
A Knowledge Based System Converting ER Model into
an Object-Oriented Database Schema

Il-Yeol Song and Heather M. Godsey
College of Information Studies

Drexel University
Philadelphia, PA 19 104

Abstract
In this paper, we discuss a knowledge based system,
KERO, which implements a methodology converting an
entity-relationship (ER) model into a structurally object-
oriented database schema. A set of rules that can convert
most semantic constructs of ER models into an OODB
schema is discussed. Our method is an improved one
which can properly convert many-to-many relationships
with non-key attributes and aggregation in ER model. The
ideas which can further enhance the converted OODB
schema are also presented. We think that the translation
methodologies from semantic data models into OODB
schema are important since most existing relational database
design methodologies are based on the semantic approach
and OODB systems must subsume existing relational
database systems. The KERO system has been
implemented in MIKE, which is a meta-interpreter written
in Prolog.

Keywords: Entity-Relationship, Object-oriented databases, database
schema, database design, knowledge based system

1 Introduction
The purpose of this paper is to present the design and

implementation of a knowledgebased system, KERO, that converts
an entity-relationship (ER) model into a structurally object-oriented
(00) database schema

OODB
Our work is a continued effort in developing an easy to use

design methodology which could prove to be useful
independent of database application domains. We have done a
comprehensive survey of object-oriented database design
methodologies [Song 19921. We think that the translation
methodologies from semantic data models are important for the
following main reasons: Most existing relational database design
methodologies are based on the semantic approach. By utilizing
existing methodologies, we will not lose the valuable knowledge of
many information engineers, obtained throughout the design and
use of relational database systems. So the transition from existing
systems to OODB systems can be smooth once a set of guidelines is
provided. This is particularly true since OODB systems must
subsume relational database systems and open to other subsystems
[Stonebreaker+ 1990, Kim 19901.

Based on these observations, we have developed a
knowledgebased system, KERO, that converts ERDs into 00
database schema. We define a meta ER model to keep the input ER
model structure, and a meta 00 model for an output GODB schema.
We present a set of rules converting each of ER model constructs

defined in the input ER model into a corresponding 00 schema
component. Cattell [199 11 and Hughes [199 11 both have examples
converting ERD into OODB schema. Cattell does not show how to
deal with aggregation, and Cattell and Hughes do not handle many-
to-many relationships with non-key attributes properly. Our work
is an enhanced version of the previous work in this area in that we
solve some problems of handling many-to-many relationships in
[Cattell 1991, Hughes 19911 and discuss aggregation in more detail
than [Hughes 1991, Song and Godsey 19931. The converted 00
schema can serve as an initial conceptual schema which can be
further enhanced depending on the target OODBMS. We also
suggest several ideas about how the converted schema can be
semantically further improved. The KERO system has been
implemented in MIKE [Eisenstadt+ 19901, which is a public-
domain meta-level interpreter of Prolog.

Other approaches using ER-like models for OODB schema
design include Gorman and Choobinch [1991], Nachouki, et al.
[1991]. Gorman and Choobinch propose OOERM by extending
ERD to include methods and message passing structures.
However, the diagram becomes very messy, loses intuitiveness,
and poses difficulty in representing all messages for most real-world
applications. Nachouki, et al. discus how to integrate logical data
access in the definition of an OODB schema from an ERD.

The rest of this paper is organized as follows: Section 2
discusses the conceptual design and implementation of our
knowledge based system, and Section 3 presents an example of
schema translation. Section 4 concludes the paper.

2. Methodology
In this section, we present the design and implementation

aspects of our knowledge based system, KERO, which converts
ERDs into OODB schema. The design of KBRO can be broken
down in three main segments: ERD representation, OODB
representation, and translation rule development. The ER model
which will be converted into an 00 model is represented in a meta
ER model understood by KERO (see Section 2.1). KBRO converts
the ER model into a meta 00 model for OODB schema (see Section
2.2). The conversion rules are discussed in Section 2.3, the
architecture of KERO in Section 2.4, and semantic enhancement to
the converted 00 model is discussed in Section 2.5.

2.1 ERD Representation
ER model and its variations [Chen 1976, Teorey+ 1986,

Batini+ 19911 are the most popular approach for relational database
design, and have been widely adopted in CASE tools. As such it is
natural to consider the ER model as a starting point of designing an

287

Figure 1 Meta ER Model

OODB schema. There are many complex semantics which may be
modeled by the entity relationship diagram. The semantic constructs
of the EER (ER henceforth) model which we have chosen for the
KERO system include entities, relationships, recursive
relationships, ternary relationships, generalization/specialization,
inheritance, set-valued attributes, and composite attributes as
discussed in Ehnasri and Navathe [19891.

The ERD for the representation of the meta-model for the ER
model (called meta ER model) is shown in Figure 1, and its
important semantics are explained below.

l ENTITY represents either a regular (strong) entity or
a weak entity.

*ENTITY can have weak entities
(WEAKRELATIONSHIP), and they have an
owner entity.

l ENTITY can have recursive relationships
(RECURSIVEREL).

l ENTITY can have many children (sub) entities and
many parent (super) entities.

l ENTITY participates in (ENTREL) relationships,
and has (min, max) cardurality constraints.

l ENTITY can have many attributes.
l ATTRIBUTE belongs to either an ENTlTY via EA

relationship or a RELATIONSHIP via RA.
l AlTRIBUTE can be either a single,multi-valued, or

composite attribute.
l A composite AlTRIBUTE consists of several simple

attributes.

What is shown in Figure 2 is a relational representation of
the above meta ER model.

ENTITY(ENAME, WEAK/STRONG, OWNER)
Al-l-RIBUTE(ENAME, A-FIR-NAME, NULUNON-

NULL, SINGLE/MULTI-VALUED,
ATOMIC/COMPOSITE, DATATYPE)

RELATIONSHIP(RNAME, DIMENSION)
ENTITYJELATIONSHIP(ENAME, RNAME, MIN,

RELAlI%&IP~AI-lR(RNAME ATI’R-NAME
SINGLE/MULTI, ATOMIC/COMPOSITE, ’
DATATYPE)

RECURSIVE(ENAME, SUBROLE, SUPERROLE,
SUB-MAX, SUPER-MAX, RNAME)

ISA(PARENT, CHILD)
COMPOSITE~ATI’R~PARTS(COMP~A-l-IR, PART,

SINGLE/MULTI, ATOMIC/COMPOSITE,
DATATYPE)

Figure 2. Relational Schema for meta ER model

For efficiency of implementation, the following was added
for ternary relationships and 1: I and M:N binary relationships.

/* for binary: *I
MEMBER(RNAME, MEMBERi, MEMBER2)
/* for ternary *I
MEMBER(RNAME, MEMBERl, MEMBER2,

MEMBER3)

288

Note that a ternary relationship can also be represented using numbers, strings, and other simple values.
the above meta model. The maximum cardinality (MAX attribute in

Set,attributes are those

Em-REL relationship) of a binary relationship is represented using
which have a set of simple values or other objects. Examples of
class attributes are average number of players or umform color of a

the typical “Look Across” notation (i.e., look across the r&h&ip baseball team. Reference attributes are used to represent
to find the cardinality, the carclinality is written in the other side of relationships between objects (association). A reference attribute
the entity), while that of a ternary relationship is represented using can represent either a single object or a set of objects (reference-set
the “Look Here” notation (cardinality is written near the entity side). afrribure). These attributes may be aggregated to form an ObJeCt,
For example, the CONTROLS and SUPPLY relationships in the and objects may be aggregated to form composite objects
ERD of Figure 3 can be represented as in Figure 4 below: (aggregation).

Figure 3. ERD with a Ternary Relationship

relationship(control,2)
relationship(supply, 3)
ent-rel(department, control, 0, n)
ent-rel(project, control, 1, 1)
ent-rel@roject, supply, 1, n)
ent-rel(part, supply, 1, n)
ent-&supplier, 0, n)
member(contro1, department, project)
member(supply, project, part, supplier)

Figure 4. Meta ER Representation of CONTROLS and
SUPPLY in Figure 5

It

Figure 5. Template for Class Definition

The “Inherit” clause defines the superclass, “Properties” An example of a complete ERD is shown in Section 3.
should be pointed out that the ER design approach to OGDB schema clause defines attributes of the Class, and “Operations” clause
does not produce operations. Other methodologies should be used defines operations which will be added later using other methods.
to come up with and represent them, but these are beyond the scope The “Properties” clause shows four different types of attributes.
of this paper.

2.2 OODB Representation
An OODB schema consists of a collection of clusses. Each

class has a set of instances, which are the objects belonging to that
class. Each class is an abstract data type which has a group of
arfributes (called instance variables in some 00 systems) and a set
of operations (or methods) defined on them (classification). These
attributes describe properties of instances of a class. Each object
has an object identity independent of the values that it contains
(identification). Classes form a set of class hierarchies, forming
superclass and subclass relationships (generalization). Subclass
objects inherit the attributes and onerations of sunerclasses. The

Our target 00 model, currently implemented in KERO, has
classification, generalization, and aggregation abstractions.
Identification is automatically supported by the target OODBMS in
the form of an object identifier. Associations are implemented as a
pair of reference attributes and their associated inverse attributes
(See Section 2.3 for more on this).

The template class definition used for output from KERO is
similar to the syntax used in Hughes [19911, and is shown in
Figure 5 as follows:

Class <class name>
Inher% <other-class>
Properties

/* simple attribute: */
cattribute-name>: <simple data type> ;
/*set-valued attribute:*/

cattribute_name>: set (<simple data type>);
I* reference attribute: */

cattribute-name>: (other-class-name);
r” reference-set attribute:*/

<attribute name>: set (<other-class-name>);
inverse % <other-class-name>.

<attribute-name>;
..I

Operations
<operation-name>;

End. “*’

class hierarchy becomes a class lattice in the form oi directed acyclic
graph (DAG) when a class can have more than one parent class
(multiple inheritance). It is common practice to refer to a class
lattice, as a class hierarchy. Attributes in OODB could be simple
attributes, collection attributes (set values, lists, arrays), derived
attributes (whose value are computed by procedures or methods),
class attributes (whose value represent properties of the class as a
whole or summary values, rather than each individual object
instance) or reference attributes (which point to other object(s)).
Simple attributes are atomic attributes which do not have their own
components. Examples of the simple attributes are integers,

~

Figure 6 Meta 00 model

289

The ERD representation of meta 00 model in Figure 6 can
be explained as follows:

l A CLASS has attributes.
l A PROPERTY (Attribute) has a domain.
l A DOMAIN is either a simple data type or a CLASS type.
l GeneralizationJspecialization is handled through INHERIT
relationship. Since the SUPER-CLASS has many
cardinality, it supports multiple inheritance.
l Aggregation is handled via the recursive application of CP
relationship and PD relationship from CLASS via
ATTRIBUTE through DOMAIN. An aggregated class has a
set of atttibutes via CP relationship, which some of them are
again defined by DOMAIN class via PD relationship. This
process can be recursively applied until each attribute is
broken down to simple attributes.

The relational representation of meta 00 model is shown below in
Figure 8.

cLASS(cNAME)
SUPER(CNAME, SUPER-CNAME)
PROPERTY(A’ITRIBUTI%NAME, CNAME, DATATYPE,

SINGLE/SET)
P Variations of PROPERTY are: */

/* Handles recursive relationships between CNAME */
PROPERTY(SUBROLEJSUPERROLE, CNAME,

CNAME, SINGLE/SET)

/*Handles relationships REL-NAME between CNAME
and OTHER-CLASS */

PROPERTY(REL-NAME, CNAME, OTHER-CLASS,
SINGLE/SET)

/* Handles aggregation with an INVERSE clause below*/
PROPERTY(HAS-PARTS, CNAME, OTHER-CLASS,

SINGLE/SET)

INVERSE(ATTRIBUTE, CNAME, OTHER-CLASS,
OTHER ATTRIBUTE)
J* Variation of INVERSE is:*/

/* Handles aggregation with a PROPERTY clause */
INVERSEOIASPARTS, CNAME, OTHER-CLASS,

IS-APART-OF)

Figure 7. Relational Schema for meta 00 model

2.3 Translation Rules from EER Model to 00
Model

The representation of relationships is one of the most
fundamental ways in which data models differ. As there are several
translation techniques in converting an ERD into a relational model
structure depending on how relationships are handled [Song 19921,
there could be at least two translation paradigms in translating an
ERD into an OODB schema. The first approach is to convert each
entity and each relationship into one object. The relationship object
is called a link object in Rumbaugh et al. [1991]. Thus, the
resulting schema will keep the structure of the original ER model.
We will call this approach stable translation, as we did for the
relational model [Song 19921. There are two approaches using this
idea [Navathe+ 1988, Ku+ 19911, and both are called the OOER
model. Another approach is to combine certain relationships (1: 1
and 1:N) into object classes using a pair of a reference attribute and

its inverse attribute. For example, if there is a WORK-ON
relationship between EMP and DEPT with many to one cardinality,
then the EMP object has a reference attribute DEFT and the DEPT
object has an inverse attribute EMP as a reference-set attribute (see
Rule 2.2 below). These inverse relationships are necessary for the
maintenance of relationship integrity and for two ways of accessing
related objects. However, many-to-many and ternary relationships
are created as separate object classes, called link object classes. And
thus in this approach the original structure of the ER model is not
kept in the target GODB schema. We call this approach mapped
translation, as the original structure of the ERD is mapped away.
This method is more complex than stable translation, but will result
in a more compact OODB schema

The stable translation method is advantageous since it can be
easily converted from the EER diagram and the structure of the
original ER model remains within the target model such as the
relational, network model, and 00 model. Also the maintenance of
OODB schema in this structure is easier than in other structures
because of its explicit relationship representation. However, this
does not allow us to take full advantage of 00 concepts where
composite objects are allowed. This also results in a proliferation of
objects as compared with other methodologies for OODB schema
design. Whereas the stable translation can still explicitly show the
ER’s cardinality constraints in the 00 diagram, the mapped
translation only implicitly shows the cardinality by single-valued
and set-valued attributes, unless otherwise defined by integrity
constraints. Another advantage of mapped translation is that it can
enforce one property of encapsulation by incorporating all the
relevant concepts under one definition. However, it violates another
property of encapsulation in that whenever a reference attribute in
one class is modified, there is a need to modify its associated
inverse attribute defined in another class. As shown in Rumbaugh
et al. [19911, however, the link object in a stable translation schema
can be physically implemented as a pointer at the implementation
stage.

In KERO, the mapped translation approach was used instead
of a stable one since the mapped translation takes advantage of the
OODB quality of encapsulation using the inverse clause and can be
directly implemented by most commercial OODBMSs. The shear
number of classes is also reduced, and the connections between two
objects are more direct without accessing the third object to link
them (except in many-to-many relationships).

(1) Entity type:

.
from lLB model to ob.ti -

- Each entity type becomes an object class.
(2) Binary relationships (from entity type A to another entity
typeW

(2.1) 1:l: Object class A has a reference attribute B, and
object class B has a reference attribute A.
(2.2) 1:N: Object class A has a reference-set attribute B and
object class B has a reference attribute A.
(2.3) M:N: Create a link object class L for the M:N
relationship. Add a reference attribute A and B within the
link object class L. The non-key attributes of the
relationship then become properties of L. Object class A and
object class B have a reference-set attribute of type L,
respectively.

(3) “isa” relationship between A isa B
Declare as super class B in object class A.

290

(4) Attributes
(4.1) Single-valued attributes: They become simple attributes
of the object class with atomic data types.
(4.2) Multi-valued attributes: If the order of values is
important, they become list attributes. Otherwise they
become set-valued attributes.
(4.3) Derived attributes: They become derived attributes
whose values are computed by operations.
(4.4) Composite attributes: They become a reference
attribute whose domain is an object class which consists of
attributes making up the composite attribute in ERD.
(4.5) Attribute of I:1 relationship: The attribute can be an
attribute of a more permanent object (e.g., Department is
more permanent than manager).
(4.6) Attribute of 1 :N relationship: The attribute becomes an
attribute of the N-side object.
(4.7) Attribute of M:N relationship: The attribute becomes an
attribute of the link object class created in Rule 2.3.

(5) Weak entity type
Weak entity type becomes a set-valued attribute of the owner
object, where the domain of the set-valued attribute is the
weak entity type.

(6) Ternary relationship
Create an object class corresponding to the ternary
relationship.

(7) Recursive relationship with entity type A with roles of Sub-
Role and Super-Role.

(7.1) 1: 1: Object class A has a reference attribute Sub-Role
and Super-Role.
(7.2) 1:N (Super-Role: Sub-Role): Object class A has a
reference-set attribute Sub-Role and a reference attribute
Super-Role.
(7.3) N:l (Super-Role: Sub-Role): Object class A has a
reference-set attribute Super-Role and a reference attribute
Sub-Role.
(7.4) M:N: Create a link object class L for the recursive
relationship. Add a reference attribute Super-Role and Sub-
Role within the link object class L. The non-key attributes
of the relationship then become properties of L. Object class
A have reference-set attributes Super-Role and Sub-Role of
type L, respectively.

(8) Aggregation in ER model

(8.1) Create an aggregated object class G from the
relationship enclosed in the aggregation entity.
(8.2) Add two participating entity types within G as a
reference attribute.
(8.3) Add non-key attribute of the relationship as simple
attributes of G.
(8.4) Each participating entity type has either reference
attribute or reference-set attribute of type G, depending on
the cardinality of relationship between them as in Rules
(2.1), (2.2), and (2.3).

This approach is similar to Hughes [1991], Cattell [19911.
However, our approach is different from them by the way we
handle many-to-many relationships and aggregation. Cattell does
not show how to deal with aggregation; Hughes explain the ideas of
the aggregation, but does not show explicit rules for the conversion
to 00 schema. Cane11 and Hughes do not properly handle rnany-to-
many relationships with non-key attributes. Cattell and Hughes
represent a many-to-many relationship between A and B using the
following rule, instead of our Rule 2.3 above:

Object class A has a reference-set attribute B, and
object class B has a reference-set attribute A.

In this case, if the relationship does not have its own attribute (non-
key attribute in ER model, such as HOURS attribute in
WORKS-FOR relationship in Figure ll), then this method is
usable. However, if it does have its own attribute, then the attribute
becomes awkward to handle. Furthermore, if the relationship has
some constraints, then these may be specified redundantly and
distributed to participating objects rather than encapsulating them
into a single object class [Rumbaugh 19881. Many real-world
applications have many-to-many relationships with non-key
attributes. Note that this problem can be easily handled in a one-to-
many relationship, since any attribute or constraint imposed on the
one-to-many relationship can be imposed on many-side object class.

We illustrate a simple example in this section. The ERD
with an aggregation is shown in Figure 8 and derived 00 schema IS
shown in Figure 9.

Figure 8 ERD with Aggregation

class Reservation
Properties

date-of-res: Date;
confiied: Boolean;
issues: setcricket)

inverse is Ticketissued-by;
made-by: Person

inverse is Personreserves;
made-for: Flight

inverse is Flightreserved-by;
end.

class Person
Properties

name, address, phone, SSN: String;
reserves: Set(Reservation)

inverse is Reservationmade-by;
end.

class Flight
Properties

fIight#: Integer,
destination: CityCode;
flight-time, arrival-time: Time;
reserved-by: Set (Reservation)

inverse is Reservation.made-for
end.

291

class Ticket

Properties
ticket#, seat& Integer,
class-of-seat: (Business, Fst-class,

Economic);

end.

seat-type: (Window, Aisle, Middle);
date-issued: Date;
issued-by: Reservation

inverse is Reservation.issues;

Figure 9. Derived 00 Schema from Figure 8

None of the literature we surveyed explicitly spelled out the
translation rules as we have done in this paper.
example is illustrated in Section 3.

A more complete

The process of converting an ERD into an 00 schema is not
deterministic. For example, relationships in an ERD can be mapped
into either an attribute, an operation, or an object class.
Relationships with non-key attributes can become a separate object
class. In addition, handling participation constraints, ternary
relationships, and other constraints in 00 databases are not clearly
analyzed yet.

2.4 Architecture and Implementation of KERO

KERO is classified as a design expert system. The design
system needs iteration for refinements until certain conditions are
satisfied or all the rules have been exhaustively applied and no more
changes to the working memory can be made. These iterations are
typically implemented as a forward chaining system. The overall
flow diagram of KERO is shown in Figure 10.
We have implemented KERO using MIKE, which is a meta-
interpreter of Prolog based on a public domain Prolog. KERO has a
total of 58 rules in MIKE syntax. MIKE was quite slow because of
the nature of meta-interpreter and the looping of the forward
chaining. Currently, we are reimplementing KERO using
KnowledgePro for Windows for a faster performance and better
user interface.

2.5 Enhancing Converted 00 Schema
We think that the OODB schema converted from the ERD

can serve as a conceptual model which is a result of a conceptual
analysis. This analysis can be further semantically enhanced for the
design as discussed in this section. By design, we mean to add
more implementation-oriented aspects to the conceptual model to
create a logical model, which is ready to be implemented.

(1) Abstract class
The notion of entity in ER model is not exactly the same as

the class in 00 model. Every entity in the ER model can be a class
in 00 model, but not every class in 00 model will be an entity in
ER model. An entity in ER modeling is a real-world object which
will store meaningful data. Thus, an entity type without any
significant attributes in the ER model may exist at the analysis stage,
but can be deleted at the logical design stage. However in the 00
model, a class even without any significant attributes may exist to
support the inheritance of operations. This kind of class is called
the abstract class. The abstract class is a class which is declared as
a class, but which will not have any instantiated objects. c++
supports the abstract class via the pure virtual function.

(2) Type class and object class
Type class is a data type used as a domain of an attribute,

while an object class is a meaningful class modeled for the
semantics of application. Even though both of them can be

INlTlALlSATlON RULE

& d READ-INrUT RULE

G
END-READISTART-
c%zNERsmRLJLE

“-“^>HIP RELA
AlTRIBUTE
CONMRSW

TERNARY-
RELATlONSHlP
coNvERslcN /

START-OUTPUT RULE

OUTPUT CLASSES

&
OUTPUT INHERlTANCE

J,
OUTPUT PROPERTIES
WITH INVERSES

&
OUTPLITPROPERTlES

\L
END-OUTPUT AND
END-PROGRAM RULE

Figure 10 Flow Diagram of KERO System

implemented as classes in 00 system, they are semantically
different. For example, composite attributes ADDRESS
(COUNTRY, CITY, NUMBER, STREET and NAME (LAST,
FIRST) could be a class type in 00 system, but they are not very
meaningful in OODB unless they are related to meaningful classes
such as person and employee. Programming convenience may
introduce this kind of class in 00 system.

(3) Class attribute (method)
A class attribute is one which has only one value for all the

objects of a class. They typically represents a summary or a
collective value for a class (such as the total number of instantiated
objects in the class). The ER model does not capture the semantics
of the class attribute (and, of course, class method, also). So
identify them and add to the 00 model.

(4) Constraint modeling
We can impose some constraints on the OODB schema

depending on the attribute type and relationship as follows:
l If an attribute has an enumerated data type, then that can be

specified as a constraint.
l If an attribute has a range of values, then that can be

specified as a constraint.

292

Figure 11. Company ER Model (taken from Elmasri &
Navathel989)

l For each set-valued attribute or reference-set attribute
- if they require a sequence, declare as a list data type
- if it allows a redundant value, declare as a bag data

l For each relationship in ER model
- if it has a specific maximum cardinality such as 1:6,

then specify as a constraint
- if it needs to specify the participation constraint,

then specify as a constraint methods and
message introduction (they are application
specific)

(5) Operations
Attribute methods can be automatically generated. Typical

operations such as constructor, destructor, accessor operations can
be generated as a form of attribute methods. However, operations
are application-specific, and thus other methodologies must be used
to generate a more complete list of operations, such as transformer
and interface operations with external systems.

3. Example
In this section, we illustrate our methodology using an

example taken from Elmasri and Navathe [19891. The ERD is
shown in Figure 11 and output OODB schema is shown in Section
3.2.

3.1 Input ER Model

3.2 Output OODB Schema

class(works-on)
properties

participant: employee
inverse of employee.participates;

object: project
inverse of project.done-by;

hours: integer,
end.

class(employee)
properties

manages: department
inverse of department.manages;

works-for: department
inverse of department.works-for;

has-property: ename
inverse of ename.is-property-of

participates: set(works-on)
inverse of works-on.participant;

has-parts: set(dependent)
inverse of dependent.is-par-of;

supervisor: employee;
ssn: string;
hdate: date;
sex: n/f;
address: string;
salary: integer,
supervisee: set(employee);

end.

class(department)
properties

manages: employee
inverse of employee.manages;

works-for: set(employee)
inverse of employee.works-for;

controls: set(project)
inverse of project.controls;

startdate: date;
dname: string;
number: integer,
num_emps: integer,
locations: setWring);

end.

293

class(project)
properties

controls: department
inverse of department.controls;

done-by: set(works-on)
inverse of worksgn.object;

pname: string;
pnumber: integer
location: string;

end.

class(dependent)
properties

Cattell, R.G.G. (1991). Object Data Management: Object-Oriented
and Extended Relational Database Systems, Addison-Wesley,
Reading, MA.

Chen, P.P. (1976). “The Entity Relationship Model - Toward a
Unified View of Data,” ACM TODS, 1:1, pp. 9-36.

is-part-ofi employee
inverse of employee.has-parts;

dep-name: string;

Eisenstadt, M. and Brayshaw, M. (1990). “A Knowledge
Engineering Toolkit,” BYTE, October 1990, pp. 268-282.

dsex: m/f;
relation: sting;

end.

Elmasri, R. and Navathe, S.B. (1989). Fundamentals of Database
Systems, The Benjamin/Cummings.

class(ename)
properties

is property-of: employee
inverse of employee.has-property;

fname: string;
minit: character,

Gorman, K. and Choobineh, I. (1991). “An Overview of of the
Object-Oriented Entity-Relationship Model (OOERM), in Proc. of
the Twenty-Third Annual Hawaii Int’l Corrf. on System Sciences,
Hawaii.

Hughes, J.G. (1991). Object-Oriented Databases. Prentice Hall.
lname: string;

end. Kim, W. (1990). “Object-Oriented Databases: Definition and
Research Directions,” IEEE Transaction on Knowledge ana’ Data

4. Summary and Conclusion
Engineering. 2(3), pp. 327-341.

Our research focuses on advancing methodologies for KU, C.S., Youn, C. & Kim, H.-J. (1991). “An Object-Oriented
object-oriented database (OODB) schema design. While 00
database systems themselves have been widely researched and

Entity-Relationship Model,” 1991 ISMM International

regarded as next generation database systems, there is no well
Conference on Computer Applications in Design, Simulation and

accepted methodology for OODB schema design. We think that as
Analysis,” Las Vegas, Nevada, March 19-21, 1991, PP. 55-58.

a short term solution the translation methodologies from semantic
data models are important for the following main reason: Most

Nachouki, J., Chastang, M.P. amel h-k&, H. (1991). “From

existing relational database design methodologies are based on the
Entity-Relationship Diagram to An Object Oriented Database,” in

semantic approach. By utilizing existing methodologies for OODB
Tgig{lOth Int’l Conf. on Entity-Relationship Approach, PP.

design, we will not lose the valuable knowledge of many
information engineers, obtained throughout the design and use of Navathe, S.B. & Pillalamarri (1988). “OOER: Toward Making the
relational database systems. So the transition from existing systems
to OODB systems can be smooth once a set of guidelines is

E-R Approach Object-Oriented,” in Proc. of 8th Int’l Conf. 011

provided, as done in this paper. The complexities of the OODB
Entity-Relationship Approach, pp.5576.

design process make an automated design assistance extremely Rumbaugh, J. , Bl&a, M., et al. (1991). Object-OrientedModeling
desirable, as well. For the long term, we need to develop direct
object modeling approaches, for both structure and behavior, which

and Design, Prentice-Hall.

may prove to be useful independent of database application Song, I.-Y. (1992). “Translation Techniques from ERD to
domains. Relational Model,” Submitted for publication.

Based on these, we have presented the design and Song, I.-Y. (1992b). “A Survey of Object-Oriented Database
implementation of KERO, a knowledge based system that converts Design Methodologies,” in Proc. of First Int’l Conf. on
an ER model into a OODB schema. Our translation scheme, called
mapped translation, can convert various semantic constructs of the

Information and Knowledge Management, Baltimore, MD, Nov.

ER model such as entity, relationship, ternary, recursive, weak
9-l 1, 1992, pp. 52-59.

entity, generalization/specialization, inheritance, and aggregation. Song, I.-Y. (1993). “A Knowledge Based Object-Oriented Database
We have spelled out the step-by-step transformation rules for each Schema Generator,” To appear in Proc. of 1993 IEEE/ACM Int’l
construct of the ER model. We have presented in detail how to Conf. on Developing & Managing Intelligent System Projects,”
properly convert many-to-many relationships with non-key Washington, D.C, March 29-31, 1993.
attributes and discussed the translation of the aggregation in ER
model into OODB schema with examples. We have also suggested Stonebraker, M., Rowe, L.A., etc. (1990). Third-Generation
ideas about how the converted schema may be further semantically Database System Manifesto,” SIGMOD Record, 19(3), pp.3 l-
enhanced. The output from KERO can be directly implemented in 44.
most commercial OODBMSs. We will add to KERO increased
interaction with designers to facilitate customized OODB output. Teorey, T.J., Yang, D., and Fry, J.P. (1986). “A Logical Design
The KERO system has been implemented in MIKE, a public domain Methodology for Relational Databases Using the Extended Entity-
meta interpreter of Prolog. Relationship Model,” Computing Surveys, 18: 12, June, pp. 197-

222.

294

