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Abstract 

This paper explains our approach for optimizing 
the execution of object-oriented database 
transactions. We provide for parallel execution of 
methods inside atomic transactions. Our approach 
enhances parallel method execution without user- 
defined control structures. Optimization is based on 
method compatibility which is automatically 
determined during the method compilation phase. 
Optimized execution plans are efJiciently built when 
transactions are compiled. An execution plan is 
then used for generating new transaction code 
where compatible methods are scheduled for 
parallel execution. 

Keywords: Object-Oriented Databases, Parallel 
Databases, Transaction processing 

1. Introduction 

This paper presents the approach we propose for 
providing parallel method execution without user- 
defined control structures. The approach is 
completely transparent to method definition and is 
efficient since optimization is performed at 
compilation time. Moreover our approach is likely 
to have a better performance as we do not have to 
create a transaction each time two methods are 
concurrently executed. 

In our approach, optimizing transaction 
execution means providing implicit parallelism 
between methods of a transaction. The new 
transaction execution model we propose supports 
synchronous and asynchronous method execution. 
This is accomplished by creating an optimized 
transaction execution plan each time a transaction is 
compiled and using this plan to transform the 
transaction code. 
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The paper is organized as follows. Section 2 
gives the main characteristics of the 02 database 
system. Section 3 briefly explains our approach for 
optimizing transaction execution based on method 
compatibility. Section 4 concentrates on the 
resulting method compatibility relationship. Section 
5 shows how this relationship is used for building 
transaction execution plans with parallelism. 
Section 6 describes related work and finally, a brief 
conclusion and a short presentation of the prototype 
implementing our proposals are given in Section 7. 

2. 02 DBMS Background 

This section reviews the main characteristics of the 
02 System. The reader may find further details in 
[ 1, 61. Figure 1 shows how an 02 application is 
organized. 

Figure 1: Organization of an 02 application 

An 02 schema is a set of definitions. A schema 
consists of a set of classes related by inheritance 
links and/or composition links, types, functions and 
applications. A class definition consists of a type 
definition and a set of methods. A type is defined 
recursively from atomic types (integer, Boolean, 
char, string, real, and bits) or classes and 
constructors (tuple, list and set). 

An 02 base groups together objects and values 
which have been created in compliance with a 
schema. An object is an instance of a class and has 
an identity, a value and a behavior defined by its 
methods. The type of the value is the one given by 
the class definition and methods are those of the 
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class. Independently from objects, 02 also manages 
values which are instances of a type. In the 
remainder of this paper, the entity concept is used 
for referencing either objects or values. 

By default, entities created during program 
execution are not persistent. To become persistent, 
an entity must be directly or indirectly attached to a 
name, i.e., a persistent root belonging to a schema. 
The entity attached to the root is stored in one of the 
database associated with the schema, the one 
“active” when the attachment is done. 

Methods are defined using 02C, which allows 
to express manipulations on persistent entities as 
well as non-persistent entities. Persistent entities are 
manipulated only inside transactions. The query 
language of the system, 02SQL, can be used to 
express Boolean expressions on entities as well as 
SQL queries on collections. OZSQL queries can be 
executed either in an interactive mode or as part of 
the body of a method or a program. 

An 02 application is a set of programs and 
belongs to a schema. When an application starts up, 
it opens a read-only transaction. Programs of the 
application executed within this transaction can 
manipulate transient entities (apply methods, 
modify values, etc.) but are restricted to read-only 
access to persistent entities. A (read-write) 
transaction must be initiated before updating 
persistent entities in order to ensure consistency. 

Transactions in 02 are atomic transactions. 
Commands such as transaction, validate, commit 
and abort are provided for managing transactions. 
Actually the 02 transaction model does not support 
nested transactions. Any time a transaction 
command is issued inside an existing transaction, it 
is ignored. There is only one transaction at a time in 
a running 02 application. Transactions send 
messages to transient or persistent objects to 
execute their methods. 

3. Overview of the Approach 

In our approach, two kinds of information are 
extracted at compilation time for defining 
compatibility between methods. First, we consider 
method access sets over attributes and persistent 
roots defined in the schema the methods belong to. 
A method may “read” (access) or “write” (update) 
attributes and persistent entities. As a method may 
concern entities of different types, it is possible to 
buiId two access sets describing the set of entities 
that can be accessed or modified during method 
processing, respectively. 

Let us consider that methods ml and m2 are 
defined as follows: 

Code of the method ml 

02 Class-X x; 

int a=12, b; 
x = new Class-X; 
Root += set(x); 
x->ml,(a); 
b=x->maa; 

Code of the method m2: 
02 set( Class-X) y; 
02 Class-X x; 
int b; 

y = Root; 
for x in y do { 

b=x->mza; 
. . . 

In the source above, Root is a persistent 
collection. ml, modifies the attribute A of x, while 
rnb reads the attribute B of x. 

For building the access sets of ml, we use the 
environment of the method which is a space of 
definitions that can be shared by its components. 
The environment of a method is composed of 
definitions of attributes and roots of the schema the 
method belongs to. Others kind of information is 
not interesting for our purposes. Local variables 
may directly or indirectly denote objects or 
persistent roots. They can be read or even modified 
by the method action. In that case, we are interested 
only in the messages sent from the method. 

The environments of methods ml and m2 can be 
represented as the set of names (Root, . . . ). Method 
ml modifies the persistent collection Root and 
method m2 accesses objects of Root. The access 
sets of ml are: read=0 and write=(Root} and those 
of m2 are: read=(Root} and write=O. Considering 
the access sets of both methods, we determine that 
there is a conflict: ml “writes” on Root and m2 
“reads” Root. 

If now we assume the access sets for trill and m2 
as: read=(Root) and write=0 then we cannot say 
that the methods are compatible as we have to 
check that method ml, is compatible with mza and 
that m2a is compatible with itself. Given the 
information on ml, and mza. it is clear that they are 
compatible. Even if they manipulate the same 
object, they do not modify a common attribute of 
this object. 

4. Method Compatibility 

The parallel execution of methods inside 
transactions relies on compatibility relation between 
methods. Compatible methods can be scheduled for 
parallel execution and still have their results 
equivalent to the results of a sequential execution of 
the same methods. This section explains how we 
build the compatibility relation over the methods of 
a schema. The reader may find further details in 
[191. 
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4.1 Notation 

Partial function: 
Let Idf be the set of Identifiers and Type = 

{class, method, root, type, atomic, complex). 
Considering id E Idf and t E Type, t/i is a partial 
function that belongs to the set of functions 
ENV=Idf +Type: 

t/id = hy. if y = id then t else the function is not 
defined. 

defining the compatibility of methods. Of course, 

we assume that we have Qrs . 

S 
a Class = /c E aSlc(id) = class) is the set of class 

definitions. 

aLI = {mEas13cEa&,,, ~rn~ai~~~) is the 
set of methods of schema. 

a& = ( pr E asl pr(id) = root) is the set of 
persistent roots. 

4.2 Primitive access sets of methods 

For defining the primitive access sets of a method, 
we consider the 02C expressions and statements 
used in its body. The compilation phase of a method 
m of a class C in a schema S includes a new phase 
which consists in determining which attributes of an 
instance of C are accessed or modified. This phase 
also detects which persistent root of S are 
manipulated. Let mode be a function returning the 
access mode over an entity’: 

mode : Idf + {na. read, write) 

Domain of a function t/iii: 

Def(t/id) = ( x I t/id(x) is defined] 

Attributes and methods of a class: 
The definition of an attribute of a class C is of 

the form a:t where a is an identifier and t is an 
atomic type or a complex type. Such a definition 
can be represented as a function t/C.a. For example, 
the function atomic/Person.name describes that 
name is an attribute of class Person and the 
function complex/Person.address describes the fact 
that address is an attribute of class Person with a 
complex type. A component attribute of address 
can also be described as a function, e.g., 
afomic/Person.address.zip. Given the definition of 
a class C, the attributes specified in this definition 
are given by: 

a& = bti / C.ai,ti E (atomic,complex] Aai E Idf 
i=l 

The definition of a method m of a class C can be 
represented as a function methoaYC.m. Given the 
definition of a class C having n methods mi, the set 
of methods of C is represented as: 

di,h = 0 method / C. mi, mi E Idf 
i=l 

Schema: 
A schema is a set of definitions of classes, types, 

functions, applications and persistent roots. Given a 

schema S, it is possible to build CXs , a set of partial 
functions, each of them describing an element of the 
schema. For example, if S contains the definition of 
a class Person, the class/Person function belongs to 

as and describes the fact that Person is a class. 
Given an identifier id E Idf , class/Person(id) tells 
us if id denotes the class Person or not. Also if the 
persistent root ThePersons defined as 
ThePersons: set(Person) belongs to S then the 

function root/ThePersons f as . In the following 
we give only the sets we are interested in for 

Definition 1 Let S be a schema. The primitive 
access sets of a method in S is given by (m denotes 
a method of S, i.e., m E Def (a& )): 

read, = (n E Def(az UoI”,,)I mod&) = read) 

write,=(nELkf(a$ UO$~)lmode(n)=writerite) 

The following function Pm associates to a 
method m its primitive access sets: 

P m : m + read,,, x write,,, 

This function belongs to the set of functions 
Idf + 21df ~2”~ and P,,, Dl = read,,, , 
p, [2] = write, . The primitive access sets of 

methods j& of a schema S are: 

The j?s function may be represented as a table. 
For example, Table 1 gives the access sets of some 
methods of classes Ci and Cz belonging to a 
schema example. 

I na means “no access”. 
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Table 1: Primitive access sets of some methods 

An important aspect in building access sets of a 
method relates to its arguments. Arguments having 
atomic types are considered as local variables. If an 
argument represents an instance of the class to 
which the method belongs, we consider it as self 
and therefore, we take it into account when building 
the primitive access sets. 

Another important aspect relates to late binding. 
A method defined in a class can later be redefined 
in its subclasses (overriding). Since method code 
can depend on the actual class of objects, the 
binding between a method name and its code has to 
be carried out at run time. This makes impossible to 
know, at compilation time, which code will be 
executed exactly. Therefore, in building primitive 
access sets, we choose to keep the most restrictive 
access over the entities used in different codes 
associated to the same method name. Let us 
consider a class C1 which has a method ml and a 
class Cz, subclass of C,. Method ml is inherited by 
Cz and is redefined in Cz (cf. Figure 2). Assume that 
method Cl.rnl “reads” root1 while method Cz.rnl 
modifies it. The access sets of Cl.ml and Cz.ml are 
read = ( root1 ) and write = [ root1 }. This is clearly 
a pessimistic approach, but it makes sure 
compatibility of methods is correct even though 
methods are inherited. 

Cl.ml{ 
illt x; 
. . . 
x = rootl; 
. . . 
1 

read = {root1 ) 
write=+ 

\ read = {motl) 
p write = {rootl) 

C2.m1( 
..I read=+ 
root1 = 10; write = {motl) / 

. . . 

Figure 2: Method overriding 

4.3 Extended access sets 

In the primitive access sets of a method m of a class 
C, we consider only attributes of C. However, m 
may have indirectly some effects on attributes of the 
same class or of other classes. More generally, if a 
method ml calls another method rn2 of the same 
class or of another class, then the access sets of ml 
takes in account the access sets of m2 which in turns 
takes into account the sets of any called method. In 
order to get the final access sets of a method m of a 

schema, we consider the access sets and the control 
graph of m. 

Figure 3 shows that the control flow among 
methods possibly called during the execution of a 
method p can be represented as a directed acyclic 
graph, so-called a control graph. In such a graph, 
nodes represent methods (more precisely method 
identifiers) and edges represent the control flow. 
The root of the graph is the method of interest. The 
control structure is denoted by + and the semantics 
of Cl.ml+Cz.mz is that the execution of Cz.mz 
should sequentially follow Cl.ml. This means that 
method ml of class Cl calls method mz of class Cz. 
In Figure 3, we have C1.p+Cz.q and C,.p+C,.r 
which means that method p of class C, calls method 
q of class Cz and method r of class C, . 

l,l.l’l “.t 

Q 
c1.p 

read+={at2, &} ‘I. 
wAc+={atl, at3. at4) ‘j 

=?;:r c2.q cc I’ _____.. --_ -. ..,. ,,/ 
c1 r r+J+& 

wntc =(a s! , qp, at4) 
i ,’ 

2% 
___ ..-i 

/;,/ _____.... -.--.--- L...’ -.-.-.-----. ~-.......__._..... -. ‘... 
./- ‘A__ 

rcad+={at$‘+ c2.s 
--.._._ 

witc+={at3) i, 
C2t ready) 

write ={atl) 

Figure 3 : Building the extended access sets of 
methods using control graphs 

Also in Figure 3 we show how we extend the 
access sets of method p of class C1 considering the 
control graph of p and assuming we have the 
primitive access sets of Table 1. Method u does not 
call methods and its primitive access sets are also its 
extended access sets. The construction of the 
extended access sets of Cz.s adds Cz.at5 to read,. 
Extending access sets of Cl.r takes into account the 
extended access sets of Cz.s and C2.t. It first adds 
Cl.atl and C2,at5 to read, and &at3 to write,. Then, 
proceeding Cz.t, it adds &at, to write,. Finally, it 
removes Cz.atl from read,. After extending access 
sets, Table 1 has the configuration given in Table 2. 

C1.P 

C,.r 

read write ext 
{ Cz.atz, Cz.ats) ( Cz.atl, Cz.ats, Cl.at4) 4 

{Gat5) {G.ah, C2.at3, G-at41 4 
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Table 2: Extended access sets of some methods 

Let us consider the compilation phase of a 
method m and let us assume that this method has 
been compiled and that its primitive access sets 
have been calculated: Ps(m) is defined. Given the 
control graph of method m, the following algorithm 
is applied (at the end of compilation phase) for 
extending the access sets of m and of possibly other 
methods. 

Algorithm Access-set-extension 
Input: A control graph of a method m, ps 
Ouput: Extended access sets of m 

extend(node, root, ps) { 
if ( node = nil ) then 

root.ext = true ); 
else 

while node # nil do ( 
extend(succ(node), node, Bs); 
P&ooO[ll= Pdroot)[ll u Pdnode)[ll; 
PdrooWl = PdrooWl u Pdnode)Pl; 
node = alt(node); 

1; 
Pdroot)[ll = PdrooO[ll - P&000[21; 

In order to make a difference hereafter between 
a primitive access set and its corresponding 
extended access set we use the following: 

. m denotes a method of a schema S, i.e., 

m E Def Cc&,, > ; 

. write: is the extended write access set of 

m; 

. read: is the extended read access set of m 

4.4 Compatibility 

The extended access sets of a method give us 
information on the way the method interacts directly 
or not on attributes of classes and persistent roots. 
Based on those sets, compatibility relation is 
defined for all methods of a schema. Two methods 
ml and m2 of a schema S are compatible if they are 
not in conflict, i.e., if an element of the extended 
write access set of one of the methods does not 
belong to extended access sets of the other. 

VW 9 ~2 E aLh , McompatibLe( ml, m2 ) e 

read & n write;* = 0A 

writei nread& =021h 

write;, A write:, = 0 

The Mcompatible relationship can be 
materialized as a matrix. Figure 4 gives the matrix 
built for methods in Figure 3. One entry in line 1 
and column c gives the result of Mcompatible(l,c). 

c,.p C,.r c2.q cz.s- CZ cz.u 
Cr.p false false true false false true 
C,.r false false true false false true 

C2.s false false true false false true ~1 
Figure 4: Example of a Mcompatibility matrix 

5. Parallelizing 02 Transactions 

Our approach transforms the definition of an 02 
transaction into an execution plan where methods 
are scheduled for parallel execution. This plan is 
build based on the order of methods inside 
transactions and on compatibility relation. 
Compatible methods are scheduled for parallel 
execution while scheduling follows definition order 
for methods that have to be sequentially executed. 
Later on the plan is used to generate a new 
transaction definition code. 

5.1 Execution plan 

Each transaction is logically represented in terms of 
a graph of methods. The vertices are methods and 
the edges represent the execution order relation. For 
instance, if a method mj immediately follows a 
method mi in a transaction definition, than there is 
edge from mi to mj in the transaction graph. 
Consider a transaction and his graph given in figure 
5. 

Definition 2 The compatibility relation between 
methods of n schema is given by: 
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43 
02 Cl a; 
02 C2 b; Q 

2 

(1) transaction; 
Q 3 

(2) b+u; 
(3) b+t; Q 4 

ii b+q; rf ( condition ) { 
(6) a-m 6 

Ii; 
b+s; } 

:” 

Q 
validate; Q 

7 

Figure 5: Transaction graph 

There are three different types of vertices: (1) 
transactional, (2) conditional and (3) message. 
Transactional and conditional vertices always 
follow definition order and will not be moved in the 
graph. Message vertices are considered for 
transformation if the methods they represent are 
compatible. 

Before transformation, the order between 
message vertices is totally defined so that each 
vertex has only one incoming and an outgoing edge. 
Graph transformation changes the relation between 
vertices, in a way that a vertex may have several 
incoming and outgoing edges. When a vertex has a 
number of outgoing edges, it starts a set of sibling 
vertices and is said to be a spawn vertex. Each 
sibling vertex has only one outgoing edge that 
arrives in a vertex called barrier. We call a bloc a 
set of vertices with a spawn vertex followed by a set 
of siblings and finished by a barrier vertex. 

Graph transformation algorithm creates blocs of 
vertices inside transaction graphs. It follows a 
transaction graph and performs two main steps: 

1. When consecutive message vertices 
represent compatible methods, they 
become siblings. This transformation is 
made until one of the following condition 
holds: 

. Next vertex is a transaction or 
conditional one. 

. The method of the next message 
vertex is not compatible with one of 
the actual siblings. 

2. A barrier vertex is always introduced after 
siblings. 

Considering the transaction graph of the figure 
5, transformation would result in a new graph 
showed in figure 6. Vertices 2, 3 and 4 become 
siblings since they are consecutive and their 
methods are compatible. They are followed by a 
synchronization vertex right before vertex 5 which 
is a conditional vertex. On the other hand, vertices 6 
and 7 are consecutive but their methods are not 

compatible, so the parent/child relation for those 
vertices is the same as before. 

i” Q 6 

Q 7 

Figure 6: Graph of a transaction after 
transformation 

5.2 Code Generation 

We use the execution plan to generate a new 02 
transaction code that will schedule for parallel 
execution of methods and will produce the same 
results as the transaction sequential code 1191. We 
generate new code mainly for blocs of vertices. The 
rest of the transaction code remains as it has been 
defined. So methods can be sequentially or 
concurrently executed in transactions. 

Spawn and barrier vertices define the 
boundaries for parallel execution inside 
transactions. As a result parallel execution of 
methods will never transpose transaction 
boundaries. We assure that at the beginning and at 
the end (abort or validate) of a transaction there will 
be only a thread of control inside transactions. 
Using transactions as synchronization boundaries 
for parallel execution of methods implies that we 
would never have two transactions of the same 
application running in parallel. So all methods of a 
transaction have to finish execution before a new 
transaction is set up. 

5.2.1 Spawning and Synchronizing threads 

The code generation phase transforms sibling 
vertices of a bloc in system calls that create as many 
threads of control as the number of vertices. Each 
method of the bloc will be schedule for parallel 
execution in a new thread of control. Threads are 
asynchronously spawned and each one is 
sequentially executed although full parallelism is 
accomplished inside the bloc. 

There is no need for synchronization while 
parallel threads are performed since they are 
completely independent one of the other. This is 
assured by the compatibility relation between 
methods which is the basis for bloc construction. 
Each thread will execute the method code until the 
end of method and control will be transferred back 
to the transaction code. 

Thread creation calls have several formal 
parameters that allow identification of the method 
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to be executed and transfer of input and output 
method parameters. Threads are also uniquely 
identified. Thread id will be further used for 
synchronization purpose. 

Barrier vertices generate synchronization code 
for parallel threads. We use a primitive called 
barrier that synchronizes all the running threads at 
the end of a bloc. After all methods have been 
executed, only one thread will be active and will 
continue the transaction execution. 

In the following, we give the code generated by 
the execution plan of the figure 6. Note the system 
calls to create threads to execute methods CZ.u, C,.t 
and C2.q. Right after these calls transaction issues a 
barrier to synchronize the spawned threads. 

02 Cl a; 
02 C2 b; 

(1) transaction: 
(2) Iwp-create(Th1 , b+u, 0, 0); 
(3) IwpCreate(Th2, b+t, 0, 0); 
(4) Iwp-create(Th3, b-+q, 0, 0); 

barrier(Th1, Th2, Th3); 
(5) if ( condition ) { 

(6) a+p; 
(7) t-s; I 
(6) validate; 

6. Related Work 

Parallelism is not a new issue in database 
systems. There is a lot of work that deals with 
parallel query processing in the framework of 
relational systems [ 10, 221. Several prototypes have 
already been built [S, 7, 11, 16, 251. The issue in 
those approaches is the execution of a SQL query in 
parallel. Two forms of parallelism have been 
proposed: intra-operation and intra-query 
parallelism [22]. With object-oriented databases, 
new transaction models have been proposed. The 
nested transaction model also allows for exploiting 
parallelism in the context of database transactions 
[21]. Parallel execution of a transaction and its sub- 
transactions is said to be vertical while parallelism 
between two transactions of the same level is called 
horizontal [ 171. Several prototypes offer a way of 
specifying parallelism between or inside nested 
transactions [12, 131. Those approaches differ from 
the one described in this paper mainly in the way 
parallelism is specified. We generate parallelism by 
code transformation while they leave to 
programmers the responsibility of describing and 
controlling parallelism inside transactions. Besides 
our approach works in a classic transaction model. 

The notion of compatibility has been used in the 
context of abstract data types mainly for 
concurrence control over shared objects [3, 231. 
Compatibility between operations is usually defined 

as part of the abstract data type specification. 
Concurrence control algorithms used operation 
semantic information supplied in the type 
specification for dynamically defining compatibility 
between operations. Most of the compatibility 
operation checking procedure was made at runtime 
since the purpose was to augment object 
accessibility in concurrent transactions. 

Commutativity and recoverability have lately 
been proposed as the natural successors for 
operation compatibility in the context of concurrent 
transactions [4, 9, 261. Although they allow more 
concurrence than compatibility, these approaches 
are usually based on the functionality of transaction 
managers in order to validate operations in the 
correct order or rollback operations in case of 
invalid transaction history. We cannot use them 
since methods do not have a transaction semantics. 
Furthermore, we have decided to do as much as 
possible at compilation time in order to have less 
overhead at execution time. 

In [20] we described a parallel execution model 
for a database programming language called 
Peplom. This model is based on the notion of actors 
[2] and supports both parallelism between objects 
and between methods inside objects. Asynchronous 
message passage is the basis for parallelism 
between objects while synchronization techniques 
make sure the mutual exclusion of parallel 
execution of methods belonging to the same object. 

In [8] we proposed a model for optimizing 
active rules with parallelism. Asynchronous rule 
execution has been provided in [14, 15, 183 by the 
means of decoupled transactions. However, those 
early works differ from the approach we describe in 
[8] in various aspects. In our approach parallel 
execution of rules takes place inside the triggering 
transaction and therefore is semantically different 
from decoupled transactions. Nested transactions 
are used in [ 181 to concurrently execute rules as 
sub-transactions of the triggering transaction. 
Transaction creation has to be specified within the 
rule definition explicitly in [14, 181 or using 
composite and transaction events in [15]. In [24], 
rule associations define execution order between 
rules. Tree kinds of associations are proposed to 
programmers for specifying a precedence 
relationship between two rules, a rule and a set of 
rules, or a set of rules and a rule. Rules in a set can 
be executed in parallel. The strategy used for 
parallel execution of methods in a set is based on 
the control flow among the methods. Briefly 
speaking, two methods which are not involved in 
more than one association are said to be 
independent. If two methods/statements are 
independent of each other they are executed in 
parallel. 
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7. Conclusion 

In this paper we defined our approach for exploring 
parallelism in object-oriented database outside of 
the context of SQL queries. We proposed a 
technique for parallelizing transactions in a flat 
classical transaction model where a transaction is a 
sequence of methods. The technique is based on 
compatibility relation of methods which is 
automatically determined at method compilation 
phase. Irma-transaction parallelism is accomplished 
by transforming transaction definition code in order 
to execute methods in parallel. 

We implemented a prototype for the intra- 
transaction parallelization model using the 02 
object-oriented database system, which we 
described in this paper. The prototype introduces 
parallel execution inside 02 transactions through 
creation and synchronization of threads of control 
inside an 02 client running an application. We 
extended the 02 DBMS with two new modules: 
. The compatibility table generator which is 

responsible for calculating compatibility 
relation between methods of a schema. It also 
manages the compatibility relation table as 02 
named object. 

. The transaction parallelizer which transforms 
02 transaction definition code for scheduling 
methods for parallel execution. 

Our prototype runs in a monoprocessor Unix- 
like workstation and supports virtual parallelism. 

We already have some results on applying the 
intra-transaction parallelization model on a nested 
transaction model [ 191. In this context, we combine 
our technique of parallelizing method execution 
inside transactions with the power of inter- 
transaction parallelism of the nested transaction 
model. Further investigation is still on the way and 
the results will be published later. 
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