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Abstract

The "Cube-Query-Language” (CQL) is a new query
language for flexible access to Multidimensional Data-
base Systems. CQL provides a high level user interface
for specifying queries in the context of multidimen-
sional data analysis. The multidimensional view is
widely accepted for typical decision support require-
ments like "Online Analytical Processing”. CQL
directly supports this view and circumvents the prob-
lems of formulating multiple groupby’s and equijoins in
a typical SQL-notation. Furthermore, in comparison to
currently available OLAP-solutions, CQL provides a
SQL like query interface, making it easy for an experi-
enced SQL-programmer, to formulate decision support
queries efficiently.

The paper details the two-step query processing
Sound in the COL approach: "data querying” and "data
presentation”. This description of the query language
design is accompanied by a lot of examples, stemming
from a joint research project with our industrial part-
ner; thus showing the expressive power and flexibility of
the query language design.
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1 Introduction

During the last few years, the application area of
“Online Analytical Processing” (OLAP) has reached a
significant commercial market potential and an increas-
ing interest within the database research community
([2]). Many commercial vendors offer OLAP-solutions
with a more or less intuitive graphical user interface for
querying and presentation ([1], [4], [9]). The “Cube-
Query-Language “ (CQL), which is introduced in this
paper, provides a high level textual access to multidi-
mensional databases. It is developed in the context of
our CUBESTAR project. CUBESTAR is an experimental
database system based on an extended multidimen-
sional data model.
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Nowadays, in the case of "Relational OLAP", each
query is transformed into complex SQL-statements
({4]). However, in the case of "Multidimensional
OLAP", a query is mostly reformulated from a graphi-
cal user interface into a product specific query language
([91). We believe that the missing of a (de-facto) stan-
dardized multidimensional query language must be
eliminated by an intuitive textual query language for
efficiently formulating complex decision support que-
ries, which can be directly transformed into a query
execution plan.

Therefore, the main advantage of CQL is to directly
reflect the conceptual distinction between qualifying
and quantifying data, which is natural to the multidi-
mensional view ([11]). Furthermore, the intensive use
of hierarchical structured dimensions is natively sup-
ported within the query language. In contrast to SQL,
CQL supports aggregation operators as 1st class opera-
tors, which reflect the core of analytical processing. In
comparison to other query languages, CQL supports
client-server computing within the language design,
e.g. the select-statement for computing values has to
be executed on server side, whereas the show-statement
is a primary candidate for execution on client side,
handling all table presentation aspects. The key advan-
tage of CQL. and the data model behind the language is
that the user doesn’t have to take care about the origin
of the data. Instead, the user specifies the context and
the resulting figures for an analysis. Additionally, CQL
implements constructs to use the feature extension of
the CUBESTAR'’s data model (CROSS-DB) for selection
and result presentation.

The presentation of the CQL syntax is accompanied
by a lot of examples. These examples stem from a joint
research project between our institute and a large Euro-
pean market research company. In their business, quan-
tifying data like sales, stock, or pricing are collected
and identified in a three dimensional context obtaining
all observed articles (product dimension), all shops
reporting some figures (shop dimension) and the month



in which the data is collected (time dimension). A pos-
sible (tabular) representation of such data is given in
Figure 1.

WATS813 | WasherStore | 07/96 13 2 1011.-
NOVA | WasherStore | 07/96 2 8 999.-
DUETT | WasherStore | 07/96 12 5 1234.-
WATS813 |ElectroWorld | 07/96 7 3 1111.-
DUETT |ElectroWorld| 07/96 4 10 1199.-
WAT813 | HyperWash | 07/96 8 6 1099.-

Figure 1: A sample product tact table

These data serve as a dataset for different types of
analysis like segmentations along a predefined aggrega-
tion hierarchy (e.g. product family - product group -
product area) as well as some special analysis (e.g.
cross assortment analysis). Additionally, product fam-
ily or product group specific information based on time
and location invariant features are used for giving fur-
ther details of a given descriptor (e.g. the brand of a
product).

product .- brand= | itype’ | spini | water.| energy:
WATS813 ASKO top 1300 65 18kw
NOVA AEG front 1000 68 19kw
DUETT Micle top 1400 63 18kw

Figure 2: A sample feature table for the
‘washer’ product family

The rest of this paper is organized as follows. In the
next section, the architecture of the CUBESTAR and the
CROSS-DB data model are sketched in order to provide
a basic understanding of multidimensional analysis.
The third section describes the CQL select-statement
with the semantics of each single clause in full detail.
The show-statement, e.g. the client side, is described in
section 4. Section 5 introduces the CQL-supported ses-
sion concept, followed by a comparision of CQL with
other query language approaches. The paper closes
with a conclusion, summarizing the current and ongo-
ing work.

2 The CUBESTAR-Project

Before going into the detailed description of the “Cube
Query Language” (CQL.), this section sketches the prin-
cipal architecture of the CUBESTAR and the main issues
of the CROSS-DB data model, thus providing a basic
understanding of the system and the underlying data
model. For a detailed discussion of the model itself, we
encourage the reader to refer to [7].

2.1 Client-Server Architecture of CUBESTAR

The CUBESTAR is an experimental multidimensional
database system for performing efficient statistical
analysis procedures on ultra large data sets. Based on
the principles of modularity and scalability, the CuBg-
STAR is a typical client-server application which has
great impact on the way of data analysis.

At the client, a user formulates a query within the
notion of the select-statement and sends the request
to the CUBESTAR Server (see (1) at Figure 3). The server
receives the query, computes and temporarily keeps the
query’s result, and returns only a reference of the result
to the client side. If the user is ready for presentation of
the result, a show-statement ‘activates’ already com-
puted results of former queries and returns the data to
the client (see (2) at Figure 3). On the client side, these
multidimensional data are flatened into a possible com-
plex structured and well-ordered two-dimensional
table. This two-step process is justified by the facts that
on the one hand, the server should not be considered
with presentation issues and, on the other hand, client
hardware is able to efficiently process presentation
aspects and is favoured by powerful implementation
platforms (Java).

select-statement .

CUBESTAR ;
Client |show-statement Status®(
resentation

%Odme data®  temporarily

materialized
query results

Figure 3: The two-phase query processing
scheme of CUBESTAR

2.2 The CROSS-DB Data Model

As mentioned in the introduction, the CROSS-DB data
model is a generic representative of already existing
multidimensional data models capable of covering
most of the existing multidimensional data modelling
approaches and thus providing a superset of the differ-
ent modelling techniques.

The cells of a multidimensional data cube hold sin-
gle quantitative numeric values like sales of stock fig-
ures. In the sense of a composite primary key, these
cells are uniquely identified by a set of qualifying infor-
mation, e.g. the product “WAT813’ was sold in the shop
‘ElectroWorld’ in ‘July96’. The identifying items like a
product, shop, or period identifier belong to exactly one
dimension (products, location, time). Based on the set
of instances, classifications forming a balanced and par-
titioned tree of identifiers can be declared from the
application’s point of view. For example, single prod-
ucts are grouped by product families and these, in turn,
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may be grouped into product groups and product areas.
The time dimension gives a good example for grouping
days by different classifications, i.e. by months - quar-
ters - years or by weeks and weekly oriented time gran-
ules. Each level of a classification is called the level of
granularity. The base level corresponds to the finest
granule. The root of a classification tree reflects the
coarsest granule. In analogy to factual instances, all
identifiers within a classification hierarchy may serve as
a coordinate for a specific cell in a multidimensional
data cube. Therefore, a cell identified by the classifica-
tion identifiers ‘Washers’, ‘California’ and ‘07/96’ may
hold the totals of sales for all washing machines sold in
any shop in California in the given period.

To avoid extremely sparse cubes and high dimen-
sionality, the CROSS-DB data model allows to charac-
terize single classification nodes by further classifica-
tion node specific information, called features. At the
base granularity level, a feature details the description
of a specific item, e.g. a washing machine may be char-
acterized by its loading type {(‘top’- or ‘front’-loader),
its maximum spin speed, its water and energy usage and
so on. Each higher level classification node covers the
set of all features which are common to all subsumed
base instances. For example, the node ‘Washers’ is
described among others by a feature ‘water usage’ with
a value range from 40 upto 105 liters, reflecting the
minimum and maximum of water usage specifications
for all washing machines. Furthermore, the node above
the washers, ‘home appliances’ is characterized by a
feature ‘energy usage’ with a value ranging from 0,5W
upto 2233KW.

With this knowledge about the multidimensional
data model in mind, the rest of this paper is dedicated to
the detailed description of the “Cube Query Language”
(CQL). The following section explains the computation
part, i.e. the select-statement, whereas the fourth sec-
tion explains the show-statement, primarily for execu-
tion on the client side.

3 CQL - Computation

This section covers the description of syntatic elements
of the “Cube Query Language” (CQL) providing user
access to the multidimensional data cube. In the follow-
ing subsections, we first explain the construction pro-
cess of building a query context. Then, the steps of
selecting cube partitions (Slice and Dice), applying
cell-oriented as well as aggregational operators to the
specified cube, and handling of nested (sub-)queries are
described in detail. At the end of the section, we intro-
duce CROSS-DB’s specific means of supporting hori-
zontal analysis.

3.1 The Query Context

In this subsection the construction of a query’s multidi-
mensional context is presented. This process consists of
the two steps: building the cube of discourse and select-
ing the special part of interest of the potentially very
large data cube. The selection criteria may be based on
qualifying as well as quantifying data. '

The FROM-Clause:
Creating the universe of discourse

In the FROM-clause of a select-statement, the user
specifies the dimensions of the cube, forming the
analysis objective {cube of discourse) of the specified
query. For example, the statement below constructs a
three-dimensional context consisting of the product,
location, and time dimension for the current query. The
query returns all sales and stock figures of the current
database.

SELECT SALES, STOCK

FROM Products P, Location L, Time T

The abbreviations following the dimension identi-
fier address instances of the former dimension and are
considered as aliases for the use in following clauses,
e.g. the wHERE-clause. The instantiation process of a
dimension may be seen as a role assignment.

The referencing of a specific cell must fulfill their
dimension requirements. For example, the SALES vari-
able could not be retrieved in a lower-dimensional con-
text. On the other hand, it is possible to specify more
dimensions as needed to reference a specific cell. For
example, the two dimensional variable CURRENCY may
reflect a conversion table and hold the time dependant
exchange rate for a country specific currency into USD.
When selecting this cell with the dimensions ‘Location’
and ‘Time’, the currency is supposed to be the same for
all products.

SELECT CURRENCY

FROM Products P, Location L, Time T

In this case, the lower-dimensional data cube for
this cell is artificially blown up, by logically copying
the values into the undefined dimensions.

The WHERE-Clause: Slicing and Dicing

Slicing and Dicing within the query’s context cube is
done by specifying a selection predicate based on hier-
archically structured qualifying information. The inten-
sive use of classification hierarchies provides a power-
ful addressing scheme for quantifying data. The quali-
fying selection predicates are described within the
WHERE-clause of a select-statement. For example,

. WHERE P.Group = ‘Home Appliances’
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limits the product dimension to all articles being sub-
sumed by the product group ‘Home Appliances’. The
dimensions can be limited independently from one
another. A single selection predicate consists of the
dimension’s alias and the granularity of the specifica-
tion. Classification nodes can be positively addressed as
well as excluded from the selection. To construct com-
plex selection expressions, simple predicates can be
combined to propositional logical predicates using
parenthesis, Or, and AND constructs. The following
statement demonstrates this for the product dimension.

SELECT SALES
FROM Products P, Location L, Time T

WHERE P.Group = ‘home appliances’ AND
((P.FPamily = 'washers’ AND
P.Article != ’'DUETT’) OR
P.Family = ’'dryers’)

The selection process becomes multidimensional by
listing complex selection expressions for each dimen-
sion in the WHERE-clause. The separator ’,’ between the
predicates holds the semantics of the AND-operator in
the multidimensional context. If a selection predicate is
omitted for a single dimension D, the selection defaults
to all elements of this dimension, e.g. D.ALL = ‘*’.

SELECT SALES

FROM Products P, Location L, Time T

WHERE P.Group = ‘home appliances’,
L.Region = ‘California’,

Group
Family
Article
Figure 4: Selection by classification

T.Year = ‘1996’ AND T.Month != ‘01/96°
L . Time Year
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8 “ ! }>washers
: . i 1
-] +
e 1
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Slicing and Dicing of the data cube may often not
fulfill the user’s selection requests. CQL refines the
selection process allowing selection predicates not only
based on classification nodes but additionally on feature
values, characterizing the single items (see Figure 2).
This additional selection capability results in a detailed
selection mechanism which is illustrated in Figure 4. To
distinguish between the two types of selection capabil-
ities in the data cube, the use of a feature predicate is
addressed by assigning the feature to the applicable
dimension with an arrow.

WHERE P->MaxSpin = ‘1400’ AND
P->WaterUsage < ‘65
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In addition to feature specification, this example
further addresses the fact that feature values may have
a numerical data type and therefore allow ’=’, ’<’, "<=’,
’>=’, and >’ as well as their negations.

Time
-+——Year

Location

/llP

= California
Washmgtun

° T
Area T T
Group
Family
Article
Figure 5: Selection by feature

T {]2!96 03!96

The RESTRICT-Clause

As seen in the above subsection, limiting the data cube
to the interesting partitions, is handled by the use of
qualifying information in an appropriatc manner.
Nevertheless, CQL allows the user to further restrict the
selected partitions of the multidimensional cube by
predicates over quantifying data. The following exam-
ple restricts the selected cells to only those sales figures
which are outlier (less or equal five and greater or equal
20) for an analyist. To emphasize the two-step selection
process, the predicates over quantifying information are
specified in the rResTrRICcTClause:

SELECT SALES

FROM Products P, Location L, Time T

WHERE P.Group = ‘washers’

RESTRICT SALES >= 20 OR SALES <= 5

In the case of the RESTRICTclause, only those cell
variables can be used in a predicate, which are listed in
the first line of the select-clause. Furthermore, the
constant value 'NULL’ can be used as an operand. The
‘NULL’-value addresses cells, having no 'real’ values,
i.e. the sales of 'Nova’ in the shop ’ElectroWorld’
(Figure 1).

3.2 Operations based on the Multidimensional
Data Cube

The data model distinguishes between two classes of
operators on multidimensional data cubes: cell-ori-
ented and aggregational operators. Cell-oriented oper-
ators are used to combine quantifying data from one or
more cells into a new value, e.g. multiplying each sales
figure with the corresponding price to get the turnover.
Aggregating operators are used to build higher-level
data over a selected area of cells of the same type, e.g.
building the sum of all quarterly washer sales for single
regions. Operators are specified in the SELECTclause
of a statement and cannot be mixed within a single



statement due to granularity consistency. The CQL rep-
resentation and application of both classes are pre-
sented in the following two subsections.

Cell-Oriented Operators

Cell-orientied operators are used to join single cells of
a selected data cube partition and derive new values for
the operands. The set of cell-oriented operators consists

of unary operators like the unary minus, the signum’

(“sGN()’) and the absolute function making numeric
values positive (‘ABS () ). Binary cell-oriented opera-
tors are left associative and cover the set of basic arith-
metic operations (‘+°, ‘-7, ***, ‘/”) and the minimum
and maximum functions (‘CMIN ()’, ‘CMAX () ") return-
ing the smaller/greater value of the operands. Operands
can be cells as well as constants.

The following CQL-statement for example,
retrieves the turnover figures of the July96 sales values.
The new cells, being delivered to the user, obtain the
same dimensionality and granularity in each dimension
as their source cells, SALES and PRICE.

SELECT SALES * PRICE

FROM Products P, Location L, Time T

WHERE T.Month = ‘07/96’, P.Family = ‘washer’

An implicit adjustment of dimensionality and gran-
ularity is performed by the operators, if the operands do
not own the same granularity. Referring again to the
data set of the introduction section, the computation of
the articles’ price in USD is specified with the follow-
ing query:

SELECT PRICE * CURRENCY

FROM Products P, Location L, Time T

WHERE T.Month = ‘07/96’, P.Family = ‘washer’

As detailed in the subsection describing the FROM-
clause, in a first step, the dimensionality of the CUR-
RENCY-cube is adjusted to the dimensions, listed in the
FRoM-clause. In a second step, the granularities of the
operands are adjusted to a common base. Thus, the
sample query above results in values for each single
article, each shop that sold the article, and each day,
because every day the currency and therefore the price
in USD changes.

Aggregation Operators and the UPTO-Clause

While cell-oriented operators on the one hand focus on
the single cells and therefore result in the transforma-
tion of input data cubes to a target cube with the same
or even finer granularity, aggregation operators on the
other hand condense the input data cubes to ones with
coarser granularity. When analyzing data in statistical
environments, it is often necessary to compress an
immense amount of detailed raw data into some few,
but characteristic values. This often complex analysis
process is handled by a series of applications of aggre-

gating operators. To allow great modelling flexibility,
CQL only supports the following basic aggregation
operators:

SUM(}, AVG(), COUNT(), CARD{(), MIN(), MAX()

The following example illustrates the application of
the SUM () -operator in the SELECT-clause by summing
up SALES figures.

SELECT SUM(SALES)

FROM Products P, Location L, Time T

WHERE P.Group = ‘Home Appliances’,
L.State = ‘California’, T.Year =

UPTO P.Family, L.Region, T.Month

*1996°

Whereas cell-oriented operators implicitly decide
the granularity of the target cube, aggregating operators
need an explicit specification of the granularity of the
target cube. This specification is done in the UpTO-
clause. Referring again to the sample statement above,
crossed-up figures are computed for each product fam-
ily being subsumed by ’Home Appliances’, each region
in *California’ and the months *01/96’ until *12/96°,

Thus, the application of an aggregation operation to
a specified data partition always needs the definition of
upto-values. These values fix the target granularity, e.g.
the grouping level of the output cube. If the UpTO-
clause is ommitted, the target cell defaults to one value
for that dimension.

On the Semantics of Aggregation-Operators

While the semantics of the sSUM()- and AVG()-
operators may be clear, some remarks have to made wrt.
the semantics of MIN()/MAX () and COUNT ()/CARD().

The aggregation operators MIN () and MAX () obtain
a single variable as operand and result in the lowest/
highest value for each partition explicitly specified in
the uPTO-clause. In contrast, the cell-oriented operators
CMIN{) and CMAX () are binary operators and take for
each operand cell the lower, respectively the higher
value.

Except for the COUNT() and CARD ()-operator,
‘NULL‘-values do not have any impact on the applica-
tion of aggregation operators, because they are treated
as non existent. This semantics is also applicable wrt.
the COUNT () -operator, returning the number of cells
which are not ‘NULL’-values. The CARD()-operator
also counts the number of cells, but ‘NULL’-values are
not taken into account. Therefore, the application of the
CARD () -operator results in the cardinality of the cur-
rent cube.

3.3 Subqueries in the WITH-Clause

Up to now, only "flat” select-statements have been
considered. To express more complex queries, subque-
ries can be included hierarchically within a single
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select-statement. This mechanism allows to define
_ variables in a subquery, which can be reused in the
outer query. The following sample statement makes use
of this possibility.
SELECT SALES / DENUM

FROM Products P, Leocation L, Time T
WHERE P.Group = “Home Appliances’,

L.State = “California’, T.Month = “07/96
WITH {(SELECT SUM{SALES) AS NUM
UPTO P.Article, L.Region, T.Month),
(SELECT SUM{SALES) AS DENUM
UPTO P.Family, L.Region, T.Month)

This query computes the sales ratio within the prod-
uct family of appliances sold in a Californian store in
July96 for every single item. For the sake of modularity
of the query expression, the cubes holding the numera-
tor and denumerator are each computed independently
within a subquery. Therefore, the wrTH-clause consists
of a list of subqueries, defining new cubes which may
be referenced in the outer query.

To stay consistent with the embracing query state-
ment, the inner queries inherit the FROM-clause, e.g. the
context, as well as the WHERE-clause, e.g. the current
data partition. However, if the From-clause is specified
in an inner query statement, the set of dimensions must
be a subset of the outer query’s FrROM-clause.

3.4 Horizontal Analysis

As already iltustrated in section 2, features describe the
classification nodes more detailled. On the one hand,
this enables a more detailed selection mechanism as
shown in subsection 3.1, on the other hand, the use of
features enables a more detailed illustration of aggre-
gated values, called feature split. Extending the simple
select-statement from section 3 by an application of
a feature split, the result of a vertical analysis process,
e.g. the suM () -operator with UPTO-clause, is split into
the different instances of the specified features:

SELECT SUM({SALES)

FROM Products P, Location L, Time T

WHERE P.Group = ‘Home Appliances’,

L.State = ‘California‘, T.Year = ‘1996

UPTO P.Family, L.Region, T.Month

BY P->Energy, L->ShopType

This query reports monthly sales values for each
product family per region. Each single sales figure is
split up according to the features Energy and ShopType.
For example, cells will be generated holding the sales of
washers with low (or medium or high) energy usage
sold in a cash&carry market (or retail store or hyper-
market). Due to the classification node sensitive nature
of the features, the By-clause may only reference fea-
tures, which are available at the highest common node,
specified in the query, e.g. the WHERE-clause. This pre-
vents feature splits which are not common to underly-

ing data, i.e. splitting the washing machines by CPU-
type and disk capacity (Figure 2), which would be
applicable for ‘computer’-sales figures.

To put it in a nutshell, the feature mechanism is a
seamless extension of the multidimensional modelling
approach with a hierarchical classification tree. In addi-
tion to a more detailed selection criterion, features
enable the technique of horizontal analysis, e.g. split-
ting the result of a classification oriented aggregation
operator (vertical analysis) according to the required
features.

4 CQL - Presentation

As already sketched in the introduction, the design of
CQL divides the analysis process into the steps of com-
putation and presentation, to directly support the under-
lying client-server architecture. This distinction
between computation and presentation was founded on
experiences from a project with our industrial partner.
Apparently different queries refer to the same data
material and differ only in the presentation, e.g. with or
w/o sorting, including of subtotals, etc.

Defining the Table Structure

The show-statement triggers the presentation process
of the result of the last select-statement and produces
a hierarchically structured table to illustrate the (flat-
tened) multidimensional data cube. Optionally the key-
word PERCENTAGE indicates that the table figures shall
be shown as relative values. Furthermore, a cell identi-
fier can be stated, to display the (temporarily material-
ized) results of former queries (see section 5 for more
details).

In the From-clause of a show-statement, the dimen-
sions of the queried data cube can be specified. These
dimensions have to match with those in the query state-
ment and are only used for defining aliases for use
within the the current show-statement. The structure of
the table is specified in the STRUCTURE-clause of the
show-statement. Due to the two-dimensionial nature of
a table, the STRUCTURE-clause is divided into the
HEADER-subclause, specifying the horizontal appear-
ance and the sTUB-subclause, defining the vertical
appearance of the table. Referring to the ongoing exam-
ple, the show-statement

SHOW

FROM Products P, Location L, Time T

STRUCTURE

HEADER P.Article
STUB T.Month (L.Region)

produces the nested table of Figure 6.
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01/96 | north 31 79 66
south 22 62 51
02/96 | north 53 53 72
south 24 98 33
03/96 | north 42 23 44
south 19 53 62

Figure 6: A sample table with a nested stub

As illustrated in the above Figure, the order of nest-
ing the dimensions within the header or the stub is spec-
ified in the STRUCTURE-clause by nesting the items
denoting the classification hierarchy in parenthesis.
Therefore, articles are positioned on the horizontal axis.
Within the stub of the table, the values are first grouped
by month, and then nested by regions.

4.1 Including of Subtotals

The option for additionally displaying the column
or row subtotals is specified by appending the keyword
TOTALS after the classification items within the
HEADER- or STUB-subclause.

STRUCTURE

HEADER P.Article TOTALS
STUB  T.Month (L.Region TOTALS)

This modified STRUCTURE-clause of the sample

show-statement above leads to the following table

(Figure 7).

" SALES . | DUETT ] _NOVA - | WATS13 | 3.
01/96 | north 31 79 66 176
south 22 62 51 135
Y 53 141 117 311
02/96 | north 53 53 72 178
south 24 98 33 155
> 77 151 105 333
03/96 | north 42 23 44 109
south 19 53 62 134
b3 61 76 106 243

Figure 7: A sample table with nested subtotals

Again, the mechanism of including subtotals
reflects the client-server idea behind the CQL-language
approach. Totals in the Large are computed on the data-
base server. Totals in the Small can be computed with-
out any performance problems on modern clients like
PC’s, without concerning the DB-server with presenta-
tion aspects.

Sorting

Because of the set oriented character of the edges of a
multidimensional cube, sorting is no data model sup-
ported operator. Nevertheless, sorting is an important
tool for intelligent and intuitive data presentation. The

show-statement of CQL supports two different sort
modes: lexical sorting based on qualifiying informa-

tion, e.g. on header and stub titles, and numerical sort-
ing based on quantifying information, e.g. on the cell
values.

The sort order for qualifying information, e.g.
according to the items of a classification, is specified in
the SORT-clause of the show-statement. The following
example sorts the column arrangements by ascending
article identifiers.

SHOW
FROM Products P, Location L
STRUCTURE

HEADER P.Article

STUB L. Shop

SORTED BY P.Article

To sort the table based on quantifying information,
the row or column, specifying the sequence, which
defines the order of the complete table, has to be explic-
itly specified in the SORTclause (e.g. P.Article =
'Nova ‘). The following sample table (Figure 8) illus-
trates this kind of table sorting.

N Z"_' SALES“ :3,‘ R Sabondie »H;
03/96 | north 23 42
02/96 | north 72 .53 53
03/96 | south 62 .. 53 19
01/96 | south 51 62 - 22
01/96 | north 66 19 31
02/96 | south 33 98 24

Figure 8: A sample table sorted by qualifying Information

The third way of specifying a sort criterion is to nest
sortings by cumulated specifications for single sort cri-
terions, based on qualifying data as well as on quantify-
ing data.

Cumulating

Another characteristic of the show-statement is the
mechanism of cumulation, e.g. summing up single
values according to a predefined order. Figure 9 illus-
trates this perspective. The cumulation is triggered by
adding the keyword cum to the name of the classifica-
tion item within the STRUCTURE-clause.

The following example is based on Figure 6 and
cumulates the sales values along the article dimension.

SHOW
FROM Products P, Location L
STRUCTURE
HEADER P.Article CUM
STUB L. Shop

SORTED BY P.Article
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- AL ) NOVA WATS13
01/96 } north 31 110 176
south 22 84 135
02/96 | north 53 106 178
south 24 122 155
03/96 | north 42 65 109
south 19 72 134

Figure 9: A sample table with cumulated rows

5 Supporting Session with CQL

In contrast to other query languages, CQL provides the
possibility to name the resulting data cube and force a
materialization of the query’s result. For these new
cells, the user is ensured that the data cube stays acces-
sible for the current session or until it is explicitly
dropped. In order to save processing time, the data par-
tition may remain materialized during the session, to be
implicitly used by the underlying optimization logic for
efficiently answering queries of other users . With this
mechanism in mind, often used queries can be explic-
itly pre-aggregated in order to get a considerable faster
response to this family of queries ([8]).

Named cells can be displayed by use of the show-
statement parameterized with the cell identfier. If
select-statements are not explicitly named, each
show-statement belongs to the last query. A new query
or the end of the session unfixes/drops the temporarily
materialized query’s result.

CQL> SELECT SUM(SALES) AS VideoSales
CQL> FROM ...

CQL> SELECT ...

CQL> SHOW
CQL> STRUCTURE ...
// refers to the last query

CQL> SHOW VideoSales
CQL> STRUCTURE ...
// refers to the first query

6 Comparison to SQL and Others

Designing query languages for special purposes has a
long tradition in the database research community.
Many proposals for efficiently querying complex tables
have been made especially in the area of statistical and
scientific databases. [10] serves as a comprehensive
survey of some approaches.

Within a project with our industrial partner, we
modelled and programmed a set of typical queries taken
from the aera of market retail research ([5], [6]) in dif-
ferent query languages. This section takes the brand
concentration analysis as a representative query and
compares the query sepcification in CQL, pure SQL
({12]), and Oracle Express ([9]). We intentionally omit

a comparison with the CUBE-extension of SQL ([3]).
As an extension to the common ‘group by’-clause of
SQL., the CUBE-operator computes all possible aggre-
gation combinations based on a set of ‘group by’-
attributes. Thus, for N quantitative values the output’s
cardinality becomes 2N, First, this exponential growth
of data volume is not capable in our application. Sec-
ond, none of our observed analysis needs all (!) the
aggregation combinations.

6.1 Brand Concentration

The brand concentration gives information, to what
degree the sales of articles concentrates on certain
brands. It is determined, upto which part single brands
are responsible for the total sales. The sales values are
sorted in a numerically descending order and are cumu-
lated by their brands. The result is often presented as a
so called "Lorenz Curve”. A steep rising curve means,
that with a few articles most of the sales is done,
whereas a moderate rising means, that the demand for
the different models is uniform.

SELECT SUM(SALES)

FROM Products P, Location L, Period T

WHERE P.Gxoup = ‘“...’, L.Country = “...7,
T.Month = ...’

UPTO P.Group, L.Country,

BY P->Brand

T.Month

SHOW
FROM Products P, Location L,
STRUCTURE
HEADER P->Brand CUM
STUB T.Month
SORTED BY T.Month = ‘..

Period T

.* DESC

Figure 10: Brand Concentration Analysis (CQL)

In the select-statement of the CQL-version, the
sales figures are aggregated upto a single total sales
value and then split up by the different brands, resulting
in single sales figure for each brand. In the following
show-statement, these numbers are cumulated in the
direction of the brands. The ordering of the brands is
handled by fixing the specified month (or country
name) and by numerical sorting the figures accordingly
to this month.

6.2 Brand Concentration (SQL Version)

As detailed in Figure 11, the SQL version of this query
results in a typical star query with one relation holding
the facts (‘Panel’), e.g. sales figures for the single arti-
cles (Figure 1) and relations reflecting the classification
hierarchy (‘ProductClassification’, ‘ShopClassifica-
tion’). Additionally, the relation ‘ProductFeature’ holds
the charcteristics of the single articles (Figure 2). In a
first step, aggregated sales figures are temporarily
stored in the relation Temp. This relation serves in a
second step for the cumulation process. Cumulation in
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INSERT INTO Temp {(Group,
VALUES (SELECT PC2.Group,
FROM Panel P, ProductFeature PF,
ProductClassificationl PC1,
ShopClassificationl SC1,
WHERE PCl.Article = P.Article AND
PC2.Family = PCl.Family AND
PC2.Group = ‘...’ AND
5C1.Shop = P.Shop AND
8C2.City = SCl.City AND
SC3.Region = SC2.Region AND
SC3.Country = ‘...’ AND

Country,

Brand, SumSales)
PF.Brand, SC3.Country,

SUM(P.Sales) AS SSales)

ProductClassificatien2 PC2,
ShopClassification2 SC2,

ShopClassification3 SC3

PF.Article = P.Article AND P.Month = ’...’

GROUP BY Group, Brand, Country)

SELECT SUM(T2.SumSales) AS CumSales

FROM Temp T1, Temp T2

WHERE T1.SumSales <= T2.SumSales

GROUP BY T1.Group, T1.Brand, Tl.Country
ORDER BY CumSales

DROP TABLE Temp

Figure 11: Brand Concentration Analysis (SQL)

SQL is done by self joining the relation and a corre-
sponding groupby expression. Furthermore, this rather
complex query fails, if two brands obtain the same sales
value. The only way is to avoid pure SQL and use
dynamic SQL within an additional application pro-
gram,

6.3 Brand Concentration (Express Version)

In comparison to the relational SQL, Express is a repre-
sentative of a multidimensional query language ([9]).
This multidimensionality can be seen in the four
LIMIT-blocks of the sample query, illustrated in
Figure 12. Each LIMIT-expression restricts a classifica-
tion level (identified by a trailing °_D’) either to explic-
itly specified items or implicitly to all subsumed items
within the hierarchy. The hierarchy relationships are
identified by a trailing ’_R’. The feature brand must be
modelled as an own dimension holding all possible
brands. The dimension is restricted to only those brands
which have sales greater than zero.

In analogy to the SQL solution, Express requires the
definition of a new multidimensional cell (Temp), tem-
porarily holding the total sales figures. The cumulation
process is directly supported on the one hand by the
CUMSUM-operator, but, on the other hand, requires a
FOR-loop for every single brand.

6.4 Valuation

The comparison of the three language approaches wrt.
the rather simple brand concentration analysis enables
us to draw the following conclusions:

» SQL and the relational data model are not
appropriate for handling OLAP requirements at the
query specification level. The SQL-version is quite
long and not correctly implementable in pure SQL.

Perhaps SQL3 brings us a step forward.

The multidimensional approach with the distinction
of qualifying and quantifying information seems
quite more intuitive than handling star queries.

» The Express query language enables a powerful
limitation mechanism on the single dimensions and
offers natural access to aggregation operations. The
big disadvantage of Express consists of the very
complex and unfamiliar query syntax.

Generally, the CQL query language approach inher-
its the advantages of both approaches.

* The query syntax of CQL is similar to SQL, making
it easy to understand and use.

* The multidimensional data model with hierarchical
classifications as background knowledge enables
flexible analysis techniques.

7 Conclusion

This paper introduces the new query language CQL for
Multidimensional Database Systems. The main advan-
tages of this approach are: first, the distinction of qual-
ifying and quantifying information is conceptually the
heart of the language design. This results in advantages
like handling aggregation operators as 1st class opera-
tors and using classification hierarchies as background
knowledge at a conceptual level. Second, the distinction
between the select- and the show-statement reflects
the underlying client-server architecture, thus distribut-
ing specific tasks to the apropriate modules, e.g. com-
putation to the server, presentation to the client. Last,
the session concept makes the application of controlled
materialization of query results easy and useful.
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LIMIT Product_Group_D T0
LIMIT Product_Family D TO Product_Group_R
LIMIT Product_Article_D TO Product_Family_ R

LIMIT Location_Country D TO ’

LIMIT Location_Region D TO Location_Country_ R

LIMIT Location_City D TO Location_Region_R
LIMIT Location_Shop_D TO Location_City R

LIMIT Time_Month_D TO ‘...*

LIMIT Product_Brand_D KEEP TOTAL (SALES Product_Group_D Location_Country_D Time_Month_D) GT 0

SORT Product_Brand_D TOTAL(SALES Product_Group_D Location_Country_ D Time_Month_D)

DEFINE VARIABLE Temp DEC <Product_Brand_D Product_Group_D Location_Country D Time_Month_D>

Temp = TOTAL({(SALES Product_Group_D Location_Country_ D Time_Month D)

FOR Product_Brand_D DO
ROW Temp CUMSUM (Temp Product_Brand_D)
DOEND

Figure 12: Brand Concentration Analysis (Express)

At the implementation sector, we have a prototypi-
cal CUBESTAR operational, including a complete CQL-
parser and a translation to SQL-statements for process-
ing on Oracle 7.3. On the client side, we have imple-
mented a rudimentary ASCII-based table generator, but
are going to reimplement this client in Java.

Although, we live in a world of graphical user inter-
faces, we believe that a textual query language is essen-
tial for Multidimensional Database Systems. In addi-
tion to an extreme expressive power, queries can be pro-
cessed in a Dbatch-orientied manner ("OFFline
Analytical Processing").
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