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ABSTRACT 

Transactions in real-time database systems are 
associated with certain timing constraints derived either from 
temporal consistency requirements of data or from 
requirements imposed on system reaction time. Fundamental 
requirements of real-time database systems are timeliness, i.e., 
the ability to produce expected transaction results early or at 
the right time, and predictability, i.e., the ability to function as 
deterministic as necessary to satisfy system specifications 
including timing constraints. There are a number of issues that 
have to be addressed in processing real-time transactions. To 
achieve the fundamental requirements, not only conventional 
transaction processing mechanisms have to be tailored to take 
timing constraints into consideration, but also new mechanisms 
that have not been required in conventional transaction 
processing need to be designed and added. In this paper, we 
focus on the problem of concurrency control for processing 
real-time transactions, and propose an optimistic concurrency 
control protocol. The proposed protocol employs priority- 
based conflict resolution schemes developed on forward 
validation. In addition, it utilizes the notion of lazy 
serialization implemented using dynamic timestamp allocation 
and dynamic adjustment of timestamp intervals. With these 
features, the proposed protocol is expected to produce 
transaction results in a timely manner. 

1. INTRODUCTION 

Real-time database systems are vital to a wide range of 
operations. As computers have been faster and more powerful, 
and their use more widespread, real-time database systems 
have grown larger and become more critical. For example, they 
are used in program stock trading, telephone switching 
systems, network management, automated factory 
management, and command and control systems. More 
specifically, in the program stock market application, we need 
to monitor the state of the stock market and update the database 
with new information. If the database is to contain an accurate 
representation of the current market, then this monitoring and 
updating process must meet certain timing constraints. Also, in 
this system, we need to satisfy certain real-time constraints in 
reading and analyzing information in database in order to 
respond to a user query or to initiate a trade in the stock market. 
For other examples given above, we can consider similar 
operations with timing constraints. 
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All of these real-time database operations are 
characterized by (1) their time constrained access to data and 
(2) access to data that has temporal validity. They involve 
gathering data from the environment, processing of gathered 
information in the context of information acquired in the past, 
and providing timely response. They also involve processing 
not only archival data but also temporal data which loses its 
validity after a certain time interval. Both of the temporal 
nature of the data and the response time requirements imposed 
by the environment make transactions possess timing 
constraints in the form of either periods or deadlines. 
Therefore, the correctness of real-time database operation 
depends not only on the logical computations carried out but 
also on the time at which the results are delivered. The goal of 
real-time database systems is to meet timing constraints of 
transactions. 

One key point to note here is that real-time computing 
does not imply fast computing. Rather than being fast, more 
important properties of real-time (database) systems should be 
timeliness, i.e., the ability to produce expected results early or 
at the right time, and predictability, i.e., the ability to function 
as deterministic as necessary to satisfy system specifications 
including timing constraints [Stan90]. Fast computing which is 
busy doing the wrong activity at the wrong time is not helpful 
for real-time computing. While the objective of real-time 
computing is to meet the individual timing constraint of each 
activity, the objective of fast computing is to minimize the 
average response time of a given set of activities. Fast 
computing is helpful in meeting stringent timing constraints, 
but fast computing alone does not guarantee timeliness and 
predictability. In order to guarantee timeliness and 
predictability, we need to handle explicit timing constraints, 
and to use time-cognizant techniques to meet deadlines or 
periodicity associated with activities. 

There are a number of issues that have to be addressed 
in processing real-time transactions. To achieve the 
fundamental requirements, i.e., timeliness and predictability, 
not only conventional transaction processing mechanisms have 
to be tailored to take timing constraints into consideration, but 
also new mechanisms that have not been required in 
conventional transaction processing need to be designed and 
added. In this paper, we focus on the problem of concurrency 
control for processing real-time transactions 

2. RELATED WORK 

Most work on real-time concurrency control uses the 
notion of serializability as the correctness criteria CAbboSS, 
Abbo89, Buch89, Hari90, HaSOb, Huan89, Huan91, Lin90. 



Sha88, Stan881, while some consider relaxation of consistency 
requirements based on the argument that it is desirable to trade 
off timeliness with data consistency [Lin89, Liu88, Son881. In 
enforcing serializability, conventional concurrency control 
methods such as two-phase locking (2PL), timestamp ordering 
(TO), and optimistic concurrency control (OCC) have been 
used as the basis of real-time concurrency control. Most current 
work combines the conventional concurrency control schemes 
with priority-based conflict resolution methods such aspriority 
abort [Abbo88, Huangl], priority inheritance [S ha88], priority 
ceiling [Sha88], priority wait [Huangl], and serialization 
order udjurrment [LinYO]. 

Most of the initial work on real-time concurrency 
control has been conducted on utilizing 2PL [Abbo88, Abb89, 
Huan89, Sha88, Stan88]. This is not surprising because 2PL 
has been well studied in traditional database systems and is 
being widely used in commercial database systems. Besides, 
recovery mechanisms for use with 2PL are well understood. 
2PL uses pure blocking for conflict resolution. The beneficial 
effect of blocking is conservation of resources, which makes 
2PL advantageous particularly under resource-limited 
situations. However, blocking results in prevention of the 
progress of transaction execution. Subsequently, a low degree 
of concurrency is resulted, and conflict ratio is increased 
rapidly. Moreover, 2PL has inherent problems such as 
possibility of deadlocks and unpredictable blocking duration, 
which become even more serious for real-time transaction 
processing. 

OCC scheduler lKung8 1, Haer84] uses abort and restart 
to serialize concurrent data operations, thereby avoids 
blocking. Thus, OCC is free from deadlock. In addition, it has 
a potential for high degree of parallelism. These features of 
OCC make it promising particularly for real-time transaction 
processing. However, the abort-based conflict resolution of 
OCC has the problem of wasted resources and time, which 
becomes more serious for real-time transaction scheduling. 

In OCC protocols that perform backward validation, the 
validating transaction either commits or aborts depending on 
whether it has conflicts with transactions that have already 
committed. Thus, this validation scheme does not allow us to 
take transaction characteristics into account. In forward 
vulidarion [Haer84], however, either the validating transaction 
or conflicting ongoing transactions can be aborted to resolve 
conflicts. This validation scheme is advantageous in real-time 
database systems, because it may be preferable not to commit 
the validating transaction, depending on the timing 
characteristics of the validating transaction and the conflicting 
ongoing transactions. A number of real-time concurrency 
control methods based on OCC using forward validation 
scheme have been studied [Hari90, HarigOb, Huan91]. 

The rationale for OCC is based on an “optimistic” 
assumption regarding run-time conflicts: if only few run-time 
conflicts are expected, we can assume that most execution is 
serializable [Bern87]. Therefore OCC simultaneously avoids 
blocking and restarts in the optimistic situations. 
Unfortunately, however, this optimistic assumption on 
transaction behavior may not always be true in real world 
situations. In a database system where run-time conflicts are 
not rare, OCC depends on transaction restarts to eliminate 
nonserializable executions. 

The adverse effect of transaction restarts for 
serialization is that resource and time are wasted. Especially in 

OCC, because data conflicts are detected and resolved only 
during the validation phase, a transaction can end up aborting 
after having used resources and time for most of the 
transaction’s execution. When the transaction is restarted, 
previously performed work has to be redone. This problem of 
time and resource waste &comes even more serious in real- 
time transaction scheduling, because it reduces the chances of 
meeting the deadlines of transactions. 

Another problem of OCC is unnecessury aborts. This 
problem is often caused by imperfect validation tests used in 
OCC protocols. Many validation test schemes are based on 
intersection of the read sets and write sets of transactions rather 
than on the actual execution order of transactions, since in 
general it is difficult to record and use entire execution history 
efficiently. Hence sometimes a validation process using read 
sets and write sets erroneously concludes that a nonserializable 
execution has occurred when it has not in aCNd execution. We 
call such a conflict virtual. A virtual conflict leads to one or 
more unnecessary transaction aborts. This problem of 
unnecessary aborts also results in waste of resource and time, 
and is serious in real-time transaction processing. 

The concurrency control protocol proposed in this paper 
is based on OCC scheme using forward validation [Haer84, 
Robi82], which was also used as the basis for OX-based real- 
time concurrency control schemes proposed in [HarigOb, 
Huan91]. Its goal is to overcome those two problems of basic 
OCC scheme described above to process efficiently 
transactions in a real-time database system. The proposed 
protocol employs forward validation and priority-based 
conflict resolution schemes developed for forward validation. 
In addition, it utilizes the notion of lazy serialization 
implemented using dynamic timestamp allocation [Baye82] 
and dynamic adjustment of timestamp intervals [Boks87]. 
With these features, the proposed scheme can reduce resource 
and time waste, avoid unnecessary aborts, and hence produce 
transaction results in a timely manner. Before we provide a 
procedural description of the protocol, we briefly explain the 
idea of its components. 

3. ELEMENTS OF THE PROPOSED PROTOCOL 

3.1. Forward Validation 

In real-time database systems, forward validation 
scheme is preferable to backward validation, because it 
provides flexibility for conflict resolution in that a transaction 
is validated against active transactions in their read phase 
instead of committed ones, i.e., either the validating 
transactions or the conflicting active transactions can be 
aborted to resolve conflicts. A number of conflict resolution 
policies that are based on forward validation have been 
proposed. Some of the examples are priorify abort, priority 
sacrifice, and prioriry wuir [Hari9Ob, Huan911, which we will 
explain in Section 7. Aborting active transactions in their read 
phase instead of validating transaction that has finished its 
execution to eliminate nonserializable executions means that 
conflicts are detected and resolved earlier than in backward 
validation. Thus, forward validation scheme reduces the waste 
of resource and time. 
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3.2. Conflict Classification 

Since the forward validation test is conducted against 
active transactions, when a test is performed for a transaction, 
say Ti, active transactions in the system are classified into sets 
according to their execution history (with respect to that of Ti). 
First, the set of the active transactions are grouped into two 
sets; a conflicting ser, that contains transactions in conflict with 
Tip and a nonconflicting set, that contains transactions not in 
conflict with TP The conflicting set is further divided into two 
sets; a Reconcilably Conflicting (RC) set and an Irreconcilably 
Conji’icting (iC) set. Transactions in the RC set are in conflict 
with Ti, but the conflicts are reconcilable, i.e., serializable. 
However, transactions in the IC set are in conflict with Ti, and 
the conflicts are irreconcilable, i.e., nonserializable. Details 
about each of the transaction sets will be given later in this 
paper. The RC transactions do not have to be aborted for 
serialization, but are required only to adjust their execution 
histories with respect to the validating transaction, Tip using the 
timestamp interval facility of this protocol. However, the IC 
transactions should be handled with priority-based real-time 
conflict resolution schemes such as priority abort, priority 
sacrifice, and priority wait. 

3.3. Dynamic Timestamp Assignment 

Another important aspect of this protocol is that it 
combines timestamp ordering flavor with OCC using dynamic 
timestamp allocation. Most timestamp-based concurrency 
control protocols use a static timestamp allocation method, i.e., 
each transaction is assigned a timestamp value at its startup 
time, and a total ordering among transactions in the system is 
built up. The static timestamp allocation is based on the notion 
of eager serialization, which is considered harmful. First, the 
total ordering built by the eager serialization scheme does not 
reflect any actual conflict. Hence, it is possible that a 
transaction is aborted even when it requests its first data access 
[Baye82]. Second, the total ordering of all transactions is too 
restrictive, and degrades the degree of concurrency 
considerably. The dynamic timestamp allocation method is 
based on the notion of lazy serialization that builds only a 
partial ordering among transactions on demand to reflect actual 
execution history. This dynamic timestamp allocation scheme 
is possible in this protocol due to the OCC’s phase-dependent 
structure of transaction execution, which allows the 
determination of the final serialization order to be delayed until 
the final phase of transaction execution. During the read phase, 
a transaction gradually builds its temporary serialization order 
with respect to committed transactions on demand whenever a 
conflict with such transactions occurs. Only when the 
transaction commits (after passing its validation test), is its 
permanent timestamp order, i.e., the final serialization order, 
determined. 

3.4. Dynamic Adjustment of Serialization Order 

The dynamic timestamp allocation scheme 
implementing lazy serialization is elaborated with a timestamp 
interval facility [Boks87] that keeps track of temporary 
serialization order and allows serialization order to be 
dynamically adjusted. In this scheme, a timestamp interval 

(initially, the entire range of the timestamp space) is assigned 
to each transaction instead of a single value timestamp. The 
timestamp intervals of active transactions preserve the partial 
ordering constructed by serializable execution. The timestamp 
interval of a transaction is adjusted (shrunk) whenever the 
transaction reads or writes a data object to preserve the 
serialization order induced by committed transactions. When 
the timestamp interval of a transaction shuts out, it means the 
transaction has been involved in a nonserializable execution, 
and the transaction should be restarted. Thus, this facility 
provides another means to detect and resolve nonserializable 
execution early in read phase. 

When a transaction, Ti, commits after its validation 
phase, the timestamp intervals of those active transactions 
categorized as reconcilably conflicting with respect to Ti are 
adjusted, i.e., the serialization order between the validating 
transaction Ti and its RC transactions are determined. The 
permanent serialization order, i.e., final timestamp of these 
active transactions is not determined, but the partial ordering 
between Ti and these active transactions is determined by 
adjusting their timestamp intervals. Therefore these 
transactions do not have to be aborted even though they are in 
conflict with the committed transaction, i.e., unnecessary 
aborts are avoided. 

4. PROCEDURAL DESCRIPTION 

In this section, we provide a more detailed procedural 
description of the proposed protocol. To execute the proposed 
protocol, the system maintains a transaction table and an 
object table. The transaction table maintains the following 
information on each ongoing transaction: 

l RS(i): read set of transaction Ti; 
l W(i): write set of transaction Ti; and 
l Tl(i): timestamp interval of transaction T+ 

The object table keeps a read timestamp and a write 
timestamp of each data object in the database, that are 
determined as follows; 

l RTS(p): the largest timestamp of committed transactions that 

l WTS(p): the largest timestamp of committed transactions that 
have read data object DP; and 

have written data object D,,. 

The timestamp interval assigned to each active 
transaction is used to record temporary serialization order 
induced during the read phase of the transaction. In addition to 
the timestamp interval, a final timestamp, denoted as TS(i), is 
assigned to each transaction, say Ti, when it has successfully 
passed its validation test, and is guaranteed to commit. The 
final timestamps of committed transactions are not kept in the 
transaction table. However, the final timestamp of a committed 
transaction is used to update the read and write timestamps of 
the data objects it has accessed, that are recorded in the object 
table. 

Figure 1 shows a procedural description of the read, 
validation and write phase of a transaction, say Ti, executed 
with the proposed protocol. At the start of the execution of a 
transaction, say Ti, its timestamp interval Tl(i) is initialized as 



[O, m), i.e., the entire range of timestamp space. For each read 
or write operation made by Ti, T&i) is adjusted to represent the 
dependencies, i.e., serialization order induced by the operation. 
The adjustment of Tl(i} preserves the order induced by the 
timestamps of all committed transactions which have accessed 
that data object. 

This adjustment is accomplished using different set 
intersection operations for read and write operations. When Ti 
reads a data object, the order of the read operation is adjusted 
to place after all the write operations made by committed 
transactions. Thus, after the read operation, TI(i) is adjusted to 
include only the intersection portion of the current TZ(i) and the 
timestamp space following the write timestamp of the data 
object, which is by definition the largest timestamp among the 
committed transaction that have written the data object. When 
Ti writes a data object, the order of the write operation is 
adjusted to place after all the read as well as write operations 
made by committed transactions. Thus Tl(i) is updated to 
include only the intersection of the current Ti(i) and the 
timestamp space determined by the read as well as write 
timestamp of the data object. In the given procedure, we 
assume timestamp intervals contain only integers. In the read 
phase, any operation of an active transaction, Tip which 

Read Phase 

for every DP in RS(i) do 
read$); 
TI(i) := TIfi) n [WTS(p) + 1, CO); 
if TI(i) = 0 
then restart(i); 
endif; 

enddo; 

for every D4. in WSii) do 
write (Dg); 
TI(i) := TI(i) n [WTS(q) + 1, -) 

n ERTS(q) + 1, -); 
if TX(i) = 0 
then restart(i); 
endif; 

enddo ; 

Validation and Write Phase 

determine RC-set(i) and IC-set(i); 
if IC-set(i) # 0 
then conflict-resolution( IC-set (i)); 
endif; 
if not ABORTED(i) 
then select TS (i) from TI(i); 

update RTS(p,l for every DP in RS(i); 
update WTS(q) for every Dq in WS(i); 
adjustment (RC-set(i)); 
execute write-phase(i); 

endif; 

introduces a nonserializable execution results in Tl(i) to be 0. 
A transaction Ti must be restarted if TI(i) becomes 0. 

When a transaction Ti finishes the read phase and enters 
the validation phase, first, its RC set, i.e., the set of active 
transactions reconcilably conflicting with Ti, and its IC set, i.e., 
set of active transactions irreconcilably conflicting with Ti are 
determined. To determine these sets, the protocol uses the read 
and write sets of active validating transaction and active 
transactions, recorded in the transaction table. The 
categorization procedure will be discussed in detail in the next 
section. If there is one or more IC transactions in the system, 
the protocol invokes a priority-based conflict resolution 
scheme such as priority abort, priority sacrifice, and priority 
wait, to resolve the conflict between Ti and the irreconcilably 
conflicting transactions. Depending on the priorities of the 
conflicting transactions and the chosen conflict resolution 
scheme, either the validating transaction or the conflicting 
active transactions are aborted, as we will explain in Section 7. 

If Ti has not been aborted during the priority-based 
conflict resolution (if any), then it can be committed now. The 
committing process consists of the following actions. First, the 
final timestamp, TS(i), of Ti is determined so that the order 
induced by the final rimestamp should not destroy the 
serialization order constructed by the already committed 
transactions. In fact, any timestamp in the range of TI(i) 
satisfies this condition, because T&i) preserves the order 
induced by all committed transactions. Thus, any timestamp 
from TZ(i) can be chosen for the final timestamp. Second, the 
read and write timestamps of the data objects Ti has accessed 
should be updated, if necessary, to reflect the final timestamp 
of Tp Finally, the timestamp intervals of all the RC transactions 
should be adjusted to reflect the final serialization order 
between Ti and them. This adjustment of the timestamp 
intervals of RC transactions is similar to the timestamp interval 
adjustment of an active transaction in the read phase in that it 
is done with set intersection operations and is based on the 
same reasons to determine serialization order. This adjustment 
procedure will be given in detail in Section 6. 

One important point to note related with the validation 
process is that the final timestamp II’S(i) from timestamp 
interval T&i) can be chosen in favor of high priority 
transactions, though any timestamp from Tl(i) is eligible. 
When choosing the final timestamp for a committing 
transaction, the protocol can check the priority of its 
reconcilably conflicting transactions, and decide the timestamp 
in such a way that higher priority transactions are left with 
larger timestamp intervals. Because a larger timestamp interval 
means less possibility of restarting the transaction in some 
sense, a transaction with higher priority needs to have a larger 
timestamp interval than a transaction with lower priority. 
Another point to note here is that the final timestamp itself does 
not have to be a specific number. The entire timestamp interval 
can be the final timestamp of a committed transaction. 
Accordingly, read and write timestamps of data objects can 
also be intervals of timestamps, instead of being a specific 
value. This extension of the final timest‘amp may provide more 
flexibility for adjustment of serialization order, and is to be 
examined in our experiment. 

5. CONFLICT CLASSIFICATION 
Figure 1 The Proposed Protocol 

Suppose Tiis acommittingtransaction andTj(i=l, 2,..., 
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n, j f i) are transactions in their read phase. Then, the 
occurrence of conflicts between Ti and Tp and the types of the 
conflicts are detected by looking at intersections of read sets 
and write sets of Ti and Tj as follows: 

(cl) RS(j) n WS(i) z 0 * read-write conflict; 
(c2) WS(j) n WS(i} f 0 =+ write-write conflict; 
(c3) WS(j) n RS(i) f 0 * write-read conflict. 

Before discussing the categorization of conflicting 
transactions, we first explain how to identify the state of an 
active transaction using these three conditions. For notational 
convenience, we introduce a simple notation as follows. We 
use a triple (c,, c2, c3) to express the state of an active 
transaction. Each element of the triple indicates whether the 
corresponding conflict condition is satisfied or not. When a 
conflict condition, Ci, is satisfied, it is denoted simply as q. 
However, if a condition, ci, is not satisfied by the transaction, it 
is denoted as -c;. For example, if a transaction satisfies cl and 
c3, but does not satisfy c2, i.e., it has both read-write and write- 
read conflicts with the validating transaction, but no write- 
write conflict, then it is denoted as (cl, -c2, cj). 

Using this notation and Venn diagrams, Figure 2 shows 
the six possible states of active transactions under the 
assumption that the write set of a transaction is a subset of its 
read set. There are two Venn diagrams of the triple (WC,, -c2, 
-c3) in (a) and (b). They indicate (a) no access to common data 
objects at all and (b) only read operations on common data 
objects, respectively. Both cases do not produce any conflict 
between q and Ti. The triple (cl, -c2, -c3) in (c) means that 
there is only read-write conflict, but neither write-write nor 
write-read conflict between Tj and Tie The triple (-cl, -q, cj) 
in (d) indicates the case when there is only write-read conflict 
between Tj and Tie The triple (cI,-c2, cj) in (e) indicates the 
case when there are read-write conflict and write-read conflict, 
but no write-write conflict between 5 and Ti. Finally, the triple 
(cl, c2, c3) in (f) means that between Tj and Ti, alI the three 
possible conflicts, i.e., read-write, write-write, and write-read 
conflicts exist. Besides these combinations of conflict 
conditions, there are three more combinations, (-cl, c2, -c3), 
(Cl, c2s -qJ, and {-cl, c2, cs) which are unable to occur under 
the given assumption that the write set of a transaction is a 
subset of its read set, and hence they are not included in the 
figure. 

We can categorize the active transactions according to 
their states. First, the transactions are classified into two 
groups; 

l nonconflicting transactions, and 
l conflicting transactions. 

Obviously, transactions whose state satisfies the conflict 
conditions, (-cl, -9. -c3) belong to the first set. The latter 
contains the rest of the conditions, (cl, -c2, -q), (-cl, -c2, cl), 

(Cl* -c,, ~3) and (~1, c,, c3). 

Second, the set of conflicting transactions are further 
divided into two group; 

l Reconcilably Conflicting transactions (RC), and 
l Irreconcilably Conflicting transactions (K). 

(a) (-cl, -CZ, -c3) 

Cc) (Cl, -c2, -c3) 

(e) (cl, -9, c3) 

@I (-cl, -c2, -c3) 

(d) (-cl .e2, c;?) 

Figure 2 States of Active Transactions 

Reconcilably conflicting transactions are ones which have only 
conflicts that can be serialized without aborting using the 
dynamic serialization order adjustment mechanism in this 
protocol, while irreconcilably conflicting transactions are ones 
that are involved in nonserializable execution which leads to 
aborting of either the validating transaction or active IC 
transactions. 

6. SERIALIZATION ORDER ADJUSTMENT 

To understand how to distinguish RC transactions and 
IC transactions, let us first consider the ways to resolve each 
conflict type by adjustment of serialization order. 

(1) RS(j) n WS(i) f 0 (read-write conflict) 
The read-write conflict between the committing 
transaction, Ti, and the active transaction, Tj. can be 
serialized by the following timestamp interval adjustment 
Of Tj; 

TI Cj) := TI(j) A IO, TS(i) - 11. 

This adjustment of TI(j) makes a partial ordering between 
Ti and Tj as Tj + Ti, and is called backward adjustment. The 
meaning of this adjustment operation is that the read of Tj 
precedes the write of Ti on the same data object, i.e., the 
data read by Tj have not been written by Ti. 

(2) WS(j) n WS(i) f 0 (write-write conflict) 
The write-write conflict between Ti and Tj can be serialized 
by the following operation: 

TI Cj) := TI(j) n [TS(i) + 1, CO). 

This adjustment operation makes a partial ordering between 
Ti and Tj as Ti + T> and is calledfonvard adjustment. This 
operation implies that the write of Ti precedes the write of 
q on the same data object, i.e., the write of Tj is not 
overwritten by Tk 



(3) W!?(j) n WS(i) # 0 (write-read conflict) 
The write-read conflict between Ti and Tj can be serialized 
by 

TI Cj) := Tl(j) n [TS(i) + 1, =). 

Similarly, this adjustment of TZ(j) is a forward adjustment, 
and makes a partial ordering Ti + Ti The implication of 
this operation is that the data object read by Ti has not been 
written Tj. 

From this discussion of dynamic adjustment of 
serialization order method, we can define a reconcilably 
conflicting transactions as ones all of whose conflicts with the 
validating transaction can be serialized by either forward 
adjustments only or backward adjustments only, but not both. 
That is, transactions whose state is either (cl, -c2, -cj) or (-cl, 
-c2, cjl) among other possible states, belong to the set of RC 
transactions. 

Now we give a pseudo code for the adjustment 
procedure. Suppose Ti is the validating transaction, and Tj (/’ = 
I, Z,..., n, j f i) are reconcilably conflicting transactions. 

adjustment(RC-set (i)); 
I 

for every Dp in RS(i)do 
for every Tj writing Dp do 

TI Cj! := TI(j) A [TS(i) + 1, m); 
if TIfj) = 0 
then restart(j); 
endif; 

enddo; 
enddo ; 

for every Dq in WS(i)do 
for every Tj reading D, do 

TI Cj) := TI(j) I? [O, TS(i) - 11; 
if TI(j) = 0 
then restart(j); 
endif; 

enddo; 

for every Tj writing Dq do 
TI Cj) := TI(j) n [TS(i) t 1, 00 ); 
if TI(j) = 0 
then restart(j); 
endif; 

enddo; 
enddo; 

1 

Figure 3 Serialization Order Adjustment 

7. PRIORITY -BASED CONFLICT RESOLUTION 

Finally, we are left only with the set of IC transactions. 
Transactions involved in conflicts that cannot be serialized by 
either forward adjustment only or backward adjustment only 
belong to IC transaction set. Obviously, a need of both forward 
and backward adjustment of timestamp interval for 

serialization results in the timestamp interval shut out. The 
transactions belonging to IC set are involved in nonserializable 
execution with the validating transaction. Transactions whose 
state is either (cl, -c2, c3) or (cl, c2, q) among other possible 
states, belong to the set of IC transactions. 

As we mentioned in the previous section, we use 
priority-based conflict resolution schemes to resolve these 
irreconcilable conflicts. For the priority-based conflict 
resolution, it is useful to divide the IC set into two groups; 

l Conflicting transactions with Higher Priority (CHP), and 
l Conflicting transactions with Lower Priority (CLP). 

CHP group contains transactions that belong to the IC set and 
have higher priorities than the validating transaction. In 
contrast, CLP group contains transactions that are in the IC set 
and have lower priorities than the validating transaction. 

Now we summarize priority-based conflict resolution 
schemes proposed in [HarEJOb, Huan91]. Suppose Ti is the 
validating transaction, and Tj (j = I, 2 ,..., n, j + i) are 
irreconcilably conflicting transactions. Also, suppose 1 is the 
number of CHP transactions, and m is the number of CLP 
transactions (n = I + m). 

(1) Priority abort 
In this scheme [Huan91], when a transaction reaches its 
validation phase, it is aborted if its priority is less than that 
of all the confIicting transactions, i.e., all the IC 
transactions are with higher priority; otherwise, it commits 
and all the conflicting transactions are restarted. It can be 
described in a pseudo code as follows: 

if (m = 0) 
then restart(i); 
else restart(j), j = 1, 2,..., n; 
endif; 

(2) Priority sacrifice 
In this scheme [HaMOb], when a transaction reaches its 
validation phase, it is aborted if there exist one or more 
CHP transactions; otherwise it commits and all the 
irreconcilably conflicting transactions are restarted. Its 
pseudo code is given as follows: 

if (1 f 0) 
then restart(i); 
else restart(j), j = 2, 2,..., n; 
endif; 

(3) Priority wait 
In this scheme [HarigOb], when a transaction reaches its 
validation phase, if there exist one or more CHP 
transactions, it waits for CHP transactions to complete. Its 
pseudo code is given as follows: 

while (1 f 0) do 
wait; 

endwhile; 
restart(j), j = 1, 2,.--f n; 



(4) wait-50 
In this scheme [Hari9Ob], a validating transaction is made 
to wait as long as more than half the IC transactions have 
higher priorities; otherwise it commits and all the IC 
transactions are restarted. The basic idea of this scheme is 
to maximize the beneficial effects of blocking, while 
reducing the effects of its drawbacks. It can be described in 
a pseudo code as follows: 

while ((1 + 0) and (1 > m)) do 
wait ; 

endwhile; 
restart(j), j = 1, Z,..., n; 

8. CONCLUDING REMARKS 

In this paper, we have presented a new concurrency 
control protocol based on OCC. The goal of the protocol is to 
remedy the problem of wasted resource of conventional OCC 
protocols, and the problem of unnecessary aborts caused by 
incomplete validation tests. To achieve this goal, our scheme 
depends on early detection and resolution of conflicts using 
forward validation and timestamps, classification on 
conflicting transactions according to the types of conflicts and 
their priorities, and dynamic adjustment of serialization order 
using timestamp intervals. 

Although we have argued that the proposed scheme has 
properties to produce results in a timely manner as well as to 
maintain data consistency, we need more concrete work on the 
performance of the scheme to support the argument. Through a 
simulation study using a fairly complete model of real-time 
database system lLee921, we are currently evaluating the 
proposed scheme both in a deadline-driven scheduling 
environment and in a value-based scheduling environment. 
One of our goals in this performance evaluation study is to 
investigate if the complexity of the proposed scheme resulted 
from the dynamic management of timestamp interval is cost 
effective. 

Also, we are considering several ways to improve the 
performance of the proposed protocol. In Section 4, without 
providing details, we have argued that the proposed scheme 
can be further optimized by using some strategies for choosing 
final timestamps of transactions, and using timestamp intervals 
for final timestamps. This argument will be verified by 
performing sensitivity tests in our simulation system. If the 
result shows that performance of the scheme is sensitive to 
those strategies, then we will develope appropriate 
mechanisms. 

Finally, we will extend the proposed protocol so that it 
can be used in distributed real-time database systems. One 
advantage of OCC over 2PL is that the performance of OCC 
protocols does not suffer a significant degradation in 
distributed systems unlike 2PL protocols. Moreover, 
distribution of data is not only essential feature, but indeed is 
the key to the success of most practical real-time systems 
[Rodd89]. The proposed concurrency control scheme has a 
potential for good performance in a distributed real-time 
database systems. 
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