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Abstract 
Join is an operation that is frequently used and the most 
expensive in processing database queries. In this paper we 
propose a new efficient join algorithm(called the MLGF- 
Join) for relations indexed by the tnul~ilevrl grirlfile(MLGF), 
a multidimensional dynamic hashed file organization. The 
MLGF-Join uses the domain space partition maintained in 
the directory of the MLGF. The MLGF-Join can process a 
join with one scan of the relations to be joined, assuming a 
main memory buffer is available that is sufficiently large for 
a range-oriented subjoin. Besides, the MLGF-Join does not 
require the costly preprocessing such as sorting in the sort- 
merge join algorithm and domain partitioning in the hash 
join algorithm. We also discuss the advantages of the 
MLGF-Join over others based on multidimensional dynamic 
file organizations such as the grid file, K-D tree, and 
multikey hashing. 

1 Introduction 

Join is an expensive operation in processing queries in 
database systems. Effective support of join makes query 
processing efficient, improving overall performance of 
database management systems. In this paper we propose a 

new efficient algorithm for processing join operations. 

Join algorithms have been studied extensively in the 
literature. The nested-loop join algorithm and the sort- 
merge join algorithm[3] are traditional ones. Recently, the 
hash join algorithm[lO] and many variations have also been 
proposed[5][ 161. 

Hash join algorithms are classified into three categories: 
the simple hash join algorithm[5], the Grace hash join 
algorithm[lO], and the hybrid hash join algorithm[lG]. 
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Although they differ in detailed procedures, they employ a 
common basic strategy. First, the partitioning phase begins 
by partitioning two relations R and S into n disjoint hash 
buckets using a common hash function. A record belongs to 
a hash bucket according to its hash value of the join 
attribute. Since the same hash function is applied to both R 
and S, the records in the i-th hash bucket of R may join with 
only those in the i-th hash bucket of S. Next, the join phase 
performs n subjoins separately, each of which is done on the 
i-th hash buckets of R and S. This strategy saves the cost by 
avoiding unnecessary attempt for joining records in the 
buckets that have different hash values. 

A multidimensional dynamic file organization is a file 
structure for efficient processing of queries involving more 
than one attributel. The multidimensional dynamic file 
organization adapts to dynamic situotions where record 
insertions and deletions occur by splitting and merging 
domain space. The donwin space is the Cartesian product of 
domains of all the attributes. The status of domain space 
partition is reflected in the directory of the file. Just as in 
hash join algorithms, we can use this domain space partition 
for join to avoid unnecessary attempt for joining the records 
in R and S that are in hash buckets that cannot be joined. 
Furthermore, we can obviate the need for the costly 
partitioning phase of the hash join algorithm by 
maintaining the status of domain space partition 
dynamically in the directory. The partitioning phase of the 
hash join algorithm incurs a significant overhead since it 
must be done each time a join is processed. 

Recently, many multidimensional dynamic file 
organizations have been proposed in the literature. Typical 
examples are the K-D tree[2], K-D-B tree[l5]. 
multidimensional extendible hashing[ 131. multidimensional 
linear hashinEfl41. interpolation-based indexes[41, grid 
file[l2], BA& hle[‘l], and multilevel grid fileils][i9]. 

1 A set of altributes what p~tiicipacas in organizing a fife is called 
organizing attributes[lg]. Since all tic attributes mentioned in the 
following sections are organizing attributes, we simply call tbcm 
unli1Jute.t. 
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loin algorithms based on them have also been suggested. 
They are the join algorithms using the K-D tree[ll][S] and 
the grid file[8][1], and the super join algorithm[l7] using 
multikey hashing. 

The K-D tree[2] and the modified grid file proposed by 
Becker et al.[l] employ unbalanced tree structures for their 
directories. In database environments, a directory often does 
not fit in main memory due to the size and thus must reside in 
disk. If a tree is extremely unbalanced because of data skew, 
there is a big difference in performance between the best and 

worst cases. In the worst case, a large number of nodes in the 
tree should be traversed for querying a record. This increases 
the number of disk accesses and prolongs the response time. 
Therefore, the multidimensional dynamic file organization 
having an unbalanced tree as its directory structure is 
inadequate for database environments. 

In the’ grid file[l2] and multikey hashing[l7]. the 
directory is organized as a simple array structure. Thus, the 
size of a directory may become abnormally larger than is 
necessary since the growth of the directory is highly 
affected by data distributions, data skew, or correlation 
among different attributes(henceforth, we call data 
characterisfics)[9]. As a result. the join algorithms using 
these structures[l7][8] suffer from the overhead of 
processing large directories. 

This paper proposes an efficient algorithm for joining 
relations indexed by the multilevel grirlfile(MLGF)[ 18][ 191. 
We call the new algorithm the MLGF-Join. The MLGF is a 
multidimensional dynamic hashed file organization 
employing a balanced tree structure for its directory. It has 
been shown in [9] that the size of the MLGF directory is 
linearly dependent on the size of the data file regardless of 
data characteristics. Thus, the MLGF-Join solves many 
problems of earlier ones in the literature. Assuming we use 
an LRU buffer replacement algorithm and a sufficient main 
memory buffer is available, the MLGF-Join performs a join 
with one scan of each relation, minimizing the number of 
disk accesses for join processing. 

The organization of the paper is as follows. Section 2 
reviews the characteristics of the MLGF. Section 3 explains 
the basic strategy of the MLGF-Join, and Section 4 presents 
the detailed algorithm. After discussing the advantages of 
the MLGF-Join in Section 5, we conclude the paper in 
Section 6. 

2 Multilevel Grid File 

This section briefly describes the dynamic and structural 
characteristics of the MLGF. 

2.1 Dynamic characteristics of MLGF 

The MLGF is a multidimensional dynamic hashed file 
organization that consists of two components: a directory 
and data pages. The directory is a hierarchical index structure 
for the records stored in data pages. The directory reflects the 
status of the domain space partition with the directory 
entries being in one-to-one correspondence with the regions 

in the domain space. The regions represented by the lowest 
level of the directory are in turn in one-to-one 
correspondence with data pages allocated for themselves. 

The MLGF adapts to dynamic situations where record 
insertions and deletions occur by splitting and merging data 
pages. When a new record is inserted into the MLGF, the 
region that the record belongs to is found by searching the 
directory, and the record is inserted into the data page 
allocated for that region. If the data page overflows. the 
region is split into two equal-sized subregions, and the 
records in the overflowed data page are distributed into the 
two new data pages according to the subregions that they 
belong to. 

When records are deleted repeatedly, the MLGF shrinks. 
When a record is deleted from the MLGF. the region that the 
record belongs to is found by searching the directory, and the 
record is deleted from the data page allocated for that region. 
If the number of records in the data page falls below a certain 
threshold (i.e., the data page underflows), the region of the 
data page is considered for merging with one of its buddies. 
A bucirly of region A is defined to be an adjacent, equal-sized 
region that forms a rectangle when merged with region A. 
When merging actually occurs, all the records in the two data 
pages are consolidated into one, and the other data page is 
deallocated. 

The MLGF employs the local splitting strategy that 
splits a region locally when the corresponding data page 
overflows[20][9]. The local splitting strategy prevents the 
MLGF from creating unnecessary directory entries. Figure 1 
compares the splitting strategy of the MLGF with those of 
other file organizations: the grid file[l2] and multikey 
hashing[ 171. 

EEH 

(a) Initial Stdus. (I?) MLGP. (c) grill file. (cl) multikey hashing. 

Figure 1. Region splitting strategies. 

Figure I(a) represents the status of domain space 
partition at the time region A is to split. Figure l(b) shows 
the partition that the MLGF generates after splitting region 
A locally. Figure l(c) shows the partition that the grid file 
generales, in which the entire hyperplane containing region 
A is split. Note that, in this partition, both regions C and D 
point to the same data pa8e. Figure l(d) represents the 
partition that multikey hashing generates. It causes even 
more region splits to satisfy the equi-depth requirement of 
the directory for array-index computation of the extendible 
hashing[6]. 

The local splitting strategy makes the directory size of 
the MLGF increase linearly in the number of records 
regardless of data characteristics[9], thereby minimizing the 
storage overhead for the directory. This strategy also 
enhances the performance of join since the size of the 
directory to be accessed is much smaller than in other 
algorithms[l7][8]. 
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2.2 Structural characteristics of MLGF 

A directory entry consists of a region vector and a 
poinfer(PZ’R) to a data page or a lower-level directory page. 
A region vector in an n-dimensional .MLGF consists of n 
hash values that uniquely identify the region. A region 
vector indicates the position, shape, and size of a region. 
The i-th hash value of a region vector is the common prefix 
of the hash values for the i-th attribute of all the records that 
belong to the region. Thus, a directory entry in an n- 
dimensional MLGF is represented as a record with (n+l) 
alltibutes. and a directory is represented as a relation having 
such records. Hence, the MLGF can handle data records and 
directory entries uniformly. 

Figure 2 shows the status of a two-dimensional domain 
space partition and the directory entries corresponding to the 
regions in the domain space. Directory entry dl, COO, 0, 
PTRl>, represents the region for all the possible records 
whose hash values of the first attribute begin with ‘00’ and 
those of the second attribute begin with ‘0’. Directory entry 
d3 <I. -, PTR3> represents the region for all the possihle 
records whose hash values of the first attribute begin with ‘1’ 
regardless of those of the second attrihute; i.e., the symhol 
‘-’ in directory entry d3 represents the entire domain of the 
second attribute. 

In order to determine whether a region is included in 
another region, the MLGF uses prefix-matching. Prefix- 
matching checks whether a hash value is a prefix of another 
hash value. For example, the hash value ‘101’ prefix- 
matches with the hash value ‘lOlOO’, but the hash value ‘101’ 
does not prefix-match with the hash value ‘10000’. For the 
two hash values a and a’ of a common attrihute A. if u is a 
prefix of a’, the region represented by u includes the region 
represented by a’, 

directory 

EEn 

diirctoty entry dl : <OO.O.lTRl> 
1 entry d4 

dirhxy directory entry d2: <OI,OJ’TR2> 

mtly d.3 
o dbccioly dirccroly 

dir&xy ewq d.? : cl ,-&7R3> 

cnq dl eq dZ 
dimtory snby d4: <O .I,PTR4> 

00 01 I first oltribute 

Figure 2. Directory entries and the corresponding regions. 

The MLGF employs a multilevel balanced tree structure 
for its directory. Just as the lowest-level directory is huilt ou 
top of the data file, the i-th level directory Di is huilt on top 
of the next-lower-level directory Dl.1 treating it as a data file. 

’ This process is repeated until the highest-level directory (the 
root-level) can fit in a disk page. These structural 
characteristics are maintained by the insertion and deletion 
algorithms presented in [19]. 

To illustrate the multilevel nature of the MLGF directory, 
consider a two-dimensional MLGF with a two-level directory 
consisting of DI and DJ in Figure 3(a). Figure 3(h) and 

Figure 3(c) show the status of the domain space partition 
induced by Dl and D2, respectively. The rectangles in Figure 

3(b) are the regions that the directory entries in DI represent, 
with the symbols in rectangles representing the 
corresponding directory entries. Thus, the directory DI has 
ten directory entries. The directory D2 has four directory 
entries and is the root for the MLGF. The directory entry in 
D2 with the region vector <lO.o> represents region c in 
Figure 3(c) pointing to the directory page in DI that contains 
three entries, E, F, and G in Figure 3(b), which form a finer 
partition of region c. Note that the first(second) element of 
the region vector <lO,O> is the common prefix of the 
first(second) elements of the region vectors of the directory 
entries, E, F, and G. 

(a) The structure of n two-level MLGF directory. 

(b) Regions represented by directory entries in Dy. 

(c) Regions represented by directory entries in D2. 

Figure 3. A two-level MLGF directory and its domain space 
partition. 

3 Join Strategy Using MLGF 
This section presents the basic strategy of the MLGF-Join. 
We first discuss how the domain space partition information 
maintained in the directory of the MLCF can be utilized in 
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join processing. Then, we describe a join strategy. 

Before proceeding, we define some terminology used in 
the following sections. A predicate means a condition in a 
query and consists of simple predicates that are connected by 
logical operators such as ‘AND’, ‘OR’, or ‘NOT. Using 
conditional operators such as ‘4, ‘>‘. ‘=I, ‘!=I, I<=‘, or ‘>=I, a 
simple predicate defines a condition 1) between an attribute 
of a relation and a constant, or 2) between an attrihute of a 
relation and an attribute of another relation. The latter is 
called a joi% predicate. The attributes in a join predicate are 
called join aftribufes2. The domain of a join attribute is 
called a join domain. 

The basic strategy of the MLGF-Join for joining two 
relations R and S is to minimize the number of disk accesses. 
As in the hash join algorithm. unnecessary disk accesses can 
be avoided by isolating a set of records of S that can possibly 
be joined with a given set of records of R. This can he done 

by subdividing the join domain of each relation into a set of 
subjoin ranges based on the domain space partition 
information in the MLGF directory. The sets of subjoin 
ranges of two relations may not be identical. Relations R and 

S are subsequently joined by performing subjoins for each 
subjoin range. We call a subjoin for each subjoin range a 
range-oriented subjoin. 

To explain the basic join strategy, let us use an example 
database. Figure 4 shows the domain space partition induced 
by the MLGF directories for R and S. Relations R and S consist 
of four and six data pages, respectively. For simplicity, we 
assume each directory has only one level (the root level). 
Relation R has attributes A and B. and relation S attributes B 
and C. The join attribute is B. 

Before performing range-oriented subjoins, we first 
subdivide the join domains for R and S into sets of subjoin 
ranges represented as hash values. We use two conditions for 
determining a subjoin range. We explain why we use these 
conditions after describing the detailed join strategy. 

l Condition 1: A subjoin range should overlap with as 
small a number of regions as possible. 

l Condition 2: A subjoin range satisfying Condition 1 
should be as large as possible. 

rcl;ltion R ret&m S 

:py f&J 

no 01 1 00 01 10 II 
Figure 4. Domain space partitions represented by the MLGF 

directories for relations R and S. 

In Figure 4, the first subjoin range of R satisfying the two 
conditions has the hash value ‘00’ and overlaps two regions 
u and b. If the subjoin range became larger, it would overlap 

2 If a conditional operator in a join predicate is ‘=‘, the join is called 
l n equijoin. This Paper deals will1 equijoins since the join 
algaitiims bed on bashing are applicable only 10 equijoinY. 

another region c violating Condition 1. On the other hand, 
if the subjoin range became smaller, it would violate 
Condition 2. Similarly, we can determine the two sets of 
subjoin ranges: {00, 01, 1) for R and {OO,Ot, 10, 11) for S. 

Using the sets of subjoin ranges of R and S thus obtained, 
we then readjust the set of subjoin ranges. When a subjoin 
range I in a set is divided into finer subjoin ranges 11, Ir, . . . . 1) 

in the other set, the suhjoin range I is replaced by the 
subjoin ranges I,, Ir, . . . . 4 . In the example of Figure 4. the set 
of suhjoin ranges is (00, 01, 10, 11) since the subjoin range 
‘1’ in the first set is subdivided into two suhjoin ranges ‘10 
and ‘11’ in the second set. 

Finally, for each subjoin range Zt, we perform a range- 
oriented subjoin. We use the prefix-matching operation 
mentioned in Section 2 for examining whether a directory 
entry should participate in a range-oriented subjoin for a 
suhjoin range. A directory entry participates in a range- 
oriented subjoin whenever its hash value of the join attribute 
prefix-matches with the hash value representing the subjoin 
range. 

The range-oriented subjoins are executed in the 
lexicographical order of their hash values. Since multiple 
regions of a relation may participate in a range-oriented 
subjoin, each range-oriented subjoin is partitioned into a set 
of region-oriented subjoins. The region-oriented subjoin is 
a join between the sets of records in regions of R and S 
overlapping a subjoin range. When all the region-oriented 
suhjoins for a subjoin range 1i are completed, so is the range- 
oriented suhjoin. Likewise, when range-oriented subjoins 
for all the suhjoin ranges are completed, the entire join is 
finished. 

Let us examine how the join is processed using the set of 
suhjoin ranges (00, 01. 10, 11) in Figure 4. We first find 
the directory entries participating in the range-oriented 
suhjoin for the first suhjoin range ‘00’. In relation R, the 

hash values of the join attribute of the directory entries a (‘-I) 
and b (‘00’) prefix-match with the hash value ‘00’. Similarly, 
in relation S, the hash values of the join attribute of the 
directory entries u’ (‘0’) and b’ (‘00’) also prefix-match with 
the hash value ‘00’. Therefore, the range-oriented subjoin for 
the subjoin range ‘00’ consists of four region-oriented 
suhjoins (a, a’), (II, b’), (b, a’). and (b, b’). Similarly, for the 
subjoin ranges ‘Ol’, ‘lo’, and ‘ll’, we have the sets of region- 
oriented subjoins (((I, u’). (a, c’), (c, a’), (c, c’)}, ((a, d’), (a, e’), (4 
d’), ((1, cl)), and ((a, (I’}. (u, f), (d, d’), (d, f)) in a nested-loop 
fashion. Processing region-oriented subjoins for a range- 
oriented subjoin resembles the nested-loop join algorithm. 
Thus, we call the relation in the outer loop, such as R, the 
outer relution, and the relation in the inner loop, such as S, 
the inner r&tion. 

We now discuss the number of disk accesses incurred in 
processiug joins hased on our strategy. First, we consider 
the numher of disk accesses for a data page corresponding to 
a region that overlaps only one s&join range. Though a 
data page of the outer relation is accessed only once, a data 
page of the inner relation can he accessed more than once 
since a range-oriented subjoin is performed using a set of 
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region-oriented subjoins in the nested-loop fashion. 
Nevertheless, the number of data pages corresponding to the 
regions that overlap a subjoin range is much smaller than the 
number of all the data pages in a relation. Thus, if we assume 
that the main memory buffer is large enough to contain all 
the data pages corresponding to the regions that overlap a 
subjoin range and that the LRU algorithm is employed for 
buffer replacement, a data page in the inner relation also 
needs only one disk access. 

Second, we discuss the number of disk accesses for a data 
page corresponding to a region that overlaps more than one 
subjoin range. Since this data page cannot be processed 
completely in a range-oriented subjoin, it should be 
processed again in the next range-oriented subjoin. 
However, this data page can be accessed from the main 
memory buffer without additional disk accesses by an LRU 
buffer replacement algorithm since it has already been 
brought in during the previous range-oriented subjoin. In 
summary, the join using our strategy is performed through 
one scan of all the data pages of each relation assuming that 
the main memory buffer is large enough to contain the data 
pages processed in each range-oriented suhjoin. 

Last, we explain the reason why we use the two 
conditions in determining a subjoin range. Condition 1 
restricts the number of data pages(a page per region) to be 
processed in a range-oriented subjoin, keeping the size of 
the main memory buffer small. Once Condition 1 is 
satisfied, Condition 2 minimizes the number of range- 
oriented subjoins. 

4 MLGF- Join 

This section describes the MLGF-Join implementing the 
basic strategy described in Section 3. Section 4.1 presents 
the algorithm in detail. Section 4.2 shows an example 
explaining various execution steps of the algorithm. 

4.1 Joln algorithm 

We first define the notation to be used in describing the 
MLGF-Join. R and S are relations participating in the join: R 
is the outer relation and S the inner relation. Page-R and 
Page-S are input parameters of the recursive procedure 
Recursive-Join that processes a range-oriented subjoin. The 
size of Page-R and Page-S is one disk page. Join-Runge is 
another input parameter of Recursive-Join. It has a hash 
value of the subjoin range to he processed in 
Recursive-Join. PTR is a component of the directory entry 
of the MLGF pointing to a data page or a lower-level 
directory page. 

The MLGF-Join consists of two parts: Muin-Progrom 
and Recursive-Join. Main-Progrorn in Figure 5 reads the 
root directory pages of the MLGF’s for R and S into Puge-R 
and Page-S, respectively, and call Recursive-Join. The 
third input parameter ‘- ’ in Recursive-Join means that the 
subjoin range to be processed is the entire join domain. The 
purpose of Main-Program is just to make the top-level 
recursive call, and actual join processing is done in 
Recursive-Join. 

Malta-Program 

read the root directory pages of R and S into Page-R and Page-S. 
respcclively 

call Recursive-loin (page-R. Page-S, ’ - ’ ) 

end-Main-Prolrsm 

Figure 5. Main-Program. 

Recursive-Join in Figure 6 has three input parameters: 
Puge-R. Page-S, and Join-Range. Page-R and Page-S have 
data records or directory entries to be processed. Join-Range 
has the hash value representing the subjoin range to be 
handled. Recursive-Join deals with four different cases 
depending on the contents of Page3 and Page-S. 
Recurrivr~Joln(PmSc~R. p*gt-S. Jolti-Range) 

Cur I :(erch of Page-R and Page-S hu . p.ge of the lowat-level 
directory) OR (each of Page R l d Pog8-S hu . p.ge of. 
higha-than-the-lowest-lcvcl &atory) 

Join-Range is partitioned into l ret of Subjoin-Ranger based on 
Lc directory entries in Page-R and Page-S 

for each Subjoin-Rongr in the lexicographical orda 

for each directory entry r in Page-R whose hash vrlue of the 
join attribute prefut-matches with Subjoin-Range 

for each directmy entry s in Pegs-g whose hrrh vrlue of 
the join attribute prefix-matches with Subjoin-Range 

read the next-lower-level pages pointed by PTR’s of 
directory entries r and s into Page-R’md Page-S’, 
respectively 

call Rscursivc_Join(Pogc-R’, Page-S: Subjoin-Range) 

end-for 

end-for 

end-fur 

end-Care I 

Case 2: (Page-R has l page of a higher-lhM-the-lowct-lcvcl 
directory) AND (Page-S has l page of the lownt-level directory) 

Join-Runggu is partitioned into a set of Subjoin-Range; based on 
the dlrestory entries in Page-R and Page-S 

for each Subjoin-Range in the lexicographical order 

for each directory cnlry r in Page-R whose hash value of the 
join attrihutc prcfii-matches with Subjoin-Rnngr 

reed the next-lower-level page pointed by PTR of directory 
entry r into Page-R’ 

call Rccursive_Join(Pogr-R: Page-S, Subjoin-Range) 

rnd_fiX 

end-for 

end-Case 2 

Case 3: (Page-R has a pz~pc of the lowest-level directory) AND (Page-S 
has a page of a higher-than-Lc-lowest-level directory) 

JoinyRmge is partitioned into a set of Subjoin-Rongrr based on 
tbc &rectory entries in Page-R and Page-S 

for.rach Subjoin-Range in the lexicographical order 

for each directory entry I in Page S whose hash v&e of the 
join attribute prefix-matches v&h Subjoin-Range 

read the next-lower-level page pointed by PTR of directory 
entry s into Puge-S’ 

call Rrcursivr_Join(Pugr-RR, Page-S’, Subjoin-Range) 

end-for 

end-for 

end-Case 3 

Cwc 4: (each of Page-R and Pogc-S has . data page) 

fin all the records in Poge-R and Page-S whose hash flues of 
the join l ttribuks prefix-match with Join-Range 

perform join 

rnd_fW 

end-Case 4 

end-Kccurnivc-Join 

Figure 6. Procedure Recursive-Join. 
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Case 1: Both Page-R ml Page-S have pages of the 
lowest-level directory or those of a higher-than-the-lowest- 
level directory. We obtain a set of Subjoin-Rungs’s 
satisfying the two conditions described in Section 3. For 
each Subjoin-Range, we find pairs of directory entries 0; s), 
where r is in Page-R, and s is in Page-S, whose hash values 
of the join attributes prefix-match with Subjoin-Range. For 
each such pair (r, s), we read the pages pointed hy PTR’s of r 
and s into P.age-R’ and Page-S’, respectively. These two 
pages are the subjects of the region-oriented subjoin to be 
processed by the next-level recursive call. Finally, we call 
Recursive-Join recursively using Puge-R’, Page-S’, and 
Subjoin-Runge as input parameters. 

Case 2: Page-R has a page of a higher-than-the-lowest- 
level directory, and Page-S has a page of the lowest-level 
directory. This happens when the height of the directory of 
S is smaller than that of R. As in Case 1, we obtain a set of 
Subjoin-Runge’s satisfying the two conditions. For each 
Subjoin-Range, we find pairs of directory entries 0; s), 
where r is in Page-R, and s is in Page-S, whose hash values 
of the join attributes prefix-match with Subjoin-Range. For 
r, a.~ in Case 1, we read the next-lower-level directory page 
pointed by PTR of r into Puge-R’. For s, however, there is no 
more next-level directory page to he read into Puge-S’. 
Thus, we pass Page-S itself as an input parameter fff the 
next-level recursive call instead of Page-S’. Case 2 solves 
the problem of the difference between the heights of the 
directories of R and S. 

Case 3: Page-R has a page of the lowest-level directory, 
and Page-S has a page of a higher-than-the-lowest-level 
directory. This case is identical to Case 2 except that R and S 
are exchanged and can be processed similarly. 

Case 4: Each of Puge-R and Puge-S has a data page. We 
perform a region-oriented suhjoin on two sets of records in 
Page-R and Page-S. We restrict the subjects of the region- 
oriented subjoin to the records whose hash values of the join 
attributes prefix-match with Join-Runge. This restriction 
prevents duplicate processing of the same records when the 
regions of the data pages span more than one subjoin range. 

In summary, Recursive-Join is performed by calling 
itself recursively along the path from the root directory page 
to the data page. Recursive-Join partitions a join into a set 
of range-oriented subjoins, and then into a set of region- 
oriented subjoins. These range-oriented subjoins are done in 
the lexicographical order of the hash values representing the 
subjoin ranges. 

4.2 An example execution of tile MLGF-Jotn 

This subsection explains how the MLGF-Join is executed 
using an example. Figure 7 shows domain space partitions 
induced by each level of the MLGF directories for R and S. 
The symbols in the rectangles represent directory entries 
corresponding to the regions in the domain space. Relation 
R has attributes X and U, and relation S attributes Yand Z. The 
join attribute is Y. 

Figure 8 shows execution steps for joining R and S in the 
order that Recursive-Join is called. Each round enclosure 

corresponds to a recursive call and the number at the upper 
left corner represents the order in which the recursive call is 
made. Two small rectangles in a round enclosure are Page-R 
and Puge-S, the input parameters of the Recursive Call. A 
symbol above a rectangle is the directory entry. The 
directory entry is the subject of the region-oriented subjoin 
to be processed in the recursive call. Each entry in a 
rectangle represents a directory entry and its hash value of 
the join attribute. Hash values below two rectangles 
correspond to subjoin ranges to be processed in the next- 
level recursive call. An arrow starting from the subjoin 
range indicates that a recursive call is made for processing 
one of the region-oriented subjoins that belong to the 
subjoin range, A rectangle in the lowest-level recursive call 

represents a data page pointed by PTR of the directory entry 
shown above the rectangle. 

Recursive Call 1 is made by Main-Program for 
processing the root-level directory entries in Page-R and 
Pup-S. Since each of Puge-R and Puge-S has a page of a 
higher-than-the-lowest-level directory, this call belongs to 
Case 1 in Figure 6. Join-Rungc ‘-’ is subdivided into a set of 
Subjoin-Ranges (0, 10, 11). For the first Subjoin-Range 
‘O’, a range-oriented suhjoin is performed through a set of 
region-oriented subjoins. We select directory entries (1 and 
u’ as subjects of the first region-oriented subjoin since their 
bash values of the join attribute prefix-match with ‘0’. Then, 
the pages pointed by PTR’s of u and a’ are read into Page-R’ 
and Page-S’ and passed as input parameters to Recursive Call 
2. Join-Rungs to be processed in Recursive Call 2 is 
Subjoin-Runge ‘0’ in Recursive Call 1. Since each of Page-R 
and Page-S in Recursive Call 2 has a page of the lowest- 
level directory; this call also belongs to Case 1 in Figure 6. 
Join-Runge ‘0’ is subdivided into a set of Subjoin-Ranges 
(00.01) For the fist Subjoin-Range ‘oo’, a range-oriented 
subjoin is performed through a set of region-oriented 
subjoins. The directory entries A and A’ are selected as 
subjects of the first region-oriented subjoin since their hash 
values of the join attribute prefix-match with ‘00’. Then, the 
pages pointed by PTR’s of A and A’ are read into Puge-R’ and 
Puge-S’ and passed as input parameters to Recursive Call 3. 
Join-Range to he processed in Recursive Call 3 is 
Subjoin-Runge ‘00’ in Recursive Call 2. 

Since each of Puge-R and Puge-S in Recursive Call 3 has 
a data page, this call belongs to’ Case 4 in Figure 6. Thus, 
join is performed for the sets of records in Page-R and 
Puge-S whose hash values of the join attribute prefix-match 
with Join-Range ‘00’. 

When Recursive Cull 3 returns to Recursive Call 2, we 
select A and B’, whose hash values of the join attribute prefix- 
match with ‘00’. as subjects of the next region-oriented 
subjoin for Subjoin-Range ‘00’. Then, we read the pages 
pointed by PTR’s of A and B’ into Puge-R’ and Puge-S’ and 
pass them as input parameters to Recursive Call 4. Since 
each of Pugc-R and Puge-S in Recursive Call 4 has data 
pages, we join the sets of records in Puge-R and Page-S, 
whose hush values of the join attribute prefix-match with 
Join-Runge ‘00’. 

When all four region-oriented subjoins for 



Subjoin-Range ‘00’ in Recursive Call 2 are completed, a new Likewise, when the range-oriented subjoin for 
range-oriented subjoin for Sul?join-Range ‘01’ is started. Subjoin-Runge ‘0’ in Recursive Call 1 is completed, the 
When all the region-oriented subjoins from Recursive Call 7 range-oriented subjoins for Subjoin-Ranges ‘10’ and ‘11’ are 
to Recursive Call 10 are completed, the range-oriented started in turn. Finally, when Recursive Call 30-the last 
subjoin for Subjoin-Range ‘01’ is finished, and Recursive 
Call 2 returns to Recursive Call 1. 

region-oriented subjoin-finishes, the entire join of R and S 
is completed. 
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5 Advantages of the MLGF-Join 

This section discusses the advantages of the MLGF-Join over 
the hash join algorithm, the sort-merge join algorithm, and 
other join algorithms based on the grid file, K-D tree, and 
multikey hashing. 

5.1 Preprocessing overhead 

The MLGF-Join does not require the preprocessing phase 
needed in the sort-merge join algorithm and the hash join 
algorithm. Instead, the MLGF dynamically maintains the 
status of domain space partition in its directory. Thus, there 
is no need for preprocessing each time join is performed. 

5.2 Directory handling 

As explained in Section 2.2, each level of the directory of an 
n-dimensional MLGF is regarded as an (n+I) attribute 
relation. This representation of the directory enables data 
pages and directory pages to be handled in the same fashion, 
making the MLGF-Join simple and clean. In contrast, the 
join algorithms in [17][11][1][8] do not mention any 
mechanisms for handling the directory possibly because of 
their complicated directory structures. 

5.3 Overhead for accessing directories 

The overhead for accessing directories has never been 
considered in [17][11][1][8]. However, it could be 
significant since the directory itself resides in disk in 
database environments. 

The MLGF directory increases linearly in the number of 
data records independent of data characteristics such as 
distributions, skew, or correlation among different 
attributes[9]. Therefore, the size of the directory to be 
accessed in processing a join is also linearly dependent on 
the size of the number of data records. Thus, in the MLGF- 
Join, there is no performance degradation due to different 
data characteristics. 

Directory sizes of the grid file[l2] and multikey 
hashing[l7] are highly affected by data characteristics 
because of their directory structures. In some cases, the sizes 
of their directories can be much larger than those of the data 
files. This degrades the join performance seriously due to the 
overhead of accessing the directories. 

5.4 Identification of subjects of a range- 
oriented subjoin 

The subjects of a range-oriented subjoin are easily identified 
in the MLGF-Join. As described in Section 4, the directory 
entries that are the subjects of a region-oriented subjoin can 
be found easily by prefix-matching with a subjoin range. 
This process is efficient due to the simplicity of the prefix- 
matching operation. 

‘he algorithms in [ 11][8] use the concept caned a wcrve-a set 
of data pages-as a subject for a subjoin. While the algorithm 
using the grid file[l] finds the wave easily using the linear 
scale[l2]. the one using the K-D tree should traverse the tree- 
structured directory repeatedly to find a wave. This technique 

could cause significant overhead when the directory resides 
in disk. 

5.5 The number of disk accesses 

As mentioned in Section 3. range-oriented subjoins are 
performed in the lexicographical order of the hash values 
representing subjoin ranges. Assuming that the main 
memory buffer is large enough to keep all the data pages 
belonging to a range-oriented subjoin, the LRIJ algorithm 
would cause only one disk access per page for the join. 
Similarly, since the MLGF-Join handles directory pages just 
like data pages, a directory page would also need one disk 
access. Therefore, a join can be completed with only one 
scan of all the pages in two relations. 

6 Conclusions 

We have proposed a new efficient join algorithm that we call 
the MLGF-Join. The MLGF-Join uses the MLGF, a 
multidimensional dynamic hashed file organization, as the 
main data structure. It processes a join by partitioning it 
into a set of range-oriented subjoins, and subsequently into a 
set of region-oriented subjoins, which are processed 
independently of one another. 

The main advantages of the MLGF-Join are as follows: 

With a buffer sufficiently large for a range-oriented 
subjoin, a join requires only one access for a directory or 
data page. 

The 
join 

The 
data 

MLGF-Join avoids costly preprocessing for each 
by maintaining the MLGF dynamically. 

MLGF-Join is simple and clean because it handles 
pages and directory pages uniformly. 

The number of directory pages to be accessed for 
processing a join is linearly dependent on the size of the 
data file regardless of the characteristics of the data. 

Subjects of a range-oriented subjoin can be identified 
easily using the efficient prefix-matching operation. 

As a further study, we are considering a systematic and 
comprehensive simulation research on the performance of 
the MLGF-Join. Currently, the MLGF-Join handles only 
spatial point data in an n-dimensional domain space. We 
also plan to extend the MLGF-Join for handling spatial non- 
point data. 
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