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Abstract 
In this paper, we discuss a knowledge based system, 
KERO, which implements a methodology converting an 
entity-relationship (ER) model into a structurally object- 
oriented database schema. A set of rules that can convert 
most semantic constructs of ER models into an OODB 
schema is discussed. Our method is an improved one 
which can properly convert many-to-many relationships 
with non-key attributes and aggregation in ER model. The 
ideas which can further enhance the converted OODB 
schema are also presented. We think that the translation 
methodologies from semantic data models into OODB 
schema are important since most existing relational database 
design methodologies are based on the semantic approach 
and OODB systems must subsume existing relational 
database systems. The KERO system has been 
implemented in MIKE, which is a meta-interpreter written 
in Prolog. 

Keywords: Entity-Relationship, Object-oriented databases, database 
schema, database design, knowledge based system 

1 Introduction 
The purpose of this paper is to present the design and 

implementation of a knowledgebased system, KERO, that converts 
an entity-relationship (ER) model into a structurally object-oriented 
(00) database schema 

OODB 
Our work is a continued effort in developing an easy to use 

design methodology which could prove to be useful 
independent of database application domains. We have done a 
comprehensive survey of object-oriented database design 
methodologies [Song 19921. We think that the translation 
methodologies from semantic data models are important for the 
following main reasons: Most existing relational database design 
methodologies are based on the semantic approach. By utilizing 
existing methodologies, we will not lose the valuable knowledge of 
many information engineers, obtained throughout the design and 
use of relational database systems. So the transition from existing 
systems to OODB systems can be smooth once a set of guidelines is 
provided. This is particularly true since OODB systems must 
subsume relational database systems and open to other subsystems 
[Stonebreaker+ 1990, Kim 19901. 

Based on these observations, we have developed a 
knowledgebased system, KERO, that converts ERDs into 00 
database schema. We define a meta ER model to keep the input ER 
model structure, and a meta 00 model for an output GODB schema. 
We present a set of rules converting each of ER model constructs 

defined in the input ER model into a corresponding 00 schema 
component. Cattell [ 199 11 and Hughes [ 199 11 both have examples 
converting ERD into OODB schema. Cattell does not show how to 
deal with aggregation, and Cattell and Hughes do not handle many- 
to-many relationships with non-key attributes properly. Our work 
is an enhanced version of the previous work in this area in that we 
solve some problems of handling many-to-many relationships in 
[Cattell 1991, Hughes 19911 and discuss aggregation in more detail 
than [Hughes 1991, Song and Godsey 19931. The converted 00 
schema can serve as an initial conceptual schema which can be 
further enhanced depending on the target OODBMS. We also 
suggest several ideas about how the converted schema can be 
semantically further improved. The KERO system has been 
implemented in MIKE [Eisenstadt+ 19901, which is a public- 
domain meta-level interpreter of Prolog. 

Other approaches using ER-like models for OODB schema 
design include Gorman and Choobinch [1991], Nachouki, et al. 
[1991]. Gorman and Choobinch propose OOERM by extending 
ERD to include methods and message passing structures. 
However, the diagram becomes very messy, loses intuitiveness, 
and poses difficulty in representing all messages for most real-world 
applications. Nachouki, et al. discus how to integrate logical data 
access in the definition of an OODB schema from an ERD. 

The rest of this paper is organized as follows: Section 2 
discusses the conceptual design and implementation of our 
knowledge based system, and Section 3 presents an example of 
schema translation. Section 4 concludes the paper. 

2. Methodology 
In this section, we present the design and implementation 

aspects of our knowledge based system, KERO, which converts 
ERDs into OODB schema. The design of KBRO can be broken 
down in three main segments: ERD representation, OODB 
representation, and translation rule development. The ER model 
which will be converted into an 00 model is represented in a meta 
ER model understood by KERO (see Section 2.1). KBRO converts 
the ER model into a meta 00 model for OODB schema (see Section 
2.2). The conversion rules are discussed in Section 2.3, the 
architecture of KERO in Section 2.4, and semantic enhancement to 
the converted 00 model is discussed in Section 2.5. 

2.1 ERD Representation 
ER model and its variations [Chen 1976, Teorey+ 1986, 

Batini+ 19911 are the most popular approach for relational database 
design, and have been widely adopted in CASE tools. As such it is 
natural to consider the ER model as a starting point of designing an 
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Figure 1 Meta ER Model 

OODB schema. There are many complex semantics which may be 
modeled by the entity relationship diagram. The semantic constructs 
of the EER (ER henceforth) model which we have chosen for the 
KERO system include entities, relationships, recursive 
relationships, ternary relationships, generalization/specialization, 
inheritance, set-valued attributes, and composite attributes as 
discussed in Ehnasri and Navathe [ 19891. 

The ERD for the representation of the meta-model for the ER 
model (called meta ER model) is shown in Figure 1, and its 
important semantics are explained below. 

l ENTITY represents either a regular (strong) entity or 
a weak entity. 

*ENTITY can have weak entities 
(WEAKRELATIONSHIP), and they have an 
owner entity. 

l ENTITY can have recursive relationships 
(RECURSIVEREL). 

l ENTITY can have many children (sub) entities and 
many parent (super) entities. 

l ENTITY participates in (ENTREL) relationships, 
and has (min, max) cardurality constraints. 

l ENTITY can have many attributes. 
l ATTRIBUTE belongs to either an ENTlTY via EA 

relationship or a RELATIONSHIP via RA. 
l AlTRIBUTE can be either a single,multi-valued, or 

composite attribute. 
l A composite AlTRIBUTE consists of several simple 

attributes. 

What is shown in Figure 2 is a relational representation of 
the above meta ER model. 

ENTITY(ENAME, WEAK/STRONG, OWNER) 
Al-l-RIBUTE(ENAME, A-FIR-NAME, NULUNON- 

NULL, SINGLE/MULTI-VALUED, 
ATOMIC/COMPOSITE, DATATYPE) 

RELATIONSHIP(RNAME, DIMENSION) 
ENTITYJELATIONSHIP(ENAME, RNAME, MIN, 

RELAlI%&IP~AI-lR(RNAME ATI’R-NAME 
SINGLE/MULTI, ATOMIC/COMPOSITE, ’ 
DATATYPE) 

RECURSIVE(ENAME, SUBROLE, SUPERROLE, 
SUB-MAX, SUPER-MAX, RNAME) 

ISA(PARENT, CHILD) 
COMPOSITE~ATI’R~PARTS(COMP~A-l-IR, PART, 

SINGLE/MULTI, ATOMIC/COMPOSITE, 
DATATYPE) 

Figure 2. Relational Schema for meta ER model 

For efficiency of implementation, the following was added 
for ternary relationships and 1: I and M:N binary relationships. 

/* for binary: *I 
MEMBER(RNAME, MEMBERi, MEMBER2) 
/* for ternary *I 
MEMBER(RNAME, MEMBERl, MEMBER2, 

MEMBER3) 
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Note that a ternary relationship can also be represented using numbers, strings, and other simple values. 
the above meta model. The maximum cardinality (MAX attribute in 

Set,attributes are those 

Em-REL relationship) of a binary relationship is represented using 
which have a set of simple values or other objects. Examples of 
class attributes are average number of players or umform color of a 

the typical “Look Across” notation (i.e., look across the r&h&ip baseball team. Reference attributes are used to represent 
to find the cardinality, the carclinality is written in the other side of relationships between objects (association). A reference attribute 
the entity), while that of a ternary relationship is represented using can represent either a single object or a set of objects (reference-set 
the “Look Here” notation (cardinality is written near the entity side). afrribure). These attributes may be aggregated to form an ObJeCt, 
For example, the CONTROLS and SUPPLY relationships in the and objects may be aggregated to form composite objects 
ERD of Figure 3 can be represented as in Figure 4 below: (aggregation). 

Figure 3. ERD with a Ternary Relationship 

relationship(control,2) 
relationship(supply, 3) 
ent-rel(department, control, 0, n) 
ent-rel(project, control, 1, 1) 
ent-rel@roject, supply, 1, n) 
ent-rel(part, supply, 1, n) 
ent-&supplier, 0, n) 
member(contro1, department, project) 
member(supply, project, part, supplier) 

Figure 4. Meta ER Representation of CONTROLS and 
SUPPLY in Figure 5 

It 

Figure 5. Template for Class Definition 

The “Inherit” clause defines the superclass, “Properties” An example of a complete ERD is shown in Section 3. 
should be pointed out that the ER design approach to OGDB schema clause defines attributes of the Class, and “Operations” clause 
does not produce operations. Other methodologies should be used defines operations which will be added later using other methods. 
to come up with and represent them, but these are beyond the scope The “Properties” clause shows four different types of attributes. 
of this paper. 

2.2 OODB Representation 
An OODB schema consists of a collection of clusses. Each 

class has a set of instances, which are the objects belonging to that 
class. Each class is an abstract data type which has a group of 
arfributes (called instance variables in some 00 systems) and a set 
of operations (or methods) defined on them (classification). These 
attributes describe properties of instances of a class. Each object 
has an object identity independent of the values that it contains 
(identification). Classes form a set of class hierarchies, forming 
superclass and subclass relationships (generalization). Subclass 
objects inherit the attributes and onerations of sunerclasses. The 

Our target 00 model, currently implemented in KERO, has 
classification, generalization, and aggregation abstractions. 
Identification is automatically supported by the target OODBMS in 
the form of an object identifier. Associations are implemented as a 
pair of reference attributes and their associated inverse attributes 
(See Section 2.3 for more on this). 

The template class definition used for output from KERO is 
similar to the syntax used in Hughes [19911, and is shown in 
Figure 5 as follows: 

Class <class name> 
Inher% <other-class> 
Properties 

/* simple attribute: */ 
cattribute-name>: <simple data type> ; 
/*set-valued attribute:*/ 

cattribute_name>: set (<simple data type>); 
I* reference attribute: */ 

cattribute-name>: (other-class-name); 
r” reference-set attribute:*/ 

<attribute name>: set (<other-class-name>); 
inverse % <other-class-name>. 

<attribute-name>; 
..I 

Operations 
<operation-name>; 

End. “*’ 

class hierarchy becomes a class lattice in the form oi directed acyclic 
graph (DAG) when a class can have more than one parent class 
(multiple inheritance). It is common practice to refer to a class 
lattice, as a class hierarchy. Attributes in OODB could be simple 
attributes, collection attributes ( set values, lists, arrays), derived 
attributes (whose value are computed by procedures or methods), 
class attributes (whose value represent properties of the class as a 
whole or summary values, rather than each individual object 
instance) or reference attributes (which point to other object(s)). 
Simple attributes are atomic attributes which do not have their own 
components. Examples of the simple attributes are integers, 

~ 

Figure 6 Meta 00 model 
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The ERD representation of meta 00 model in Figure 6 can 
be explained as follows: 

l A CLASS has attributes. 
l A PROPERTY (Attribute) has a domain. 
l A DOMAIN is either a simple data type or a CLASS type. 
l GeneralizationJspecialization is handled through INHERIT 
relationship. Since the SUPER-CLASS has many 
cardinality, it supports multiple inheritance. 
l Aggregation is handled via the recursive application of CP 
relationship and PD relationship from CLASS via 
ATTRIBUTE through DOMAIN. An aggregated class has a 
set of atttibutes via CP relationship, which some of them are 
again defined by DOMAIN class via PD relationship. This 
process can be recursively applied until each attribute is 
broken down to simple attributes. 

The relational representation of meta 00 model is shown below in 
Figure 8. 

cLASS(cNAME) 
SUPER(CNAME, SUPER-CNAME) 
PROPERTY(A’ITRIBUTI%NAME, CNAME, DATATYPE, 

SINGLE/SET) 
P Variations of PROPERTY are: */ 

/* Handles recursive relationships between CNAME */ 
PROPERTY(SUBROLEJSUPERROLE, CNAME, 

CNAME, SINGLE/SET) 

/*Handles relationships REL-NAME between CNAME 
and OTHER-CLASS */ 

PROPERTY(REL-NAME, CNAME, OTHER-CLASS, 
SINGLE/SET) 

/* Handles aggregation with an INVERSE clause below*/ 
PROPERTY(HAS-PARTS, CNAME, OTHER-CLASS, 

SINGLE/SET) 

INVERSE(ATTRIBUTE, CNAME, OTHER-CLASS, 
OTHER ATTRIBUTE) 
J* Variation of INVERSE is:*/ 

/* Handles aggregation with a PROPERTY clause */ 
INVERSEOIASPARTS, CNAME, OTHER-CLASS, 

IS-APART-OF) 

Figure 7. Relational Schema for meta 00 model 

2.3 Translation Rules from EER Model to 00 
Model 

The representation of relationships is one of the most 
fundamental ways in which data models differ. As there are several 
translation techniques in converting an ERD into a relational model 
structure depending on how relationships are handled [Song 19921, 
there could be at least two translation paradigms in translating an 
ERD into an OODB schema. The first approach is to convert each 
entity and each relationship into one object. The relationship object 
is called a link object in Rumbaugh et al. [1991]. Thus, the 
resulting schema will keep the structure of the original ER model. 
We will call this approach stable translation, as we did for the 
relational model [Song 19921. There are two approaches using this 
idea [Navathe+ 1988, Ku+ 19911, and both are called the OOER 
model. Another approach is to combine certain relationships (1: 1 
and 1:N) into object classes using a pair of a reference attribute and 

its inverse attribute. For example, if there is a WORK-ON 
relationship between EMP and DEPT with many to one cardinality, 
then the EMP object has a reference attribute DEFT and the DEPT 
object has an inverse attribute EMP as a reference-set attribute (see 
Rule 2.2 below). These inverse relationships are necessary for the 
maintenance of relationship integrity and for two ways of accessing 
related objects. However, many-to-many and ternary relationships 
are created as separate object classes, called link object classes. And 
thus in this approach the original structure of the ER model is not 
kept in the target GODB schema. We call this approach mapped 
translation, as the original structure of the ERD is mapped away. 
This method is more complex than stable translation, but will result 
in a more compact OODB schema 

The stable translation method is advantageous since it can be 
easily converted from the EER diagram and the structure of the 
original ER model remains within the target model such as the 
relational, network model, and 00 model. Also the maintenance of 
OODB schema in this structure is easier than in other structures 
because of its explicit relationship representation. However, this 
does not allow us to take full advantage of 00 concepts where 
composite objects are allowed. This also results in a proliferation of 
objects as compared with other methodologies for OODB schema 
design. Whereas the stable translation can still explicitly show the 
ER’s cardinality constraints in the 00 diagram, the mapped 
translation only implicitly shows the cardinality by single-valued 
and set-valued attributes, unless otherwise defined by integrity 
constraints. Another advantage of mapped translation is that it can 
enforce one property of encapsulation by incorporating all the 
relevant concepts under one definition. However, it violates another 
property of encapsulation in that whenever a reference attribute in 
one class is modified, there is a need to modify its associated 
inverse attribute defined in another class. As shown in Rumbaugh 
et al. [ 19911, however, the link object in a stable translation schema 
can be physically implemented as a pointer at the implementation 
stage. 

In KERO, the mapped translation approach was used instead 
of a stable one since the mapped translation takes advantage of the 
OODB quality of encapsulation using the inverse clause and can be 
directly implemented by most commercial OODBMSs. The shear 
number of classes is also reduced, and the connections between two 
objects are more direct without accessing the third object to link 
them (except in many-to-many relationships). 

(1) Entity type: 

. 
from lLB model to ob.ti - 

- Each entity type becomes an object class. 
(2) Binary relationships (from entity type A to another entity 
typeW 

(2.1) 1:l: Object class A has a reference attribute B, and 
object class B has a reference attribute A. 
(2.2) 1:N: Object class A has a reference-set attribute B and 
object class B has a reference attribute A. 
(2.3) M:N: Create a link object class L for the M:N 
relationship. Add a reference attribute A and B within the 
link object class L. The non-key attributes of the 
relationship then become properties of L. Object class A and 
object class B have a reference-set attribute of type L, 
respectively. 

(3) “isa” relationship between A isa B 
Declare as super class B in object class A. 
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(4) Attributes 
(4.1) Single-valued attributes: They become simple attributes 
of the object class with atomic data types. 
(4.2) Multi-valued attributes: If the order of values is 
important, they become list attributes. Otherwise they 
become set-valued attributes. 
(4.3) Derived attributes: They become derived attributes 
whose values are computed by operations. 
(4.4) Composite attributes: They become a reference 
attribute whose domain is an object class which consists of 
attributes making up the composite attribute in ERD. 
(4.5) Attribute of I:1 relationship: The attribute can be an 
attribute of a more permanent object (e.g., Department is 
more permanent than manager). 
(4.6) Attribute of 1 :N relationship: The attribute becomes an 
attribute of the N-side object. 
(4.7) Attribute of M:N relationship: The attribute becomes an 
attribute of the link object class created in Rule 2.3. 

(5) Weak entity type 
Weak entity type becomes a set-valued attribute of the owner 
object, where the domain of the set-valued attribute is the 
weak entity type. 

(6) Ternary relationship 
Create an object class corresponding to the ternary 
relationship. 

(7) Recursive relationship with entity type A with roles of Sub- 
Role and Super-Role. 

(7.1) 1: 1: Object class A has a reference attribute Sub-Role 
and Super-Role. 
(7.2) 1:N (Super-Role: Sub-Role): Object class A has a 
reference-set attribute Sub-Role and a reference attribute 
Super-Role. 
(7.3) N:l (Super-Role: Sub-Role): Object class A has a 
reference-set attribute Super-Role and a reference attribute 
Sub-Role. 
(7.4) M:N: Create a link object class L for the recursive 
relationship. Add a reference attribute Super-Role and Sub- 
Role within the link object class L. The non-key attributes 
of the relationship then become properties of L. Object class 
A have reference-set attributes Super-Role and Sub-Role of 
type L, respectively. 

(8) Aggregation in ER model 

(8.1) Create an aggregated object class G from the 
relationship enclosed in the aggregation entity. 
(8.2) Add two participating entity types within G as a 
reference attribute. 
(8.3) Add non-key attribute of the relationship as simple 
attributes of G. 
(8.4) Each participating entity type has either reference 
attribute or reference-set attribute of type G, depending on 
the cardinality of relationship between them as in Rules 
(2.1), (2.2), and (2.3). 

This approach is similar to Hughes [1991], Cattell [ 19911. 
However, our approach is different from them by the way we 
handle many-to-many relationships and aggregation. Cattell does 
not show how to deal with aggregation; Hughes explain the ideas of 
the aggregation, but does not show explicit rules for the conversion 
to 00 schema. Cane11 and Hughes do not properly handle rnany-to- 
many relationships with non-key attributes. Cattell and Hughes 
represent a many-to-many relationship between A and B using the 
following rule, instead of our Rule 2.3 above: 

Object class A has a reference-set attribute B, and 
object class B has a reference-set attribute A. 

In this case, if the relationship does not have its own attribute (non- 
key attribute in ER model, such as HOURS attribute in 
WORKS-FOR relationship in Figure ll), then this method is 
usable. However, if it does have its own attribute, then the attribute 
becomes awkward to handle. Furthermore, if the relationship has 
some constraints, then these may be specified redundantly and 
distributed to participating objects rather than encapsulating them 
into a single object class [Rumbaugh 19881. Many real-world 
applications have many-to-many relationships with non-key 
attributes. Note that this problem can be easily handled in a one-to- 
many relationship, since any attribute or constraint imposed on the 
one-to-many relationship can be imposed on many-side object class. 

We illustrate a simple example in this section. The ERD 
with an aggregation is shown in Figure 8 and derived 00 schema IS 
shown in Figure 9. 

Figure 8 ERD with Aggregation 

class Reservation 
Properties 

date-of-res: Date; 
confiied: Boolean; 
issues: setcricket) 

inverse is Ticketissued-by; 
made-by: Person 

inverse is Personreserves; 
made-for: Flight 

inverse is Flightreserved-by; 
end. 

class Person 
Properties 

name, address, phone, SSN: String; 
reserves: Set(Reservation) 

inverse is Reservationmade-by; 
end. 

class Flight 
Properties 

fIight#: Integer, 
destination: CityCode; 
flight-time, arrival-time: Time; 
reserved-by: Set (Reservation) 

inverse is Reservation.made-for 
end. 
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class Ticket 

Properties 
ticket#, seat& Integer, 
class-of-seat: (Business, Fst-class, 

Economic); 

end. 

seat-type: (Window, Aisle, Middle); 
date-issued: Date; 
issued-by: Reservation 

inverse is Reservation.issues; 

Figure 9. Derived 00 Schema from Figure 8 

None of the literature we surveyed explicitly spelled out the 
translation rules as we have done in this paper. 
example is illustrated in Section 3. 

A more complete 

The process of converting an ERD into an 00 schema is not 
deterministic. For example, relationships in an ERD can be mapped 
into either an attribute, an operation, or an object class. 
Relationships with non-key attributes can become a separate object 
class. In addition, handling participation constraints, ternary 
relationships, and other constraints in 00 databases are not clearly 
analyzed yet. 

2.4 Architecture and Implementation of KERO 

KERO is classified as a design expert system. The design 
system needs iteration for refinements until certain conditions are 
satisfied or all the rules have been exhaustively applied and no more 
changes to the working memory can be made. These iterations are 
typically implemented as a forward chaining system. The overall 
flow diagram of KERO is shown in Figure 10. 
We have implemented KERO using MIKE, which is a meta- 
interpreter of Prolog based on a public domain Prolog. KERO has a 
total of 58 rules in MIKE syntax. MIKE was quite slow because of 
the nature of meta-interpreter and the looping of the forward 
chaining. Currently, we are reimplementing KERO using 
KnowledgePro for Windows for a faster performance and better 
user interface. 

2.5 Enhancing Converted 00 Schema 
We think that the OODB schema converted from the ERD 

can serve as a conceptual model which is a result of a conceptual 
analysis. This analysis can be further semantically enhanced for the 
design as discussed in this section. By design, we mean to add 
more implementation-oriented aspects to the conceptual model to 
create a logical model, which is ready to be implemented. 

(1) Abstract class 
The notion of entity in ER model is not exactly the same as 

the class in 00 model. Every entity in the ER model can be a class 
in 00 model, but not every class in 00 model will be an entity in 
ER model. An entity in ER modeling is a real-world object which 
will store meaningful data. Thus, an entity type without any 
significant attributes in the ER model may exist at the analysis stage, 
but can be deleted at the logical design stage. However in the 00 
model, a class even without any significant attributes may exist to 
support the inheritance of operations. This kind of class is called 
the abstract class. The abstract class is a class which is declared as 
a class, but which will not have any instantiated objects. c++ 
supports the abstract class via the pure virtual function. 

(2) Type class and object class 
Type class is a data type used as a domain of an attribute, 

while an object class is a meaningful class modeled for the 
semantics of application. Even though both of them can be 

INlTlALlSATlON RULE 

& d READ-INrUT RULE 

G 
END-READISTART- 
c%zNERsmRLJLE 

“-“^>HIP RELA 
AlTRIBUTE 
CONMRSW 

TERNARY- 
RELATlONSHlP 
coNvERslcN / 

START-OUTPUT RULE 

OUTPUT CLASSES 

& 
OUTPUT INHERlTANCE 

J, 
OUTPUT PROPERTIES 
WITH INVERSES 

& 
OUTPLITPROPERTlES 

\L 
END-OUTPUT AND 
END-PROGRAM RULE 

Figure 10 Flow Diagram of KERO System 

implemented as classes in 00 system, they are semantically 
different. For example, composite attributes ADDRESS 
(COUNTRY, CITY, NUMBER, STREET and NAME (LAST, 
FIRST) could be a class type in 00 system, but they are not very 
meaningful in OODB unless they are related to meaningful classes 
such as person and employee. Programming convenience may 
introduce this kind of class in 00 system. 

(3) Class attribute (method) 
A class attribute is one which has only one value for all the 

objects of a class. They typically represents a summary or a 
collective value for a class (such as the total number of instantiated 
objects in the class). The ER model does not capture the semantics 
of the class attribute (and, of course, class method, also). So 
identify them and add to the 00 model. 

(4) Constraint modeling 
We can impose some constraints on the OODB schema 

depending on the attribute type and relationship as follows: 
l If an attribute has an enumerated data type, then that can be 

specified as a constraint. 
l If an attribute has a range of values, then that can be 

specified as a constraint. 
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Figure 11. Company ER Model (taken from Elmasri & 
Navathel989) 

l For each set-valued attribute or reference-set attribute 
- if they require a sequence, declare as a list data type 
- if it allows a redundant value, declare as a bag data 

l For each relationship in ER model 
- if it has a specific maximum cardinality such as 1:6, 

then specify as a constraint 
- if it needs to specify the participation constraint, 

then specify as a constraint methods and 
message introduction (they are application 
specific) 

(5) Operations 
Attribute methods can be automatically generated. Typical 

operations such as constructor, destructor, accessor operations can 
be generated as a form of attribute methods. However, operations 
are application-specific, and thus other methodologies must be used 
to generate a more complete list of operations, such as transformer 
and interface operations with external systems. 

3. Example 
In this section, we illustrate our methodology using an 

example taken from Elmasri and Navathe [ 19891. The ERD is 
shown in Figure 11 and output OODB schema is shown in Section 
3.2. 

3.1 Input ER Model 

3.2 Output OODB Schema 

class(works-on) 
properties 

participant: employee 
inverse of employee.participates; 

object: project 
inverse of project.done-by; 

hours: integer, 
end. 

class(employee) 
properties 

manages: department 
inverse of department.manages; 

works-for: department 
inverse of department.works-for; 

has-property: ename 
inverse of ename.is-property-of 

participates: set(works-on) 
inverse of works-on.participant; 

has-parts: set(dependent) 
inverse of dependent.is-par-of; 

supervisor: employee; 
ssn: string; 
hdate: date; 
sex: n/f; 
address: string; 
salary: integer, 
supervisee: set(employee); 

end. 

class(department) 
properties 

manages: employee 
inverse of employee.manages; 

works-for: set(employee) 
inverse of employee.works-for; 

controls: set(project) 
inverse of project.controls; 

startdate: date; 
dname: string; 
number: integer, 
num_emps: integer, 
locations: setWring); 

end. 
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class(project) 
properties 

controls: department 
inverse of department.controls; 

done-by: set(works-on) 
inverse of worksgn.object; 

pname: string; 
pnumber: integer 
location: string; 

end. 

class(dependent) 
properties 
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