sensitive to how close a transac- 
tion is to missing its deadline. The difference in perfor- 
mance of the two algorithms becomes even greater when 
the number of token-sites increases. A large number of 
token-sites means that each update transaction T must 
request consent for commitment from a large number of 
sites. Therefore, T must remain pending for a longer 
period of time, and consequently T will be exposed to 
more conflicts with other transactions. The increased 
number of conflicts that must be resolved, combined 
with the fact that conventional NRTS does not incorpo- 
rate any intelligent real-time conflict resolution policy, 
makes the inferiority of NRTS even more apparent. 

6.2. Read Only Transactions 

We vary the percentage of read-only transactions 
submitted to the system from 10%. where the majority of 
the transactions are updates, to 90%, in which case the 
system behaves almost like a static database, where very 
few values of data objects change. We assume an average 
inter-arrival time of 30msec, and a database size of 1,000 
data objects. 

Figures 3 and 4 show that both RTS and NRTS 

behave similarly. The respective “% missed deadlines” 
curves start from a very high missed-deadline percent- 
age, in the neighborhood of 10% (which is reasonable 
given that 90% of the transactions are update ones) and 
descend very steeply as the percentage of read only 
transactions increases. In the vicinity of 90%, almost all 
transactions are queries, very few conflicts occur, and the 
two approaches perform identically with each other. 

When the percentage of read only transactions is 
near 10%. then the conflict rate between update transac- 
tions is very high, and RTS clearly exhibits lower miss 
rates than NRTS. When the percentage of read only 
transactions is 10%. the whole burden of scheduling is 
shifted onto the conflicting-updates resolution policy. 
NRTS allows time-critical updates to be aborted and 
restarted in order for less critical transactions to proceed, 
provided that the database remains consistent. On the 
contrary, RTS adopts the time criticality of a transaction 
as the first criterion for resolving conflicts with other 
transactions: less critical transactions are blocked or 
even aborted whenever necessary in order for transac- 
tions closer to their deadlines to proceed freely. An 
increased number of token-sites makes the difference in 
performance even greater for the same reasons as men- 
tioned in the previous section. 

The smaller the percentage of read-only transactions 
becomes, the fewer conflicts occur and the less important 
role the conflict resolution mechanism plays. Therefore, 
the two approaches behave almost identically near the 
90% point. 

6.3. Database Size 

We assume an average inter-arrival time of 30msec, 
and 40% read only transactions. We vary the database 
size from 200 data objects to 1,000 data objects. Figures 
5 and 6 show that RTS performs much better than NRTS . 
The distance between the curves is great throughout the 
spectrum of possible database sizes. When the database 
size is very small, in the vicinity of 200 data objects, the 
possibility that two transactions might conflict is very 
high given that the transaction size remains constant at 
12 data objects. As a result, more conflicts between 
update transactions will have to be resolved. More con- 
flicts means that more sophisticated real-time scheduling 
is necessary to meet the maximum possible number of 
deadlines. Moreover, a small-size database causes more 
queries to conflict with pending updates. In such case, 
ESR comes into play: queries in RTS are allowed to 
overlap freely with a limited number of updates, and nei- 
ther of them need to be blocked or aborted as the strict 
1SR criteria would require in NRTS. Controlled query 
inconsistency is a feature that works for the benefit of 
RTS and leads to further decrease of the missed deadlines 

240 



percentage. 

7. Concluding Remarks 

In this paper we have presented a synchronization 
scheme for real-time distributed database systems. The 
algorithm is based on a token-based approach, in which 
two additional components are built. The tlrst is a set of 
real-time constraints that each transaction has to meet. A 
separate priority scheme is employed to reflect the 
demand of a transaction to finish before its deadline. The 
second component is the ESR correctness criterion with 
which query transactions have to comply. Instead of 
applying 1SR to all transactions, 1SR is applied only to 
updates. and queries are left free to be interleaved with 
updates in a more flexible way. 

By relaxing the consistency criteria for query trans- 
actions, queries and updates hardly ever have to abort or 
block each other due to conflicts between them. As an 
immediate consequence of this, more transactions may 
terminate successfully before their deadlines expire. 
Additionally, the ESR further improves performance; 
updating the different replicas of the same data object is 
done asynchronously, but in the same order. Thus, logi- 
cal write operations become disjoint from the corre- 
sponding physical write operations, and update 
transactions are free to proceed to the next step of their 
execution or even to commit. Internal database consis- 
tency is preserved strictly. Data returned by certain que- 
ries are allowed to exhibit limited inconsistency, under 
user control. 

Another advantage of our scheme lies in the fact that 
there is very little information the user has to provide to 
achieve efficient system operation. No a priori knowl- 
edge of the kind or the number of the data objects that are 
included in the read-set or the write-set of a transaction 
is needed. The only information required is the kind of 
each submitted transaction (query or update). Moreover, 
no execution time estimate is required for each submitted 
transaction. It would be extremely diflicult to compute a 
run-time estimate, especially in the distributed environ- 
ments for which our scheme is designed. 

There is a price to pay for relaxing correctness crite- 
ria and meeting more deadlines. Although the user can 
control the maximum permissible inconsistency of que- 
ries, one cannot know exactly which one transaction out 
of the set of all possibly inconsistent queries will return 
incorrect data, unless a tight inconsistency bound is pro- 
vided. Note that an overlap counter greater than zero 
does not necessarily mean that the respective query 
transaction is inconsistent. It simply indicates that certain 
RW/WR conflicts were passed unresolved, and inconsis- 
tency might be present among the data values returned. 

REFERENCES 

[Abb92] R.Abbott, and H.Gatcia-Molina, “Schedul- 
ing Real-time Transactions: a Performance Evalua- 
tion,” ACM Trans. on Database Systems, vol. 17, 
no.3,pp.513-%O,Sept.l992 

DW-W R. Bayer, H. Heller, and A. Reiser, “Paral- 
lelism and Recovery in Database Systems,” ACM 
Trans. Database Syst. 5.2, June 1980. 

[Berg71 P.A.Bemstein, V.Hadzilacos, and N.Good- 
man, “Concurrency Control and Recovery in Data- 
base Systems,” Addison-Wesley Publishing.,l987. 

[Lam781 L.Lamport, “Time, Clocks, and the Order- 
ing of Events in a Distributed System,” Comm. 
ACM, vol. 21, no. 7, pp. 558 - 565, July 1978. 

[Pu91] C.Pu, and A.Leff, “Replica Control in Dis- 
tributed Systems: An Asynchronous Approach,” 
ACM S IGMOD Conference, May 199 1. 

[Ram911 K. Ramamritham and C. Pu, “A Formal 
Characterization of Epsilon Serializability,” Tech. 
Rep. 91-91, Dept. of Computer Science, Univ. of 
Massachusetts, Dec. 1991. 

[Son871 S.H.Son, “Synchronization of Replicated 
Data in Distributed Systems,” Information Systems, 
vol. 12, no. 2, pp. 191 - 202, 1987. 

[Son891 S.H.Son, “A Resilient Replication Method 
in Distributed Database Systems.” Proceedings of 
IEEE INFOCOM ‘89, Ottawa, Canada, April 1989. 

[Son90] S.H.Son, “Real-Time Database Systems: A 
New Challenge,” Data Engineering, vol. 13, no. 4, 
Special Issue on Future Directions on Database Re- 
search, December 1990. 

[Son921 S.H.Son, J. Lee, and Y. LIn, “Hybrid Pro- 
tocols using Dynamic Adjustment of Serialization 
Order for Real-Time Concurrency Control,” Journal 
of Real-Time Systems, vol. 4, pp. 269-276, Sept. 
1992. 

[Son92b] S.H.Son, “An Environment for Integrated 
Development and Evaluation of Real-Time Diitrib- 
uted Database Systems,” Journal of Systems Inte- 
gration, vol. 2, no. 1, pp. 67-90, February 1992. 

241 



60 

50 

= ; 40 

I 30 

r 
ep 20 

10 

0 

60 

lums 2oms 3oms 50ms BOrnS 

Flgure 1: slTEs=s, Jluermival lime. 

0 0 
l . l . old1 -Y- old1 -Y- 

-. -. old3 +- old3 +- 
old5 O- old5 O- 
new1 -Y- new1 -Y- 
new3 d- new3 d- 
new5 + new5 + 

io 10 30 3'0 50 70 7'0 9' 90 

Flgure 3: SlTES=S. Read only trx. 

old1 -*- 
old3 +- 
old5 +- 
new1 -y- 

I I I I I - 

200 400 600 a00 1000 
Figure 5: SlTES=S. Database size. 

50 

45 

40 

35 

1 30 

i 25 

B 20 

* 
15 

10 

5 

0 

old3 -t+- 
old7 -)- 

old10 9- 
new3 * 
new? + 

new10 6 

1 I 1 1 
1Oms 20ms 30ms 50ms 80ms 

Figure 2: slTEs=10. IntclalTiv8l time. 

.” 

old3 -*- 

@J- .--. 
old7 -c- 

--._ 
old10 O- 

X -4 new3 * 
\ new7 + 
\ new10 4- 

0 I I T T T 
10 30 50 70 90 

Figure 4: SITES=lO. Read only trx. 

30 --Q,- 
-. 

-4.. 
25 

a----*--s 

5’ , I .zl 
I I I I 

200 400 600 800 1000 

Figure 6: !SlTJS=lO. D&u size. 

242 


