
The ODMG Standard for Object Databases

Francois Bancilhon and Guy Ferran
OaTechnology

2685 Marine Way-Suite 1220
Mountain View, California 94043

Research on object databases started at the
beginning of the 1980’:; and became very active
in the mid 1980’s. At the end of the 1980’s, a
number of start-up companies were created. As
a result, a wide variety of products are now com-
mercially available. The products have quickly
matured after several years of market presence.
Production applications are being deployed in
various areas: CAD, software engineering, geo-
graphic information systems, financial applica-
tions, medical applications, telecommunications,
multimedia and MIS.

As more and more applications were being
developed and deployed and as more vendors
appeared on the market, the user community
voiced a clear concern about the risk of diver-
gence of the products and expressed their need
for convergence and standards. The return from
the vendor community was both implicit and ex-
plicit. Implicit, because as the vendors under-
stood more and more the applications and the
user needs, the systems architecture started to
converge and the systems to look alike. Explicit,
because the vendors got together to define and
promote a standard.

The Object Database Management Group
(ODMG) was created in 1991 by five object data-
base vendors under the chairmanship of Rick
Cattell.

Proceedings of the Fourth International Conference on

Database Systems for Advanced Applications (DASFAA’95)
Ed. Tok Wang Ling and Yoshifumi Masunaga
Singapore, April 10-13, 1995
@I World Scientific Publishing Co. Pte Ltd

It published an initial version of a standard
interface in 1993, it was joined by 2 more ven-
dors at the end of 1993, and produced a final
revision in early 1994 [Catt94].

Thus, all object database vendors are active
members of the group and totally committed to
comply to the standard in future releases of their
products. For instance, the current release of 02
[Oz] fully complies with the ODMG O&L query
language, and the next release will comply with
the ODMG C++ binding.

This standard is a major event and a clear
signal for the object database market. It is clearly
as important for object databases as SQL was
for relational databases.

The ODMG standard is a portability stan-

dard, i.e. it guarantees that a compliant appli-
cation written on top of compliant system X can
be easily ported on top of compliant system Y,
as opposed to an inter-operability standard, such
as CORBA, that allows an application to run on.
top of compliant systems X and Y at the same
time. Portability was chosen because it was the
first users demand.

Because object databases cover more ground
than relational databases, the standard covers a
larger area than SQL does. An object database
schema defines the data structure and types of
the objects of the database, but also the “meth-
ods” associated to the objects. Therefore a pro-
gramming language must be used to write these
methods.

Instead of inventing “yet another program-
ming language”, ODMG strongly believes that
it is more realistic and attractive to use existing
object oriented programming languages. More-

273

over, during the last few years a huge effort has // Returns an atomic type
been carried out by the programming language) ;
community and by the OMG organization to
define and adopt a commonly accepted “object class Employee: Person{
model”. The ODMG c.ontribution started from // A subclass of Person
this state and proposed an object model which float salary;
is a simple extension of the OMG object model. 1;

This paper gives an informal presentation
of the ODMG standard by presenting the data class Student: Person{
model, the query language and the language // A subclass of Person
bindings. It emphasizes the query language which String grade;
we consider essential in the standard. The rest);
of this paper is organized as follows: Section 1
describes the data model, Section 2 introduces class Address{
the C++ binding, and Section 3 presents O&L. int number;

String street;

1 Defining an Object Database ”
Schema class Building{

In ODMG-93, a database schema can either be
Address address;

defined using the Object Definition Language
// A complex value embedded

(ODL), a direct extension of the OMG Interface
// in this object

1.
Definition Language (IDL),~ or using Smalltalk J ’
or C++. In this presentation, we use C++ as
our object definition language. We first briefly

class Apartment{

recall the OMG object model, then describe the
int number;

ODMG extensions.
) . . 9

1.1 The OMG oklject model Let us now turn to the extensions brought by

The ODMG object model, following the OMG
ODMG to the OMG data model: relationships

object model supports the notion of class, of
and collections

objects with attributes and methods, of inheri--
tance and specialization. It also offers the clas- 1.2 One-to-one relationships

sical types to deal with date, time and character An object refers to another object through a
strings. To illustrate t&s, let us first define the ReJ A Ref behaves as a C++ pointer, but with
elementary objects of our schema without estab- more semantics. Firstly, a Ref is a persistent
.lishing connection between them. pointer. Then, referential integrity can be ex-

class Person{
pressed in the schema and maintained by the

String name;
system. This is done by declaring the relation-

Date birthdate ;
ship as symmetric. For instance, we can say
that a Person lives in an Apartment, and that

// Methods :
this Apartment is used by this Person, in the

Person(> ;
following way:

// Constructor: a new Person is born class Person{
int age{>; Ref<Apartment> lives-in

274

inverse is-used-by;
3;

class Apartment<
Ref4Persor-0 is-used-by
inverse lives-in;

3;

// The Person class extent.
Set< Ref<Apartment> > Apartments;

// The Apartment class extent.
Set< Ref<Apartment> > Vacancy;

// The set of vacant apartments.
List< Ref<Apartment> > Directory;

// The list of apartments.
// ordered by their number of rooms.

The keyword inverse is the only ODMG ex-
tension to the standard C++ class definitions.
It is, of course, optional. It ensures the refer-
ential integrity constraint: if a Person moves to
another Apartment, the attribute “is-used-by”
is automatically reset to NULL until a new Per-
son takes this apartment again. Moreover, if
an Apartment object i: deleted, the correspond-
ing “livesin” attribute is automatically reset to
NULL, thereby avoiding dangling references.

Very often, an object is related with more than
one object through a relationship. Therefore,
the notion of l-l relationship defined previously
has to be extended to l-n and n-m relationships,
with the same guarantee of referential integrity.

For example, a Person has two Parents and
possibly several Children; in a Building, there
are many Apartments.

1.3 Collections

The efficient management of very large collec-
tions of data is a funda.mental database feature.
Thus, ODMG-93 introduces a set of predefined
generic classes for this purpose: Set<T>, Bag-
<T> (amulti-set, i.e.,a set allowingduplicates),
Varray<T> (variable size array), List<T> (vari-
able size and insertable array).

Set < RefCPerson> > parents
inverse children; // 2 parents.

List < RefCPerson> > children
inverse parents;
// Ordered by birthday

3;

A collection is a container of elements of
the same class. As usual, polymorphism is ob-
tained through the class hierarchy. For instance
a Set<Ref<Person>> may contain Persons as
well as Employees, if the class Employee is a
subclass of the class Person.

class Building<
List< <Ref<Apartment> > apartments

inverse building;
// Ordered by apartment number

3;

In a database schema, collections may be
used to record extents of classes. In the ODMG-
93 C++ binding, the extent of a class is not
automatically maintained, and the application
itself creates and maintains explicitly a collec-
tion, whenever an extent is really needed. This
management can be easily encapsulated in cre-
ation methods, and furthermore, the applica-
tion can define as many collections as needed to
group objects which match some logical prop-
erty. For instance, the following collections can
be defined:

class Apartment{
int number;
Ref<Building> building

inverse apartments;
3;

1.5 Naming

ODMG-93 enables explicit names to be given
to any object or collection. From a name, an
application can directly retrieve the named ob-
ject and then operate on it or navigate to other
objects following the relationship links.

Set< Ref<Person> > Persons ;

275

1.4 Multiple Relationships

class Person-C

A name in the schema plays the role of a
variable in a program. Names are entry points
in the database. From these entry points, other
objects (in most cases unnamed objects) can be
reached through associative queries or naviga-
tion. In general, explicit extents of classes are
named.

1.6 The sample schema

Let us now define our example schema com-
pletely.

class Person<
String name;
Date birthdate;
Set < Ref<Perscn> > parents

inverse children;
List < Ref<Perscn> > children

inverse parents;

Ref<Apartment> lives-in
inverse is-used-by;

// Methods:
Person0 ;
// Constructor: a new Person is born
int age0 ;
// Returns an atomic type
void marriage(R.efCPerson> spouse);
// This Person gets a spouse
void birth(Ref<Person> child);
// This Person g:ets a child
Set< Ref<Person> > ancestors;
// Set of ancestors of this Person
virtual SetCString> activitieso;
// A redefinable method

3;

class Employee: Person<
// A subclass of Person
float salary;

// Method
virtual SetCString> activitieso;
// The method is redefined

3;

class Student: Person<

// A subclass of Person
String grade;

// Method
virtual Set<String> activitieso;
// The method is redefined

3;

class Address{
int number;
String street;

3;

class Building{

//

3;

Address address;
// A complex value
// embedded in this object
List< <Ref<Apartment> > apartments

inverse building;
Method
Ref<Apartment> less,expensiveo;

class Apartment{
int number;
Ref<Building> building;
Ref<Person> is-used-by

inverse lives-in;
3;

Set< Ref<Person> > Persons ;
// All persons and employees

Set< Ref<Apartment> > Apartments;
// The Apartment class extent ,

Set< Ref<Apartment> > Vacancy;
// The set of vacant apartments

List< Ref<Apartment> > Directory;
// The list of apartments
// ordered by their number of rooms

2 C++ Binding

To implement the schema defined above, we wri-
te the body of each method. These bodies can
be easily written using C++. In fact, because
Ref<T> is equivalent to a pointer (T’), manip-

276

ulating persistent objects through Refs is done
in exactly the same way as through normal point-
ers.

To run applications on a database instantiat-
ing such a schema, ODMG-93 provides classes to
deal with Databases (with open and close meth-
ods) and Transactions (with start, commit and
abort methods). When an application creates
an object, it can create a transient object which
will disappear at the end of the program, or a
persistent object which will survive when the
program ends and can be shared by many other
programs possibly running at the same time.
Here is an example of a program to create a
new persistent apartment and let “john” move
into it.

Transaction move;
move. begin0 ;

Ref< Apartment > home =
new(database) Apartment;

Ref< Person > john =
database->lookup,object(” john”);

// Retrieve a named object
Apartments.insert-element(home);
// Put this new apartment
// in the class extent
john->lives-in = home;
// Persistent objects are handled
// as standard C++ objects

move.commitO;

3 Object Que:ry Language, OQL

ODMG-93 introduces a query language, OQL.
OQL is an SQL style language that allows easy
access to objects. We just presented an object
definition language (using C++) and a C++
binding. We strongly believe that these two
languages are not sufficient for writing database
applications and that many situations require a
query language:

l Interactive ad hoc queries

A database user should not be forced to
write, compile, link edit and debug a C++
program just to get the answer to simple

queries. O&L can be used directly as a
stand alone query interpreter. Its syntax
is simple and flexible. For someone famil-
iar with SQL, OQL can be learned in a
few hours.

l Simplify programming by embedded queries

Embedded in a programming language like
C++, OQL dramatically reduces the am-
ount of C++ code to be written. OQL is
powerful enough to express in one state-
ment a long C++ program.

Besides, OQL directly supports the ODMG
model. Therefore, OQL has the same type
system as C++ and is able to query ob-
jects and collections computed by C++
and passed to OQL as parameters. OQL
then delivers a result which is put directly
into a C++ variable with no conversion.
This definitively solves the well known “im-
pedance mismatch” which makes embed-
ded SQL so difficult to use, since SQL
deals with “tables” not supported by the
programming language type system.

l Let the system optimize your queries

Well known optimization techniques ins-
pired from relational technology and ex-
tended to the object case can be used to
evaluate an O&L query by virtue of its
declarative style. For instance, the OQL
optimizer of 02 finds the most appropri-
ate indexes to reduce the amount of data
to be filtered. It factorizes the common
subexpressions, finds out the expressions
which can be computed once outside an
iteration, pushes up the selections before
starting an inner iteration.

l Logical/Physical independence

OQL differs from standard programming
languages in that the execution of an OQL
query can be dramatically improved with-
out modifying the query itself, simply by
declaring new physical data structures or
new indexing or clustering strategies. The

277

optimizer can benefit from these changes
and then reduce the response time.

Doing such a change in a purely impera-
tive language like C++ requires an algo-
rithm to be completely rewritten because
it cannot avoid making explicit use of phys-
ical structures.

Higher level constructs

O&L, like SQL provides very high level
operators which enables the user to sort,
group or aggregate objects or to do statis-
tics, all of which would require a lot of
C++ tedious programming.

Dynamicity

C+ + is a compiled programming language
which requires heavy compiling and link
edition. This precludes having a function
dynamically generated and executed by an
application at runtime. OQL does not suf-
fer from this constraint since a query can
be dynamically computed immediatly.

Object server architecture

The new generaTion of Object Database
Systems have a very efficient architecture.
For instance, 02 has a page server which
minimizes the bottleneck in multi-user en-
vironment and draws all the benefits of the
CPU and Memory available on the client
side which holds visited objects in its own
memory.

This architecture suits local area network
applications very well. For wide area net-
work and/or more loosely coupled database
applications this architecture can be sup-
plemented by an O&L server, where the
client sends a query to the server which
is completely executed on the server side.
Without a query language, this architec-
ture is impossible.

SQL like

Object Database Systems must propose
the equivalent of relational systems, i.e., a

l

T.

Support for advanced features (views, in-
tegrity constraints, triggers)

Finally, without O&L it would be impos-
sible to offer advanced services in object
database systems. Features such as views,
triggers and integrity constraints need a
declarative language.

Let us now turn to an example based presen-
tation of O&L. We use the database described
in the previous section, and instead of trying to
be exhaustive, we give an overview of the most
relevant features.

query language like SQL. Whenever pos-
sible, OQL looks like SQL. This facilitates
the learning of OQL and facilitates its ac-
ceptance.

3.1 Path expressions

As explained above, one can enter a database
through a named object, but more generally as
soon as one gets an object (which comes, for
instance, from a C++ expression),‘one needs a
way to “navigate” from it and reach the right
data one needs. To do this in O&L, we use the
“ ,, . (or indifferently “->“) notation which en-
ables us to go inside complex objects, as well as
to follow simple relationships. For instance, if
we have a Person “p” and we want to know the
name of the street where this person lives, the
OQL query is:

p.lives,in.building.adddress.street

This query starts from a Person, traverses
an Apartment, arrives in a Building and goes
inside the complex attribute of type Address to
get the street name.

This example treated l-l relationship, let
us now look at n-p relationships. Assume we
want the names of the children of the person
p. We cannot write: p.children.name because
“children” is a List of references, so the inter-
pretation of the result of this query would be
undefined. Intuitively, the result should be a

278

collection of names, br-;t we need an unambigu- at least two children. Moreover we are only in-
ous notation to traverse such a multiple relation- terested in the addresses of the children who do
ship and we use the select-from-where clause to not live in the same apartment as their parents.
handle collections just as in SQL. And the query is:

select c . name select c.lives,in.building.address
from c in p.children from p in Persons,

c in p.children
The result of this query is a value of type where p.lives,in.building.address.street

Bag<String>. If we want to get a Set, we sim- = “Main Street” and
ply drop duplicates, like in SQL by using the count(p.children) >= 2 and
“distinct” keyword. c.lives-in != p.lives,in

select distinct c.name
from c in p.children

Now we have a means to navigate from an
object towards any object following any rela-
tionship and entering any complex subvalues of
an object.

For instance, we want the set of addresses
of the children of each Person of the database.
We know the collection named “Persons” con-
tains all the persons of the database. We have
now to traverse two collections: Persons and
Person::children. Like in SQL, the select-from
operator allows us to query more than one col-
lection. These collections then appear in the
“from” part. In O&L, a collection in the “from”
part can be derived from a previous one by fol-
lowing a path which starts from it, and the an-
swer is:

select c.lives,in.building.address
from p in Persons,

c in p.children

This query inspects all children of all per-
sons. Its result is a value whose type is Bag-
<Address>.

Join

In the “from” clause, collections which are not
directly related can also be declared. As in SQL,
this allows us to compute “joins” between these
collections. For instance, to get the people liv-
ing in a street and have the same name as this
street, we do the following: the Building extent
is not defined in the schema, so we have to com-
pute it from the Apartments extent. To com-
pute this intermediate result, we need a select-
from operator again. This shows that in a query
where a collection is expected, this can be com-
puted recursively by a select-from-where opers-
tar, without any restriction. So the join is done
as follows:

select p
from p in Persons,

b in (select distinct a.building
from a in Apartments)

where p . name = b.address.street

This query highlights the need for an opti-
mizer. In this case, the inner select subquery
must be computed once and not, for each per-
son!

Predicate 3.2 Complex data manipulation

Of course, the “where” clause can be used to A major difference between O&L and SQL is
define any predicate w:hich then serves to select that object query languages must manipulate
only the data matching the predicate. For in- complex values. OQL can therefore create any
stance, we want to restrict the previous query compIex value as a final result, or inside the
to the people living on Main Street, and having query as intermediate calculation.

279

To build a complex value, OQL uses the con-
structors struct, set, bag, list and array.
For example, to obtain the addresses of the chil-
dren of each person, along with the address of
this person, we use the following query:

select struct(
me: p.name,
my-address:

p.lives,in,building.address,
my-children:

(select struct(
name : c.name,
address :

. c .lives,in.building. address)
from c in p. children))

from p in Persons

This gives for each person the name, the ad-
dress, and the name and address of each child
and the type of the resulting value is:

struct result-type<
String me;
Address my-address;
Bag<struct(Strin.g name;

Address address)>
my-children;

3

OQL can also create complex objects. For
this purpose, it uses the name of a class as a con-
structor. Attributes of the object of this class
can be initialized explicitly by any valid expres-
sion.

For instance, to create a new building with
2 apartments, if there is a type name in the
schema, called Listapart, defined by: tydedef
List<<Ref<Apartment> > Listapart; the query
is:

Building
(address: struct(

number: 10,
street: “Main street”),

apartments:
List,apart(Apartment(number: 11,

Apartmentcnumber: 2)))

3.3 Method invoking

O&L allows us to call a method with or with-
out parameters anywhere the result type of the
method matches the expected type in the query.
The notation for calling a method is exactly the
same as for accessing an attribute or traversing a
relationship, in the case where the method has
no parameter. If it has parameters, these are
given between parenthesis.

This flexible syntax frees the user from know-
ing whether the property is stored (an attribute)
or computed (a method). For instance, to get
the age of the oldest child of the person “Paul”,
we write the following query:

select maxcselect c.age
from c in p.children)

from p in Persons,
where p.name = “Paul”

Of course, a method can return a complex
object or a collection and then its call can be
embedded in a complex path expression. For
instance, inside a building b, we want to know
who inhabits those least expensive apartment.
The following path expression gives the answer:

b.less,expensive.is-used,by.name

Although “less-expensive” is a method we “tra-
verse” it as if it were a relationship.

3.4 Polymorphism

A major contribution of object orientation is the
possibility of manipulating polymorphic collec-
tions, and thanks to the “late binding” mech-
anism, to carry out generic actions on the ele-
ments of these collections.

For instance, the set “Persons” contains ob-
jects of class Person, Employee and Student. So
far, all the queries against the Persons extent
dealt with the three possible “objects” of the
collection. If one wants to restrict a query on a
subclass of Person, either the schema provides
an extent for this subclass which can then be
queried directly, or else the super class extent
can be filtered to select only the objects of the

280

subclass, as shown in the example below with
the “class indicator”.

A query is an expression whose operators op-
erate on typed operands. A query is correct if
the type of operands matches those required by
the operators. In thif. sense, O&L is a typed
query language. This is a necessary condition
for an efficient query optimizer.

When a polymorph.ic collection is filtered (for
instance Persons), its elements are statically kno-
wn to be of that claEs (for instance Person).
This means that a property of a subclass (at-
tribute or method) cannot be applied to such
an element, except in t.wo important cases: late
binding to a method, o:r explicit class indication.

Late binding

Give the activities of each person.

select p.activities
from p in Persons

“activities” is a method which has 3 incar-
nations. Depending on the kind of person of the
current, “p”, the right i.ncarnation is called.

Class indicator

To go down the class hierarchy, a user may ex-
plicitly declare the class of an object that can-
not be inferred statically. The interpreter then
has to check at runtime, that this object actu-
ally belongs to the ind:cated class (or one of its
subclasses).

For example, assuming we know that only
“students” spend their time in following a course
of study, we can select those persons and get
their grade. We explici.tly indicate in the query
that these persons are students:

select (Studentlp. grade
from p in Persons
where “course of study”

in p.activities

3.5 Operator cornposition

OQL is a purely functional language: all opera-
tors can be composed freely as soon as the type

system is respected. This is why the language
is so simple and its manual so short.

This philosophy is different from SQL, which
is an ad-hoc language whose composition rules
are not orthogonal. Adopting a complete or-
thogonality, allows us not to restrict the power
of expression and makes the language easier to
learn without losing the SQL style for the sim-
plest queries.

Among the operators offered by O&L but
not yet introduced, we can mention the set op-
erators (union, intersect, except), the universal
(for all) and existential quantifiers (exists), the
sort and group by operators and the aggregative
operators (count, sum, min, max and avg).

To illustrate this free composition of opera-
tors, let us write a rather complex query. We
want to know the name of the street where em-
ployees live and have the smallest salary on av-
erage, compared to employees living in other
streets. We proceed ‘step by step and then do
it all at once. We can use the “define” OQL
instruction to evaluate temporary results.

1.

2.

Build the extent of class Employee (not
supported directly by the schema)

define Employees as
select (Employee) p
from p in Persons
where “has a job”

in p.activities

Group the employees by street and com-
pute the average salary in each street

define salary-map as

group e in Employees
by (street :
e.lives,in.building.address.street)
with (average-salary:

avg(select x. salary
from x in partition))

The group by operator splits the employ-
ees into partitions, according to the crite-
rion (the name of the street where this per-
son lives). The “with” clause computes, in

281

each partition, the average of the salaries
of the employees belonging to this parti-
tion.

The result of the query is of type:

SetCstruct(String street;
float average-salary;)>

3. Sort this set by salary

define sorted-salary-map as
sort s in salary-map

by s.average-salary

The result is now of type

List<struct(String street;
float average-salary;)>

4. Now get the smallest salary (the first in
the list) and take the corresponding street
name. This is the final result.

sorted-salary-map CO] . street

5. In a single query we could have written:

(sort s in(

group e in (select (Employee) p
from p in Persons
where "has a job"

in p.activities)
by (street:
e.lives,in.building.address.street)
with (average-salary:

avgcselect x.salary
from x in partition))

)by s. average-salary) CO] .street

3.6 C++ embedding

An oql function is provided as part of the ODMG-
93 C++ binding. This function allows to run
any OQL query. Input parameters can be passed
to the query. A parameter is any C++ expres-
sion. Inside the sentence, a parameter is referred
to by the notation:

$<position><type>

where “position” gives the rank of the pa-
rameter and “type” is a tag indicating the kind
of the parameter (“0” means object, “c” means
collection, “i” integer, etc.). Let us now write as
an example the code of the “ancestors” method
of the class Person. This example shows how a
recursive query can be easily written that gives
O&L the power of a recursive query language.

Recursive query

Set < Ref<Person>>
Person::ancestors()(
Set < Ref<Person> > result;
oql(result,

‘If latten
(select distinct a->ancestors
from a in $1~)
union $lc”, parents) ;

return result;

3;

“$1~” refers to the first parameter, i.e, the
Set “parents”. In the select clause, we com-
pute the set of ancestors of each parent. We
get therefore a set of sets. The “flatten” oper-
ator converts this set of sets into a simple set.
Then, we take the union of this set with the par-
ent set. The recursion stops when the parents
set is empty. In this case, the select part is not
executed and the result is the empty set.

4 Conclusion

ODMG-93 provides a complete framework within
which one can design an object database, write
portable applications in C++ or Smalltalk, and
query the database with a simple and very pow-
erful query language. Based on the OMG, SQL,
C++ and Smalltalk standards, available today
in industrial products such as 02, it is supported
by the major actors of the object database world.

ODMG-93 will of course be improved over
time. New features will be added to the stan-
dard to make it more complete. The ODMG
group is currently working on extensions of the

282

standard and on the convergence of O&L with
SQL.

References

[Catt94] Rick Cattell and al. The Object
Database Standard: ODMG-93, release
1.1. Morgan Kaufmann, 1994

P21 02Technology. The 02 User Manual, re-
lease 4.5.

283

5,.

