
AN OPTIMISTIC CONCURRENCY CONTROL PROTOCOL

FOR REAL-TIME DATABASE SYSTEMS

Juhnyoung Lee and Sang H. Son

Department of Computer Science, University of Virginia, Charlottesville, VA 22903, U.S.A.

ABSTRACT

Transactions in real-time database systems are
associated with certain timing constraints derived either from
temporal consistency requirements of data or from
requirements imposed on system reaction time. Fundamental
requirements of real-time database systems are timeliness, i.e.,
the ability to produce expected transaction results early or at
the right time, and predictability, i.e., the ability to function as
deterministic as necessary to satisfy system specifications
including timing constraints. There are a number of issues that
have to be addressed in processing real-time transactions. To
achieve the fundamental requirements, not only conventional
transaction processing mechanisms have to be tailored to take
timing constraints into consideration, but also new mechanisms
that have not been required in conventional transaction
processing need to be designed and added. In this paper, we
focus on the problem of concurrency control for processing
real-time transactions, and propose an optimistic concurrency
control protocol. The proposed protocol employs priority-
based conflict resolution schemes developed on forward
validation. In addition, it utilizes the notion of lazy
serialization implemented using dynamic timestamp allocation
and dynamic adjustment of timestamp intervals. With these
features, the proposed protocol is expected to produce
transaction results in a timely manner.

1. INTRODUCTION

Real-time database systems are vital to a wide range of
operations. As computers have been faster and more powerful,
and their use more widespread, real-time database systems
have grown larger and become more critical. For example, they
are used in program stock trading, telephone switching
systems, network management, automated factory
management, and command and control systems. More
specifically, in the program stock market application, we need
to monitor the state of the stock market and update the database
with new information. If the database is to contain an accurate
representation of the current market, then this monitoring and
updating process must meet certain timing constraints. Also, in
this system, we need to satisfy certain real-time constraints in
reading and analyzing information in database in order to
respond to a user query or to initiate a trade in the stock market.
For other examples given above, we can consider similar
operations with timing constraints.

This work was supported in part by ONR, by DOE, by IBM, and by CIT.

387

All of these real-time database operations are
characterized by (1) their time constrained access to data and
(2) access to data that has temporal validity. They involve
gathering data from the environment, processing of gathered
information in the context of information acquired in the past,
and providing timely response. They also involve processing
not only archival data but also temporal data which loses its
validity after a certain time interval. Both of the temporal
nature of the data and the response time requirements imposed
by the environment make transactions possess timing
constraints in the form of either periods or deadlines.
Therefore, the correctness of real-time database operation
depends not only on the logical computations carried out but
also on the time at which the results are delivered. The goal of
real-time database systems is to meet timing constraints of
transactions.

One key point to note here is that real-time computing
does not imply fast computing. Rather than being fast, more
important properties of real-time (database) systems should be
timeliness, i.e., the ability to produce expected results early or
at the right time, and predictability, i.e., the ability to function
as deterministic as necessary to satisfy system specifications
including timing constraints [Stan90]. Fast computing which is
busy doing the wrong activity at the wrong time is not helpful
for real-time computing. While the objective of real-time
computing is to meet the individual timing constraint of each
activity, the objective of fast computing is to minimize the
average response time of a given set of activities. Fast
computing is helpful in meeting stringent timing constraints,
but fast computing alone does not guarantee timeliness and
predictability. In order to guarantee timeliness and
predictability, we need to handle explicit timing constraints,
and to use time-cognizant techniques to meet deadlines or
periodicity associated with activities.

There are a number of issues that have to be addressed
in processing real-time transactions. To achieve the
fundamental requirements, i.e., timeliness and predictability,
not only conventional transaction processing mechanisms have
to be tailored to take timing constraints into consideration, but
also new mechanisms that have not been required in
conventional transaction processing need to be designed and
added. In this paper, we focus on the problem of concurrency
control for processing real-time transactions

2. RELATED WORK

Most work on real-time concurrency control uses the
notion of serializability as the correctness criteria CAbboSS,
Abbo89, Buch89, Hari90, HaSOb, Huan89, Huan91, Lin90.

Sha88, Stan881, while some consider relaxation of consistency
requirements based on the argument that it is desirable to trade
off timeliness with data consistency [Lin89, Liu88, Son881. In
enforcing serializability, conventional concurrency control
methods such as two-phase locking (2PL), timestamp ordering
(TO), and optimistic concurrency control (OCC) have been
used as the basis of real-time concurrency control. Most current
work combines the conventional concurrency control schemes
with priority-based conflict resolution methods such aspriority
abort [Abbo88, Huangl], priority inheritance [S ha88], priority
ceiling [Sha88], priority wait [Huangl], and serialization
order udjurrment [LinYO].

Most of the initial work on real-time concurrency
control has been conducted on utilizing 2PL [Abbo88, Abb89,
Huan89, Sha88, Stan88]. This is not surprising because 2PL
has been well studied in traditional database systems and is
being widely used in commercial database systems. Besides,
recovery mechanisms for use with 2PL are well understood.
2PL uses pure blocking for conflict resolution. The beneficial
effect of blocking is conservation of resources, which makes
2PL advantageous particularly under resource-limited
situations. However, blocking results in prevention of the
progress of transaction execution. Subsequently, a low degree
of concurrency is resulted, and conflict ratio is increased
rapidly. Moreover, 2PL has inherent problems such as
possibility of deadlocks and unpredictable blocking duration,
which become even more serious for real-time transaction
processing.

OCC scheduler lKung8 1, Haer84] uses abort and restart
to serialize concurrent data operations, thereby avoids
blocking. Thus, OCC is free from deadlock. In addition, it has
a potential for high degree of parallelism. These features of
OCC make it promising particularly for real-time transaction
processing. However, the abort-based conflict resolution of
OCC has the problem of wasted resources and time, which
becomes more serious for real-time transaction scheduling.

In OCC protocols that perform backward validation, the
validating transaction either commits or aborts depending on
whether it has conflicts with transactions that have already
committed. Thus, this validation scheme does not allow us to
take transaction characteristics into account. In forward
vulidarion [Haer84], however, either the validating transaction
or conflicting ongoing transactions can be aborted to resolve
conflicts. This validation scheme is advantageous in real-time
database systems, because it may be preferable not to commit
the validating transaction, depending on the timing
characteristics of the validating transaction and the conflicting
ongoing transactions. A number of real-time concurrency
control methods based on OCC using forward validation
scheme have been studied [Hari90, HarigOb, Huan91].

The rationale for OCC is based on an “optimistic”
assumption regarding run-time conflicts: if only few run-time
conflicts are expected, we can assume that most execution is
serializable [Bern87]. Therefore OCC simultaneously avoids
blocking and restarts in the optimistic situations.
Unfortunately, however, this optimistic assumption on
transaction behavior may not always be true in real world
situations. In a database system where run-time conflicts are
not rare, OCC depends on transaction restarts to eliminate
nonserializable executions.

The adverse effect of transaction restarts for
serialization is that resource and time are wasted. Especially in

OCC, because data conflicts are detected and resolved only
during the validation phase, a transaction can end up aborting
after having used resources and time for most of the
transaction’s execution. When the transaction is restarted,
previously performed work has to be redone. This problem of
time and resource waste &comes even more serious in real-
time transaction scheduling, because it reduces the chances of
meeting the deadlines of transactions.

Another problem of OCC is unnecessury aborts. This
problem is often caused by imperfect validation tests used in
OCC protocols. Many validation test schemes are based on
intersection of the read sets and write sets of transactions rather
than on the actual execution order of transactions, since in
general it is difficult to record and use entire execution history
efficiently. Hence sometimes a validation process using read
sets and write sets erroneously concludes that a nonserializable
execution has occurred when it has not in aCNd execution. We
call such a conflict virtual. A virtual conflict leads to one or
more unnecessary transaction aborts. This problem of
unnecessary aborts also results in waste of resource and time,
and is serious in real-time transaction processing.

The concurrency control protocol proposed in this paper
is based on OCC scheme using forward validation [Haer84,
Robi82], which was also used as the basis for OX-based real-
time concurrency control schemes proposed in [HarigOb,
Huan91]. Its goal is to overcome those two problems of basic
OCC scheme described above to process efficiently
transactions in a real-time database system. The proposed
protocol employs forward validation and priority-based
conflict resolution schemes developed for forward validation.
In addition, it utilizes the notion of lazy serialization
implemented using dynamic timestamp allocation [Baye82]
and dynamic adjustment of timestamp intervals [Boks87].
With these features, the proposed scheme can reduce resource
and time waste, avoid unnecessary aborts, and hence produce
transaction results in a timely manner. Before we provide a
procedural description of the protocol, we briefly explain the
idea of its components.

3. ELEMENTS OF THE PROPOSED PROTOCOL

3.1. Forward Validation

In real-time database systems, forward validation
scheme is preferable to backward validation, because it
provides flexibility for conflict resolution in that a transaction
is validated against active transactions in their read phase
instead of committed ones, i.e., either the validating
transactions or the conflicting active transactions can be
aborted to resolve conflicts. A number of conflict resolution
policies that are based on forward validation have been
proposed. Some of the examples are priorify abort, priority
sacrifice, and prioriry wuir [Hari9Ob, Huan911, which we will
explain in Section 7. Aborting active transactions in their read
phase instead of validating transaction that has finished its
execution to eliminate nonserializable executions means that
conflicts are detected and resolved earlier than in backward
validation. Thus, forward validation scheme reduces the waste
of resource and time.

388

3.2. Conflict Classification

Since the forward validation test is conducted against
active transactions, when a test is performed for a transaction,
say Ti, active transactions in the system are classified into sets
according to their execution history (with respect to that of Ti).
First, the set of the active transactions are grouped into two
sets; a conflicting ser, that contains transactions in conflict with
Tip and a nonconflicting set, that contains transactions not in
conflict with TP The conflicting set is further divided into two
sets; a Reconcilably Conflicting (RC) set and an Irreconcilably
Conji’icting (iC) set. Transactions in the RC set are in conflict
with Ti, but the conflicts are reconcilable, i.e., serializable.
However, transactions in the IC set are in conflict with Ti, and
the conflicts are irreconcilable, i.e., nonserializable. Details
about each of the transaction sets will be given later in this
paper. The RC transactions do not have to be aborted for
serialization, but are required only to adjust their execution
histories with respect to the validating transaction, Tip using the
timestamp interval facility of this protocol. However, the IC
transactions should be handled with priority-based real-time
conflict resolution schemes such as priority abort, priority
sacrifice, and priority wait.

3.3. Dynamic Timestamp Assignment

Another important aspect of this protocol is that it
combines timestamp ordering flavor with OCC using dynamic
timestamp allocation. Most timestamp-based concurrency
control protocols use a static timestamp allocation method, i.e.,
each transaction is assigned a timestamp value at its startup
time, and a total ordering among transactions in the system is
built up. The static timestamp allocation is based on the notion
of eager serialization, which is considered harmful. First, the
total ordering built by the eager serialization scheme does not
reflect any actual conflict. Hence, it is possible that a
transaction is aborted even when it requests its first data access
[Baye82]. Second, the total ordering of all transactions is too
restrictive, and degrades the degree of concurrency
considerably. The dynamic timestamp allocation method is
based on the notion of lazy serialization that builds only a
partial ordering among transactions on demand to reflect actual
execution history. This dynamic timestamp allocation scheme
is possible in this protocol due to the OCC’s phase-dependent
structure of transaction execution, which allows the
determination of the final serialization order to be delayed until
the final phase of transaction execution. During the read phase,
a transaction gradually builds its temporary serialization order
with respect to committed transactions on demand whenever a
conflict with such transactions occurs. Only when the
transaction commits (after passing its validation test), is its
permanent timestamp order, i.e., the final serialization order,
determined.

3.4. Dynamic Adjustment of Serialization Order

The dynamic timestamp allocation scheme
implementing lazy serialization is elaborated with a timestamp
interval facility [Boks87] that keeps track of temporary
serialization order and allows serialization order to be
dynamically adjusted. In this scheme, a timestamp interval

(initially, the entire range of the timestamp space) is assigned
to each transaction instead of a single value timestamp. The
timestamp intervals of active transactions preserve the partial
ordering constructed by serializable execution. The timestamp
interval of a transaction is adjusted (shrunk) whenever the
transaction reads or writes a data object to preserve the
serialization order induced by committed transactions. When
the timestamp interval of a transaction shuts out, it means the
transaction has been involved in a nonserializable execution,
and the transaction should be restarted. Thus, this facility
provides another means to detect and resolve nonserializable
execution early in read phase.

When a transaction, Ti, commits after its validation
phase, the timestamp intervals of those active transactions
categorized as reconcilably conflicting with respect to Ti are
adjusted, i.e., the serialization order between the validating
transaction Ti and its RC transactions are determined. The
permanent serialization order, i.e., final timestamp of these
active transactions is not determined, but the partial ordering
between Ti and these active transactions is determined by
adjusting their timestamp intervals. Therefore these
transactions do not have to be aborted even though they are in
conflict with the committed transaction, i.e., unnecessary
aborts are avoided.

4. PROCEDURAL DESCRIPTION

In this section, we provide a more detailed procedural
description of the proposed protocol. To execute the proposed
protocol, the system maintains a transaction table and an
object table. The transaction table maintains the following
information on each ongoing transaction:

l RS(i): read set of transaction Ti;
l W(i): write set of transaction Ti; and
l Tl(i): timestamp interval of transaction T+

The object table keeps a read timestamp and a write
timestamp of each data object in the database, that are
determined as follows;

l RTS(p): the largest timestamp of committed transactions that

l WTS(p): the largest timestamp of committed transactions that
have read data object DP; and

have written data object D,,.

The timestamp interval assigned to each active
transaction is used to record temporary serialization order
induced during the read phase of the transaction. In addition to
the timestamp interval, a final timestamp, denoted as TS(i), is
assigned to each transaction, say Ti, when it has successfully
passed its validation test, and is guaranteed to commit. The
final timestamps of committed transactions are not kept in the
transaction table. However, the final timestamp of a committed
transaction is used to update the read and write timestamps of
the data objects it has accessed, that are recorded in the object
table.

Figure 1 shows a procedural description of the read,
validation and write phase of a transaction, say Ti, executed
with the proposed protocol. At the start of the execution of a
transaction, say Ti, its timestamp interval Tl(i) is initialized as

[O, m), i.e., the entire range of timestamp space. For each read
or write operation made by Ti, T&i) is adjusted to represent the
dependencies, i.e., serialization order induced by the operation.
The adjustment of Tl(i} preserves the order induced by the
timestamps of all committed transactions which have accessed
that data object.

This adjustment is accomplished using different set
intersection operations for read and write operations. When Ti
reads a data object, the order of the read operation is adjusted
to place after all the write operations made by committed
transactions. Thus, after the read operation, TI(i) is adjusted to
include only the intersection portion of the current TZ(i) and the
timestamp space following the write timestamp of the data
object, which is by definition the largest timestamp among the
committed transaction that have written the data object. When
Ti writes a data object, the order of the write operation is
adjusted to place after all the read as well as write operations
made by committed transactions. Thus Tl(i) is updated to
include only the intersection of the current Ti(i) and the
timestamp space determined by the read as well as write
timestamp of the data object. In the given procedure, we
assume timestamp intervals contain only integers. In the read
phase, any operation of an active transaction, Tip which

Read Phase

for every DP in RS(i) do
read$);
TI(i) := TIfi) n [WTS(p) + 1, CO);
if TI(i) = 0
then restart(i);
endif;

enddo;

for every D4. in WSii) do
write (Dg);
TI(i) := TI(i) n [WTS(q) + 1, -)

n ERTS(q) + 1, -);
if TX(i) = 0
then restart(i);
endif;

enddo ;

Validation and Write Phase

determine RC-set(i) and IC-set(i);
if IC-set(i) # 0
then conflict-resolution(IC-set (i));
endif;
if not ABORTED(i)
then select TS (i) from TI(i);

update RTS(p,l for every DP in RS(i);
update WTS(q) for every Dq in WS(i);
adjustment (RC-set(i));
execute write-phase(i);

endif;

introduces a nonserializable execution results in Tl(i) to be 0.
A transaction Ti must be restarted if TI(i) becomes 0.

When a transaction Ti finishes the read phase and enters
the validation phase, first, its RC set, i.e., the set of active
transactions reconcilably conflicting with Ti, and its IC set, i.e.,
set of active transactions irreconcilably conflicting with Ti are
determined. To determine these sets, the protocol uses the read
and write sets of active validating transaction and active
transactions, recorded in the transaction table. The
categorization procedure will be discussed in detail in the next
section. If there is one or more IC transactions in the system,
the protocol invokes a priority-based conflict resolution
scheme such as priority abort, priority sacrifice, and priority
wait, to resolve the conflict between Ti and the irreconcilably
conflicting transactions. Depending on the priorities of the
conflicting transactions and the chosen conflict resolution
scheme, either the validating transaction or the conflicting
active transactions are aborted, as we will explain in Section 7.

If Ti has not been aborted during the priority-based
conflict resolution (if any), then it can be committed now. The
committing process consists of the following actions. First, the
final timestamp, TS(i), of Ti is determined so that the order
induced by the final rimestamp should not destroy the
serialization order constructed by the already committed
transactions. In fact, any timestamp in the range of TI(i)
satisfies this condition, because T&i) preserves the order
induced by all committed transactions. Thus, any timestamp
from TZ(i) can be chosen for the final timestamp. Second, the
read and write timestamps of the data objects Ti has accessed
should be updated, if necessary, to reflect the final timestamp
of Tp Finally, the timestamp intervals of all the RC transactions
should be adjusted to reflect the final serialization order
between Ti and them. This adjustment of the timestamp
intervals of RC transactions is similar to the timestamp interval
adjustment of an active transaction in the read phase in that it
is done with set intersection operations and is based on the
same reasons to determine serialization order. This adjustment
procedure will be given in detail in Section 6.

One important point to note related with the validation
process is that the final timestamp II’S(i) from timestamp
interval T&i) can be chosen in favor of high priority
transactions, though any timestamp from Tl(i) is eligible.
When choosing the final timestamp for a committing
transaction, the protocol can check the priority of its
reconcilably conflicting transactions, and decide the timestamp
in such a way that higher priority transactions are left with
larger timestamp intervals. Because a larger timestamp interval
means less possibility of restarting the transaction in some
sense, a transaction with higher priority needs to have a larger
timestamp interval than a transaction with lower priority.
Another point to note here is that the final timestamp itself does
not have to be a specific number. The entire timestamp interval
can be the final timestamp of a committed transaction.
Accordingly, read and write timestamps of data objects can
also be intervals of timestamps, instead of being a specific
value. This extension of the final timest‘amp may provide more
flexibility for adjustment of serialization order, and is to be
examined in our experiment.

5. CONFLICT CLASSIFICATION
Figure 1 The Proposed Protocol

Suppose Tiis acommittingtransaction andTj(i=l, 2,...,

390

n, j f i) are transactions in their read phase. Then, the
occurrence of conflicts between Ti and Tp and the types of the
conflicts are detected by looking at intersections of read sets
and write sets of Ti and Tj as follows:

(cl) RS(j) n WS(i) z 0 * read-write conflict;
(c2) WS(j) n WS(i} f 0 =+ write-write conflict;
(c3) WS(j) n RS(i) f 0 * write-read conflict.

Before discussing the categorization of conflicting
transactions, we first explain how to identify the state of an
active transaction using these three conditions. For notational
convenience, we introduce a simple notation as follows. We
use a triple (c,, c2, c3) to express the state of an active
transaction. Each element of the triple indicates whether the
corresponding conflict condition is satisfied or not. When a
conflict condition, Ci, is satisfied, it is denoted simply as q.
However, if a condition, ci, is not satisfied by the transaction, it
is denoted as -c;. For example, if a transaction satisfies cl and
c3, but does not satisfy c2, i.e., it has both read-write and write-
read conflicts with the validating transaction, but no write-
write conflict, then it is denoted as (cl, -c2, cj).

Using this notation and Venn diagrams, Figure 2 shows
the six possible states of active transactions under the
assumption that the write set of a transaction is a subset of its
read set. There are two Venn diagrams of the triple (WC,, -c2,
-c3) in (a) and (b). They indicate (a) no access to common data
objects at all and (b) only read operations on common data
objects, respectively. Both cases do not produce any conflict
between q and Ti. The triple (cl, -c2, -c3) in (c) means that
there is only read-write conflict, but neither write-write nor
write-read conflict between Tj and Tie The triple (-cl, -q, cj)
in (d) indicates the case when there is only write-read conflict
between Tj and Tie The triple (cI,-c2, cj) in (e) indicates the
case when there are read-write conflict and write-read conflict,
but no write-write conflict between 5 and Ti. Finally, the triple
(cl, c2, c3) in (f) means that between Tj and Ti, alI the three
possible conflicts, i.e., read-write, write-write, and write-read
conflicts exist. Besides these combinations of conflict
conditions, there are three more combinations, (-cl, c2, -c3),
(Cl, c2s -qJ, and {-cl, c2, cs) which are unable to occur under
the given assumption that the write set of a transaction is a
subset of its read set, and hence they are not included in the
figure.

We can categorize the active transactions according to
their states. First, the transactions are classified into two
groups;

l nonconflicting transactions, and
l conflicting transactions.

Obviously, transactions whose state satisfies the conflict
conditions, (-cl, -9. -c3) belong to the first set. The latter
contains the rest of the conditions, (cl, -c2, -q), (-cl, -c2, cl),

(Cl* -c,, ~3) and (~1, c,, c3).

Second, the set of conflicting transactions are further
divided into two group;

l Reconcilably Conflicting transactions (RC), and
l Irreconcilably Conflicting transactions (K).

(a) (-cl, -CZ, -c3)

Cc) (Cl, -c2, -c3)

(e) (cl, -9, c3)

@I (-cl, -c2, -c3)

(d) (-cl .e2, c;?)

Figure 2 States of Active Transactions

Reconcilably conflicting transactions are ones which have only
conflicts that can be serialized without aborting using the
dynamic serialization order adjustment mechanism in this
protocol, while irreconcilably conflicting transactions are ones
that are involved in nonserializable execution which leads to
aborting of either the validating transaction or active IC
transactions.

6. SERIALIZATION ORDER ADJUSTMENT

To understand how to distinguish RC transactions and
IC transactions, let us first consider the ways to resolve each
conflict type by adjustment of serialization order.

(1) RS(j) n WS(i) f 0 (read-write conflict)
The read-write conflict between the committing
transaction, Ti, and the active transaction, Tj. can be
serialized by the following timestamp interval adjustment
Of Tj;

TI Cj) := TI(j) A IO, TS(i) - 11.

This adjustment of TI(j) makes a partial ordering between
Ti and Tj as Tj + Ti, and is called backward adjustment. The
meaning of this adjustment operation is that the read of Tj
precedes the write of Ti on the same data object, i.e., the
data read by Tj have not been written by Ti.

(2) WS(j) n WS(i) f 0 (write-write conflict)
The write-write conflict between Ti and Tj can be serialized
by the following operation:

TI Cj) := TI(j) n [TS(i) + 1, CO).

This adjustment operation makes a partial ordering between
Ti and Tj as Ti + T> and is calledfonvard adjustment. This
operation implies that the write of Ti precedes the write of
q on the same data object, i.e., the write of Tj is not
overwritten by Tk

(3) W!?(j) n WS(i) # 0 (write-read conflict)
The write-read conflict between Ti and Tj can be serialized
by

TI Cj) := Tl(j) n [TS(i) + 1, =).

Similarly, this adjustment of TZ(j) is a forward adjustment,
and makes a partial ordering Ti + Ti The implication of
this operation is that the data object read by Ti has not been
written Tj.

From this discussion of dynamic adjustment of
serialization order method, we can define a reconcilably
conflicting transactions as ones all of whose conflicts with the
validating transaction can be serialized by either forward
adjustments only or backward adjustments only, but not both.
That is, transactions whose state is either (cl, -c2, -cj) or (-cl,
-c2, cjl) among other possible states, belong to the set of RC
transactions.

Now we give a pseudo code for the adjustment
procedure. Suppose Ti is the validating transaction, and Tj (/’ =
I, Z,..., n, j f i) are reconcilably conflicting transactions.

adjustment(RC-set (i));
I

for every Dp in RS(i)do
for every Tj writing Dp do

TI Cj! := TI(j) A [TS(i) + 1, m);
if TIfj) = 0
then restart(j);
endif;

enddo;
enddo ;

for every Dq in WS(i)do
for every Tj reading D, do

TI Cj) := TI(j) I? [O, TS(i) - 11;
if TI(j) = 0
then restart(j);
endif;

enddo;

for every Tj writing Dq do
TI Cj) := TI(j) n [TS(i) t 1, 00);
if TI(j) = 0
then restart(j);
endif;

enddo;
enddo;

1

Figure 3 Serialization Order Adjustment

7. PRIORITY -BASED CONFLICT RESOLUTION

Finally, we are left only with the set of IC transactions.
Transactions involved in conflicts that cannot be serialized by
either forward adjustment only or backward adjustment only
belong to IC transaction set. Obviously, a need of both forward
and backward adjustment of timestamp interval for

serialization results in the timestamp interval shut out. The
transactions belonging to IC set are involved in nonserializable
execution with the validating transaction. Transactions whose
state is either (cl, -c2, c3) or (cl, c2, q) among other possible
states, belong to the set of IC transactions.

As we mentioned in the previous section, we use
priority-based conflict resolution schemes to resolve these
irreconcilable conflicts. For the priority-based conflict
resolution, it is useful to divide the IC set into two groups;

l Conflicting transactions with Higher Priority (CHP), and
l Conflicting transactions with Lower Priority (CLP).

CHP group contains transactions that belong to the IC set and
have higher priorities than the validating transaction. In
contrast, CLP group contains transactions that are in the IC set
and have lower priorities than the validating transaction.

Now we summarize priority-based conflict resolution
schemes proposed in [HarEJOb, Huan91]. Suppose Ti is the
validating transaction, and Tj (j = I, 2 ,..., n, j + i) are
irreconcilably conflicting transactions. Also, suppose 1 is the
number of CHP transactions, and m is the number of CLP
transactions (n = I + m).

(1) Priority abort
In this scheme [Huan91], when a transaction reaches its
validation phase, it is aborted if its priority is less than that
of all the confIicting transactions, i.e., all the IC
transactions are with higher priority; otherwise, it commits
and all the conflicting transactions are restarted. It can be
described in a pseudo code as follows:

if (m = 0)
then restart(i);
else restart(j), j = 1, 2,..., n;
endif;

(2) Priority sacrifice
In this scheme [HaMOb], when a transaction reaches its
validation phase, it is aborted if there exist one or more
CHP transactions; otherwise it commits and all the
irreconcilably conflicting transactions are restarted. Its
pseudo code is given as follows:

if (1 f 0)
then restart(i);
else restart(j), j = 2, 2,..., n;
endif;

(3) Priority wait
In this scheme [HarigOb], when a transaction reaches its
validation phase, if there exist one or more CHP
transactions, it waits for CHP transactions to complete. Its
pseudo code is given as follows:

while (1 f 0) do
wait;

endwhile;
restart(j), j = 1, 2,.--f n;

(4) wait-50
In this scheme [Hari9Ob], a validating transaction is made
to wait as long as more than half the IC transactions have
higher priorities; otherwise it commits and all the IC
transactions are restarted. The basic idea of this scheme is
to maximize the beneficial effects of blocking, while
reducing the effects of its drawbacks. It can be described in
a pseudo code as follows:

while ((1 + 0) and (1 > m)) do
wait ;

endwhile;
restart(j), j = 1, Z,..., n;

8. CONCLUDING REMARKS

In this paper, we have presented a new concurrency
control protocol based on OCC. The goal of the protocol is to
remedy the problem of wasted resource of conventional OCC
protocols, and the problem of unnecessary aborts caused by
incomplete validation tests. To achieve this goal, our scheme
depends on early detection and resolution of conflicts using
forward validation and timestamps, classification on
conflicting transactions according to the types of conflicts and
their priorities, and dynamic adjustment of serialization order
using timestamp intervals.

Although we have argued that the proposed scheme has
properties to produce results in a timely manner as well as to
maintain data consistency, we need more concrete work on the
performance of the scheme to support the argument. Through a
simulation study using a fairly complete model of real-time
database system lLee921, we are currently evaluating the
proposed scheme both in a deadline-driven scheduling
environment and in a value-based scheduling environment.
One of our goals in this performance evaluation study is to
investigate if the complexity of the proposed scheme resulted
from the dynamic management of timestamp interval is cost
effective.

Also, we are considering several ways to improve the
performance of the proposed protocol. In Section 4, without
providing details, we have argued that the proposed scheme
can be further optimized by using some strategies for choosing
final timestamps of transactions, and using timestamp intervals
for final timestamps. This argument will be verified by
performing sensitivity tests in our simulation system. If the
result shows that performance of the scheme is sensitive to
those strategies, then we will develope appropriate
mechanisms.

Finally, we will extend the proposed protocol so that it
can be used in distributed real-time database systems. One
advantage of OCC over 2PL is that the performance of OCC
protocols does not suffer a significant degradation in
distributed systems unlike 2PL protocols. Moreover,
distribution of data is not only essential feature, but indeed is
the key to the success of most practical real-time systems
[Rodd89]. The proposed concurrency control scheme has a
potential for good performance in a distributed real-time
database systems.

Reference

[Abbo88] Abbott, R. and H. Garcia-Molina, “Scheduling Real-
Time Transactions: A Performance Evaluation”,
Proceedings of the 14th VLDB Conference, August
1988.

[Abbo89] Abbott, R. and H. Garcia-Molina, “Scheduling Real-
Time Transactions with Disk Resident Data’, Pro-
ceedings of the 15th VLDB Conference, August
1989.

[Baye82]

[Bern871

[Boks87]

[Buch89]

[Care87]

[Haer84]

[Hari90]

Bayer, R., K. Elhardt, J. Heigert and A. Reiser,
“Dynamic Timestamp Allocation for Transactions in
Database Systems”, Proceedings of the 2nd Int.
Symposium on Distributed Dam Bases, September
1982, pp 9-20.
Bernstein, P. A., V. Hadzilacos, and N. Goodman,
Concurrency Control and Recovery in Database
Systems, Addison-Wesley, Reading, MA, 1987.
Boksenbaum, C., M. Cart, J. Ferric, and J. Pons,
“Concurrent Certifications by Intervals of Times-
tamps in Distributed Database Systems”, ZEEE
Transactions on Software Engineering, Vol. SE-l 3,
No. 4, April 1987.
Buchmann, A., D. R. McCarthy, M. Hsu, and U.
Dayal, “Time-Critical Database Scheduling: A
Framework for Integrating Real-Time Scheduling
and Concurrency Control”, Proceedings of the 5th
Data Engineering Conference, February 1989.
Carey, M. J., “Improving the Performance of an
Optimistic Concurrency Control Algorithm
Through Timestamps and Versions”, IEEE Transac-
tions on Sofhvare Engineering, Vol. SE-13, No. 6.
June 1987, pp. 746 - 751,
Haerder, T., “Observations on Optimistic Concur-
rency Control Schemes”, Information Systems, 9(2),
1984.
Haritsa, J. R., M. J. Carey, and M. Livny, “On Being
Optimistic about Real-Time Constraints”, Proceed-
ings of the I990 ACM SIGACT-SIGART-SIGMOD
Symposium on Principles of Database Systems
(PODS), 1990.

[Hari9Ob] Haritsa, J. R., M. J. Carey, and M. Livny, “Dynamic
Real-Time Optimistic Concurrency Control”, Pro-
ceedings of the IEEE Real-Time Systems
Symposium, Orlando, Florida, December 1990.

[Huan89] Huang, J., J. A. Stankovic, D. Towsley and K.
Ramamritham, “Experimental Evaluation of Real-
Time Transaction Processing”, Proceedings of the
1EEE Real-Time Systenu Symposium, December
1989.

[Huan91] Huaug, J., J. A. Stankovic, K. Ramamritham, and D.
Towsley, “Experimental Evaluation of Real-Time
Optimistic Concurrency Control Schemes”, Pro-
ceedings of the Conference on Very Large Data
Buses, September 199 1.

[Kung81] Kung H. T., and J. T. Robinson, “On Optimistic
Methods for Concurrency Control”, ACM Transac-
tions on Database Systems, 6(2): 213-226, June
1981,

393

[Lee921

[Lin89]

[Lin90]

[Liu88]

Lee, J., “Scheduling Transactions in Real-Time
Database Systems”,-PhD. Dissertation Proposal,
Department of Computer Science, University of Vir-
ginia, September, 1992.
Lin, K., “Consistency Issues in Real-Time Database
Systems”, Proceedings of the 22nd Hawaii Interna-
tional Conference on System Science, January 1989.
Lin Y., and S. H. Son, “Concurrency Control in Real-
Time Database Systems by Dynamic Adjustment of
Serialization Order,” Proceedings of the I1 th IEEE
Real-Time Systems Symposium, Orlando, Florida,
December 1990.
Liu, J., K. Lin, and X. Song, “Scheduling Hard Real-
Time Transactions”, The 5th IEEE Workshop on
Real-Time Operating Systems and Software, May
1988.

[Robi82] Robinson, J. T., “Design of Concurrency Controls
for Transaction Processing Systems”, PhD. Thesis,
Technical Report CMU-CS-82- 114, Camegie-Mel-
lon University, 1982.

[Rodd89] Rodd, M. G., “Real-Time Issues in Distributed Data
Bases for Real-Time Control”, ZFAC Distributed
Databases in Real-Time Control, Budapest, Hun-
gary, 1989, pp. l-7.

[Sha88] Sha, L., R. Rajkumar and J. P. Lehoczky, “Con-
currency Control for Distributed Real-Time
Databases”, ACM SIGMOD Record, March 1988.

[Son881 Son, S. H., “Semantic Information and Consistency
in Distributed Real-Time Systems”, Information and
Software Technology, Vol. 30, September 1988.

[Stan881 Stankovic, J. A., and W. Zhao, “On Real-Time
Transactions”, ACM SIGMOD Record, March
1988.

[Stan90] Stankovic, J. A., and K. Ramamritham, “What is Pre-
dictability for Real-Time System?“, Real-Time
Systems, 2: 247-254, Kluwer Academic Publishers,
1990.

