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Abstract 

We present a temporal object data model, query 
language and system that support temporal database 
applications. We then show how equivalent tempo- 
ral constructs and operations could be provided in 
existing object-oriented database management sys- 
tems (OODBMS) and describe how we did this in 
the 02 system. A comparison of the two resulting 
systems highlights the current limitations to the no- 
tions of extensibility supported in existing 
OODBMS. 

Keywords Object-Oriented Databases, Tempo- 
ral Databases 

1 Introduction 

There is an on-going debate as to whether it is 
necessary to extend data models with specific tem- 
poral constructs and operations to support tem- 
poral databases, or, it is sufficient to model tem- 
poral properties using date/time attributes (e. g. 
[lS]). In the case of object-oriented database sys- 
tems (OODBMS), the latter case is argued more 
strongly given the inherent extensibility of these 
systems. 

We believe that it is important to study both 
approaches to determine their relative merits and 
appreciate how far one can go in supporting the de- 
velopment of temporal databases without making 
changes to the underlying data model and system. 
Actually, this second point is important, not only 
for temporal databases, but also for other special 
forms of database such as spatial databases and 
domain specific databases such as those for engi- 
neering or medical applications. 

Further, even though, as we show in this paper, 
there are potential gains in both convenience and 
optimisation by incorporating temporal constructs 
and operations into the model and system, it is 
still necessary to consider how best to support such 
applications in current OODBMS. 
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In this paper, we report on investigations of 
both approaches to implementing temporal data- 

bases in object-oriented systems. First, we present 
a system based on an object-oriented data model, 
OM, which we extended with temporal constructs 
and operations. The extended temporal model, 
TOM, is orthogonal in that it allows valid times 
to be associated with objects, collections of objects 
and constraints over these collections such as dis- 
jointness. The OM model has an associated algebra 
over collections of objects and this was extended 
with temporal equivalents. A prototype system 
for the extended model, TOM, has been imple- 
mented in Prolog and we give examples to show 
how applications can be modelled and temporal 
queries expressed in the system. As we will de- 
scribe, this model can be considered as a general- 
ization of many proposed temporal object-oriented 
data models and therefore its implementation is 
typical of our first approach. 

Second, we describe how we implemented a tem- 
poral application in the 02 OODBMS. The 02 
system has a Date class, with associated methods, 
which can be imported from the library schema 
OaTooikit, but otherwise has no explicit support 
for temporal applications. We define a TempObject 
class and also temporal equivalents of query op- 
erations and use these to implement a temporal 
database. We show how temporal queries can then 
be expressed in terms of the 02 query language 
OQL. Further, we discuss the issues of making these 
temporal constructs and functions available for other 
applications by means of 02 schema importation. 

We discuss the advantages of the first approach 
in terms of expressiveness, convenience, query pro- 
cessing and also storage optimisation. However, 
we also discuss the disadvantages of incorporating 
particular temporal (or spatial) models into a given 
OODBMS in that the resulting system can be too 
restrictive. Also, if this approach were adopted for 
all special forms of database systems, then either 
the resulting system would be too complex or a 
proliferation of specialist database systems would 
result. A real problem with the latter, is that many 
applications span specialist areas e.g. applications 
dealing with both temporal and spatial data. We 
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propose an alternative approach, where certain key 
constructs should be incorporated into the object 
data model that then allows extensibility features 
to be exploited to tailor the system to a specific 
temporal model. In particular, we make the case 
for extensibility of, not only class structures, but 
also of object identifier and querying mechanisms. 

In section 2, we present the basic notions re- 
quired to support temporal databases. Section 3 
provides an overview of the temporal object data 
model, TOM, and its associated algebra and, by 
means of examples, describes the system we devel- 
oped based on this model. We describe how some 
of the basic constructs and operations of TOM were 
implemented in the Or system in section 4. A 
comparison of the approaches of sections 3 and 4 is 
given in section 5. Concluding remarks are given 
in section 6. 

2 Extensions for Time in Databases 
In order to implement temporal applications, non- 
temporal database systems need to be enhanced in 
three ways. First, the data structures have to be 
extended to record the time information. Second, 
new operations using the additional temporal se- 
mantics of the data have to be provided in order to 
query and modify temporal data. Third, temporal 
constraints must be expressible. 

Usually, extending the data structures with time 
attributes does not cause any severe problems. When 
timestamping data, two different time dimensions 
can be distinguished. Valid time records time when 
data was true in reality. Transaction time records 
when data was stored in the system. To store 
valid time data, two additional attributes of a type 
Date, VTS (Valid Time Start) and VTE (Valid Time 
End), can be added to (maybe already existing) 
nontemporal data structures denoting the start and 
the end point of a valid time interval. The same 
can be done for transaction time. In this paper, 
we concentrate on how to extend data structures 
with valid time. However, the ideas presented could 
easily be generalised to deal also with transaction 
time. 

Since operations on intervals are not closed (e. g. 
the difference of two time intervals might result in 
a set of intervals), we use sets of intervals called 
temporal elements [5] for timestamping. For sim- 
plicity, we assume in our examples throughout this 
paper a granularity of year when using dates and 
will express them using only two digits, i.e. 90 for 
1990. Of course any other granularity for dates 
could be chosen. 

An important distinction in proposed temporal 
relational data models is which part of the data 
structure is actually timestamped. Either tuple 
(e. g. [lo, 171) or attribute timestamping (e. g. [5, 
241) might be applied. In the case of temporal 

object data models, there are three major possibili- 
ties. Firstly, timestamping may at the attribute (as 
in [15]) or object level. Secondly, if timestamping 
is at the object level, it may be either at the type 
level (as in [7]), in which case a special tempo- 
ral attribute is included, or at the identifier level, 
in which case a special temporal object identifier 
is used. We advocate the use of temporal object 
identifiers and adopt these in our temporal object 
model, TOM. However, in existing OODBMS, ob- 
ject timestamping must be done at the type level. 

Adding new temporal operations causes more 
problems. For relational database systems, tem- 
poral algebras have been defined (see e. g. [19, 211). 
The temporal algebra operations have to be imple- 
mented either directly in the system or as an addi- 
tional layer to the non-temporal relational database 
technology (as for example done in [22]). This 
approach also requires an extension of the query 
language supported by the database system in or- 
der to use these temporal operations together with 
the non-temporal functionality of the system. 

OODBMS, such as 02, allow the functionality 
of the system to be extended by classes, meth- 
ods and/or functions. This feature can be used 
to add temporal classes and time functions which, 
together with the non-temporal operations already 
supported by the system, can be used to write 
temporal queries similar to those in proposed tem- 
poral relational data models. We discuss later in 
detail the limitations of this approach in existing 
OODBMS. 

Another issue is that of support for temporal 
constraints. For example, for temporal relational 
databases, referential integrity should be checked 
also with respect to time. Most existing OODBMS, 
including 02, leave the specification and mainte- 
nance of constraints entirely up to the application 
programmer. The programmer has to provide spe- 
cial methods which, on data modifications, check 
whether or not the update is allowed. In this case, 
special methods to check temporal constraints can 
also be expressed by the application programmer 
in the same way. 

The object data model (OM) and system (OMS) 
used as the basis for our temporal object model 
(TOM) and system (TOMS) does have support for 
constraints over collections of objects and, there- 
fore, our temporal system also has explicit support 
for temporal constraints. 

3 A Temporal Object Model 

In this section, we present the temporal object data 
model TOM and a system based on this model. 
With this approach of designing a specific temporal 
model, it is possible to build explicit support for 
the temporal constructs into the system and query 
language. We start by describing the main features 
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of our temporal object model and then, by means 
of examples, introduce the system and its query 
language. 

Our temporal object data model, TOM, is based 
on the generic object-oriented data model, OM [12] 
and exhibits many of the features found in various 
temporal object-oriented models, e. g. [15, 25, 7, 21, 
but in a more generalized form, as we will demon- 
strate in this paper. 

The OM model strictly separates typing from 
classification in such a way that classification struc- 
tures model the roles of objects rather than their 
representation. Classifications are represented by 
the bulk type constructor collection and classifica- 
tion structures are built from collections linked by 
means of subcollection, disjoint, cover and intersec- 
tion constraints over these collections. Collections 
may be either unary, in which case the members 
are atomic, or binary, in which case the members 
are pairs. Binary collections are used to represent 
associations between collections. 

Other key features of the OM model that impact 
on the temporal model are its collection algebra 
which defines generic operations over collections of 
objects, the model’s support for object and rela- 
tionship evolution [13] and the orthogonality with 
which the constructs of the model may be applied. 
As an example of its orthogonality, collections are 
themselves objects and this enables arbitrary nest- 
ing of structures. 

Our temporal model TOM is based on object- 
timestamping. We add timestamps to the names 
of instances. In other words, we do not extend the 
types but rather extend the object identifiers with 
a timestamp to give temporal object identifiers of 
the form 

toid := ((oid;ls)) 

where oid is an object identifier and Is is a times- 
tamp referred to as the lifespan of an object. It 
expresses, for example, when an object was Aid 
(existent) in the real world. Thus, we do not times- 
tamp the values of an object, but the object itself 
with its overall time of existence and we keep track 
of the history of its values separately. 

Timestamps may also be associated with rela- 
tionships between objects which are represented by 
member pairs of binary collections. In this case, 
each pair of object identifiers (01, 02) is tagged with 
a timestamp to give elements of the form 

where 1s is a timestamp as before. 
A timestamp is actually a temporal element, 

which means that we can model the existence of 
an object with respect to a particular application. 
For example, the timestamp of an employee object 
may represent the various periods during which 
that employee worked for a company. 

Since object roles are represented by collections 
which are themselves objects, collections may also 
be timestamped. As a result, we can model the fact 
that roles also exist for limited lifespans and, fur- 
ther, that they may appear and disappear with re- 
spect to the current state of an application domain. 
For example, a company may have representatives 
in several countries and have different collections 
to represent the corresponding semantic groupings. 
In the event that the company ceases to trade with 
a given country, or even that a country ceases to 
exist, a collection may not be valid any more. At a 
later date, trading may resume and the collection 
is once more valid. Similarly, associations, which 
represent relationships between objects, may also 
be timestamped. 

The next stage to consider is how to model the 
times at which a particular entity has a particular 
role, i.e. that an object is a member of a collec- 
tion. An object may be in several collections at 
one time and may migrate between collections. For 
example, a person may be a member of collection 
Persons during his whole life and, for certain pe- 
riods, also be a member of collections TennisTeam 
and Employees. The visibility of an object c in 
a given collection C is given by 

IS, n 1s~ f-it,,,, 

where Is,, is the lifespan of o, 1s~ is the lifespan of 

C and tuser is a user-specified membership time. 
Our approach contrasts with that of [15, 25, 21, 
where the lifespan of an object is derived as the 
union of all class membership timespans of this 
object. While their approach only applies to sys- 
tems in which database objects must belong in at 
least one collection, ours is more typical of current 
commercial OODBMS where objects may persist 
independently. 

Adding timestamps to objects leads naturally 
to a more general model than the usual relational 
temporal models in that, not only entities and their 
roles, but also the roles themselves can have tem- 
poral properties. By timestamping objects (and 
object-pairs in binary collections), a direct compar- 
ison can be made between lifespans of objects, re- 
lationships, object roles and associations. Further, 
since constraints are also represented as objects in 
our system, they also can be timestamped. 

In our current system, timestamping is supported 
only at the level of objects and the question then 
arises as to how to associate valid times with the 
attribute values of objects. For example, how the 
salary history of an employee could be represented. 
The general rule is that an attribute must be pro- 
moted to the level of objects or relationships in 
order to be timestamped. The salary history of 
an employee could be represented as a set of times- 
tamped objects of type SalaryHistory where each 
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object refers to a specific salary period. We believe 
this approach is sufficiently expressive and there 
are great benefits obtained from the resulting sim- 
plicity and uniformity of the model. 

So far, we have introduced the temporal con- 
structs of TOM. The other aspect of the model is 
the extension of the collection algebra of OM with 
equivalent temporal operations. In OM, all algebra 
operations work on collections of objects and return 
a result collection of objects. The model has an 
extensive set of generic operations, including conve- 
nience forms for operating over binary collections. 
In the remainder of this section, we will consider 
only unary collections for the sake of simplicity. 

The algebra supports the standard set-based op- 
erations of union, intersection and difference. There 
are also operations to map a given function over a 
collection, to select elements of a collection based 
on a predicate condition and to flatten a collection 
of collections by eliminating one level of nesting. A 
full description of the algebra is given in [12, 111. 

The TOM model specifies temporal equivalents 
for these operations. There are only two operations 
which refer to type information or attribute values, 
namely the projection (special case of map) and 
selection operations. All other operations do not 
refer to any attribute values and work on the object 
level. Thus, most of the calculations can be per- 
formed handling only temporal object identifiers. 
It is beyond the scope of this paper to describe the 
resulting algebra in full, but details are given in 
[23]. The following examples will sketch some of 
the ideas behind these temporal operations. 

Having presented the main features of the tem- 
poral model, TOM, we now describe how these 
constructs and operations are made available to the 
application programmer through our system and 
its associated query language. 

Consider the classic example of representing the 
history of employees in a department. 

Example 1 The type definitions for department 
and employee objects could be defined as follows: 

create type department< 
Dlo: integer, 
IaJne : string. 
Members: collection(employee)); 

create type employee< 
lame : string, 
Salary: integer, 
Dept: department); 

Then timestamped collections of department ob- 
jects and of employee objects belonging to Znforma- 
tion Systems could be defined as: 

create collection Departments 
type department 
lifespan (CBO-inf)); 

create collection IS-Staff 

type employee 
lifespan CCSO-inf)); 

create collection flath-Staff 
type employee 
lifespan ([SO-inf)); 

Since these collections are timestamped objects, 
they have an object identi$er plus timestamp as- 
sociated with them. For example, ISStaff might 
have a temporal object identifier << 9; {[90-co)} >>. 

m 
Now we show some examples of queries formu- 

lated in the query language of TOM. The language 
has a syntax similar to O&L, but the keyword valid 
at the beginning of a query denotes that it must be 
evaluated temporally, as proposed for SQL/Temporal 
in [21, 201. 

Example 2 Assume again collections ISStaff and 
MathStaff as defined in example 1. Then the 
query for the highest salaries is 

valid 
select sl.lame, sl.Salary 
from sl in IS-Staff 
where not exists 

( select + 
from s2 in IS-Staff 
where sl.Salary < s2.Salary ); 

Finding employees which are members of both 
ISStaff and Math-Staff can be expressed as 

valid 
IS-Staff intersect Math-Staff 

m 

Besides the selection and projection operations, 
attribute values of objects are accessed when a re- 
sult is presented to the user. Depending on the 
resulting timespans of the objects in the result col- 
lection, the corresponding value histories of the ob- 
jects are printed out. 

4 Temporal Databases in 02 
In this section, we show how the object-oriented 
database system 02 might be extended to support 
temporal applications. The system architecture of 
02 is divided into several layers. The base of 02 
is the OzEngine which provides all the features 
of a database system and all the features of an 
object-oriented system [14]. Several programming 
interfaces are built on top of the OaEngine. We use 
the OaC and OQL interfaces to support temporal 
functionality (see figure 1). O& is a fourth genera- 
tion language based on the programming language 
C. OQL is an SQL-like query language. 

The approach we have chosen to extend 02 with 
time is based on the idea of a root class support- 
ing time attributes and special methods operating 
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on them. These methods, used together with the 
non-temporal query language OQL, allow temporal 
queries to be written. Another approach would be 
to use the C interface of 0s and supply temporal 
functionality and maybe even a new temporal query 
language by adding a library written in C. However, 
we want to consider the general application pro- 
gramming level of such a system, and not consider 
extensions at lower levels which are more the task of 
the database engineer. In any case, such extensions 
would only result in significant changes to support 
for temporal databases if major components, such 
as the query processor, were replaced. 

Figure 1: Part of the System Architecture of 02 

We also would like to supply our temporal ex- 
tension to other users. In 02, a schema consists of 
named objects, class definitions, global functions 
and applications programs. However, only classes 
and named objects may be exported from schemas. 
This means that all of the temporal functions have 
to be methods of an exported class. However, as 
we will see, this leads to an unnatural, asymmetric 
way of writing temporal queries. 

First, we describe the structural part of the root 
class TempObject. We then show how we imple- 
mented functions operating on timestamps and give 
a few examples of temporal queries written in O&L. 

4.1 Timestamps in 02 

The time intervals, our basic time units for times- 
tamps, are defined as follows: 

type Interval : tuple(VTS : Date, VTE : Date); 

Time intervals, closed at the lower and open at 
the upper bound, consist of a starting (VT,‘?, Valid 
Time Start) and an ending year ( VTE, Valid Time 
End). For example, [90-96) denotes the time period 
of January 1, 1990 to December 31, 1995. 

Since it is not possible to change object identi- 
fiers in 02, we choose to have object timestamping 
but must do so at the type level. 

In 02, an object which is a member of two 
different sets has the same attribute values in both 
sets. As with our temporal model, TOM, we would 
like to be able to model the fact that an object’s 
roles vary over time and, further, it may have many 
roles at the same time. To do this, we must be 
able to represent the logical entity and its temporal 
instances as shown in figure 2. 

Assume for example a university having research 
staffs MathStaff and ISStaff among others. Each 

Logical Entity: 
Entity ID 

/ 
/’ 

‘. . // IKEY) 

Figure 2: Roles represented in 02 

staff contains a set of employees. We want to add 
employee Midas to ISStaff and Math-Staff be- 
cause he was, or still is, a member of both ISStaff 
and MathStaff. To do this, we have to create two 
employee objects Midas, set the attribute values 
and add it to MathStaf f for example with a valid 
time [93-97) and to IS-staff with [96-m). 

The problem now is to determine which ob- 
jects in 02 denote the same real world entity. We 
could, for example, add a set valued attribute to 
each object which contains references to other ob- 
jects which actually stand for other roles of the real 
world entity. Or we could have objects denoting 
a role pointing to a root object, which is similar 
to what has been proposed for views in 02 [3]. 
Another approach is to add a key value to objects. 
This key value is unique for one real world entity. 
Objects in the database system with the same key 
value refer to the same real world entity. The first 
and second approaches lead to quite a lot of pointer 
chasing and it is hard to keep the references con- 
sistent. For simplicity, we use the third approach. 

The structural part of our root class TempObject 
for temporal objects thus is defined the following 
way: 

class TempObject inherit Object 
public type 

tuple(VALID : set.(Interval), 
KEY : integer) 

method 
. . . 

end; 

where KEY is some form of system-generated entity 
identifier. 

We now derive any class whose instances shall 
be timestamped from class TempObject. Our ex- 
ample is the same as that of the previous section, 
namely, recording employee histories. 

Example 3 We define Departments to be a set 
of department objects. For each department, we 
keep track of the department number, the name of 
the department and its members. The members 
of a department are represented as a staf object 
consisting of a set of employees. 

class Departments inherit Object 
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public type set(Department) 
end; 

class Department inherit TampObject 
public type 

tuple(DHo : integer, 
lame : string, 
Uembers : Staff) 

end; 

class Staff inherit TemiObject 
public type tupletmembers : set(Employee)) 

end; 

class Employee inherit TampObject 
public type 

tuple(kme : string, 
Salary : integer, 
Dept : Department) 

end; 

We define class Departments to be a set of times- 
tamped Department objects. Class Department con- 
tains an attn’bute Members which is a Staff object. 
Objects of type Staff contain a set of timestamped 
Employee objects and a timestamp denoting when 
the staff itself em’sted. I 

We timestamped objects of classes Department 
and Employee and Staff. Of course, we could 
have defined class Departments to be a subclass 
of TempObject, too. 

This means that we are also able to timestamp 
collections of objects by making these collections 
into objects. We express, for example, when a stti 
object itself existed. Of course, a staff object may 
only have members during its own lifespan. 

We are now able to timestamp objects, but not 
attributes as with the TOM model. This means 
that, as with TOM, if we want to record the salary 
history of employees then these must be stored as 
objects. This is shown in the following example: 

Example 4 We store the salary history of an em- 
ployee as a set of timestamped salary objects : 

class Salary-history inherit TempObject 
public type 

tuple(Salary : integer) 
end: 

class Employee inherit TempObject 
public type 

tuple(Iame : string, 
Salaries : set(Salary-history), 
Dept : Department) 

end; 

In the following, we will refer to the approach 
shown in example 3 to keep queries as simple as 
possible. 

4.2 Operations on Timestamps 

The next step is to come up with functions which 
refer to the timestamps and can perform tempo- 
ral calculations on them. As mentioned before, 
we implement these functions as methods of class 
TempObject in order to be able to export them. 

We basically support the methods T-INTERSECT, 
T-MINUS and TJLATTEN to write queries equivalent 
to those that can be expressed in temporal rela- 
tional algebra. T-INTERSECT calculates the inter- 
section of the time intervals in two sets. For exam- 
ple, the intersection of {[94-oo)} and {[90-96)) is 
the set {[94-96)). T-MINUS calculates the temporal 
difference of sets of time intervals. The temporal 
difference of the interval sets { [94oo)} and { [90- 
96))) is the interval set {[96-oo)}. T-FLATTEN is 
used to flatten sets of temporal elements which 
may result from queries on sets of temporal ob- 
jects where only the timestamp attributes of these 
objects are returned. 

The signatures of these methods added to class 
TempOb j ect look like 

class TempObject inherit Object public type 
tuple(VALID : set(Interval), 

KEY : integer) 
method 

public T-IITERSECT(T : set(Interva1)) : 
set(Interval), 

public T-RIIUS(T : set(Interval)) : 
set(Interval), 

public T-FLATTEICS : set(set(1nterva.l))) : 
set(Interva1) 

. . . 
end; 

Additionally, we support the temporal compar- 
ison predicates before, meets, overlaps and so on as 
proposed by [l]. They are implemented as func- 
tions on two intervals, returning a Boolean value. 

With the above methods and Boolean functions, 
we can now express temporal queries in 02 O&L. 

Example 5 Assume an instance IS-Staff of class 
Staff containing employee objects with the follow- 
ing values 

Name Salary Dept KEY VALID 
Andreas 10000 IS 1 

Alain 9000 IS 2 gjg:";; 
Antonia 11000 IS 3 W-% 
Martin 8000 IS 4 W-94)) 
Martin 10500 IS 4 
M&a 20000 IS 5 

I;;::"";; 

Midas 30000 IS 6 @6-% 

and objects of instance MathStaff having values 

Name Salary Dept KEY VALID 1 
Moira 8000 Math 5 #6-90)) 
Midas 40000 Math 6 
John 15000 Math 7 

gyy 
03 

An instance of class Departments shall contain 
two objects (assuming object identifiers IS and Math), 
with the following values: 
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DNo Name Members KEY VALID 
3 Inf Systems ISStaff 10 
9 Mathematics Math-Staff 11 

We would like to know the history of the high- 
est salam’es of ISStaff. This temporal query is 
expressed as 

select 
tup1ew3me : si.Iame, 

salary : s1.Salary. 
VALID : sl.TJIIUS 

(s~.T-FLATTEI 

(select sl.T-IITERSECT(sZ.VALID) 
from s2 in IS-Staff.members 
where sl.Salary < s2.Salary))) 

from sl in IS-Staff.mambers; 

First, we find out for each employee, during 
which time periods there were other employees earn- 
ing more than himself. In a second step, we project 
objects in ISStaff to attributes Name and Salary 
and calculate the temporal difference of the valid 
time of each object and the time periods found when 
other employees earn more. This results in 

Empty timestamp sets denote that these employ- 
ees never earned more than everyone else. I 

Results having empty timestamp sets usually 
are not of interest. If they should not be presented, 
we have to add a corresponding selection condition. 
In order to do selections on temporal attributes, 
we either have to repeat the time calculations of 
the select clause in the where clause or do the 
temporal selections as the last step on the result of 
a subquery. 

Example 6 We want to find those employees who 
earned more than anyone else for more than a year. 
The query of example 5 is used as a subquery and 
the temporal selection is done on the result of the 
subquery. We can express this in O&L as 

select e 
from s in 

(select 
tup1e (lame : al.Izlme, 

Salary : sl.Salary, 
VALID : sl.TJ!IIUS 

(rl.T,PLATTEI 
(select sl.T-IITERSECT(s2.VALID) 

from s2 in IS-Staff.membars 
where al.Salary < s2.Salary))) 

from sl in IS-Staff.members) 
where exists T in s.VALID:T.VTE-T.VTS > 1; 

The resulting values of this query are 

So far we have used the time methods only in 
select and where clauses. We also would like to 
support set operations such as intersect, except 
and union with temporal semantics. In tempo- 
ral relational algebras, a temporal intersection of 
two sets of tuples is defined as determining during 
which periods of time a tuple is a member of both 
sets. In the case of a temporal object algebra, 
we rather want to calculate the intersection of two 
sets of objects to find out which objects belonged 
to both sets for some time period. For example, 
we might want to find out which employees were 
members of several staff groups, simultaneously. 

To express temporal intersection in O&L, we 
introduce a generic function TO-INTERSECT which 
takes two sets of temporal objects and returns a 
new set of temporal objects: 

function TO-IITERSECT( 
al : set(TempObject), 
62 : eet(TempObject)) : set(TempObject); 

Example 7 We assume the stafl objects ISStaff 

and MathStaff with the values given in example 5. 
To find those employees who are members of both 
staff groups at the same time, we can now write the 

query 

TO-IITERSECT(IS-Staff,members, Hath-Staff.members); 

which returns a single temporal object with the 
following values: 

Name 1 Salary 1 Dept 1 KEY 1 VALID 
Midas I 30000 I IS I 6 I (196-97)) 

Function TO-INTERSECT first checks if the classes 
of the elements of both argument sets s 1 and s2 are 
compatible, which means that it checks whether 
the two element classes are equal or if one class is 
a subclass of the other. To do this, it has to access 
meta data of sets si and s2 and their elements 
and this is done using the imported Meta Schema 
provided by 02. Next those attributes which are 
common to both element classes are determined 
again by accessing the meta data. Having found 
the common attributes, the temporal intersection is 
rewritten as a join of the two sets with the condition 
that the values of attributes KEY are equal. This 
means that we look for objects in both sets which 
have the same KEY value and thus refer to the same 
real world entity. The valid time period of the 
resulting temporal objects is calculated using the 
method T-INTERSECT. The attribute values of the 
resulting objects are copies of the values in s 1. 

The query of example 7 is rewritten as 
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select Employee{ 
KEY : el.KEY, 
Iama : el.Iame, 
Dept : el.Dept, 
Salary : ei.Salary, 
VALID : el.T-IITERSECT(eZ.VALID)) 

from ei in IS-Staff.members, 
02 in Ilath-Staff.members 

where el.KEY = e2.KEY and 
el.T-IITERSECT(eZ.VALID) != set(O); 

Unfortunately, since functions are not exportable, 
TO-INTERSECT cannot be made available as part 
of an imported schema. Adding it as a method 
to class TempObject means that we add a method 
operating on sets of instances of class TempObject 
to each single instance. A more natural way would 
be to create a new class SetTempObject and add 
methods TO-INTERSECT, TO-EXCEPT and TOJNION 
to this class. Functions to calculate temporal union 
and difference of two sets of temporal objects can 
be implemented accordingly. 

We have seen that it is possible to extend an 
existing object-oriented database system such that 
it can do complex temporal queries. It is not nec- 
essary to extend a temporal object-oriented query 
language syntactically to express temporal algebra 
operations as was done for relational database sys- 
tems. Temporal algebra operations can be expressed 
using non-temporal algebra operations and func- 
tions. 

5 Comparing the approaches 

5.1 Query Languages 

The examples 5, 6 and 7 show that it is quite 
akward to write temporal queries in 02 OQL. It 
would be better if the temporal set operations could 
be written as infix operators rather than as func- 
tions with arguments. The application program- 
mer also has to know exactly how the temporal 
queries can be formulated using the methods of 
TempObject. The temporal queries he writes usu- 
ally look totally different from their non-temporal 
counterparts. 

We have also seen that it is much easier just 
to specify that all algebraic operations should be 
evaluated temporally by writing a special keyword 
in front of a legal non-temporal query (see example 
2). This is not only less error prone and easier 
to understand for a programmer, but also helps in 
migrating non-temporal to temporal queries. 

Using the approach described in [21, 201, the 
query of example 5 could be expressed in temporal 
OQL as 

valid 
select tuple(lame : sl.Iame, 

Salary : sl.Salary ) 
from sl in IS-Staff.members 
where not exists s2 in IS-Staff.members: 

sl.Salary < s2.Salary; 

which clearly is much simpler. 
Instead of changing the syntax of the query lan- 

guage, the possibility of overriding algebra opera- 
tions would help to meet the same goal. Queries, 
written in a query language like OQL, could be 
translated into algebraic expressions. If the algebra 
operations were allowed to be overridden, we could 
implement a set of temporal algebra operations and 
use them to override some of the non-temporal op- 
erators. The system then would, depending on the 
context in which the query is executed, execute the 
temporal operations instead of the overridden ones 
after translating the query into algebra operations. 
Thus, we could change the semantics of a query 
such that it meets the special demands an applica- 
tion such as a tempora1 database (or others) might 
have. 

5.2 Constraints 

Constraints are used to define which states of a 
database are legal. By adding a time dimension 
to data, constraint checking needs to be enhanced, 
too (see e. g. [25, 6, 21). 

The semantics of referential integrity must be 
changed with respect to time. We not only have 
to check if a referenced object does exist at some 
point in time, we have to check whether this object 
exists during the whole timespan it is referenced. In 
example 3, we have to make sure that a referenced 
staff object, for example ISStaff, in an object of 
type Department, for example IS, actually exists 
during the time it is referenced. 

Special treatment of the subclass relationship is 
also needed in temporal databases. An instance 
of a subclass may only exist during the time it is 
also an instance of its superclass. For example, an 
object of class Employee may only exist during the 
time it is also an object of its superclass Person. 

Another constraint which might need to be tested 
depending on how extensively data is timestamped 
is the set membership constraint. This is a con- 
straint similar to the temporal referential integrity 
constraint. Assume we also timestamp Staff ob- 
jects, which means we also record when a staff 
group existed. Then an object of type Employee 
may only be a member of an instance of type Staff 
during its own lifespan, and an instance of type 
Staff may only contain objects of type Employee 
during its own lifespan. We call this the temporal 
membership constraint. 

Additionally, we can define partition, cover and 
intersection constraints for sets of objects. They 
also need to be adapted with respect to time. A 
temporal partition constraint for example needs to 
check whether two sets of objects never contain the 
same object at the same time during their lifespan. 

Using the database system 02, we can add meth- 
ods to objects which check the above (and other) 
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constraints when the attribute values are updated. 
This means that the programmer has to provide 
these general constraints. It would be useful, how- 
ever, if they were supported by the system itself, 
since they are general and are considered model 
inherent in most object-oriented data models. 

TOM supports this kind of constraints. Tem- 
poral referential integrity, temporal subclass rela- 
tionship, temporal membership, temporal partition, 
cover and intersection constraints are supported by 
the system directly and checked at commit time. 

5.3 Optimisation 

Temporal databases should never delete data phys- 
ically. This soon leads to huge amounts of data 
which have to be stored and managed. Besides en- 
hancing the expressive power, temporal operations 
also increase the complexity of query processing. 
Accessing and querying temporal data thus need to 
be optimized in order to provide reasonable answer 
times. 

Object-oriented database systems, extended with 
time functions and temporal comparison predicates, 
cannot make use of optimisation techniques for tem- 
poral data. They simply do not know about the 
temporal semantics of the data and functions and 
how they could be exploited for optimisation. 

As was shown in the case of temporal relational 
databases (e. g. [4, 8, 9, IS]), adding temporal data 
structures and operations to the system allows them 
to be used in optimisation strategies. 

However, instead of supporting specialist data- 
base systems handling, for example, temporal or 
spatial database applications, an approach should 
be chosen which allows the system to be modi- 
fied or extended such that special semantics of the 
application domain can be used for efficient data 
processing. 

In query processing strategies, temporal alge- 
bra operations such as the temporal cross product 
can be used in the same way as the corresponding 
non-temporal algebra operations. Overriding these 
operations with different semantics would in most 
cases still allow the use of the implemented query 
optimisation algorithm. 

6 Conclusions 

We have presented two general approaches to im- 
plementing temporal databases in object-oriented 
systems. In both cases, we were aiming at support- 
ing the temporal constructs and operations typical 
of temporal object data models and, specifically, of 
our general model TOM. The first approach is to 
implement a system baaed on the model, thereby 
supporting efficient storage and processing of tem- 
poral data as well as an ability to handle both 
temporal and non-temporal data in a uniform man- 
ner. The second approach is to extend an existing 

OODBMS with classes and methods for the man- 
agement of temporal data. This approach is the 
only one available in current commercial environ- 
ments. 

We have developed temporal databases using 
both approaches and found that, while it is much 
more convenient to develop and query application 
databases using our own system, we accept that 
the particular instantiation of the TOM model that 
we implemented may not be appropriate for all 
temporal applications. Further, we recognise the 
need for many different forms of extended database 
systems to manage spatial data, versions, variants 
etc. 

In conclusion, we advocate an approach that lies 
somewhere between in that certain basic constructs 
to support temporal models should be built into the 
system and then specific instantiations of temporal 
models should be implemented using the extensible 
features of the system. In fact, the basic constructs 
built into the system, such as support for multiple 
instances of objects, can be used to support not 
only temporal models, but also version models and 
other extended forms of database systems. Also, 
existing systems need to be extensible in a more 
general sense. In particular, as we have shown, 
it would be useful to have extensibility of object 
identifiers and also of the query system. We are 
currently investigating these issues in the context 
of the OMS system. 
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