
A Parallel Execution Model for Database Transactions

Javam C. Machado Christine Collet
Dep. de Computa@o, Univ. Federal do Cear& LSR-IMAG, University of Grenoble
CP 12166 - Fortaleza, Ce - 60455-760 - Brazil BP 53 38041 Grenoble cedex 9, France

javam @ lia. ufc. br Christine.Collet@imag.fr

Abstract

This paper explains our approach for optimizing
the execution of object-oriented database
transactions. We provide for parallel execution of
methods inside atomic transactions. Our approach
enhances parallel method execution without user-
defined control structures. Optimization is based on
method compatibility which is automatically
determined during the method compilation phase.
Optimized execution plans are efJiciently built when
transactions are compiled. An execution plan is
then used for generating new transaction code
where compatible methods are scheduled for
parallel execution.

Keywords: Object-Oriented Databases, Parallel
Databases, Transaction processing

1. Introduction

This paper presents the approach we propose for
providing parallel method execution without user-
defined control structures. The approach is
completely transparent to method definition and is
efficient since optimization is performed at
compilation time. Moreover our approach is likely
to have a better performance as we do not have to
create a transaction each time two methods are
concurrently executed.

In our approach, optimizing transaction
execution means providing implicit parallelism
between methods of a transaction. The new
transaction execution model we propose supports
synchronous and asynchronous method execution.
This is accomplished by creating an optimized
transaction execution plan each time a transaction is
compiled and using this plan to transform the
transaction code.

Proceedings of the Fifth International Conference on
Database Systems for Advanced Applications,
Melbourne, Australia, April l-4,1997

The paper is organized as follows. Section 2
gives the main characteristics of the 02 database
system. Section 3 briefly explains our approach for
optimizing transaction execution based on method
compatibility. Section 4 concentrates on the
resulting method compatibility relationship. Section
5 shows how this relationship is used for building
transaction execution plans with parallelism.
Section 6 describes related work and finally, a brief
conclusion and a short presentation of the prototype
implementing our proposals are given in Section 7.

2. 02 DBMS Background

This section reviews the main characteristics of the
02 System. The reader may find further details in
[1, 61. Figure 1 shows how an 02 application is
organized.

Figure 1: Organization of an 02 application

An 02 schema is a set of definitions. A schema
consists of a set of classes related by inheritance
links and/or composition links, types, functions and
applications. A class definition consists of a type
definition and a set of methods. A type is defined
recursively from atomic types (integer, Boolean,
char, string, real, and bits) or classes and
constructors (tuple, list and set).

An 02 base groups together objects and values
which have been created in compliance with a
schema. An object is an instance of a class and has
an identity, a value and a behavior defined by its
methods. The type of the value is the one given by
the class definition and methods are those of the

511

class. Independently from objects, 02 also manages
values which are instances of a type. In the
remainder of this paper, the entity concept is used
for referencing either objects or values.

By default, entities created during program
execution are not persistent. To become persistent,
an entity must be directly or indirectly attached to a
name, i.e., a persistent root belonging to a schema.
The entity attached to the root is stored in one of the
database associated with the schema, the one
“active” when the attachment is done.

Methods are defined using 02C, which allows
to express manipulations on persistent entities as
well as non-persistent entities. Persistent entities are
manipulated only inside transactions. The query
language of the system, 02SQL, can be used to
express Boolean expressions on entities as well as
SQL queries on collections. OZSQL queries can be
executed either in an interactive mode or as part of
the body of a method or a program.

An 02 application is a set of programs and
belongs to a schema. When an application starts up,
it opens a read-only transaction. Programs of the
application executed within this transaction can
manipulate transient entities (apply methods,
modify values, etc.) but are restricted to read-only
access to persistent entities. A (read-write)
transaction must be initiated before updating
persistent entities in order to ensure consistency.

Transactions in 02 are atomic transactions.
Commands such as transaction, validate, commit
and abort are provided for managing transactions.
Actually the 02 transaction model does not support
nested transactions. Any time a transaction
command is issued inside an existing transaction, it
is ignored. There is only one transaction at a time in
a running 02 application. Transactions send
messages to transient or persistent objects to
execute their methods.

3. Overview of the Approach

In our approach, two kinds of information are
extracted at compilation time for defining
compatibility between methods. First, we consider
method access sets over attributes and persistent
roots defined in the schema the methods belong to.
A method may “read” (access) or “write” (update)
attributes and persistent entities. As a method may
concern entities of different types, it is possible to
buiId two access sets describing the set of entities
that can be accessed or modified during method
processing, respectively.

Let us consider that methods ml and m2 are
defined as follows:

Code of the method ml

02 Class-X x;

int a=12, b;
x = new Class-X;
Root += set(x);
x->ml,(a);
b=x->maa;

Code of the method m2:
02 set(Class-X) y;
02 Class-X x;
int b;

y = Root;
for x in y do {

b=x->mza;
. . .

In the source above, Root is a persistent
collection. ml, modifies the attribute A of x, while
rnb reads the attribute B of x.

For building the access sets of ml, we use the
environment of the method which is a space of
definitions that can be shared by its components.
The environment of a method is composed of
definitions of attributes and roots of the schema the
method belongs to. Others kind of information is
not interesting for our purposes. Local variables
may directly or indirectly denote objects or
persistent roots. They can be read or even modified
by the method action. In that case, we are interested
only in the messages sent from the method.

The environments of methods ml and m2 can be
represented as the set of names (Root, . . .). Method
ml modifies the persistent collection Root and
method m2 accesses objects of Root. The access
sets of ml are: read=0 and write=(Root} and those
of m2 are: read=(Root} and write=O. Considering
the access sets of both methods, we determine that
there is a conflict: ml “writes” on Root and m2
“reads” Root.

If now we assume the access sets for trill and m2
as: read=(Root) and write=0 then we cannot say
that the methods are compatible as we have to
check that method ml, is compatible with mza and
that m2a is compatible with itself. Given the
information on ml, and mza. it is clear that they are
compatible. Even if they manipulate the same
object, they do not modify a common attribute of
this object.

4. Method Compatibility

The parallel execution of methods inside
transactions relies on compatibility relation between
methods. Compatible methods can be scheduled for
parallel execution and still have their results
equivalent to the results of a sequential execution of
the same methods. This section explains how we
build the compatibility relation over the methods of
a schema. The reader may find further details in
[191.

512

4.1 Notation

Partial function:
Let Idf be the set of Identifiers and Type =

{class, method, root, type, atomic, complex).
Considering id E Idf and t E Type, t/i is a partial
function that belongs to the set of functions
ENV=Idf +Type:

t/id = hy. if y = id then t else the function is not
defined.

defining the compatibility of methods. Of course,

we assume that we have Qrs .

S
a Class = /c E aSlc(id) = class) is the set of class

definitions.

aLI = {mEas13cEa&,,, ~rn~ai~~~) is the
set of methods of schema.

a& = (pr E asl pr(id) = root) is the set of
persistent roots.

4.2 Primitive access sets of methods

For defining the primitive access sets of a method,
we consider the 02C expressions and statements
used in its body. The compilation phase of a method
m of a class C in a schema S includes a new phase
which consists in determining which attributes of an
instance of C are accessed or modified. This phase
also detects which persistent root of S are
manipulated. Let mode be a function returning the
access mode over an entity’:

mode : Idf + {na. read, write)

Domain of a function t/iii:

Def(t/id) = (x I t/id(x) is defined]

Attributes and methods of a class:
The definition of an attribute of a class C is of

the form a:t where a is an identifier and t is an
atomic type or a complex type. Such a definition
can be represented as a function t/C.a. For example,
the function atomic/Person.name describes that
name is an attribute of class Person and the
function complex/Person.address describes the fact
that address is an attribute of class Person with a
complex type. A component attribute of address
can also be described as a function, e.g.,
afomic/Person.address.zip. Given the definition of
a class C, the attributes specified in this definition
are given by:

a& = bti / C.ai,ti E (atomic,complex] Aai E Idf
i=l

The definition of a method m of a class C can be
represented as a function methoaYC.m. Given the
definition of a class C having n methods mi, the set
of methods of C is represented as:

di,h = 0 method / C. mi, mi E Idf
i=l

Schema:
A schema is a set of definitions of classes, types,

functions, applications and persistent roots. Given a

schema S, it is possible to build CXs , a set of partial
functions, each of them describing an element of the
schema. For example, if S contains the definition of
a class Person, the class/Person function belongs to

as and describes the fact that Person is a class.
Given an identifier id E Idf , class/Person(id) tells
us if id denotes the class Person or not. Also if the
persistent root ThePersons defined as
ThePersons: set(Person) belongs to S then the

function root/ThePersons f as . In the following
we give only the sets we are interested in for

Definition 1 Let S be a schema. The primitive
access sets of a method in S is given by (m denotes
a method of S, i.e., m E Def (a&)):

read, = (n E Def(az UoI”,,)I mod&) = read)

write,=(nELkf(a$ UO$~)lmode(n)=writerite)

The following function Pm associates to a
method m its primitive access sets:

P m : m + read,,, x write,,,

This function belongs to the set of functions
Idf + 21df ~2”~ and P,,, Dl = read,,, ,
p, [2] = write, . The primitive access sets of

methods j& of a schema S are:

The j?s function may be represented as a table.
For example, Table 1 gives the access sets of some
methods of classes Ci and Cz belonging to a
schema example.

I na means “no access”.

513

pJ$gqq
Table 1: Primitive access sets of some methods

An important aspect in building access sets of a
method relates to its arguments. Arguments having
atomic types are considered as local variables. If an
argument represents an instance of the class to
which the method belongs, we consider it as self
and therefore, we take it into account when building
the primitive access sets.

Another important aspect relates to late binding.
A method defined in a class can later be redefined
in its subclasses (overriding). Since method code
can depend on the actual class of objects, the
binding between a method name and its code has to
be carried out at run time. This makes impossible to
know, at compilation time, which code will be
executed exactly. Therefore, in building primitive
access sets, we choose to keep the most restrictive
access over the entities used in different codes
associated to the same method name. Let us
consider a class C1 which has a method ml and a
class Cz, subclass of C,. Method ml is inherited by
Cz and is redefined in Cz (cf. Figure 2). Assume that
method Cl.rnl “reads” root1 while method Cz.rnl
modifies it. The access sets of Cl.ml and Cz.ml are
read = (root1) and write = [root1 }. This is clearly
a pessimistic approach, but it makes sure
compatibility of methods is correct even though
methods are inherited.

Cl.ml{
illt x;
. . .
x = rootl;
. . .
1

read = {root1)
write=+

\ read = {motl)
p write = {rootl)

C2.m1(
..I read=+
root1 = 10; write = {motl) /

. . .

Figure 2: Method overriding

4.3 Extended access sets

In the primitive access sets of a method m of a class
C, we consider only attributes of C. However, m
may have indirectly some effects on attributes of the
same class or of other classes. More generally, if a
method ml calls another method rn2 of the same
class or of another class, then the access sets of ml
takes in account the access sets of m2 which in turns
takes into account the sets of any called method. In
order to get the final access sets of a method m of a

schema, we consider the access sets and the control
graph of m.

Figure 3 shows that the control flow among
methods possibly called during the execution of a
method p can be represented as a directed acyclic
graph, so-called a control graph. In such a graph,
nodes represent methods (more precisely method
identifiers) and edges represent the control flow.
The root of the graph is the method of interest. The
control structure is denoted by + and the semantics
of Cl.ml+Cz.mz is that the execution of Cz.mz
should sequentially follow Cl.ml. This means that
method ml of class Cl calls method mz of class Cz.
In Figure 3, we have C1.p+Cz.q and C,.p+C,.r
which means that method p of class C, calls method
q of class Cz and method r of class C, .

l,l.l’l “.t

Q
c1.p

read+={at2, &} ‘I.
wAc+={atl, at3. at4) ‘j

=?;:r c2.q cc I’ _____.. --_ -. ..,. ,,/
c1 r r+J+&

wntc =(a s! , qp, at4)
i ,’

2%
___ ..-i

/;,/ _____.... -.--.--- L...’ -.-.-.-----. ~-.......__._..... -. ‘...
./- ‘A__

rcad+={at$‘+ c2.s
--.._._

witc+={at3) i,
C2t ready)

write ={atl)

Figure 3 : Building the extended access sets of
methods using control graphs

Also in Figure 3 we show how we extend the
access sets of method p of class C1 considering the
control graph of p and assuming we have the
primitive access sets of Table 1. Method u does not
call methods and its primitive access sets are also its
extended access sets. The construction of the
extended access sets of Cz.s adds Cz.at5 to read,.
Extending access sets of Cl.r takes into account the
extended access sets of Cz.s and C2.t. It first adds
Cl.atl and C2,at5 to read, and &at3 to write,. Then,
proceeding Cz.t, it adds &at, to write,. Finally, it
removes Cz.atl from read,. After extending access
sets, Table 1 has the configuration given in Table 2.

C1.P

C,.r

read write ext
{ Cz.atz, Cz.ats) (Cz.atl, Cz.ats, Cl.at4) 4

{Gat5) {G.ah, C2.at3, G-at41 4

514

Table 2: Extended access sets of some methods

Let us consider the compilation phase of a
method m and let us assume that this method has
been compiled and that its primitive access sets
have been calculated: Ps(m) is defined. Given the
control graph of method m, the following algorithm
is applied (at the end of compilation phase) for
extending the access sets of m and of possibly other
methods.

Algorithm Access-set-extension
Input: A control graph of a method m, ps
Ouput: Extended access sets of m

extend(node, root, ps) {
if (node = nil) then

root.ext = true);
else

while node # nil do (
extend(succ(node), node, Bs);
P&ooO[ll= Pdroot)[ll u Pdnode)[ll;
PdrooWl = PdrooWl u Pdnode)Pl;
node = alt(node);

1;
Pdroot)[ll = PdrooO[ll - P&000[21;

In order to make a difference hereafter between
a primitive access set and its corresponding
extended access set we use the following:

. m denotes a method of a schema S, i.e.,

m E Def Cc&,, > ;

. write: is the extended write access set of

m;

. read: is the extended read access set of m

4.4 Compatibility

The extended access sets of a method give us
information on the way the method interacts directly
or not on attributes of classes and persistent roots.
Based on those sets, compatibility relation is
defined for all methods of a schema. Two methods
ml and m2 of a schema S are compatible if they are
not in conflict, i.e., if an element of the extended
write access set of one of the methods does not
belong to extended access sets of the other.

VW 9 ~2 E aLh , McompatibLe(ml, m2) e

read & n write;* = 0A

writei nread& =021h

write;, A write:, = 0

The Mcompatible relationship can be
materialized as a matrix. Figure 4 gives the matrix
built for methods in Figure 3. One entry in line 1
and column c gives the result of Mcompatible(l,c).

c,.p C,.r c2.q cz.s- CZ cz.u
Cr.p false false true false false true
C,.r false false true false false true

C2.s false false true false false true ~1
Figure 4: Example of a Mcompatibility matrix

5. Parallelizing 02 Transactions

Our approach transforms the definition of an 02
transaction into an execution plan where methods
are scheduled for parallel execution. This plan is
build based on the order of methods inside
transactions and on compatibility relation.
Compatible methods are scheduled for parallel
execution while scheduling follows definition order
for methods that have to be sequentially executed.
Later on the plan is used to generate a new
transaction definition code.

5.1 Execution plan

Each transaction is logically represented in terms of
a graph of methods. The vertices are methods and
the edges represent the execution order relation. For
instance, if a method mj immediately follows a
method mi in a transaction definition, than there is
edge from mi to mj in the transaction graph.
Consider a transaction and his graph given in figure
5.

Definition 2 The compatibility relation between
methods of n schema is given by:

515

43
02 Cl a;
02 C2 b; Q

2

(1) transaction;
Q 3

(2) b+u;
(3) b+t; Q 4

ii b+q; rf (condition) {
(6) a-m 6

Ii;
b+s; }

:”

Q
validate; Q

7

Figure 5: Transaction graph

There are three different types of vertices: (1)
transactional, (2) conditional and (3) message.
Transactional and conditional vertices always
follow definition order and will not be moved in the
graph. Message vertices are considered for
transformation if the methods they represent are
compatible.

Before transformation, the order between
message vertices is totally defined so that each
vertex has only one incoming and an outgoing edge.
Graph transformation changes the relation between
vertices, in a way that a vertex may have several
incoming and outgoing edges. When a vertex has a
number of outgoing edges, it starts a set of sibling
vertices and is said to be a spawn vertex. Each
sibling vertex has only one outgoing edge that
arrives in a vertex called barrier. We call a bloc a
set of vertices with a spawn vertex followed by a set
of siblings and finished by a barrier vertex.

Graph transformation algorithm creates blocs of
vertices inside transaction graphs. It follows a
transaction graph and performs two main steps:

1. When consecutive message vertices
represent compatible methods, they
become siblings. This transformation is
made until one of the following condition
holds:

. Next vertex is a transaction or
conditional one.

. The method of the next message
vertex is not compatible with one of
the actual siblings.

2. A barrier vertex is always introduced after
siblings.

Considering the transaction graph of the figure
5, transformation would result in a new graph
showed in figure 6. Vertices 2, 3 and 4 become
siblings since they are consecutive and their
methods are compatible. They are followed by a
synchronization vertex right before vertex 5 which
is a conditional vertex. On the other hand, vertices 6
and 7 are consecutive but their methods are not

compatible, so the parent/child relation for those
vertices is the same as before.

i” Q 6

Q 7

Figure 6: Graph of a transaction after
transformation

5.2 Code Generation

We use the execution plan to generate a new 02
transaction code that will schedule for parallel
execution of methods and will produce the same
results as the transaction sequential code 1191. We
generate new code mainly for blocs of vertices. The
rest of the transaction code remains as it has been
defined. So methods can be sequentially or
concurrently executed in transactions.

Spawn and barrier vertices define the
boundaries for parallel execution inside
transactions. As a result parallel execution of
methods will never transpose transaction
boundaries. We assure that at the beginning and at
the end (abort or validate) of a transaction there will
be only a thread of control inside transactions.
Using transactions as synchronization boundaries
for parallel execution of methods implies that we
would never have two transactions of the same
application running in parallel. So all methods of a
transaction have to finish execution before a new
transaction is set up.

5.2.1 Spawning and Synchronizing threads

The code generation phase transforms sibling
vertices of a bloc in system calls that create as many
threads of control as the number of vertices. Each
method of the bloc will be schedule for parallel
execution in a new thread of control. Threads are
asynchronously spawned and each one is
sequentially executed although full parallelism is
accomplished inside the bloc.

There is no need for synchronization while
parallel threads are performed since they are
completely independent one of the other. This is
assured by the compatibility relation between
methods which is the basis for bloc construction.
Each thread will execute the method code until the
end of method and control will be transferred back
to the transaction code.

Thread creation calls have several formal
parameters that allow identification of the method

516

to be executed and transfer of input and output
method parameters. Threads are also uniquely
identified. Thread id will be further used for
synchronization purpose.

Barrier vertices generate synchronization code
for parallel threads. We use a primitive called
barrier that synchronizes all the running threads at
the end of a bloc. After all methods have been
executed, only one thread will be active and will
continue the transaction execution.

In the following, we give the code generated by
the execution plan of the figure 6. Note the system
calls to create threads to execute methods CZ.u, C,.t
and C2.q. Right after these calls transaction issues a
barrier to synchronize the spawned threads.

02 Cl a;
02 C2 b;

(1) transaction:
(2) Iwp-create(Th1 , b+u, 0, 0);
(3) IwpCreate(Th2, b+t, 0, 0);
(4) Iwp-create(Th3, b-+q, 0, 0);

barrier(Th1, Th2, Th3);
(5) if (condition) {

(6) a+p;
(7) t-s; I
(6) validate;

6. Related Work

Parallelism is not a new issue in database
systems. There is a lot of work that deals with
parallel query processing in the framework of
relational systems [10, 221. Several prototypes have
already been built [S, 7, 11, 16, 251. The issue in
those approaches is the execution of a SQL query in
parallel. Two forms of parallelism have been
proposed: intra-operation and intra-query
parallelism [22]. With object-oriented databases,
new transaction models have been proposed. The
nested transaction model also allows for exploiting
parallelism in the context of database transactions
[21]. Parallel execution of a transaction and its sub-
transactions is said to be vertical while parallelism
between two transactions of the same level is called
horizontal [171. Several prototypes offer a way of
specifying parallelism between or inside nested
transactions [12, 131. Those approaches differ from
the one described in this paper mainly in the way
parallelism is specified. We generate parallelism by
code transformation while they leave to
programmers the responsibility of describing and
controlling parallelism inside transactions. Besides
our approach works in a classic transaction model.

The notion of compatibility has been used in the
context of abstract data types mainly for
concurrence control over shared objects [3, 231.
Compatibility between operations is usually defined

as part of the abstract data type specification.
Concurrence control algorithms used operation
semantic information supplied in the type
specification for dynamically defining compatibility
between operations. Most of the compatibility
operation checking procedure was made at runtime
since the purpose was to augment object
accessibility in concurrent transactions.

Commutativity and recoverability have lately
been proposed as the natural successors for
operation compatibility in the context of concurrent
transactions [4, 9, 261. Although they allow more
concurrence than compatibility, these approaches
are usually based on the functionality of transaction
managers in order to validate operations in the
correct order or rollback operations in case of
invalid transaction history. We cannot use them
since methods do not have a transaction semantics.
Furthermore, we have decided to do as much as
possible at compilation time in order to have less
overhead at execution time.

In [20] we described a parallel execution model
for a database programming language called
Peplom. This model is based on the notion of actors
[2] and supports both parallelism between objects
and between methods inside objects. Asynchronous
message passage is the basis for parallelism
between objects while synchronization techniques
make sure the mutual exclusion of parallel
execution of methods belonging to the same object.

In [8] we proposed a model for optimizing
active rules with parallelism. Asynchronous rule
execution has been provided in [14, 15, 183 by the
means of decoupled transactions. However, those
early works differ from the approach we describe in
[8] in various aspects. In our approach parallel
execution of rules takes place inside the triggering
transaction and therefore is semantically different
from decoupled transactions. Nested transactions
are used in [181 to concurrently execute rules as
sub-transactions of the triggering transaction.
Transaction creation has to be specified within the
rule definition explicitly in [14, 181 or using
composite and transaction events in [15]. In [24],
rule associations define execution order between
rules. Tree kinds of associations are proposed to
programmers for specifying a precedence
relationship between two rules, a rule and a set of
rules, or a set of rules and a rule. Rules in a set can
be executed in parallel. The strategy used for
parallel execution of methods in a set is based on
the control flow among the methods. Briefly
speaking, two methods which are not involved in
more than one association are said to be
independent. If two methods/statements are
independent of each other they are executed in
parallel.

517

7. Conclusion

In this paper we defined our approach for exploring
parallelism in object-oriented database outside of
the context of SQL queries. We proposed a
technique for parallelizing transactions in a flat
classical transaction model where a transaction is a
sequence of methods. The technique is based on
compatibility relation of methods which is
automatically determined at method compilation
phase. Irma-transaction parallelism is accomplished
by transforming transaction definition code in order
to execute methods in parallel.

We implemented a prototype for the intra-
transaction parallelization model using the 02
object-oriented database system, which we
described in this paper. The prototype introduces
parallel execution inside 02 transactions through
creation and synchronization of threads of control
inside an 02 client running an application. We
extended the 02 DBMS with two new modules:
. The compatibility table generator which is

responsible for calculating compatibility
relation between methods of a schema. It also
manages the compatibility relation table as 02
named object.

. The transaction parallelizer which transforms
02 transaction definition code for scheduling
methods for parallel execution.

Our prototype runs in a monoprocessor Unix-
like workstation and supports virtual parallelism.

We already have some results on applying the
intra-transaction parallelization model on a nested
transaction model [191. In this context, we combine
our technique of parallelizing method execution
inside transactions with the power of inter-
transaction parallelism of the nested transaction
model. Further investigation is still on the way and
the results will be published later.

8. References

[l] M. Adiba; C. Collet. Objets et Bases de
Don&es - Le SGBD 02. Hermes, 1993

[2] Actors: A Model of Concurrent Computation in
Distributed Systems. The MIT Press, 1986.

[3] B.R.Badrinath; K.Ramamritham. Synchronizing
transactions on objects. IEEE Transactions on
Computer, 37(5):541-547, May 1988.

[4] B.R. Badrinath; K.Ramamritham. Semantic-
based concurrency control: Beyond
commutativity. ACM Transactions on Database
Systems, 17(1):163-199, March 1992.

[5] B. Bergsten; M. Couprie; M. Lopez. DBS3: A
parallel database system for shared store. In
Proc of the 2nd Int, Conf on Parallel and
Distributed Information Systems, pages 260-
262, San Diego, Jan 1993.

[6] F. Bancilhon; C. Delobel; P. Kanellakis, editors.
Building an Object-Oriented Database System -
The History of 02. Morgan Kaufmann, 1992.

[7] G. Copeland; W. Allexander; E. Boughter; T.
Keller. Data placement in Bubba. In Proc of the
1988 ACM SIGMOD Int. Conf on Management
of Data, pages 99-108, Chicago.May 1988.

[S] C. Collet; J.C. Machado. Optimization of active
rules with parallelism. In Proc of the Znt.
Workshop on Active and Real Time Databases,
Skovde, June 1995.

[9] P.K.Chrysanthis; S.Raghuram; K.Ramamrit-
ham. Extracting concurrency from objects: A
methodology. In Proc. of the 1991 ACM
SIGMOD Int. Conf on Management of Data,
pages 108- 117, Denver, June 1991. ACM Press.

[lo] D.J. Dewitt; J. Gray. Parallel database sys-
tems: The future of high Performance database
systems. Communications of the ACM,
35(6):85-98, June 1992.

[1 l] D.J. Dewitt; S. Ghandeharadizeh; D. Scheiner;
A. Bricher; H.I. Hsiao; R. Rasmussen. The
Gamma Database Machine Project. IEEE
Transactions on Knowledge and Data
Engineering, 2(1): 112-124, Mar 1990.

[12] P. Dasgupta; R.J. LeBlanc Jr.; W.F. Appelbe.
The Clouds Distributed Operating System. In
Proc of the 8th Int. Conf: on Distributed
Computing Systems, pages 2-9, San Jose, June
1988, IEEE.

[13] J.L. Eppinger; L.B. Mummert; A.Z. Spector.
Camelot and Avalon: A Distributed Transaction
Facility, 1991, Morgan.

[14] S. Gatziu; A. Geppert; K.R. Dittrich. Integra-
ting active concepts into an object-oriented
database system. In Proc. of the 3rd Int.
Workshop on Database Programming
Languages: Bulk Types & Persistent Data,
pages 399-415, Nafplion, 1991. Morgan.

[15] N. Gehani; H.V. Jagadish; 0. Shmueli. Event
specification in an active object-oriented
database. In Proc. of the 1992 ACM SIGMOD
Int. Conf on Management of Data, pages 8 l-90,
San Diego, 1992.

[16] G. Graefe. Volcano: An Extensible and
Parallel Query Evaluation System. IEEE
Transactions on Knowledge and Data
Engineering, 6(1):120-135, Feb 1994.

[171 T. Harder; K. Rothermel. Concurrency control
issues in nested transaction. The VLDB Journal,
2(1):39-74, Jan 1993.

[181 M. Hsu; R. Ladin; D. McCarthy. An execution
model for active database management systems.
In Proc. of the 3rd Znt. Conf on Data and
Knowledge Bases, pages 171-179, June, 1988.

[19] J.C. Machado. Parall6lisme et Transactions
dans les Bases de Donnees a Objets, PhD
Thesis, Universite de Grenoble, 1995.

518

[20] J.C. Machado; C. Collet; B. Defude; P.
Dechamboux; M. Adiba. The parallel PEPLOM
execution model. In Proc. of 31st Annual ACM
Southeast Conference, Birmingham, Apr 1993.

[21] J.E.B. Moss. Nested Transactions: An Approa-
ch to Reliable Distributed Computing. The MIT
Press, 1985.

1221 E. Omiecinski. Parallel relational database sys-
tems. In Modern Database Systems, W. Kim,
ed., pages 494-5 12, ACM Press, 1995.

1231 M. Roesler; W. Burkhard. Concurrency control
scheme for shared objects : A peephole
approach based on semantics. In Proc. of the 7th
Znt. Conf. on Distributed Computing Systems,
pages 224-231, Berlin, September 1987.

[24] S.Y.W. Su; R. Jawadi; P. Cherukuri; Q. Li; R.
Nartey. OSAK*.KBMS/P: A parallel, active,
object-oriented knowledge base server.
Technical Report TR94-03 1, University of
Florida, Gainesville, 1994.

[25] M. Stonebraker; R. Katz; D. Patterson; J.
Ousterhout. The design of XPRS. In Proc of the
14th Znt. Conf: on Very Large Data Bases,
pages 318-330, Los Angeles, Aug 1988.

[26] W. Weihl. Commutativity-based concurrency
control for abstract data types. IEEE
Transactions on Computer, 37(12):1488-1505,
Dee 1988.

519

