
Implementing Temporal Databases in Object-Oriented Systems

A. Steiner

Institute for Information Systems
ETH

CH-8092 Zurich, Switzerland

steiner@inf.ethz.ch

Abstract

We present a temporal object data model, query
language and system that support temporal database
applications. We then show how equivalent tempo-
ral constructs and operations could be provided in
existing object-oriented database management sys-
tems (OODBMS) and describe how we did this in
the 02 system. A comparison of the two resulting
systems highlights the current limitations to the no-
tions of extensibility supported in existing
OODBMS.

Keywords Object-Oriented Databases, Tempo-
ral Databases

1 Introduction

There is an on-going debate as to whether it is
necessary to extend data models with specific tem-
poral constructs and operations to support tem-
poral databases, or, it is sufficient to model tem-
poral properties using date/time attributes (e. g.
[lS]). In the case of object-oriented database sys-
tems (OODBMS), the latter case is argued more
strongly given the inherent extensibility of these
systems.

We believe that it is important to study both
approaches to determine their relative merits and
appreciate how far one can go in supporting the de-
velopment of temporal databases without making
changes to the underlying data model and system.
Actually, this second point is important, not only
for temporal databases, but also for other special
forms of database such as spatial databases and
domain specific databases such as those for engi-
neering or medical applications.

Further, even though, as we show in this paper,
there are potential gains in both convenience and
optimisation by incorporating temporal constructs
and operations into the model and system, it is
still necessary to consider how best to support such
applications in current OODBMS.

Proceedings of the Fifth International Confer-
ence on Database Systems for Advanced Appli-

cations, Melbourne, Australia, April l-4, 1997.

M. G. Norrie

Institute for Information Systems
ETH

CH-8092 Zurich, Switzerland

norrie@inf. ethz. ch

In this paper, we report on investigations of
both approaches to implementing temporal data-

bases in object-oriented systems. First, we present
a system based on an object-oriented data model,
OM, which we extended with temporal constructs
and operations. The extended temporal model,
TOM, is orthogonal in that it allows valid times
to be associated with objects, collections of objects
and constraints over these collections such as dis-
jointness. The OM model has an associated algebra
over collections of objects and this was extended
with temporal equivalents. A prototype system
for the extended model, TOM, has been imple-
mented in Prolog and we give examples to show
how applications can be modelled and temporal
queries expressed in the system. As we will de-
scribe, this model can be considered as a general-
ization of many proposed temporal object-oriented
data models and therefore its implementation is
typical of our first approach.

Second, we describe how we implemented a tem-
poral application in the 02 OODBMS. The 02
system has a Date class, with associated methods,
which can be imported from the library schema
OaTooikit, but otherwise has no explicit support
for temporal applications. We define a TempObject
class and also temporal equivalents of query op-
erations and use these to implement a temporal
database. We show how temporal queries can then
be expressed in terms of the 02 query language
OQL. Further, we discuss the issues of making these
temporal constructs and functions available for other
applications by means of 02 schema importation.

We discuss the advantages of the first approach
in terms of expressiveness, convenience, query pro-
cessing and also storage optimisation. However,
we also discuss the disadvantages of incorporating
particular temporal (or spatial) models into a given
OODBMS in that the resulting system can be too
restrictive. Also, if this approach were adopted for
all special forms of database systems, then either
the resulting system would be too complex or a
proliferation of specialist database systems would
result. A real problem with the latter, is that many
applications span specialist areas e.g. applications
dealing with both temporal and spatial data. We

381

propose an alternative approach, where certain key
constructs should be incorporated into the object
data model that then allows extensibility features
to be exploited to tailor the system to a specific
temporal model. In particular, we make the case
for extensibility of, not only class structures, but
also of object identifier and querying mechanisms.

In section 2, we present the basic notions re-
quired to support temporal databases. Section 3
provides an overview of the temporal object data
model, TOM, and its associated algebra and, by
means of examples, describes the system we devel-
oped based on this model. We describe how some
of the basic constructs and operations of TOM were
implemented in the Or system in section 4. A
comparison of the approaches of sections 3 and 4 is
given in section 5. Concluding remarks are given
in section 6.

2 Extensions for Time in Databases
In order to implement temporal applications, non-
temporal database systems need to be enhanced in
three ways. First, the data structures have to be
extended to record the time information. Second,
new operations using the additional temporal se-
mantics of the data have to be provided in order to
query and modify temporal data. Third, temporal
constraints must be expressible.

Usually, extending the data structures with time
attributes does not cause any severe problems. When
timestamping data, two different time dimensions
can be distinguished. Valid time records time when
data was true in reality. Transaction time records
when data was stored in the system. To store
valid time data, two additional attributes of a type
Date, VTS (Valid Time Start) and VTE (Valid Time
End), can be added to (maybe already existing)
nontemporal data structures denoting the start and
the end point of a valid time interval. The same
can be done for transaction time. In this paper,
we concentrate on how to extend data structures
with valid time. However, the ideas presented could
easily be generalised to deal also with transaction
time.

Since operations on intervals are not closed (e. g.
the difference of two time intervals might result in
a set of intervals), we use sets of intervals called
temporal elements [5] for timestamping. For sim-
plicity, we assume in our examples throughout this
paper a granularity of year when using dates and
will express them using only two digits, i.e. 90 for
1990. Of course any other granularity for dates
could be chosen.

An important distinction in proposed temporal
relational data models is which part of the data
structure is actually timestamped. Either tuple
(e. g. [lo, 171) or attribute timestamping (e. g. [5,
241) might be applied. In the case of temporal

object data models, there are three major possibili-
ties. Firstly, timestamping may at the attribute (as
in [15]) or object level. Secondly, if timestamping
is at the object level, it may be either at the type
level (as in [7]), in which case a special tempo-
ral attribute is included, or at the identifier level,
in which case a special temporal object identifier
is used. We advocate the use of temporal object
identifiers and adopt these in our temporal object
model, TOM. However, in existing OODBMS, ob-
ject timestamping must be done at the type level.

Adding new temporal operations causes more
problems. For relational database systems, tem-
poral algebras have been defined (see e. g. [19, 211).
The temporal algebra operations have to be imple-
mented either directly in the system or as an addi-
tional layer to the non-temporal relational database
technology (as for example done in [22]). This
approach also requires an extension of the query
language supported by the database system in or-
der to use these temporal operations together with
the non-temporal functionality of the system.

OODBMS, such as 02, allow the functionality
of the system to be extended by classes, meth-
ods and/or functions. This feature can be used
to add temporal classes and time functions which,
together with the non-temporal operations already
supported by the system, can be used to write
temporal queries similar to those in proposed tem-
poral relational data models. We discuss later in
detail the limitations of this approach in existing
OODBMS.

Another issue is that of support for temporal
constraints. For example, for temporal relational
databases, referential integrity should be checked
also with respect to time. Most existing OODBMS,
including 02, leave the specification and mainte-
nance of constraints entirely up to the application
programmer. The programmer has to provide spe-
cial methods which, on data modifications, check
whether or not the update is allowed. In this case,
special methods to check temporal constraints can
also be expressed by the application programmer
in the same way.

The object data model (OM) and system (OMS)
used as the basis for our temporal object model
(TOM) and system (TOMS) does have support for
constraints over collections of objects and, there-
fore, our temporal system also has explicit support
for temporal constraints.

3 A Temporal Object Model

In this section, we present the temporal object data
model TOM and a system based on this model.
With this approach of designing a specific temporal
model, it is possible to build explicit support for
the temporal constructs into the system and query
language. We start by describing the main features

382

of our temporal object model and then, by means
of examples, introduce the system and its query
language.

Our temporal object data model, TOM, is based
on the generic object-oriented data model, OM [12]
and exhibits many of the features found in various
temporal object-oriented models, e. g. [15, 25, 7, 21,
but in a more generalized form, as we will demon-
strate in this paper.

The OM model strictly separates typing from
classification in such a way that classification struc-
tures model the roles of objects rather than their
representation. Classifications are represented by
the bulk type constructor collection and classifica-
tion structures are built from collections linked by
means of subcollection, disjoint, cover and intersec-
tion constraints over these collections. Collections
may be either unary, in which case the members
are atomic, or binary, in which case the members
are pairs. Binary collections are used to represent
associations between collections.

Other key features of the OM model that impact
on the temporal model are its collection algebra
which defines generic operations over collections of
objects, the model’s support for object and rela-
tionship evolution [13] and the orthogonality with
which the constructs of the model may be applied.
As an example of its orthogonality, collections are
themselves objects and this enables arbitrary nest-
ing of structures.

Our temporal model TOM is based on object-
timestamping. We add timestamps to the names
of instances. In other words, we do not extend the
types but rather extend the object identifiers with
a timestamp to give temporal object identifiers of
the form

toid := ((oid;ls))

where oid is an object identifier and Is is a times-
tamp referred to as the lifespan of an object. It
expresses, for example, when an object was Aid
(existent) in the real world. Thus, we do not times-
tamp the values of an object, but the object itself
with its overall time of existence and we keep track
of the history of its values separately.

Timestamps may also be associated with rela-
tionships between objects which are represented by
member pairs of binary collections. In this case,
each pair of object identifiers (01, 02) is tagged with
a timestamp to give elements of the form

where 1s is a timestamp as before.
A timestamp is actually a temporal element,

which means that we can model the existence of
an object with respect to a particular application.
For example, the timestamp of an employee object
may represent the various periods during which
that employee worked for a company.

Since object roles are represented by collections
which are themselves objects, collections may also
be timestamped. As a result, we can model the fact
that roles also exist for limited lifespans and, fur-
ther, that they may appear and disappear with re-
spect to the current state of an application domain.
For example, a company may have representatives
in several countries and have different collections
to represent the corresponding semantic groupings.
In the event that the company ceases to trade with
a given country, or even that a country ceases to
exist, a collection may not be valid any more. At a
later date, trading may resume and the collection
is once more valid. Similarly, associations, which
represent relationships between objects, may also
be timestamped.

The next stage to consider is how to model the
times at which a particular entity has a particular
role, i.e. that an object is a member of a collec-
tion. An object may be in several collections at
one time and may migrate between collections. For
example, a person may be a member of collection
Persons during his whole life and, for certain pe-
riods, also be a member of collections TennisTeam
and Employees. The visibility of an object c in
a given collection C is given by

IS, n 1s~ f-it,,,,

where Is,, is the lifespan of o, 1s~ is the lifespan of

C and tuser is a user-specified membership time.
Our approach contrasts with that of [15, 25, 21,
where the lifespan of an object is derived as the
union of all class membership timespans of this
object. While their approach only applies to sys-
tems in which database objects must belong in at
least one collection, ours is more typical of current
commercial OODBMS where objects may persist
independently.

Adding timestamps to objects leads naturally
to a more general model than the usual relational
temporal models in that, not only entities and their
roles, but also the roles themselves can have tem-
poral properties. By timestamping objects (and
object-pairs in binary collections), a direct compar-
ison can be made between lifespans of objects, re-
lationships, object roles and associations. Further,
since constraints are also represented as objects in
our system, they also can be timestamped.

In our current system, timestamping is supported
only at the level of objects and the question then
arises as to how to associate valid times with the
attribute values of objects. For example, how the
salary history of an employee could be represented.
The general rule is that an attribute must be pro-
moted to the level of objects or relationships in
order to be timestamped. The salary history of
an employee could be represented as a set of times-
tamped objects of type SalaryHistory where each

383

object refers to a specific salary period. We believe
this approach is sufficiently expressive and there
are great benefits obtained from the resulting sim-
plicity and uniformity of the model.

So far, we have introduced the temporal con-
structs of TOM. The other aspect of the model is
the extension of the collection algebra of OM with
equivalent temporal operations. In OM, all algebra
operations work on collections of objects and return
a result collection of objects. The model has an
extensive set of generic operations, including conve-
nience forms for operating over binary collections.
In the remainder of this section, we will consider
only unary collections for the sake of simplicity.

The algebra supports the standard set-based op-
erations of union, intersection and difference. There
are also operations to map a given function over a
collection, to select elements of a collection based
on a predicate condition and to flatten a collection
of collections by eliminating one level of nesting. A
full description of the algebra is given in [12, 111.

The TOM model specifies temporal equivalents
for these operations. There are only two operations
which refer to type information or attribute values,
namely the projection (special case of map) and
selection operations. All other operations do not
refer to any attribute values and work on the object
level. Thus, most of the calculations can be per-
formed handling only temporal object identifiers.
It is beyond the scope of this paper to describe the
resulting algebra in full, but details are given in
[23]. The following examples will sketch some of
the ideas behind these temporal operations.

Having presented the main features of the tem-
poral model, TOM, we now describe how these
constructs and operations are made available to the
application programmer through our system and
its associated query language.

Consider the classic example of representing the
history of employees in a department.

Example 1 The type definitions for department
and employee objects could be defined as follows:

create type department<
Dlo: integer,
IaJne : string.
Members: collection(employee));

create type employee<
lame : string,
Salary: integer,
Dept: department);

Then timestamped collections of department ob-
jects and of employee objects belonging to Znforma-
tion Systems could be defined as:

create collection Departments
type department
lifespan (CBO-inf));

create collection IS-Staff

type employee
lifespan CCSO-inf));

create collection flath-Staff
type employee
lifespan ([SO-inf));

Since these collections are timestamped objects,
they have an object identi$er plus timestamp as-
sociated with them. For example, ISStaff might
have a temporal object identifier << 9; {[90-co)} >>.

m
Now we show some examples of queries formu-

lated in the query language of TOM. The language
has a syntax similar to O&L, but the keyword valid
at the beginning of a query denotes that it must be
evaluated temporally, as proposed for SQL/Temporal
in [21, 201.

Example 2 Assume again collections ISStaff and
MathStaff as defined in example 1. Then the
query for the highest salaries is

valid
select sl.lame, sl.Salary
from sl in IS-Staff
where not exists

(select +
from s2 in IS-Staff
where sl.Salary < s2.Salary);

Finding employees which are members of both
ISStaff and Math-Staff can be expressed as

valid
IS-Staff intersect Math-Staff

m

Besides the selection and projection operations,
attribute values of objects are accessed when a re-
sult is presented to the user. Depending on the
resulting timespans of the objects in the result col-
lection, the corresponding value histories of the ob-
jects are printed out.

4 Temporal Databases in 02
In this section, we show how the object-oriented
database system 02 might be extended to support
temporal applications. The system architecture of
02 is divided into several layers. The base of 02
is the OzEngine which provides all the features
of a database system and all the features of an
object-oriented system [14]. Several programming
interfaces are built on top of the OaEngine. We use
the OaC and OQL interfaces to support temporal
functionality (see figure 1). O& is a fourth genera-
tion language based on the programming language
C. OQL is an SQL-like query language.

The approach we have chosen to extend 02 with
time is based on the idea of a root class support-
ing time attributes and special methods operating

384

on them. These methods, used together with the
non-temporal query language OQL, allow temporal
queries to be written. Another approach would be
to use the C interface of 0s and supply temporal
functionality and maybe even a new temporal query
language by adding a library written in C. However,
we want to consider the general application pro-
gramming level of such a system, and not consider
extensions at lower levels which are more the task of
the database engineer. In any case, such extensions
would only result in significant changes to support
for temporal databases if major components, such
as the query processor, were replaced.

Figure 1: Part of the System Architecture of 02

We also would like to supply our temporal ex-
tension to other users. In 02, a schema consists of
named objects, class definitions, global functions
and applications programs. However, only classes
and named objects may be exported from schemas.
This means that all of the temporal functions have
to be methods of an exported class. However, as
we will see, this leads to an unnatural, asymmetric
way of writing temporal queries.

First, we describe the structural part of the root
class TempObject. We then show how we imple-
mented functions operating on timestamps and give
a few examples of temporal queries written in O&L.

4.1 Timestamps in 02

The time intervals, our basic time units for times-
tamps, are defined as follows:

type Interval : tuple(VTS : Date, VTE : Date);

Time intervals, closed at the lower and open at
the upper bound, consist of a starting (VT,‘?, Valid
Time Start) and an ending year (VTE, Valid Time
End). For example, [90-96) denotes the time period
of January 1, 1990 to December 31, 1995.

Since it is not possible to change object identi-
fiers in 02, we choose to have object timestamping
but must do so at the type level.

In 02, an object which is a member of two
different sets has the same attribute values in both
sets. As with our temporal model, TOM, we would
like to be able to model the fact that an object’s
roles vary over time and, further, it may have many
roles at the same time. To do this, we must be
able to represent the logical entity and its temporal
instances as shown in figure 2.

Assume for example a university having research
staffs MathStaff and ISStaff among others. Each

Logical Entity:
Entity ID

/
/’

‘. . // IKEY)

Figure 2: Roles represented in 02

staff contains a set of employees. We want to add
employee Midas to ISStaff and Math-Staff be-
cause he was, or still is, a member of both ISStaff
and MathStaff. To do this, we have to create two
employee objects Midas, set the attribute values
and add it to MathStaf f for example with a valid
time [93-97) and to IS-staff with [96-m).

The problem now is to determine which ob-
jects in 02 denote the same real world entity. We
could, for example, add a set valued attribute to
each object which contains references to other ob-
jects which actually stand for other roles of the real
world entity. Or we could have objects denoting
a role pointing to a root object, which is similar
to what has been proposed for views in 02 [3].
Another approach is to add a key value to objects.
This key value is unique for one real world entity.
Objects in the database system with the same key
value refer to the same real world entity. The first
and second approaches lead to quite a lot of pointer
chasing and it is hard to keep the references con-
sistent. For simplicity, we use the third approach.

The structural part of our root class TempObject
for temporal objects thus is defined the following
way:

class TempObject inherit Object
public type

tuple(VALID : set.(Interval),
KEY : integer)

method
. . .

end;

where KEY is some form of system-generated entity
identifier.

We now derive any class whose instances shall
be timestamped from class TempObject. Our ex-
ample is the same as that of the previous section,
namely, recording employee histories.

Example 3 We define Departments to be a set
of department objects. For each department, we
keep track of the department number, the name of
the department and its members. The members
of a department are represented as a staf object
consisting of a set of employees.

class Departments inherit Object

385

public type set(Department)
end;

class Department inherit TampObject
public type

tuple(DHo : integer,
lame : string,
Uembers : Staff)

end;

class Staff inherit TemiObject
public type tupletmembers : set(Employee))

end;

class Employee inherit TampObject
public type

tuple(kme : string,
Salary : integer,
Dept : Department)

end;

We define class Departments to be a set of times-
tamped Department objects. Class Department con-
tains an attn’bute Members which is a Staff object.
Objects of type Staff contain a set of timestamped
Employee objects and a timestamp denoting when
the staff itself em’sted. I

We timestamped objects of classes Department
and Employee and Staff. Of course, we could
have defined class Departments to be a subclass
of TempObject, too.

This means that we are also able to timestamp
collections of objects by making these collections
into objects. We express, for example, when a stti
object itself existed. Of course, a staff object may
only have members during its own lifespan.

We are now able to timestamp objects, but not
attributes as with the TOM model. This means
that, as with TOM, if we want to record the salary
history of employees then these must be stored as
objects. This is shown in the following example:

Example 4 We store the salary history of an em-
ployee as a set of timestamped salary objects :

class Salary-history inherit TempObject
public type

tuple(Salary : integer)
end:

class Employee inherit TempObject
public type

tuple(Iame : string,
Salaries : set(Salary-history),
Dept : Department)

end;

In the following, we will refer to the approach
shown in example 3 to keep queries as simple as
possible.

4.2 Operations on Timestamps

The next step is to come up with functions which
refer to the timestamps and can perform tempo-
ral calculations on them. As mentioned before,
we implement these functions as methods of class
TempObject in order to be able to export them.

We basically support the methods T-INTERSECT,
T-MINUS and TJLATTEN to write queries equivalent
to those that can be expressed in temporal rela-
tional algebra. T-INTERSECT calculates the inter-
section of the time intervals in two sets. For exam-
ple, the intersection of {[94-oo)} and {[90-96)) is
the set {[94-96)). T-MINUS calculates the temporal
difference of sets of time intervals. The temporal
difference of the interval sets { [94oo)} and { [90-
96))) is the interval set {[96-oo)}. T-FLATTEN is
used to flatten sets of temporal elements which
may result from queries on sets of temporal ob-
jects where only the timestamp attributes of these
objects are returned.

The signatures of these methods added to class
TempOb j ect look like

class TempObject inherit Object public type
tuple(VALID : set(Interval),

KEY : integer)
method

public T-IITERSECT(T : set(Interva1)) :
set(Interval),

public T-RIIUS(T : set(Interval)) :
set(Interval),

public T-FLATTEICS : set(set(1nterva.l))) :
set(Interva1)

. . .
end;

Additionally, we support the temporal compar-
ison predicates before, meets, overlaps and so on as
proposed by [l]. They are implemented as func-
tions on two intervals, returning a Boolean value.

With the above methods and Boolean functions,
we can now express temporal queries in 02 O&L.

Example 5 Assume an instance IS-Staff of class
Staff containing employee objects with the follow-
ing values

Name Salary Dept KEY VALID
Andreas 10000 IS 1

Alain 9000 IS 2 gjg:";;
Antonia 11000 IS 3 W-%
Martin 8000 IS 4 W-94))
Martin 10500 IS 4
M&a 20000 IS 5

I;;::"";;

Midas 30000 IS 6 @6-%

and objects of instance MathStaff having values

Name Salary Dept KEY VALID 1
Moira 8000 Math 5 #6-90))
Midas 40000 Math 6
John 15000 Math 7

gyy
03

An instance of class Departments shall contain
two objects (assuming object identifiers IS and Math),
with the following values:

306

DNo Name Members KEY VALID
3 Inf Systems ISStaff 10
9 Mathematics Math-Staff 11

We would like to know the history of the high-
est salam’es of ISStaff. This temporal query is
expressed as

select
tup1ew3me : si.Iame,

salary : s1.Salary.
VALID : sl.TJIIUS

(s~.T-FLATTEI

(select sl.T-IITERSECT(sZ.VALID)
from s2 in IS-Staff.members
where sl.Salary < s2.Salary)))

from sl in IS-Staff.mambers;

First, we find out for each employee, during
which time periods there were other employees earn-
ing more than himself. In a second step, we project
objects in ISStaff to attributes Name and Salary
and calculate the temporal difference of the valid
time of each object and the time periods found when
other employees earn more. This results in

Empty timestamp sets denote that these employ-
ees never earned more than everyone else. I

Results having empty timestamp sets usually
are not of interest. If they should not be presented,
we have to add a corresponding selection condition.
In order to do selections on temporal attributes,
we either have to repeat the time calculations of
the select clause in the where clause or do the
temporal selections as the last step on the result of
a subquery.

Example 6 We want to find those employees who
earned more than anyone else for more than a year.
The query of example 5 is used as a subquery and
the temporal selection is done on the result of the
subquery. We can express this in O&L as

select e
from s in

(select
tup1e (lame : al.Izlme,

Salary : sl.Salary,
VALID : sl.TJ!IIUS

(rl.T,PLATTEI
(select sl.T-IITERSECT(s2.VALID)

from s2 in IS-Staff.membars
where al.Salary < s2.Salary)))

from sl in IS-Staff.members)
where exists T in s.VALID:T.VTE-T.VTS > 1;

The resulting values of this query are

So far we have used the time methods only in
select and where clauses. We also would like to
support set operations such as intersect, except
and union with temporal semantics. In tempo-
ral relational algebras, a temporal intersection of
two sets of tuples is defined as determining during
which periods of time a tuple is a member of both
sets. In the case of a temporal object algebra,
we rather want to calculate the intersection of two
sets of objects to find out which objects belonged
to both sets for some time period. For example,
we might want to find out which employees were
members of several staff groups, simultaneously.

To express temporal intersection in O&L, we
introduce a generic function TO-INTERSECT which
takes two sets of temporal objects and returns a
new set of temporal objects:

function TO-IITERSECT(
al : set(TempObject),
62 : eet(TempObject)) : set(TempObject);

Example 7 We assume the stafl objects ISStaff

and MathStaff with the values given in example 5.
To find those employees who are members of both
staff groups at the same time, we can now write the

query

TO-IITERSECT(IS-Staff,members, Hath-Staff.members);

which returns a single temporal object with the
following values:

Name 1 Salary 1 Dept 1 KEY 1 VALID
Midas I 30000 I IS I 6 I (196-97))

Function TO-INTERSECT first checks if the classes
of the elements of both argument sets s 1 and s2 are
compatible, which means that it checks whether
the two element classes are equal or if one class is
a subclass of the other. To do this, it has to access
meta data of sets si and s2 and their elements
and this is done using the imported Meta Schema
provided by 02. Next those attributes which are
common to both element classes are determined
again by accessing the meta data. Having found
the common attributes, the temporal intersection is
rewritten as a join of the two sets with the condition
that the values of attributes KEY are equal. This
means that we look for objects in both sets which
have the same KEY value and thus refer to the same
real world entity. The valid time period of the
resulting temporal objects is calculated using the
method T-INTERSECT. The attribute values of the
resulting objects are copies of the values in s 1.

The query of example 7 is rewritten as

387

select Employee{
KEY : el.KEY,
Iama : el.Iame,
Dept : el.Dept,
Salary : ei.Salary,
VALID : el.T-IITERSECT(eZ.VALID))

from ei in IS-Staff.members,
02 in Ilath-Staff.members

where el.KEY = e2.KEY and
el.T-IITERSECT(eZ.VALID) != set(O);

Unfortunately, since functions are not exportable,
TO-INTERSECT cannot be made available as part
of an imported schema. Adding it as a method
to class TempObject means that we add a method
operating on sets of instances of class TempObject
to each single instance. A more natural way would
be to create a new class SetTempObject and add
methods TO-INTERSECT, TO-EXCEPT and TOJNION
to this class. Functions to calculate temporal union
and difference of two sets of temporal objects can
be implemented accordingly.

We have seen that it is possible to extend an
existing object-oriented database system such that
it can do complex temporal queries. It is not nec-
essary to extend a temporal object-oriented query
language syntactically to express temporal algebra
operations as was done for relational database sys-
tems. Temporal algebra operations can be expressed
using non-temporal algebra operations and func-
tions.

5 Comparing the approaches

5.1 Query Languages

The examples 5, 6 and 7 show that it is quite
akward to write temporal queries in 02 OQL. It
would be better if the temporal set operations could
be written as infix operators rather than as func-
tions with arguments. The application program-
mer also has to know exactly how the temporal
queries can be formulated using the methods of
TempObject. The temporal queries he writes usu-
ally look totally different from their non-temporal
counterparts.

We have also seen that it is much easier just
to specify that all algebraic operations should be
evaluated temporally by writing a special keyword
in front of a legal non-temporal query (see example
2). This is not only less error prone and easier
to understand for a programmer, but also helps in
migrating non-temporal to temporal queries.

Using the approach described in [21, 201, the
query of example 5 could be expressed in temporal
OQL as

valid
select tuple(lame : sl.Iame,

Salary : sl.Salary)
from sl in IS-Staff.members
where not exists s2 in IS-Staff.members:

sl.Salary < s2.Salary;

which clearly is much simpler.
Instead of changing the syntax of the query lan-

guage, the possibility of overriding algebra opera-
tions would help to meet the same goal. Queries,
written in a query language like OQL, could be
translated into algebraic expressions. If the algebra
operations were allowed to be overridden, we could
implement a set of temporal algebra operations and
use them to override some of the non-temporal op-
erators. The system then would, depending on the
context in which the query is executed, execute the
temporal operations instead of the overridden ones
after translating the query into algebra operations.
Thus, we could change the semantics of a query
such that it meets the special demands an applica-
tion such as a tempora1 database (or others) might
have.

5.2 Constraints

Constraints are used to define which states of a
database are legal. By adding a time dimension
to data, constraint checking needs to be enhanced,
too (see e. g. [25, 6, 21).

The semantics of referential integrity must be
changed with respect to time. We not only have
to check if a referenced object does exist at some
point in time, we have to check whether this object
exists during the whole timespan it is referenced. In
example 3, we have to make sure that a referenced
staff object, for example ISStaff, in an object of
type Department, for example IS, actually exists
during the time it is referenced.

Special treatment of the subclass relationship is
also needed in temporal databases. An instance
of a subclass may only exist during the time it is
also an instance of its superclass. For example, an
object of class Employee may only exist during the
time it is also an object of its superclass Person.

Another constraint which might need to be tested
depending on how extensively data is timestamped
is the set membership constraint. This is a con-
straint similar to the temporal referential integrity
constraint. Assume we also timestamp Staff ob-
jects, which means we also record when a staff
group existed. Then an object of type Employee
may only be a member of an instance of type Staff
during its own lifespan, and an instance of type
Staff may only contain objects of type Employee
during its own lifespan. We call this the temporal
membership constraint.

Additionally, we can define partition, cover and
intersection constraints for sets of objects. They
also need to be adapted with respect to time. A
temporal partition constraint for example needs to
check whether two sets of objects never contain the
same object at the same time during their lifespan.

Using the database system 02, we can add meth-
ods to objects which check the above (and other)

388

constraints when the attribute values are updated.
This means that the programmer has to provide
these general constraints. It would be useful, how-
ever, if they were supported by the system itself,
since they are general and are considered model
inherent in most object-oriented data models.

TOM supports this kind of constraints. Tem-
poral referential integrity, temporal subclass rela-
tionship, temporal membership, temporal partition,
cover and intersection constraints are supported by
the system directly and checked at commit time.

5.3 Optimisation

Temporal databases should never delete data phys-
ically. This soon leads to huge amounts of data
which have to be stored and managed. Besides en-
hancing the expressive power, temporal operations
also increase the complexity of query processing.
Accessing and querying temporal data thus need to
be optimized in order to provide reasonable answer
times.

Object-oriented database systems, extended with
time functions and temporal comparison predicates,
cannot make use of optimisation techniques for tem-
poral data. They simply do not know about the
temporal semantics of the data and functions and
how they could be exploited for optimisation.

As was shown in the case of temporal relational
databases (e. g. [4, 8, 9, IS]), adding temporal data
structures and operations to the system allows them
to be used in optimisation strategies.

However, instead of supporting specialist data-
base systems handling, for example, temporal or
spatial database applications, an approach should
be chosen which allows the system to be modi-
fied or extended such that special semantics of the
application domain can be used for efficient data
processing.

In query processing strategies, temporal alge-
bra operations such as the temporal cross product
can be used in the same way as the corresponding
non-temporal algebra operations. Overriding these
operations with different semantics would in most
cases still allow the use of the implemented query
optimisation algorithm.

6 Conclusions

We have presented two general approaches to im-
plementing temporal databases in object-oriented
systems. In both cases, we were aiming at support-
ing the temporal constructs and operations typical
of temporal object data models and, specifically, of
our general model TOM. The first approach is to
implement a system baaed on the model, thereby
supporting efficient storage and processing of tem-
poral data as well as an ability to handle both
temporal and non-temporal data in a uniform man-
ner. The second approach is to extend an existing

OODBMS with classes and methods for the man-
agement of temporal data. This approach is the
only one available in current commercial environ-
ments.

We have developed temporal databases using
both approaches and found that, while it is much
more convenient to develop and query application
databases using our own system, we accept that
the particular instantiation of the TOM model that
we implemented may not be appropriate for all
temporal applications. Further, we recognise the
need for many different forms of extended database
systems to manage spatial data, versions, variants
etc.

In conclusion, we advocate an approach that lies
somewhere between in that certain basic constructs
to support temporal models should be built into the
system and then specific instantiations of temporal
models should be implemented using the extensible
features of the system. In fact, the basic constructs
built into the system, such as support for multiple
instances of objects, can be used to support not
only temporal models, but also version models and
other extended forms of database systems. Also,
existing systems need to be extensible in a more
general sense. In particular, as we have shown,
it would be useful to have extensibility of object
identifiers and also of the query system. We are
currently investigating these issues in the context
of the OMS system.

References

PI

PI

[31

PI

J. F. Allen. Maintaining Knowledge about
Temporal Intervals. Communications of the
ACM, Volume 16, Number 11, 1983.

E. Bertino, E. Ferrari and G. Guerrini. A For-
mal Temporal Object-Oriented Data Model.
In P. Apers, M. Bouzeghoub and G. Gardarin
(editors), Advances in Database Technology,
pages 342-356. Springer, 1996.

C. S. dos Santos. Design and Implementation
of Object-Oriented Views. In Proceedings of
the Database and Expert Systems Applications
(DEXA) Conference, pages 91-102,1995.

R. Elmasri, G.T.J. Wuu and V. Kouramajian.
The Time Index and the Monotonic B+-tree.
In A. Tansel, J. Clifford, S. Gadia, S. Jajodia,
A. Segev and R. Snodgrass (editors), Tem-
poral Databases: Theory, Design, and Imple-
mentation, Chapter 18, pages 433-456. Ben-
jamin/Cummings Publishing Company, 1993.

[5] S. K. Gadia. A Homogeneous Relational
Model and Query Languages for Temporal
Databases. ACM Transactions on Database
Systems, Volume 13, Number 4, pages 418-
448, 1988.

[6] I. A. G ora wa a and M. T. 6zsu. Temporal 1 11
Extensions to a Uniform Behavioral Object
Model. In Proceedings of the 10th Interna-
tional Conference on the ER Approach, pages
llO-121,1993.

[7] W. Kafer and H. Schljning. Realizing a
Temporal Complex-Object Data Model. In
SIGMOD RECORD, pages 266-275, 1992.

[8] C.P. Kolovson. Indexing Techniques for His-
torical Databases. In A. Tansel, J. Clif-
ford, S. Gadia, S. Jajodia, A. Segev and
R. Snodgrass (editors), Temporal Databases:
Theory, Design, and Implementation, Chap-
ter 17, pages 418-432. Benjamin/Cummings
Publishing Company, 1993.

[9] T.Y.C. Leung and R.R. Muntz. Stream Pro-
cessing: Temporal Query Processing and Op-
timization. In A. Tansel, J. Clifford, S. Gadia,
S. Jajodia, A. Segev and R. Snodgrass (ed-
itors), Temporal Databases: Theory, Design,
and Implementation, Chapter 14, pages 329-
355. Benjamin/Cummings Publishing Com-
pany, 1993.

[lo] S. Navathe and R. Ahmed. Temporal Exten-
sions to the Relational Model and SQL. In
A. Tansel, J. Clifford, S. Gadia, S. Jajodia,
A. Segev and R. Snodgrass (editors), Temporal
Databases: Theory, Design, and Zmplemen-
tation, pages 92-109. Benjamin/Cummings
Publishing Company, 1993.

[ll] M. C. Norrie. A Collection ModeI for
Data Management in Object-Oriented Sys-
tems. Ph.D. thesis, University of Glasgow,
Dept. of Computing Science, Glasgow G12
SQQ, Scotland, December 1992.

[12] M. C. Norrie. An Extended Entity-
Relationship Approach to Data Management
in Object-Oriented Systems. In Proceedings
of the 12th International Conference on the
ER Approach, pages 390-401. Springer-Verlag,
LNCS 823, 1993.

[13] M. C. Norrie, A. Steiner, A. Wiirgler and
M. Wunderli . A Model for Classification
Structures with Evolution Control. In Proc.
of the 15th Znt. Conf. on Conceptual Modelling
(ER ‘96), 1996.

[14] 02 Technology. The 02 System, Release 4.6;
Manuals.

[15] E. Rose and A. Segev. TOODM - A Temporal
Object-Oriented Data Model with Temporal
Constraints. In Proceedings of the 10th Zn-
ternational Conference on the Entity Relation-
ship Approach, 1991.

[16] A. Segev. Join Processing and Optimization in
Temporal Relational Databases. In A. Tansel,
J. Clifford, S. Gadia, S. Jajodia, A. Segev and
R. Snodgrass (editors), Temporal Databases:
Theory, Design, and Implementation, Chap-
ter 15, pages 356-387. Benjamin/Cummings
Publishing Company, 1993.

[17] R. Snodgrass. The Temporal Query Language
TQuel. ACM Transactions on Database Sys-
tems, Volume 12, 1987.

[18] R. Snodgrass. Temporal Object-Oriented
Databases: A Critical Comparison. In W. Kim
(editor), Modern Database Systems, Chap-
ter 19, pages 386-408. ACM Press, 1995.

[19] R. Snodgrass (editor). The TSQLZ Temporal
Query Language. Kluwer Academic Publish-
ers, 101 Philip Drive, Assinippi Park, Norwell,
Massachusetts 02061, USA, 1995.

[20] R. T. Snodgrass, M. H. Bohlen, C. S. Jensen
and A. Steiner. Adding Transaction Time
to SQL/Temporal. SQL/Temporal Change
Proposal, ANSI XJH%96-152r, ZSO/IEC
JTCl/SC2l/WG3 DBL MCI-143, May 1996.

[21] R. T. Snodgrass, M. H. Biihlen, C. S.
Jensen and A. Steiner. Adding Valid Time
to SQL/Temporal. SQL/Temporal Change
Proposal, ANSI XJH%96-i5ir1, ISO/IEC
JTCl/SC?z?l/WGJ DBL MCI-l@, May 1996.

[22] A. Steiner. The TimeDB Temporal Database
Prototype. Information Systems, ETH Zurich.
Available at ftp://ftp.cs.arizona.edu/
t$ql/timecenter/TirneDB.tar.gz, Septem-
ber 1995.

[23] A. Steiner and M. C. Norrie. A Temporal
Extension to a Generic Object Data Model.
Technical report, ETH Ziirich, 1996.

[24] A. Tansel. Adding Time Dimension to Rela-
tional Model and Extending Relational Alge-
bra. Information Systems, Volume 11, Num-
ber 4, pages 343-355, 1986.

[25] G.T.J. Wuu and U. Dayal. A Uniform Model
for Temporal and Versioned Object-Oriented
Databases. In A. Tansel, J. Clifford, S. Gadia,
S. Jajodia, A. Segev and R. Snodgrass (ed-
itors), Temporal Databases: Theory, Design,
and Implementation, Chapter 10, pages 230-
247. Benjamin/Cummings Publishing Com-
pany, 1993.

390

