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Abstract 

The “Cube-Query-Language” (CQL) is a new query 
language forjexible access to Multidimensional Data- 
base Systems. CQL provides a high level user intelface 
for specifying queries in the context of multidimen- 
sional data analysis. The multidimensional view is 
widely accepted for typical decision support require- 
ments like “Online Analytical Processing “. CQL 
directly supports this view and circumvents the prob- 
lems offormulating multiple groupby’s and equijoins in 
a typical SQL-notation. Furthermore, in comparison to 
currently available OLAP-solutions, C&L provides a 
SQL like query interface, making it easy for an experi- 
enced SQL-programmer to formulate decision support 
queries eficiently. 

The paper details the two-step query processing 
found in the CQL approach: “data querying” and “‘data 
presentation”. This description of the query language 
design is accompanied by a lot of examples, stemming 
from a joint research project with our industrial part- 
ner thus showing the expressive power andflexibility of 
the query language design. 

Keywords: Query Language, Multidimensional DBS 

1 Introduction 
During the last few years, the application area of 
“Online Analytical Processing” (OLAP) has reached a 
significant commercial market potential and an increas- 
ing interest within the database research community 
([2]). Many commercial vendors offer OLAP-solutions 
with a more or less intuitive graphical user interface for 
querying and presentation ([l], [4], [9]). The “Cube- 
Query-Language “ (CQL), which is introduced in this 
paper, provides a high level textual access to multidi- 
mensional databases. It is developed in the context of 
our CUEESTAR project. CUBESTAR is an experimental 
database system based on an extended multidimen- 
sional data model. 
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Nowadays, in the case of “Relational OLAP”, each 
query is transformed into complex SQL-statements 
([4]). However, in the case of “Multidimensional 
OLAP”, a query is mostly reformulated from a graphi- 
cal user interface into a product specific query language 
([9]). We believe that the missing of a (de-facto) stan- 
dardized multidimensional query language must be 
eliminated by an intuitive textual query language for 
efficiently formulating complex decision support que- 
ries, which can be directly transformed into a query 
execution plan. 

Therefore, the main advantage of CQL is to directly 
reflect the conceptual distinction between qualifying 
and quantifying data, which is natural to the multidi- 
mensional view ([l 11). Furthermore, the intensive use 
of hierarchical structured dimensions is natively sup- 
ported within the query language. In contrast to SQL, 
CQL supports aggregation operators as 1 st class opera- 
tors, which reflect the core of analytical processing. In 
comparison to other query languages, CQL supports 
client-server computing within the language design, 
e.g. the select-statement for computing values has to 
be executed on server side, whereas the show-statement 
is a primary candidate for execution on client side, 
handling all table presentation aspects. The key advan- 
tage of CQL and the data model behind the language is 
that the user doesn’t have to take care about the origin 
of the data. Instead, the user specifies the context and 
the resulting figures for an analysis. Additionally, CQL 
implements constructs to use the feature extension of 
the CUBESTAR’S data model (CROSS-DB) for selection 
and result presentation. 

The presentation of the CQL syntax is accompanied 
by a lot of examples. These examples stem from a joint 
research project between our institute and a large Euro- 
pean market research company. In their business, quan- 
tifying data like sales, stock, or pricing are collected 
and identified in a three dimensional context obtaining 
all observed articles (product dimension), all shops 
reporting some figures (shop dimension) and the month 
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in which the data is collected (time dimension). A pos- 
sible (tabular) representation of such data is given in 
Figure 1. 

WAT813 [ HyperWash IO7/96 1 8 1 6 1 1099.- 

Figure 1: A sample product tact table 

These data serve as a dataset for different types of 
analysis like segmentations along a predefined aggrega- 
tion hierarchy (e.g. product family - product group - 
product area) as well as some special analysis (e.g. 
cross assortment analysis). Additionally, product fam- 
ily or product group specific information based on time 
and location invariant features are used for giving fur- 
ther details of a given descriptor (e.g. the brand of a 
product). 

ptigct-.:. - k&&v. :tlps sipin 1 1. wafer. ~JBMJY 
WATB 13 ASK0 top 1300 6.5 18kw 

NOVA AEG front loo0 68 19kw 

DUECl-f Miele tot3 1400 63 18kw 

Figure 2: A sample feature table for the 
‘washer’ product family 

The rest of this paper is organized as follows. In the 
next section, the architecture of the CUBESTAR and the 
CROSS-DB data model are sketched in order to provide 
a basic understanding of multidimensional analysis. 
The third section describes the CQL select-statement 
with the semantics of each single clause in full detail. 
The show-statement, e.g. the client side, is described in 
section 4. Section 5 introduces the CQL-supported ses- 
sion concept, followed by a comparision of CQL with 
other query language approaches. The paper closes 
with a conclusion, summarizing the current and ongo- 
ing work. 

2 The CUBESTAR-Project 

Before going into the detailed description of the ‘Cube 
Query Language” (CQL), this section sketches the prin- 
cipal architecture of the CUBESTAR and the main issues 
of the CROSS-DB data model, thus providing a basic 
understanding of the system and the underlying data 
model. For a detailed discussion of the model itself, we 
encourage the reader to refer to [7]. 

2.1 Client-Server Architecture of CUBESTAR 
The CUBESTAR is an experimental multidimensional 
database system for performing efficient statistical 
analysis procedures on ultra large data sets. Based on 
the principles of modularity and scalability, the CUBE- 

STAR is a typical client-server application which has 
great impact on the way of data analysis. 

At the client, a user formulates a query within the 
notion of the select-statement and sends the request 
to the CUB&TAR Server (see (1) at Figure 3). The server 
receives the query, computes and temporarily keeps the 
query’s result, and returns only a reference of the result 
to the client side. If the user is ready for presentation of 
the result, a show-statement ‘activates’ already com- 
puted results of former queries and returns the data to 
the client (see (2) at Figure 3). On the client side, these 
multidimensional data are flatened into a possible com- 
plex structured and well-ordered two-dimensional 
table. This two-step process is justified by the facts that 
on the one hand, the server should not be considered 
with presentation issues and, on the other hand, client 
hardware is able to efficiently process presentation 
aspects and is favoured by powerful implementation 
platforms (Java). 

showstatement 

presentation 
module 

mat~rialittd 
query results 

Figure 3: The two-phase query processing 
scheme of CUBESTAR 

2.2 The CROSS-DB Data Model 

As mentioned in the introduction, the CROSS-DB data 
model is a generic representative of already existing 
multidimensional data models capable of covering 
most of the existing multidimensional data modelling 
approaches and thus providing a superset of the differ- 
ent modelling techniques. 

The cells of a multidimensional data cube hold sin- 
gle quantitative numeric values like sales of stock fig- 
ures. In the sense of a composite primary key, these 
cells are uniquely identified by a set of qualifying infor- 
mation, e.g. the product ‘WAT813’ was sold in the shop 
‘ElectroWorld’ in ‘July96’. The identifying items like a 
product, shop, or period identifier belong to exactly one 
dimension (products, location, time). Based on the set 
of instances, classifications forming a balanced and par- 
titioned tree of identifiers can be declared from the 
application’s point of view. For example, single prod- 
ucts are grouped by product families and these, in turn, 
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may be grouped into product groups and product areas. 
The time dimension gives a good example for grouping 
days by different classifications, i.e. by months - quar- 
ters - years or by weeks and weekly oriented time gran- 
ules. Each level of a classification is called the level of 
grunularify. The base level corresponds to the finest 
granule. The root of a classification tree reflects the 
coarsest granule. In analogy to factual instances, all 
identifiers within a classification hierarchy may serve as 
a coordinate for a specific cell in a multidimensional 
data cube. Therefore, a cell identified by the classifica- 
tion identifiers ‘Washers’, ‘California’ and ‘07/96’ may 
hold the totals of sales for all washing machines sold in 
any shop in California in the given period. 

To avoid extremely sparse cubes and high dimen- 
sionality, the CROSS-DB data model allows to charac- 
terize single classification nodes by further classifica- 
tion node specific information, called features. At the 
base granularity level, a feature details the description 
of a specific item, e.g. a washing machine may be char- 
acterized by its loading type (‘top’- or ‘front’-loader), 
its maximum spin speed, its water and energy usage and 
so on. Each higher level classification node covers the 
set of all features which are common to all subsumed 
base instances. For example, the node ‘Washers’ is 
described among others by a feature ‘water usage’ with 
a value range from 40 upto 10.5 liters, reflecting the 
minimum and maximum of water usage specifications 
for all washing machines. Furthermore, the node above 
the washers, ‘home appliances’ is characterized by a 
feature ‘energy usage’ with a value ranging from 0,5W 
upto 2233KW. 

With this knowledge about the multidimensional 
data model in mind, the rest of this paper is dedicated to 
the detailed description of the “Cube Query Language” 
(CQL). The following section explains the computation 
part, i.e. the select-statement, whereas the fourth sec- 
tion explains the show-statement, primarily for execu- 
tion on the client side. 

3 CQL - Computation 
This section covers the description of syntatic elements 
of the “Cube Query Language” (CQL) providing user 
access to the multidimensional data cube. In the follow- 
ing subsections, we first explain the construction pro- 
cess of building a query context. Then, the steps of 
selecting cube partitions (Slice and Dice), applying 
cell-oriented as well as aggregational operators to the 
specified cube, and handling of nested (sub-)queries are 
described in detail. At the end of the section, we intro- 
duce CROSS-DB’s specific means of supporting hori- 
zontal analysis. 

3.1 The Query Context 
In this subsection the construction of a query’s multidi- 
mensional context is presented. This process consists of 
the two steps: building the cube of discourse and select- 
ing the special part of interest of the potentially very 
large data cube. The selection criteria may be based on 
qualifying as well as quantifying data. 

The FROM-Clause: 
Creating the universe of discourse 

In the FROM-clause of a select-statement, the user 
specifies the dimensions of the cube, forming the 
analysis objective (cube of discourse) of the specified 
query. For example, the statement below constructs a 
three-dimensional context consisting of the product, 
location, and time dimension for the current query. The 
query returns all sales and stock figures of the current 
database. 

SELECT SALES, STOCK 
FROM Products P, Location L, Time T 

The abbreviations following the dimension identi- 
fier address instances of the former dimension and are 
considered as aliases for the use in following clauses, 
e.g. the WHERE-ChUSe. The instantiation process of a 
dimension may be seen as a role assignment. 

The referencing of a specific cell must fulfill their 
dimension requirements. For example, the SALES vari- 
able could not be retrieved in a lower-dimensional con- 
text. On the other hand, it is possible to specify more 
dimensions as needed to reference a specific cell. For 
example, the two dimensional variable CURRENCY may 
reflect a conversion table and hold the time dependant 
exchange rate for a country specific currency into USD. 
When selecting this cell with the dimensions ‘Location’ 
and ‘Time’, the currency is supposed to be the same for 
all products. 

SELECT CURRENCY 
FROM Products P, Location L, Time T 

In this case, the lower-dimensional data cube for 
this cell is artificially blown up, by logically copying 
the values into the undefined dimensions. 

The WHERE-Clause: Slicing and Dicing 

Slicing and Dicing within the query’s context cube is 
done by specifying a selection predicate based on hier- 
archically structured qualifying information. The inten- 
sive use of classification hierarchies provides a power- 
ful addressing scheme for quantifying data. The quali- 
fying selection predicates are described within the 
WHERE-ChUSe of a select-statement. For example, 

. . . WHERE P.Group = ‘Home Appliances' 
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limits the product dimension to all articles being sub- 
sumed by the product group ‘Home Appliances’. The 
dimensions can be limited independently from one 
another. A single selection predicate consists of the 
dimension’s alias and the granularity of the specifica- 
tion. Classification nodes can be positively addressed as 
well as excluded from the selection. To construct com- 
plex selection expressions, simple predicates can be 
combined to propositional logical predicates using 
parenthesis, OR, and AMY constructs. The following 
statement demonstrates this for the product dimension. 

SELECT SALES 
FROM Products P, Location L, Time T 
WHERE P.Group = 'home appliances' AND 

((P.Family = 'washers' AiVD 
P.Article != 'DUETT') OR 

P.Family = 'dryers') 

The selection process becomes multidimensional by 
listing complex selection expressions for each dimen- 
sion in the ?WERE-CkiUSe. The separator ‘,’ between the 
predicates holds the semantics of the moperator in 
the multidimensional context. If a selection predicate is 
omitted for a single dimension D, the selection defaults 
to all elements of this dimension, e.g. D . ALL = ' * I. 

SELECT SALES 
FROM Products P, Location L, Time T 

WHERE P. Group = 'home appliances', 
L.Region = 'California', 
T.Year = '1996' AND T.Month != '01/96' 

ml% * 031% 

Article 
Figure 4: Selection by classification 

Slicing and Dicing of the data cube may often not 
fulfill the user’s selection requests. CQL refines the 
selection process allowing selection predicates not only 
based on classification nodes but additionally on feature 
values, characterizing the single items (see Figure 2). 
This additional selection capability results in a detailed 
selection mechanism which is illustrated in Figure 4. To 
distinguish between the two types of selection capabil- 
ities in the data cube, the use of a feature predicate is 
addressed by assigning the feature to the applicable 
dimension with an arrow. 

. . . WHERE P->MaxSpin = '1400' AND 
P->WaterUsage c '65' 

In addition to feature specification, this example 
further addresses the fact that feature values may have 
a numerical data type and therefore allow ‘=‘, ‘<‘, ‘c=‘, 
‘>=‘, and ‘>’ as well as their negations. 

Time 

Article. 
Figure 5: Selection by feature 

The RESTRICT-Clause 

As seen in the above subsection, limiting the data cube 
to the interesting partitions, is handled by the use of 
qualifying information in an appropriate manner. 
Nevertheless, CQL allows the user to further restrict the 
selected partitions of the multidimensional cube by 
predicates over quantifying data. The following exam- 
ple restricts the selected cells to only those sales figures 
which are outlier (less or equal five and greater or equal 
20) for an analyist. To emphasize the two-step selection 
process, the predicates over quantifying information are 
specified in the REsTRrcPclause: 

SELECT SALES 
FROM Products P, Location L, Time T 
WHERE P.Group = 'washers' 
RESTRICT SALES >= 20 OR SALES -z= 5 

In the case of the RESTRIC~ChJSe, only those cell 
variables can be used in a predicate, which are listed in 
the first line of the select-clause. Furthermore, the 
constant value 'NULL' can be used as an operand. The 
‘Nvr.,L’-value addresses cells, having no ‘real’ values, 
i.e. the sales of ‘Nova’ in the shop ‘ElectroWorld’ 
(Figure 1). 

3.2 Operations based on the Multidimensional 
Data Cube 

The data model distinguishes between two classes of 
operators on multidimensional data cubes: cell-ori- 
ented and aggregational operators. Cell-oriented oper- 
ators are used to combine quantifying data from one or 
more cells into a new value, e.g. multiplying each sales 
figure with the corresponding price to get the turnover. 
Aggregating operators are used to build higher-level 
data over a selected area of cells of the same type, e.g. 
building the sum of all quarterly washer sales for single 
regions. Operators are specified in the sE&Ecpclause 
of a statement and cannot be mixed within a single 
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statement due to granularity consistency. The CQL rep- 
resentation and application of both classes are pre- 
sented in the following two subsections. 

Cell-Oriented Operators 

Cell-orientied operators are used to join single cells of 
a selected data cube partition and derive new values for 
the operands. The set of cell-oriented operators consists 
of unary operators like the unary minus, the Signum 
(‘SGN ( ) ‘) and the absolute function making numeric 
values positive ( ‘ABS ( ) ‘). Binary cell-oriented opera- 
tors are left associative and cover the set of basic arith- 
metic operations (‘+‘, ‘-‘, ‘*‘, ‘/‘) and the minimum 
and maximum functions ( ‘CMIN ( ) ‘, ‘CMAX ( I ‘) return- 
ing the smaller/greater value of the operands. Operands 
can be cells as well as constants. 

The following CQL-statement for example, 
retrieves the turnover figures of the July96 sales values. 
The new cells, being delivered to the user, obtain the 
same dimensionality and granularity in each dimension 
as their source cells, SALES and PRICE. 

SELECT SALES * PRICE 
FROM Products P, Location L, Time T 
WHERE T.Month = '07/96', P.Family = 'washer' 

An implicit adjustment of dimensionality and gran- 
ularity is performed by the operators, if the operands do 
not own the same granularity. Referring again to the 
data set of the introduction section, the computation of 
the articles’ price in USD is specified with the follow- 
ing query: 

SELECT PRICE * CURRENCY 
FROM Products P. Location L, Time T 
WHERE T.Month = '07/96', P.Family = 'washer' 

As detailed in the subsection describing the FROM- 
clause, in a first step, the dimensionality of the CUR- 

RENCY-cube is adjusted to the dimensions, listed in the 
FROM-clause. In a second step, the granularities of the 
operands are adjusted to a common base. Thus, the 
sample query above results in values for each single 
article, each shop that sold the article, and each day, 
because every day the currency and therefore the price 
in USD changes. 

Aggregation Operators and the UPTO-Clause 

While cell-oriented operators on the one hand focus on 
the single cells and therefore result in the transforma- 
tion of input data cubes to a target cube with the same 
or even finer granularity, aggregation operators on the 
other hand condense the input data cubes to ones with 
coarser granularity. When analyzing data in statistical 
environments, it is often necessary to compress an 
immense amount of detailed raw data into some few, 
but characteristic values. This often complex analysis 
process is handled by a series of applications of aggre- 

gating operators. To allow great modelling flexibility, 
CQL only supports the following basic aggregation 
operators: 

SUMO, AVGO, COUNTO, CARDO, MINO, MAX0 

The following example illustrates the application of 
the SUM ( ) -operator in the SELEclrclause by summing 
up SALES figures. 

SELECT SUM{ SALES) 
FROM Products P, Location L, Time T 
WHERE P.Group = 'Home Appliances', 

L.State = 'California', T.Year = '1996' 
UPTO P.Family, L.Region, T.Month 

Whereas cell-oriented operators implicitly decide 
the granularity of the target cube, aggregating operators 
need an explicit specification of the granularity of the 
target cube. This specification is done in the UPTO- 
clause. Referring again to the sample statement above, 
crossed-up figures are computed for each product fam- 
ily being subsumed by ‘Home Appliances’, each region 
in ‘California’ and the months ‘01/96’ until ‘12/96’. 

Thus, the application of an aggregation operation to 
a specified data partition always needs the definition of 
upto-values. These values fix the target granularity, e.g. 
the grouping level of the output cube. If the UPTO- 
clause is ommitted, the target cell defaults to one value 
for that dimension. 

On the Semantics of Aggregation-Operator 

While the semantics of the SUM ( ) - and AVG ( ) - 
operators may be clear, some remarks have to made wrt. 
the semantics of MIN ( ) /F&%X ( ) and COUNT ( ) /CARD ( ) . 

The aggregation operators MIN ( ) and MAX t ) obtain 
a single variable as operand and result in the lowest/ 

highest value for each partition explicitly specified in 
the vPTGclause. In contrast. the cell-oriented operators 
CMIN ( ) and CMAX ( ) are binary operators and take for 
each operand cell the lower, respectively the higher 
value. 

Except for the COUNT () and CARD ()-operator, 
‘NuLD‘-values do not have any impact on the applica- 
tion of aggregation operators, because they are treated 
as non existent. This semantics is also applicable wrt. 
the COUNT ( ) -operator, returning the number of cells 
which are not ‘NULL’-values. The CARD( )-operator 
also counts the number of cells, but ‘NULL’-values are 
not taken into account. Therefore, the application of the 
CARD ( ) -operator results in the cardinality of the cur- 
rent cube. 

3.3 Subqueries in the WITH-Clause 
Up to now, only “flat” select-statements have been 
considered. To express more complex queries, subque- 
ries can be included hierarchically within a single 
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select-statement. This mechanism allows to define 
variables in a subquery, which can be reused in the 
outer query. The following sample statement makes use 
of this possibility. 

ing data, i.e. splitting the washing machines by CPU- 
type and disk capacity (Figure 2), which would be 
applicable for ‘computer’-sales figures. 

SELECT SALES / DFNUM 
FROM Products P, Location L, Time T 
WHERE P.Grouu = ‘Home Appliances', 

L.State = 'California', T.Month = '07/96 
WITH (SELECT SUM(:SALES) AS NUM 

UPTO P.Article, L.Region, T.Month), 
(SELECT SUM(:SALES) AS DENUM 
UPTO P.Family, L.Region, T.Month) 

This query computes the sales ratio within the prod- 
uct family of appliances sold in a Californian store in 
July96 for every single item. For the sake of modularity 
of the query expression, the cubes holding the numera- 
tor and denumerator are each computed independently 
within a subquery. Therefore, the WITH-ChSe consists 
of a list of subqueries, defining new cubes which may 
be referenced in the outer query. 

To put it in a nutshell, the feature mechanism is a 
seamless extension of the multidimensional modelling 
approach with a hierarchical classification tree. In addi- 
tion to a more detailed selection criterion, features 
enable the technique of horizontal analysis, e.g. split- 
ting the result of a classification oriented aggregation 
operator (vertical analysis) according to the required 
features. 

To stay consistent with the embracing query state- 
ment, the inner queries inherit the FROM-clause, e.g. the 
context, as well as the WHERE-ChUSe, e.g. the current 
data partition. However, if the FROM-clause is specified 
in an inner query statement, the set of dimensions must 
be a subset of the outer query’s FROM-ChUSC. 

4 CQL - Presentation 

As already sketched in the introduction, the design of 
CQL divides the analysis process into the steps of com- 
putation and presentation, to directly support the under- 
lying client-server architecture. This distinction 
between computation and presentation was founded on 
experiences from a project with our industrial partner. 
Apparently different queries refer to the same data 
material and differ only in the presentation, e.g. with or 
w/o sorting, including of subtotals, etc. 

Defining the Table Structure 

3.4 Horizontal Analysis 

As already illustrated in section 2, features describe the 
classification nodes more detailled. On the one hand, 
this enables a more detailed selection mechanism as 
shown in subsection 3.1, on the other hand, the use of 
features enables a more detailed illustration of aggre- 
gated values, called feature split. Extending the simple 
select-statement from section 3 by an application of 
a feature split, the result of a vertical analysis process, 
e.g. the SUM t ) -operator with uPTo-clause, is split into 
the different instances of the specified features: 
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The show-statement triggers the presentation process 
of the result of the last select-statement and produces 
a hierarchically structured table to illustrate the (flat- 
tened) multidimensional data cube. Optionally the key- 
word PERCENTAGE indicates that the table figures shall 
be shown as relative values. Furthermore, a cell identi- 
fier can be stated, to display the (temporarily material- 
ized) results of former queries (see section 5 for more 
details). 

In the FROM-clause of a show-statement. the dimen- 
sions of the queried data cube can be specified. These 
dimensions have to match with those in the query state- 
ment and are only used for defining aliases for use 

SELECT SlJM( SALES) 
FROM Products P, Location L, Time T 
WHERE P.Group = 'Home Appliances', 

L.State = ‘California', T.Year q '1996 
UPTO P-Family, L.Region, T.Month 
BY P->Energy, L->ShopType 

This query reports monthly sales values for each 
product family per region. Each single sales figure is 
split up according to the features Energy and ShopType. 
For example, cells will be generated holding the sales of 
washers with low (or medium or high) energy usage 
sold in a cash&carry market (or retail store or hyper- 
market). Due to the classification node sensitive nature 
of the features, the BY-clause may only reference fea- 
tures, which are available at the highest common node, 
specified in the query, e.g. the WHERE-&USC. This pre- 
vents feature splits which are not common to underly- 

within the the current show-statement. The structure of 
the table is specified in the STRUCTURE-clause of the 
show-statement. Due to the two-dimensionial nature of 
a table, the STRUCTURE-ClaUSe is divided into the 
HEADER-subclause, specifying the horizontal appear- 
ance and the STUB-subclause, defining the vertical 
appearance of the table. Referring to the ongoing exam- 
ple, the show-statement 

HEADER P.Article 
STUB T.Month (L.Region) 

produces the nested table of Figure 6. 

SHOW 
FROM Products P, Location L, Time T 
STRUCTURE 



Figure 6: A sample table with a nested stub 

As illustrated in the above Figure, the order of nest- 
ing the dimensions within the header or the stub is spec- 
ified in the STRUCTURE-ChUSe by nesting the items 
denoting the classification hierarchy in parenthesis. 
Therefore, articles are positioned on the horizontal axis. 
Within the stub of the table, the values are first grouped 
by month, and then nested by regions. 

4.1 Including of Subtotals 

The option for additionally displaying the column 
or row subtotals is specified by appending the keyword 
TOTALS after the classification items within the 
HEXDER- or STUB-subclause. 

STRUCTURE 
HEADER P.Article TOTALS 
STUB T.Month (L.Region TOTALS) 

This modified STRUCTURE-ChISe of the sample 
show-statement above leads to the following table 
(Figure 7). 

Figure 7: A sample table with nested subtotals 

Again, the mechanism of including subtotals 
reflects the client-server idea behind the CQL-language 
approach. Totals in the Large are computed on the data- 
base server. Totals in the Small can be computed with- 
out any performance problems on modem clients like 
PC’s, without concerning the DB-server with presenta- 
tion aspects. 

Sorting 

Because of the set oriented character of the edges of a 
multidimensional cube, sorting is no data model sup- 
ported operator. Nevertheless, sorting is an important 
tool for intelligent and intuitive data presentation. The 
show-statement of CQL supports two different sort 
modes: lexical sorting based on qualifiying informa- 

tion, e.g. on header and stub titles, and numerical sort- 
ing based on quantifying information, e.g. on the cell 
values. 

The sort order for qualifying information, e.g. 
according to the items of a classification, is specified in 
the SORT-clause of the show-statement. The following 
example sorts the column arrangements by ascending 
article identifiers. 

SHOW 
FROM Products P, Location L 
STRUCTURE 

HEADER P.Article 
STUB ~.Shop 

SORTED BY P.Article 

To sort the table based on quantifying information, 
the row or column, specifying the sequence, which 
defines the order of the complete table, has to be explic- 
itly specified in the SoRzrclause (e.g. P.Article = 
'Nova ‘). The following sample table (Figure 8) illus- 
trates this kind of table sorting. 

Figure 8: A sample table sorted by qualifying Information 

The third way of specifying a sort criterion is to nest 
sortings by cumulated specifications for single sort cri- 
terions, based on qualifying data as well as on quantify- 
ing data. 

Cumulating 

Another characteristic of the show-statement is the 
mechanism of cumulation, e.g. summing up single 
values according to a predefined order. Figure 9 illus- 
trates this perspective. The cumulation is triggered by 
adding the keyword CUM to the name of the classifica- 
tion item within the STRUCTURE-clause, 

The following example is based on Figure 6 and 
cumulates the sales values along the article dimension. 

SHOW 
FROM Products P. Location L 
STRUCTURE 

HEADER P.Article CUM 
STUB ~.Shop 

SORTED BY P.Article 
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03/96 nonh 1 42 1 65 1 109 
south 1 19 I 72 I 134 

Figure 9: A sample table with cumulated rows 

5 Supporting Session with CQL 

In contrast to other query languages, CQL provides the 
possibility to name the resulting data cube and force a 
materialization of the query’s result. For these new 
cells, the user is ensured that the data cube stays acces- 
sible for the current session or until it is explicitly 
dropped. In order to save processing time, the data par- 
tition may remain materialized during the session, to be 
implicitly used by the underlying optimization logic for 
efficiently answering queries of other users . With this 
mechanism in mind, often used queries can be explic- 
itly pre-aggregated in order to get a considerable faster 
response to this family of queries ([8]). 

Named cells can be displayed by use of the show- 

statement parameterized with the cell identfier. If 
select-statements are not explicitly named, each 
show-statement belongs to the last query. A new query 
or the end of the session unfixes/drops the temporarily 
materialized query’s result. 

CQL> SELECT SUM(SALES) AS VideoSales 
CQL> FROM . . . 

CQL> SELECT . . . 

CQL> SHOW 
CQL> STRUCTURE . . . 

// refers to the last query 

CQL> SHOW VideoSales 
CQL> STRUCTURE . . . 

// refers to the first query 

6 Comparison to SQL and Others 

Designing query languages for special purposes has a 
long tradition in the database research community. 
Many proposals for efficiently querying complex tables 
have been made especially in the area of statistical and 
scientific databases. [lo] serves as a comprehensive 
survey of some approaches. 

Within a project with our industrial partner, we 
modelled and programmed a set of typical queries taken 
from the aera of market retail research ([S], [6]) in dif- 
ferent query languages. This section takes the brand 
concentration analysis as a representative query and 
compares the query sepcification in CQL, pure SQL 
([12]), and Oracle Express ([9]). We intentionally omit 

a comparison with the CUBE-extension of SQL ([3]). 
As an extension to the common ‘group by’-clause of 
SQL, the CUBE-operator computes all possible aggre- 
gation combinations based on a set of ‘group by’- 
attributes. Thus, for N quantitative values the output’s 
cardinality becomes 2N. First, this exponential growth 
of data volume is not capable in our application. Sec- 
ond, none of our observed analysis needs all (!) the 
aggregation combinations. 

6.1 Brand Concentration 

The brand concentration gives information, to what 
degree the sales of articles concentrates on certain 
brands. It is determined, upto which part single brands 
are responsible for the total sales. The sales values are 
sorted in a numerically descending order and are cumu- 
lated by their brands. The result is often presented as a 
so called “Lorem. Curve”. A steep rising curve means, 
that with a few articles most of the sales is done, 
whereas a moderate rising means, that the demand for 
the different models is uniform. 

SELECT SUM(SALES) 
FROM Products P, Location L, Period T 
WHERE P.Group = I...', L.Country = I...', 

T.Month = I...' 
UPTO P.Group, L.Country, T.Month 
BY P-=-Brand 

SHOW 
FROM Products P. Location L, Period T 
STRUCTURE 

HEADER P-z-Brand CUM 
STUB T.Month 

SORTED BY T. Month = '...' DESC 

Figure 10: Brand Concentration Analysis (CQL) 

In the select-statement of the CQL-version, the 
sales figures are aggregated upto a single total sales 
value and then split up by the different brands, resulting 
in single sales figure for each brand. In the following 
show-statement, these numbers are cumulated in the 
direction of the brands. The ordering of the brands is 
handled by fixing the specified month (or country 
name) and by numerical sorting the figures accordingly 
to this month. 

6.2 Brand Concentration (SQL Version) 

As detailed in Figure 11, the SQL version of this query 
results in a typical star query with one relation holding 
the facts (‘Panel’), e.g. sales figures for the single arti- 
cles (Figure I) and relations reflecting the classification 
hierarchy (‘ProductClassification’, ‘ShopClassifica- 
tion’). Additionally, the relation ‘ProductFeature’ holds 
the charcteristics of the single articles (Figure 2). In a 
first step, aggregated sales figures are temporarily 
stored in the relation Temp. This relation serves in a 
second step for the cumulation process. Cumulation in 
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INSERT INTO Temp (Group, Country, Brand, SumSales) 
VALUES (SELECT PCZ.Group, PF.Brand, SC3.Country, SUM(P.Sales) AS SSales) 

FROM Panel P, ProductFeature PF, 
ProductClassification PCl, ProductClassification PC2, 
ShopClassification Xl, ShopClassification SC2, ShopClassification SC3 

WHERE PCl.Article = P.Article AND 
PCZ.Family = PCl.Family AND 
PCZ.Group = I...' AND 
SCl.Shop = P.Shop AND 
SCZ.City = SCl.City AND 
SC3.Region = SC2.Region AND 
SC3.Country = ‘..: AND 

PF.Article = P.Article AND P.Month = '._.' 
GROUP BY Group, Brand, Country) 

SELECT SUM(T2.SumSales) AS CumSales 
FROM Temp Tl, Temp T2 
WHERE Tl.SumSales c= T2.SumSales 
GROUP BY Tl.Group, Tl.Brand, Tl.Country 
ORDER BY CumSales 

DROP TABLE Temp 

Figure 11: Brand Concentration Analysis (SQL.) 

SQL is done by self joining the relation and a corre- 
sponding groupby expression. Furthermore, this rather 
complex query fails, if two brands obtain the same sales 
value. The only way is to avoid pure SQL and use 
dynamic SQL within an additional application pro- 

gram. 

6.3 Brand Concentration (Express Version) 

In comparison to the relational SQL, Express is a repre- 
sentative of a multidimensional query language ([9]). 
This multidimensionality can be seen in the four 
LIMIT-blocks of the sample query, illustrated in 
Figure 12. Each LIMIT-expression restricts a classifica- 
tion level (identified by a trailing ‘D’) either to explic- 
itly specified items or implicitly to all subsumed items 
within the hierarchy. The hierarchy relationships are 
identified by a trailing ‘-R’. The feature brand must be 
modelled as an own dimension holding all possible 
brands. The dimension is restricted to only those brands 
which have sales greater than zero. 

In analogy to the SQL solution, Express requires the 
definition of a new multidimensional cell (Temp), tem- 
porarily holding the total sales figures. The cumulation 
process is directly supported on the one hand by the 
CUMSUM-operator, but, on the other hand, requires a 
FOR-loop for every single brand. 

6.4 Valuation 

The comparison of the three language approaches wrt. 
the rather simple brand concentration analysis enables 
us to draw the following conclusions: 

l SQL and the relational data model are not 
appropriate for handling OLAP requirements at the 
query specification level. The SQL-version is quite 
long and not correctly implementable in pure SQL. 

. 

Perhaps SQL3 brings us a step forward. 
The multidimensional approach with the distinction 
of qualifying and quantifying information seems 
quite more intuitive than handling star queries. 

The Express query language enables a powerful 
limitation mechanism on the single dimensions and 
offers natural access to aggregation operations. The 
big disadvantage of Express consists of the very 
complex and unfamiliar query syntax. 

Generally, the CQL query language approach inher- 
its the advantages of both approaches. 

l The query syntax of CQL is similar to SQL, making 
it easy to understand and use. 

l The multidimensional data model with hierarchical 
classifications as background knowledge enables 
flexible analysis techniques. 

7 Conclusion 
This paper introduces the new query language CQL for 
Multidimensional Database Systems. The main advan- 
tages of this approach are: first, the distinction of qual- 
ifying and quantifying information is conceptually the 
heart of the language design. This results in advantages 
like handling aggregation operators as 1st class opera- 
tors and using classification hierarchies as background 
knowledge at a conceptual level. Second, the distinction 
between the select- and the show-statement reflects 
the underlying client-server architecture, thus distribut- 
ing specific tasks to the apropriate modules, e.g. com- 
putation to the server, presentation to the client. Last, 
the session concept makes the application of controlled 
materialization of query results easy and useful. 
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LIMIT Product-Group-D TO I...' 
LIMIT Product-Family-D TO Product-Group-R 
LIMIT Product-Article-D TO Product-Family-R 

LIMIT Location-Country-D TO '...' 
LIMIT Location-Region-D TO Location-Country-R 
LIMIT Location-City-D TO Location-Region-R 
LIMIT Location-Shop-D TO Location-City-R 

LIMIT Time-Month-D TO I...' 

LIMIT Product-Brand-D KEEP TOTAL(SALES Product-Group-D Location-Country-D Time-Month-D) GT 0 

SORT Product-Brand-D TOTAL(SALES Product-Group-D Location-Country-D Time-Month-D) 

DEFINE VARIABLE Temp DEC <Product-Brand-D Product-Group-D Location-Country-D Time-Month-D> 

Temp = TOTAL(SALES Product-Group-D Location-Country-D Time-Month-D) 

FOR Product-Brand-D DO 
ROW Temp CUMSUM(Temp Product-Brand-D) 
DOEND 

Figure 12: Brand Concentration Analysis (Express) 

At the implementation sector, we have a prototypi- 
cal CUBESTAR operational, including a complete CQL- 
parser and a translation to SQL-statements for process- 
ing on Oracle 7.3. On the client side, we have imple- 
mented a rudimentary ASCII-based table generator, but 
are going to reimplement this client in Java. 

Although, we live in a world of graphical user inter- 
faces, we believe that a textual query language is essen- 
tial for Multidimensional Database Systems. In addi- 
tion to an extreme expressive power, queries can be pro- 
cessed in a batch-orientied manner (“OFFline 
Analytical Processing”). 
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