
A New Algorithm for Processing Joins
Using the Multilevel Grid File

Sang-Wook Kim* Wan-Sup Cho** Min-Jae Lee** Kyu-Young Whang*’

*Information and Electronics Research Center
Korea Advanced Institute of Science and Technology

**Department of Computer Science
Korea Advanced Institut;;: Science and Technology

Center for Artificial Intelligence Research

{wook,wscho,mjlee,kywhang)@mozart.kaist.ac.kr

Abstract
Join is an operation that is frequently used and the most
expensive in processing database queries. In this paper we
propose a new efficient join algorithm(called the MLGF-
Join) for relations indexed by the tnul~ilevrl grirlfile(MLGF),
a multidimensional dynamic hashed file organization. The
MLGF-Join uses the domain space partition maintained in
the directory of the MLGF. The MLGF-Join can process a
join with one scan of the relations to be joined, assuming a
main memory buffer is available that is sufficiently large for
a range-oriented subjoin. Besides, the MLGF-Join does not
require the costly preprocessing such as sorting in the sort-
merge join algorithm and domain partitioning in the hash
join algorithm. We also discuss the advantages of the
MLGF-Join over others based on multidimensional dynamic
file organizations such as the grid file, K-D tree, and
multikey hashing.

1 Introduction

Join is an expensive operation in processing queries in
database systems. Effective support of join makes query
processing efficient, improving overall performance of
database management systems. In this paper we propose a

new efficient algorithm for processing join operations.

Join algorithms have been studied extensively in the
literature. The nested-loop join algorithm and the sort-
merge join algorithm[3] are traditional ones. Recently, the
hash join algorithm[lO] and many variations have also been
proposed[5][161.

Hash join algorithms are classified into three categories:
the simple hash join algorithm[5], the Grace hash join
algorithm[lO], and the hybrid hash join algorithm[lG].

Proceedings of the Fourth. International Conference on

Datrbaso Systems for Advanced Appllcatlonr (DASFAA’SS)
Ed. Tok Wang Ling and Yoshifumi Masunaga
Singapore, April 10-13, 1995
0 World Scientific Publishing Co. Pta Ltd

Although they differ in detailed procedures, they employ a
common basic strategy. First, the partitioning phase begins
by partitioning two relations R and S into n disjoint hash
buckets using a common hash function. A record belongs to
a hash bucket according to its hash value of the join
attribute. Since the same hash function is applied to both R
and S, the records in the i-th hash bucket of R may join with
only those in the i-th hash bucket of S. Next, the join phase
performs n subjoins separately, each of which is done on the
i-th hash buckets of R and S. This strategy saves the cost by
avoiding unnecessary attempt for joining records in the
buckets that have different hash values.

A multidimensional dynamic file organization is a file
structure for efficient processing of queries involving more
than one attributel. The multidimensional dynamic file
organization adapts to dynamic situotions where record
insertions and deletions occur by splitting and merging
domain space. The donwin space is the Cartesian product of
domains of all the attributes. The status of domain space
partition is reflected in the directory of the file. Just as in
hash join algorithms, we can use this domain space partition
for join to avoid unnecessary attempt for joining the records
in R and S that are in hash buckets that cannot be joined.
Furthermore, we can obviate the need for the costly
partitioning phase of the hash join algorithm by
maintaining the status of domain space partition
dynamically in the directory. The partitioning phase of the
hash join algorithm incurs a significant overhead since it
must be done each time a join is processed.

Recently, many multidimensional dynamic file
organizations have been proposed in the literature. Typical
examples are the K-D tree[2], K-D-B tree[l5].
multidimensional extendible hashing[131. multidimensional
linear hashinEfl41. interpolation-based indexes[41, grid
file[l2], BA& hle[‘l], and multilevel grid fileils][i9].

1 A set of altributes what p~tiicipacas in organizing a fife is called
organizing attributes[lg]. Since all tic attributes mentioned in the
following sections are organizing attributes, we simply call tbcm
unli1Jute.t.

115

loin algorithms based on them have also been suggested.
They are the join algorithms using the K-D tree[ll][S] and
the grid file[8][1], and the super join algorithm[l7] using
multikey hashing.

The K-D tree[2] and the modified grid file proposed by
Becker et al.[l] employ unbalanced tree structures for their
directories. In database environments, a directory often does
not fit in main memory due to the size and thus must reside in
disk. If a tree is extremely unbalanced because of data skew,
there is a big difference in performance between the best and

worst cases. In the worst case, a large number of nodes in the
tree should be traversed for querying a record. This increases
the number of disk accesses and prolongs the response time.
Therefore, the multidimensional dynamic file organization
having an unbalanced tree as its directory structure is
inadequate for database environments.

In the’ grid file[l2] and multikey hashing[l7]. the
directory is organized as a simple array structure. Thus, the
size of a directory may become abnormally larger than is
necessary since the growth of the directory is highly
affected by data distributions, data skew, or correlation
among different attributes(henceforth, we call data
characterisfics)[9]. As a result. the join algorithms using
these structures[l7][8] suffer from the overhead of
processing large directories.

This paper proposes an efficient algorithm for joining
relations indexed by the multilevel grirlfile(MLGF)[18][191.
We call the new algorithm the MLGF-Join. The MLGF is a
multidimensional dynamic hashed file organization
employing a balanced tree structure for its directory. It has
been shown in [9] that the size of the MLGF directory is
linearly dependent on the size of the data file regardless of
data characteristics. Thus, the MLGF-Join solves many
problems of earlier ones in the literature. Assuming we use
an LRU buffer replacement algorithm and a sufficient main
memory buffer is available, the MLGF-Join performs a join
with one scan of each relation, minimizing the number of
disk accesses for join processing.

The organization of the paper is as follows. Section 2
reviews the characteristics of the MLGF. Section 3 explains
the basic strategy of the MLGF-Join, and Section 4 presents
the detailed algorithm. After discussing the advantages of
the MLGF-Join in Section 5, we conclude the paper in
Section 6.

2 Multilevel Grid File

This section briefly describes the dynamic and structural
characteristics of the MLGF.

2.1 Dynamic characteristics of MLGF

The MLGF is a multidimensional dynamic hashed file
organization that consists of two components: a directory
and data pages. The directory is a hierarchical index structure
for the records stored in data pages. The directory reflects the
status of the domain space partition with the directory
entries being in one-to-one correspondence with the regions

in the domain space. The regions represented by the lowest
level of the directory are in turn in one-to-one
correspondence with data pages allocated for themselves.

The MLGF adapts to dynamic situations where record
insertions and deletions occur by splitting and merging data
pages. When a new record is inserted into the MLGF, the
region that the record belongs to is found by searching the
directory, and the record is inserted into the data page
allocated for that region. If the data page overflows. the
region is split into two equal-sized subregions, and the
records in the overflowed data page are distributed into the
two new data pages according to the subregions that they
belong to.

When records are deleted repeatedly, the MLGF shrinks.
When a record is deleted from the MLGF. the region that the
record belongs to is found by searching the directory, and the
record is deleted from the data page allocated for that region.
If the number of records in the data page falls below a certain
threshold (i.e., the data page underflows), the region of the
data page is considered for merging with one of its buddies.
A bucirly of region A is defined to be an adjacent, equal-sized
region that forms a rectangle when merged with region A.
When merging actually occurs, all the records in the two data
pages are consolidated into one, and the other data page is
deallocated.

The MLGF employs the local splitting strategy that
splits a region locally when the corresponding data page
overflows[20][9]. The local splitting strategy prevents the
MLGF from creating unnecessary directory entries. Figure 1
compares the splitting strategy of the MLGF with those of
other file organizations: the grid file[l2] and multikey
hashing[171.

EEH

(a) Initial Stdus. (I?) MLGP. (c) grill file. (cl) multikey hashing.

Figure 1. Region splitting strategies.

Figure I(a) represents the status of domain space
partition at the time region A is to split. Figure l(b) shows
the partition that the MLGF generates after splitting region
A locally. Figure l(c) shows the partition that the grid file
generales, in which the entire hyperplane containing region
A is split. Note that, in this partition, both regions C and D
point to the same data pa8e. Figure l(d) represents the
partition that multikey hashing generates. It causes even
more region splits to satisfy the equi-depth requirement of
the directory for array-index computation of the extendible
hashing[6].

The local splitting strategy makes the directory size of
the MLGF increase linearly in the number of records
regardless of data characteristics[9], thereby minimizing the
storage overhead for the directory. This strategy also
enhances the performance of join since the size of the
directory to be accessed is much smaller than in other
algorithms[l7][8].

116

2.2 Structural characteristics of MLGF

A directory entry consists of a region vector and a
poinfer(PZ’R) to a data page or a lower-level directory page.
A region vector in an n-dimensional .MLGF consists of n
hash values that uniquely identify the region. A region
vector indicates the position, shape, and size of a region.
The i-th hash value of a region vector is the common prefix
of the hash values for the i-th attribute of all the records that
belong to the region. Thus, a directory entry in an n-
dimensional MLGF is represented as a record with (n+l)
alltibutes. and a directory is represented as a relation having
such records. Hence, the MLGF can handle data records and
directory entries uniformly.

Figure 2 shows the status of a two-dimensional domain
space partition and the directory entries corresponding to the
regions in the domain space. Directory entry dl, COO, 0,
PTRl>, represents the region for all the possible records
whose hash values of the first attribute begin with ‘00’ and
those of the second attribute begin with ‘0’. Directory entry
d3 <I. -, PTR3> represents the region for all the possihle
records whose hash values of the first attribute begin with ‘1’
regardless of those of the second attrihute; i.e., the symhol
‘-’ in directory entry d3 represents the entire domain of the
second attribute.

In order to determine whether a region is included in
another region, the MLGF uses prefix-matching. Prefix-
matching checks whether a hash value is a prefix of another
hash value. For example, the hash value ‘101’ prefix-
matches with the hash value ‘lOlOO’, but the hash value ‘101’
does not prefix-match with the hash value ‘10000’. For the
two hash values a and a’ of a common attrihute A. if u is a
prefix of a’, the region represented by u includes the region
represented by a’,

directory

EEn

diirctoty entry dl : <OO.O.lTRl>
1 entry d4

dirhxy directory entry d2: <OI,OJ’TR2>

mtly d.3
o dbccioly dirccroly

dir&xy ewq d.? : cl ,-&7R3>

cnq dl eq dZ
dimtory snby d4: <O .I,PTR4>

00 01 I first oltribute

Figure 2. Directory entries and the corresponding regions.

The MLGF employs a multilevel balanced tree structure
for its directory. Just as the lowest-level directory is huilt ou
top of the data file, the i-th level directory Di is huilt on top
of the next-lower-level directory Dl.1 treating it as a data file.

’ This process is repeated until the highest-level directory (the
root-level) can fit in a disk page. These structural
characteristics are maintained by the insertion and deletion
algorithms presented in [19].

To illustrate the multilevel nature of the MLGF directory,
consider a two-dimensional MLGF with a two-level directory
consisting of DI and DJ in Figure 3(a). Figure 3(h) and

Figure 3(c) show the status of the domain space partition
induced by Dl and D2, respectively. The rectangles in Figure

3(b) are the regions that the directory entries in DI represent,
with the symbols in rectangles representing the
corresponding directory entries. Thus, the directory DI has
ten directory entries. The directory D2 has four directory
entries and is the root for the MLGF. The directory entry in
D2 with the region vector <lO.o> represents region c in
Figure 3(c) pointing to the directory page in DI that contains
three entries, E, F, and G in Figure 3(b), which form a finer
partition of region c. Note that the first(second) element of
the region vector <lO,O> is the common prefix of the
first(second) elements of the region vectors of the directory
entries, E, F, and G.

(a) The structure of n two-level MLGF directory.

(b) Regions represented by directory entries in Dy.

(c) Regions represented by directory entries in D2.

Figure 3. A two-level MLGF directory and its domain space
partition.

3 Join Strategy Using MLGF
This section presents the basic strategy of the MLGF-Join.
We first discuss how the domain space partition information
maintained in the directory of the MLCF can be utilized in

117

join processing. Then, we describe a join strategy.

Before proceeding, we define some terminology used in
the following sections. A predicate means a condition in a
query and consists of simple predicates that are connected by
logical operators such as ‘AND’, ‘OR’, or ‘NOT. Using
conditional operators such as ‘4, ‘>‘. ‘=I, ‘!=I, I<=‘, or ‘>=I, a
simple predicate defines a condition 1) between an attribute
of a relation and a constant, or 2) between an attrihute of a
relation and an attribute of another relation. The latter is
called a joi% predicate. The attributes in a join predicate are
called join aftribufes2. The domain of a join attribute is
called a join domain.

The basic strategy of the MLGF-Join for joining two
relations R and S is to minimize the number of disk accesses.
As in the hash join algorithm. unnecessary disk accesses can
be avoided by isolating a set of records of S that can possibly
be joined with a given set of records of R. This can he done

by subdividing the join domain of each relation into a set of
subjoin ranges based on the domain space partition
information in the MLGF directory. The sets of subjoin
ranges of two relations may not be identical. Relations R and

S are subsequently joined by performing subjoins for each
subjoin range. We call a subjoin for each subjoin range a
range-oriented subjoin.

To explain the basic join strategy, let us use an example
database. Figure 4 shows the domain space partition induced
by the MLGF directories for R and S. Relations R and S consist
of four and six data pages, respectively. For simplicity, we
assume each directory has only one level (the root level).
Relation R has attributes A and B. and relation S attributes B
and C. The join attribute is B.

Before performing range-oriented subjoins, we first
subdivide the join domains for R and S into sets of subjoin
ranges represented as hash values. We use two conditions for
determining a subjoin range. We explain why we use these
conditions after describing the detailed join strategy.

l Condition 1: A subjoin range should overlap with as
small a number of regions as possible.

l Condition 2: A subjoin range satisfying Condition 1
should be as large as possible.

rcl;ltion R ret&m S

:py f&J

no 01 1 00 01 10 II
Figure 4. Domain space partitions represented by the MLGF

directories for relations R and S.

In Figure 4, the first subjoin range of R satisfying the two
conditions has the hash value ‘00’ and overlaps two regions
u and b. If the subjoin range became larger, it would overlap

2 If a conditional operator in a join predicate is ‘=‘, the join is called
l n equijoin. This Paper deals will1 equijoins since the join
algaitiims bed on bashing are applicable only 10 equijoinY.

another region c violating Condition 1. On the other hand,
if the subjoin range became smaller, it would violate
Condition 2. Similarly, we can determine the two sets of
subjoin ranges: {00, 01, 1) for R and {OO,Ot, 10, 11) for S.

Using the sets of subjoin ranges of R and S thus obtained,
we then readjust the set of subjoin ranges. When a subjoin
range I in a set is divided into finer subjoin ranges 11, Ir, 1)

in the other set, the suhjoin range I is replaced by the
subjoin ranges I,, Ir, 4 . In the example of Figure 4. the set
of suhjoin ranges is (00, 01, 10, 11) since the subjoin range
‘1’ in the first set is subdivided into two suhjoin ranges ‘10
and ‘11’ in the second set.

Finally, for each subjoin range Zt, we perform a range-
oriented subjoin. We use the prefix-matching operation
mentioned in Section 2 for examining whether a directory
entry should participate in a range-oriented subjoin for a
suhjoin range. A directory entry participates in a range-
oriented subjoin whenever its hash value of the join attribute
prefix-matches with the hash value representing the subjoin
range.

The range-oriented subjoins are executed in the
lexicographical order of their hash values. Since multiple
regions of a relation may participate in a range-oriented
subjoin, each range-oriented subjoin is partitioned into a set
of region-oriented subjoins. The region-oriented subjoin is
a join between the sets of records in regions of R and S
overlapping a subjoin range. When all the region-oriented
suhjoins for a subjoin range 1i are completed, so is the range-
oriented suhjoin. Likewise, when range-oriented subjoins
for all the suhjoin ranges are completed, the entire join is
finished.

Let us examine how the join is processed using the set of
suhjoin ranges (00, 01. 10, 11) in Figure 4. We first find
the directory entries participating in the range-oriented
suhjoin for the first suhjoin range ‘00’. In relation R, the

hash values of the join attribute of the directory entries a (‘-I)
and b (‘00’) prefix-match with the hash value ‘00’. Similarly,
in relation S, the hash values of the join attribute of the
directory entries u’ (‘0’) and b’ (‘00’) also prefix-match with
the hash value ‘00’. Therefore, the range-oriented subjoin for
the subjoin range ‘00’ consists of four region-oriented
suhjoins (a, a’), (II, b’), (b, a’). and (b, b’). Similarly, for the
subjoin ranges ‘Ol’, ‘lo’, and ‘ll’, we have the sets of region-
oriented subjoins (((I, u’). (a, c’), (c, a’), (c, c’)}, ((a, d’), (a, e’), (4
d’), ((1, cl)), and ((a, (I’}. (u, f), (d, d’), (d, f)) in a nested-loop
fashion. Processing region-oriented subjoins for a range-
oriented subjoin resembles the nested-loop join algorithm.
Thus, we call the relation in the outer loop, such as R, the
outer relution, and the relation in the inner loop, such as S,
the inner r&tion.

We now discuss the number of disk accesses incurred in
processiug joins hased on our strategy. First, we consider
the numher of disk accesses for a data page corresponding to
a region that overlaps only one s&join range. Though a
data page of the outer relation is accessed only once, a data
page of the inner relation can he accessed more than once
since a range-oriented subjoin is performed using a set of

118

region-oriented subjoins in the nested-loop fashion.
Nevertheless, the number of data pages corresponding to the
regions that overlap a subjoin range is much smaller than the
number of all the data pages in a relation. Thus, if we assume
that the main memory buffer is large enough to contain all
the data pages corresponding to the regions that overlap a
subjoin range and that the LRU algorithm is employed for
buffer replacement, a data page in the inner relation also
needs only one disk access.

Second, we discuss the number of disk accesses for a data
page corresponding to a region that overlaps more than one
subjoin range. Since this data page cannot be processed
completely in a range-oriented subjoin, it should be
processed again in the next range-oriented subjoin.
However, this data page can be accessed from the main
memory buffer without additional disk accesses by an LRU
buffer replacement algorithm since it has already been
brought in during the previous range-oriented subjoin. In
summary, the join using our strategy is performed through
one scan of all the data pages of each relation assuming that
the main memory buffer is large enough to contain the data
pages processed in each range-oriented suhjoin.

Last, we explain the reason why we use the two
conditions in determining a subjoin range. Condition 1
restricts the number of data pages(a page per region) to be
processed in a range-oriented subjoin, keeping the size of
the main memory buffer small. Once Condition 1 is
satisfied, Condition 2 minimizes the number of range-
oriented subjoins.

4 MLGF- Join

This section describes the MLGF-Join implementing the
basic strategy described in Section 3. Section 4.1 presents
the algorithm in detail. Section 4.2 shows an example
explaining various execution steps of the algorithm.

4.1 Joln algorithm

We first define the notation to be used in describing the
MLGF-Join. R and S are relations participating in the join: R
is the outer relation and S the inner relation. Page-R and
Page-S are input parameters of the recursive procedure
Recursive-Join that processes a range-oriented subjoin. The
size of Page-R and Page-S is one disk page. Join-Runge is
another input parameter of Recursive-Join. It has a hash
value of the subjoin range to he processed in
Recursive-Join. PTR is a component of the directory entry
of the MLGF pointing to a data page or a lower-level
directory page.

The MLGF-Join consists of two parts: Muin-Progrom
and Recursive-Join. Main-Progrorn in Figure 5 reads the
root directory pages of the MLGF’s for R and S into Puge-R
and Page-S, respectively, and call Recursive-Join. The
third input parameter ‘- ’ in Recursive-Join means that the
subjoin range to be processed is the entire join domain. The
purpose of Main-Program is just to make the top-level
recursive call, and actual join processing is done in
Recursive-Join.

Malta-Program

read the root directory pages of R and S into Page-R and Page-S.
respcclively

call Recursive-loin (page-R. Page-S, ’ - ’)

end-Main-Prolrsm

Figure 5. Main-Program.

Recursive-Join in Figure 6 has three input parameters:
Puge-R. Page-S, and Join-Range. Page-R and Page-S have
data records or directory entries to be processed. Join-Range
has the hash value representing the subjoin range to be
handled. Recursive-Join deals with four different cases
depending on the contents of Page3 and Page-S.
Recurrivr~Joln(PmSc~R. p*gt-S. Jolti-Range)

Cur I :(erch of Page-R and Page-S hu . p.ge of the lowat-level
directory) OR (each of Page R l d Pog8-S hu . p.ge of.
higha-than-the-lowest-lcvcl &atory)

Join-Range is partitioned into l ret of Subjoin-Ranger based on
Lc directory entries in Page-R and Page-S

for each Subjoin-Rongr in the lexicographical orda

for each directory entry r in Page-R whose hash vrlue of the
join attribute prefut-matches with Subjoin-Range

for each directmy entry s in Pegs-g whose hrrh vrlue of
the join attribute prefix-matches with Subjoin-Range

read the next-lower-level pages pointed by PTR’s of
directory entries r and s into Page-R’md Page-S’,
respectively

call Rscursivc_Join(Pogc-R’, Page-S: Subjoin-Range)

end-for

end-for

end-fur

end-Care I

Case 2: (Page-R has l page of a higher-lhM-the-lowct-lcvcl
directory) AND (Page-S has l page of the lownt-level directory)

Join-Runggu is partitioned into a set of Subjoin-Range; based on
the dlrestory entries in Page-R and Page-S

for each Subjoin-Range in the lexicographical order

for each directory cnlry r in Page-R whose hash value of the
join attrihutc prcfii-matches with Subjoin-Rnngr

reed the next-lower-level page pointed by PTR of directory
entry r into Page-R’

call Rccursive_Join(Pogr-R: Page-S, Subjoin-Range)

rnd_fiX

end-for

end-Case 2

Case 3: (Page-R has a pz~pc of the lowest-level directory) AND (Page-S
has a page of a higher-than-Lc-lowest-level directory)

JoinyRmge is partitioned into a set of Subjoin-Rongrr based on
tbc &rectory entries in Page-R and Page-S

for.rach Subjoin-Range in the lexicographical order

for each directory entry I in Page S whose hash v&e of the
join attribute prefix-matches v&h Subjoin-Range

read the next-lower-level page pointed by PTR of directory
entry s into Puge-S’

call Rrcursivr_Join(Pugr-RR, Page-S’, Subjoin-Range)

end-for

end-for

end-Case 3

Cwc 4: (each of Page-R and Pogc-S has . data page)

fin all the records in Poge-R and Page-S whose hash flues of
the join l ttribuks prefix-match with Join-Range

perform join

rnd_fW

end-Case 4

end-Kccurnivc-Join

Figure 6. Procedure Recursive-Join.

119

Case 1: Both Page-R ml Page-S have pages of the
lowest-level directory or those of a higher-than-the-lowest-
level directory. We obtain a set of Subjoin-Rungs’s
satisfying the two conditions described in Section 3. For
each Subjoin-Range, we find pairs of directory entries 0; s),
where r is in Page-R, and s is in Page-S, whose hash values
of the join attributes prefix-match with Subjoin-Range. For
each such pair (r, s), we read the pages pointed hy PTR’s of r
and s into P.age-R’ and Page-S’, respectively. These two
pages are the subjects of the region-oriented subjoin to be
processed by the next-level recursive call. Finally, we call
Recursive-Join recursively using Puge-R’, Page-S’, and
Subjoin-Runge as input parameters.

Case 2: Page-R has a page of a higher-than-the-lowest-
level directory, and Page-S has a page of the lowest-level
directory. This happens when the height of the directory of
S is smaller than that of R. As in Case 1, we obtain a set of
Subjoin-Runge’s satisfying the two conditions. For each
Subjoin-Range, we find pairs of directory entries 0; s),
where r is in Page-R, and s is in Page-S, whose hash values
of the join attributes prefix-match with Subjoin-Range. For
r, a.~ in Case 1, we read the next-lower-level directory page
pointed by PTR of r into Puge-R’. For s, however, there is no
more next-level directory page to he read into Puge-S’.
Thus, we pass Page-S itself as an input parameter fff the
next-level recursive call instead of Page-S’. Case 2 solves
the problem of the difference between the heights of the
directories of R and S.

Case 3: Page-R has a page of the lowest-level directory,
and Page-S has a page of a higher-than-the-lowest-level
directory. This case is identical to Case 2 except that R and S
are exchanged and can be processed similarly.

Case 4: Each of Puge-R and Puge-S has a data page. We
perform a region-oriented suhjoin on two sets of records in
Page-R and Page-S. We restrict the subjects of the region-
oriented subjoin to the records whose hash values of the join
attributes prefix-match with Join-Runge. This restriction
prevents duplicate processing of the same records when the
regions of the data pages span more than one subjoin range.

In summary, Recursive-Join is performed by calling
itself recursively along the path from the root directory page
to the data page. Recursive-Join partitions a join into a set
of range-oriented subjoins, and then into a set of region-
oriented subjoins. These range-oriented subjoins are done in
the lexicographical order of the hash values representing the
subjoin ranges.

4.2 An example execution of tile MLGF-Jotn

This subsection explains how the MLGF-Join is executed
using an example. Figure 7 shows domain space partitions
induced by each level of the MLGF directories for R and S.
The symbols in the rectangles represent directory entries
corresponding to the regions in the domain space. Relation
R has attributes X and U, and relation S attributes Yand Z. The
join attribute is Y.

Figure 8 shows execution steps for joining R and S in the
order that Recursive-Join is called. Each round enclosure

corresponds to a recursive call and the number at the upper
left corner represents the order in which the recursive call is
made. Two small rectangles in a round enclosure are Page-R
and Puge-S, the input parameters of the Recursive Call. A
symbol above a rectangle is the directory entry. The
directory entry is the subject of the region-oriented subjoin
to be processed in the recursive call. Each entry in a
rectangle represents a directory entry and its hash value of
the join attribute. Hash values below two rectangles
correspond to subjoin ranges to be processed in the next-
level recursive call. An arrow starting from the subjoin
range indicates that a recursive call is made for processing
one of the region-oriented subjoins that belong to the
subjoin range, A rectangle in the lowest-level recursive call

represents a data page pointed by PTR of the directory entry
shown above the rectangle.

Recursive Call 1 is made by Main-Program for
processing the root-level directory entries in Page-R and
Pup-S. Since each of Puge-R and Puge-S has a page of a
higher-than-the-lowest-level directory, this call belongs to
Case 1 in Figure 6. Join-Rungc ‘-’ is subdivided into a set of
Subjoin-Ranges (0, 10, 11). For the first Subjoin-Range
‘O’, a range-oriented suhjoin is performed through a set of
region-oriented subjoins. We select directory entries (1 and
u’ as subjects of the first region-oriented subjoin since their
bash values of the join attribute prefix-match with ‘0’. Then,
the pages pointed by PTR’s of u and a’ are read into Page-R’
and Page-S’ and passed as input parameters to Recursive Call
2. Join-Rungs to be processed in Recursive Call 2 is
Subjoin-Runge ‘0’ in Recursive Call 1. Since each of Page-R
and Page-S in Recursive Call 2 has a page of the lowest-
level directory; this call also belongs to Case 1 in Figure 6.
Join-Runge ‘0’ is subdivided into a set of Subjoin-Ranges
(00.01) For the fist Subjoin-Range ‘oo’, a range-oriented
subjoin is performed through a set of region-oriented
subjoins. The directory entries A and A’ are selected as
subjects of the first region-oriented subjoin since their hash
values of the join attribute prefix-match with ‘00’. Then, the
pages pointed by PTR’s of A and A’ are read into Puge-R’ and
Puge-S’ and passed as input parameters to Recursive Call 3.
Join-Range to he processed in Recursive Call 3 is
Subjoin-Runge ‘00’ in Recursive Call 2.

Since each of Puge-R and Puge-S in Recursive Call 3 has
a data page, this call belongs to’ Case 4 in Figure 6. Thus,
join is performed for the sets of records in Page-R and
Puge-S whose hash values of the join attribute prefix-match
with Join-Range ‘00’.

When Recursive Cull 3 returns to Recursive Call 2, we
select A and B’, whose hash values of the join attribute prefix-
match with ‘00’. as subjects of the next region-oriented
subjoin for Subjoin-Range ‘00’. Then, we read the pages
pointed by PTR’s of A and B’ into Puge-R’ and Puge-S’ and
pass them as input parameters to Recursive Call 4. Since
each of Pugc-R and Puge-S in Recursive Call 4 has data
pages, we join the sets of records in Puge-R and Page-S,
whose hush values of the join attribute prefix-match with
Join-Runge ‘00’.

When all four region-oriented subjoins for

Subjoin-Range ‘00’ in Recursive Call 2 are completed, a new Likewise, when the range-oriented subjoin for
range-oriented subjoin for Sul?join-Range ‘01’ is started. Subjoin-Runge ‘0’ in Recursive Call 1 is completed, the
When all the region-oriented subjoins from Recursive Call 7 range-oriented subjoins for Subjoin-Ranges ‘10’ and ‘11’ are
to Recursive Call 10 are completed, the range-oriented started in turn. Finally, when Recursive Call 30-the last
subjoin for Subjoin-Range ‘01’ is finished, and Recursive
Call 2 returns to Recursive Call 1.

region-oriented subjoin-finishes, the entire join of R and S
is completed.

x 00 01 10 I1 Z 0 1

1 b

level 2
a a’ b’ (root level)

0
C d

Y Y

x 000 001 010 011 loo 101 110 111

11
A D M

10

2 00 01 10 11 -

1 B’ C D

ICVCI 1

0
A E

Y

(a) relation R. (b) relation S.

I-
,: 0 a’: 0 kl b’: I

/001
e: 10
cl: II

__’ ._

5 Advantages of the MLGF-Join

This section discusses the advantages of the MLGF-Join over
the hash join algorithm, the sort-merge join algorithm, and
other join algorithms based on the grid file, K-D tree, and
multikey hashing.

5.1 Preprocessing overhead

The MLGF-Join does not require the preprocessing phase
needed in the sort-merge join algorithm and the hash join
algorithm. Instead, the MLGF dynamically maintains the
status of domain space partition in its directory. Thus, there
is no need for preprocessing each time join is performed.

5.2 Directory handling

As explained in Section 2.2, each level of the directory of an
n-dimensional MLGF is regarded as an (n+I) attribute
relation. This representation of the directory enables data
pages and directory pages to be handled in the same fashion,
making the MLGF-Join simple and clean. In contrast, the
join algorithms in [17][11][1][8] do not mention any
mechanisms for handling the directory possibly because of
their complicated directory structures.

5.3 Overhead for accessing directories

The overhead for accessing directories has never been
considered in [17][11][1][8]. However, it could be
significant since the directory itself resides in disk in
database environments.

The MLGF directory increases linearly in the number of
data records independent of data characteristics such as
distributions, skew, or correlation among different
attributes[9]. Therefore, the size of the directory to be
accessed in processing a join is also linearly dependent on
the size of the number of data records. Thus, in the MLGF-
Join, there is no performance degradation due to different
data characteristics.

Directory sizes of the grid file[l2] and multikey
hashing[l7] are highly affected by data characteristics
because of their directory structures. In some cases, the sizes
of their directories can be much larger than those of the data
files. This degrades the join performance seriously due to the
overhead of accessing the directories.

5.4 Identification of subjects of a range-
oriented subjoin

The subjects of a range-oriented subjoin are easily identified
in the MLGF-Join. As described in Section 4, the directory
entries that are the subjects of a region-oriented subjoin can
be found easily by prefix-matching with a subjoin range.
This process is efficient due to the simplicity of the prefix-
matching operation.

‘he algorithms in [11][8] use the concept caned a wcrve-a set
of data pages-as a subject for a subjoin. While the algorithm
using the grid file[l] finds the wave easily using the linear
scale[l2]. the one using the K-D tree should traverse the tree-
structured directory repeatedly to find a wave. This technique

could cause significant overhead when the directory resides
in disk.

5.5 The number of disk accesses

As mentioned in Section 3. range-oriented subjoins are
performed in the lexicographical order of the hash values
representing subjoin ranges. Assuming that the main
memory buffer is large enough to keep all the data pages
belonging to a range-oriented subjoin, the LRIJ algorithm
would cause only one disk access per page for the join.
Similarly, since the MLGF-Join handles directory pages just
like data pages, a directory page would also need one disk
access. Therefore, a join can be completed with only one
scan of all the pages in two relations.

6 Conclusions

We have proposed a new efficient join algorithm that we call
the MLGF-Join. The MLGF-Join uses the MLGF, a
multidimensional dynamic hashed file organization, as the
main data structure. It processes a join by partitioning it
into a set of range-oriented subjoins, and subsequently into a
set of region-oriented subjoins, which are processed
independently of one another.

The main advantages of the MLGF-Join are as follows:

With a buffer sufficiently large for a range-oriented
subjoin, a join requires only one access for a directory or
data page.

The
join

The
data

MLGF-Join avoids costly preprocessing for each
by maintaining the MLGF dynamically.

MLGF-Join is simple and clean because it handles
pages and directory pages uniformly.

The number of directory pages to be accessed for
processing a join is linearly dependent on the size of the
data file regardless of the characteristics of the data.

Subjects of a range-oriented subjoin can be identified
easily using the efficient prefix-matching operation.

As a further study, we are considering a systematic and
comprehensive simulation research on the performance of
the MLGF-Join. Currently, the MLGF-Join handles only
spatial point data in an n-dimensional domain space. We
also plan to extend the MLGF-Join for handling spatial non-
point data.

Acknowledgments
This research was partially supported by KT (Korea Telecom)
Grant GI22210 and by KOSEF (Korea Science and
Engineering Foundation) Grant GD00468 through CAIR
(Center for Artificial Intelligence Research). Ju-Won Song
carefully read the preliminary version of this paper and
contributed helpful comments.

122

References
[II

PI

[31

I41

PI

[61

171

WI

193

Becker, L.. Hinrichs, K., and Finke, U., “A New Join
Algorithm for Computing Joins with Grid Files,” In
Proc. Intl. Con$ on Data Engineering, IEEE, pp. 189-
196, 1993.

Bentley, J. L., “Multidimensiqnal Binary Search Trees
in Database Applications,” IEEE Trans. Software
Engineering. Vol. SE-S, No. 4. pp. 333-340, July
1979.

Blasgen, M. W. and Eswaran, K. P.. “Storage and Access
in Relational Databases,” IBM Systems Journd, Vol. 4.
No. 4, pp. 363-377, 1977.

Burkhard, W. A., “Interpolation-Based Index
Maintenance,” In Proc. 2nd ACM Symp. Principles of
Database Systems, ACM SIGMOD. pp. 79-89. 1983.

Dewitt, D. et al., “Implementation Techniques for Main
Memory Database Systems,” In Proc. Intl. Conf. on
Management of Data, ACM SIGMOD, pp. I-8, 1984.

Fagin, R. et al., “Extendible Hashing-A Fast Access
Method for Dynamic Files,” ACM Trans. Database
Systems, Vol. 4. No. 3, pp. 315-344. Sept. 1979.

Freeston, M., “The BANG File: A New Kind of Grid
File,” In Proc. ltd. Co@ on Manugemenr of Dora, ACM
SIGMOD, pp. 260-269, 1987.

Harada, L. et al., “Query Processing Method for Multi-
Attribute Clustered Relations,” In Proc. 16th Intl. Conf
on Very Large Data Bases, pp. 59-70. 1990.

Kim. S. W. and Whang, K. Y., “Asymptotic Directory
Growth of the Multilevel Grid File,” In Proc. Inrl.
Symposium on Next Generation Database Systems and
Their Applications, pp. 257-264, Fukuoka, Japan,
Sept. 1993.

[IOJKitsuregawa, M., Tanaka. H., and Moto-Oka, T.,
“Application of Hash to Database Machine and Its
Architecture,” New Generation Computing, Vol. 1, No.
1. pp. 63-74. 1983.

[ll] Kltsuregawa. M., Harada. L., and Takagi, M., “Join
Strategies on K-D-Tree Indexed Relations,” In Proc. Intf.
Conf on Data Engineering, IEEE, pp. 85-93, 1989.

[12]Nievergelt, J. et al., “The Grid File: An Adaptable,
Symmetric Multikey File Structure,” ACM Trans.
Database Systems, Vol. 9. No. 1, pp. 38-71, Mar.
1984.

[131 Otoo, E. J., “A Mapping Function for the Directory of a
Multidimensional Extendible Hashing.” In Proc. I&h
Intl. Co& on Very Lurge Data Bases, pp. 493-506, Aug.
1984.

[14]Ouksel. M. and Scheuermann. P., “Storage Mapping for
Multidimensional Linear Hashing,” In Proc. 3rd ACM
Symp. Principles of Database Systems, ACM SIGMOD,
pp. 90-105, 1983.

[15] Robinsoa,J. T., “The K-D-B Tree: A Search Structure for

Large Multidimensional Dynamic Indexes,” In Proc.
Intl. Conf: on hfanugemenr of Data, ACM SIGMOD. pp.
10-18, 1981.

[161 Shapiro. L. D., “Join Processing in Database Systems
with Large Main Memories,” ACM Trans. on Database
Systems, Vol. 11. No. 3, pp. 239-264, Sept. 1986.

[17] Theme, J. A., Ramamohanarao. K.. and Naish. L., “A
Superjoin Algorithm for Deductive Databases.” In Proc.
12th Intl. Conf. on Very Large Data Bases. pp. 189-196,
Aug. 1986.

[18] Whang, K. Y. and Krishnamttrthy, R., Multilevel Grid
Files, IBM Research Report RCI1516, 1985.

[19] Whang, K. Y. and Krishnamurthy, R., “The Multilevel
Grid File-A Dynamic Hierarchical Multidimensional
File Structure,” In Proc. 2nd Intl. Conf: on Database
Systems for Advanced Applications, pp. 449-459. Apr.
1991.

[20] Whang. K. Y., Kim, S. W.. and Wiederbold, 0..
“Dynamic Maintenance of Data Distribution for
Selectivity Estimation,” The VLDB Journal. Vol. 3. No.
1, pp. 29-51. Jan. 1994.

123

