
A SIMILARITY-BASED SOFT CLUSTERING ALGORITHM FOR
DOCUMENTS

King-Ip Lin, Ravikumar Kondadadi
Department of Mathematical Sciences,

The University of Memphis,
Memphis, TN 38152, USA.

linki,kondadir 0 msci.memphis.edu

Abstract:
Document clustering is an important tool for

applications such as Web search engines. Clustering
documents enables the user to have a good overall view
of the information contained in the documents that he
has. However, existing algorithms sufSer from various
aspects; hard clustering algorithms (where each
document belongs to exactly one cluster) cannot detect
the multiple themes of a document, while soft clustering
algorithms (where each document can belong to multiple
clusters) are usually ineficient. We propose SISC
(Slmilarity-based Soft Clustering), an eficient soft
clustering algorithm based on a given similarity
measure. SISC requires only a similarity measure for
clustering and uses randomization to help make the
clustering eficient. Comparison with existing hard
clustering algorithms like K-means and its variants
shows that SISC is both effective and eficient.

1. Introduction

Clustering is an important tool in data mining
and knowledge discovery. The ability to automatically
group similar items together enables one to discover
hidden similarity and key concepts, as well as
summarize a large amount of data into a small number of
groups. This enables the users to comprehend a large
amount of data.

One example is searching the World Wide
Web. The World Wide Web is a large repository of
many kinds of information. The sheer size of it makes it
hard for any user to find information relevant to him.
Nowadays many search engines allow users to query the
Web, usually via keyword search. However, a typical
keyword search returns a large number of Web pages,
making it hard for the user to comprehend the results and
find the information that he/she really needs. One way of
getting around this problem is to cluster the retrieved
pages into different topics. This enables the user to grasp
what kind of information he/she really needs. For
instance, when the user searches the Web using the
keyword “tiger”, the pages returned can have topics
varying from “wild animals” (tiger as an animal) to

“golf” (the golfer Tiger Woods) to “census” (TIGER is
the name of the on-line mapping service provided by US
Census Bureau) to Memphis (the University of Memphis
has tiger as its sports mascot).

Some search engines have pre-defined subjects
that are used to categorize the output (for instance,
yahoo.com). However, few search engines provide a
dynamic clustering mechanism - i.e. clustering
algorithms that are applied only to the resulting
documents of the query. We believe that this is an
important service for any search engine over the Web
and is highly beneficial to users. Thus, in this paper we
explore dynamic clustering for documents.

A challenge in document clustering is that
many documents contain multiple subjects. For instance,
a Web page discussing the University of Memphis’s
research on wild tiger fits under the categories of both
“wild animals” and “Memphis”. Thus, the clustering
algorithm should discover this and put the document
under both clusters. This suggests the use of “soft
clustering” algorithm - an algorithm that allows a
document to appear in multiple clusters. This can help
users to discover multiple themes in a document - by
looking at the multiple clusters that a document belongs
to. Soft clustering can also help form clusters containing
combination of existing topics. For instance, we might
want to have a separate cluster of documents about the
University’s research on wild tigers. This is possible if
documents can fall into multiple clusters.

Many soft clustering algorithms have been
developed and most of them are based on the
Expectation-Maximization (EM) algorithm [6] . They
assume an underlying probability model with parameters
that describe the probability that an object belongs to a
certain cluster. Based on the data given, the algorithms
try to find the best estimation of the parameters.
However, a drawback of such algorithms is that they
tend to be computationally expensive.

In this paper, we take a different approach.
Instead of assuming an underlying probability model, we
only assume that we are given a similarity functionflx,
y) , which given documents x and y , returns a value
between 0 and 1 denoting the similarity of these two
documents. We develop SISC (Similarity-based Soft

40
0-7695-0996-7/01 $10.00 0 2001 IEEE

http://msci.memphis.edu

Clustering), a soft-clustering algorithm based on the
similarity function given. SISC is similar to many other
soft clustering algorithms like fuzzy C-means [2]. That
is, it starts out with a carefully selected set of initial
clusters, and uses an iterative approach to improve the
clusters. At the end, SISC produces a set of clusters with
each document belonging to several potential clusters.
This approach only requires a similarity function to be
defined properly, and does not rely on any underlying
probability assumptions (other than those made by the
similarity function). To speed up execution, we propose
using randomization to speed up the algorithm. This
allows SISC to overcome problems of standard soft
clustering algorithms mentioned above, without paying
any price in efficiency (in fact, we outperform K-means
based algorithm in many cases).

The rest of the paper is organized as follows:
Section 2 summarizes related work in the field. Section 3
describes SISC in more detail. Section 4 provides some
preliminary experimental results. Section 5 outlines
future direction of this work.

N documents into ‘m’ buckets where each bucket
contains N/m documents. Fractionation takes an input
parameter p, which indicates the reduction factor for
each bucket. The standard clustering algorithm is applied
so that if there are ‘n’ documents in each bucket, they are
clustered into n/p clusters. Now each of these clusters is
treated as if they were individual documents and the
whole process is repeated until ‘K‘ clusters are left.

Most of the algorithms above use a word-based
approach to find the similarity between two documents.
In [22] a phrase-based approach called STC (suffix-tree
clustering) was proposed. STC uses a suffix-tree to form
common phrases of documents enabling it to form
clusters depending not only on individual words but also
on the ordering of the words.

Various other clustering techniques have been
applied to document clustering. This includes using
association rules and hypergraph partitioning [121, self-
organizing maps [16], neural networks [19, 141, and EM-
based techniques [9].

3. Description of SISC
2. Related Work:

Clustering is important in many different fields
such as data mining [3], image compression [l l] and
information retrieval [131. [8] provides an extensive
survey of various clustering techniques. In this section,
we highlight the work most related to our research.

We can divide clustering algorithms into hard
and soft clustering algorithms. According to [lo], there
are four different kinds of clustering algorithms:
hierarchical, partition, model fitting and density based.
These algorithms form clusters by putting each item into
a single cluster. Soft clustering allows each item to
associate with multiple clusters, by introducing a
membership function W , between each cluster-item pair
to measure the degree of association. Expectation-
maximization [6] serves as the basis of many soft-
clustering algorithms. A good survey of such algorithms
can be found in [I] .

Many clustering techniques have been used for
document clustering. Most of the early work [7, 151
applied traditional clustering algorithms like K-means to
the sets of documents to be clustered. Willett [21]
provided a survey on applying hierarchical clustering
algorithms into clustering documents.

Cutting et al. [4] proposed speeding up the
partition-based clustering by using techniques that
provide good initial clusters. Two techniques, Buckshot
and Fractionation are mentioned. Buckshot selects a
small sample of documents to pre-cluster using a
standard clustering algorithm and assigns the rest of the
documents to the clusters formed. Fractionation splits the

SISC aims at providing soft clustering on a set
of documents based on a given similarity measure. It has
the following goals:

Enable soft clustering: documents can be
clustered into multiple clusters.
Efficient: SISC should be able to run faster than
traditional hard clustering algorithms.
Cluster discovery: the algorithm should be able
to find clusters that hard clustering algorithms
cannot find.
Handle outliers: the algorithm should be robust
against outliers.
SISC requires a similarity measure between

documents: that is, given two documents x and y, there is
a function 0 I f(x, y) 5 1 which returns how similar
x and y are. It also requires a number k , which denotes
the number of clusters that the user is expecting. Note
that SISC can decide to produce a different number of
clusters, depending on the input documents.

SISC produces a set of clusters at the end. Each
cluster c is denoted by a set of documents called cluster
centroids. The centroids serve two purposes: to define
the set of documents most representative of the cluster,
and to determine the degree of membership between c
and each document. A measure m(c, x) is defined to
represent how similar a document x is to cluster c.
Intuitively, the documents within each cluster centroid
should be close to one another: that is, having f(x, y)
large for x, y belonging to the same cluster centroid. We
will discuss how “large” is quantified later.

41

SISC can be broadly divided into four steps: a
pre-processing step to clean up and transform the data;
an initial cluster generation step to initialize clusters and
remove outliers; an iterative step to build clusters; and a
post-processing step to present the results. Each step is
described below:

3.1 Pre-processing

In this step each document is transformed into a
structure that will be used by the similarity function f () .
One such representation is a vector, with each dimension
denoting the presence/absence of a certain word in that
document. In addition, we remove all the stop words
(like articles, propositions and auxiliaries verbs) that are
not helpful in clustering.

3.2 Initial cluster generation

At this step the input is analyzed, initial clusters
are produced and outliers are removed.

The first thing for SISC to do is to decide what
constitute as “similar” documents. Essentially, we need
to find a threshold value A such that two documents are
considered similar if and only if f (~ , y) 2 1. Since
SISC is designed to adapt to different similarity
measuresf, it is not reasonable for the user to supply a
value for 1. As a result, SISC determines the
appropriate value of A based on the input documents.
The value of A can neither be too high, such that no
documents will be clustered at the end; nor too low, such
that all documents will be clustered into one cluster.
Thus, the algorithm chooses A such that half’ of the
documents are assigned at least to one cluster centroid.
This is done by the following method:

Pick a set of k documents, assigning each one as
the initial cluster centroid of a cluster.
Pick A as the largest value such that for half of
the documents q in the data set, there exists a p
such that f (p , q) 2 A , p E C , q E D where
C is the set of cluster centroids and D is the
document set. This can be done by calculating
all the similarity values
f (p , q), V p E C , V q E D and sorting

them.
This ensures that at least half of the documents

are close to at least one of the clusters, so that enough
interesting clusters can be found. An issue here is how
the initial cluster centroids are picked. The simple way is

1.

2.

’ We experimented with different values and find out the half of the
document produce excellent results.

to pick a random set of documents. However, since the
initial cluster centroids can have a significant effect on
the algorithm, it pays to be more careful. We want to
avoid picking too many cluster centroids that are close to
one another (so they should actually belong to the same
cluster). One way to overcome i t is to start with picking
a random document as the first centroid, and then pick
the document that is least similar to it as the second
centroid. Subsequent centroids are chosen such that they
are farthest away from those centroids that are already
picked.

One drawback of this approach is that outliers
can easily be picked as centroids, rendering the
clustering method ineffective. To remedy that, the
algorithm makes use of the threshold value 1 selected.
After A is picked, the chosen cluster centroids are re-
examined to make sure that there is at least one
document similar to it (i.e. with f() 2 A). Otherwise,
the document is viewed as an outlier and is discarded,
and replaced with an alternate document chosen as a
centroid (the same test is applied to the new document to
ensure that it is not an outlier itself).

To make the algorithm more robust to the initial
choice of cluster centroids, SISC starts with 2k instead of
k initial clusters. This makes the algorithm more flexible
to find the right number of clusters.

3.3 Iterative step

In this step, clusters are refined. Since SISC
uses cluster centroids as representative of each cluster,
this step examines each cluster and decides whether the
centroids should change. The algorithm terminates when
no more such changes are made.

To determine whether a document should be in
a cluster centroid, we need a measure of similarity
between the document and the cluster. Thus, we define a
measure m(c, x) that denotes the similarity of document x
for cluster c. It is defined as the average similarity of x
for the documents in the current centroid of cluster c. At
each iteration, the value of each m(c, x) is re-calculated.
If the value is larger than the threshold A , then
document x is put into the centroid of c. However, if for
any document y E c , the new value of m (c , y) 7c ;1 ,
then it is removed from that cluster centroid

The drawback of the above is that during every
iteration, the value of m(c, y) has to be recalculated for
each (c, y) pair. This can very time consuming.
However, we observed that in most cases membership
for the cluster centroid changes only for documents that
are already close to the threshold value. Thus, we can
speed up the algorithm by using randomization. Rather
than calculating every m(c, y) pair, SISC recalculates the

42

new value of m(c, y) with the probability of m (c , y) / A ;
i.e. the chance of recalculating the similarity measure is
proportional to how close it is to the threshold. This cuts
down on many unnecessary calculations while
maintaining the cluster quality.

One addition step SISC needs to perform during
each iteration is the merging of clusters. Though we are
careful in choosing initial clusters centroids, similar
documents can still be chosen as different cluster
centroids. Since documents can be in multiple clusters,
the cluster centroids for those clusters will converge in
subsequent iterations. Therefore, we need to merge
clusters with similar cluster centroids. We experimented
with various schemes and found that merging two
clusters when at least half the documents in one cluster
centroid appear on the other gives the best results. Two
clusters are also merged if one is a subset of the other.

3.4 Displaying clusters and keywords

We need to display the final clusters at the end
of the algorithm. Each cluster c is represented by the
cluster centroids as the representatives. Moreover, for
each document y, m(c, y) is used as the measure of
similarity. Thus for each cluster, the documents can be
sorted by this value to determine its association with the
cluster and the results can be displayed accordingly.

One final step is to annotate each cluster with
keywords (terms) so that summary information about the
clusters can be provided. For each cluster c, we keep
track of the terms that appear in the documents of that
cluster’s centroid. For each term in the documents in the
centroid, we calculate two values:

1. n, the number of documents in the cluster

2. w = C m (c , y > , V y E x , where X

is the set of all the documents in which the
word appears.
W e ordered the terms by n * w, and displayed

the top 6-7 of them. We experimented with different
formulae and found this way of calculating keywords for
a cluster as the best.

centroid that it appears in.

4. Experiments & Results

This section describes the results of the various
experiments with SISC. In order to evaluate the
performance, we compared SISC with other algorithms
like K-Means, Fractionation and Buckshot [4].

The adhoc test bed consists of 4000 documents
downloaded from the Web. We downloaded 2000
documents from various categories like Food, Cricket,
Astronomy, Clustering, Genetic Algorithms, Baseball,

Movies, Virus, XML, Albert Einstein, Salsa (Dance),
Salsa (food), Health care, stocks, Cancer, Tigers and the
Olympics. We downloaded another 2000 documents
from the UCI KDD archive [18], which has documents
from 20 different news groups.

In our experiments we used “Tanimoto
coefficient” [5, 201 as the similarity measure. It is
defined as follows: If nl is the number of terms in the
first document and n2 is the number of terms in the
second document and m is the number of common terms
then the similarity measure between the two documents

is given by m . Note that SISC does not

preclude the use of other measures. We chose the
Tanimoto coefficient because of its simplicity.

All the experiments described in this section are
carried out on a 333 MHz, 196 MB RAM PC. We did
experiments on different document sets of different
sizes. We ran the algorithm to get the clusters and tested
the effectiveness of clustering (the types of clusters
formed), both qualitatively and quantitatively. We also
compared the execution times of all the algorithms for
document sets of different sizes.

n l + n 2 - m

4.1 Effectiveness of clustering

We did many experiments with the document
sets of different sizes that are taken from the above-
mentioned test bed. All the algorithms were run to
produce the same number of clusters with same input
parameter settings. SISC formed clusters for each of the
different categories in the document sets, while the other
algorithms (K-Means, Fractionation and Buckshot) did
not. In addition, the other algorithms formed clusters
with documents of many categories that are not related
to each other.

To test the effectiveness of our approach, we
deliberately downloaded some documents that are
related to more than one of the categories listed above
(For example, documents about baseball movies which
include both baseball and movies). K-Means,
Fractionation and Buckshot formed only clusters about
baseball and Movies and did not form a cluster for
documents related to both categories. However, SISC
formed a cluster for baseball-movies and put the
documents related to baseball-movies in that cluster.
This shows the effectiveness of our method compared to
other algorithms.

Figure 1 shows sample output from one of the
experiments with a document set of 500 documents
picked from 12 of the categories mentioned above. The
categories include Food, agents, XML, Jordan (the
middle east country), Genetic algorithms, baseball,
movies, Astronomy, Michael Jordan, Consciousness,

43

Virus and baseball-movies. All the algorithms were run
with an input number of 12 clusters. Other algorithms
formed 12 clusters but they did not form a cluster for
baseball movies. SISC formed a cluster for that as shown
in the above table. Since SISC starts with twice the
actual number of clusters and combines the clusters, we

also tested other algorithms with twice the number of
clusters as input. However, they failed to produce the
correct clusters even with twice the actual number of
clusters.

r I _ _ x ~

Cluster results: ~- Commonwords a g s a m p l e I__ ~- docs
Movie, Baseball, camera, Costner, Crash, Days

1. Love of the Game
"--I" "~ -~ 8 2. Kevin _Ix I_ Costner

#genetic algorithm, offspring
x x -

1. The genetic algorithm archive
2. Evolutiona_ry computation--grmp ~ -~ -

1 Information, SGML, Xlink, Xpointer, group
! 1 . XML: Linking Language

1 1 . Virus-hoax information 1 2. The great Virus-Hoax

1
j 2. Glen's Recipes links page
! - P G p c s m a l s , comparative, conscious, mind,
1 1. Online papers on consciousness

TCGvernment, Arab, country, culture, desert
/ 1 . Middle East
1 i I-- 2. The Arab I ^- revzlution

2. ZML-Xpointer reguirements " _ "___x

Hoax, area, email, address

__^_

course, Gourmet, enjoy
1. Cookbooks

2. Animal Consciousness
~ - - ~

xx-_I __xxx -

w, Solar, Stars, Sun, System

2. NASA Watch: Space news
j Michael, Bulls, career, Chicago, Finals, game, greatest

1. MSU's baseball news

The table in the figure 2 compares the clusters
formed by different algorithms

1

I
1

I

44

Figure 2: Comparison of clusters formed by
different algorithms

We also measured the effectiveness of the
clustering algorithm quantitatively. W e compared the
clusters formed by the documents against the documents
in the original categories and matched the clusters with
the categories one-to-one. For each matching, we
counted the number of documents that are common in
corresponding clusters. The matching with the largest
number of common documents is used to measure the
effectiveness. This matching can be found by a
maximum weight bipartite matching algorithm [171. We
return the number of documents in the matching. The
more documents that are matched, the more they
resemble the clusters are to the original categories. For
our algorithm, and for the purpose of this comparison,
we assigned each document to the cluster that has the
largest similarity value.

Figure 3 shows the number of matches with the
original categories for different algorithms averaged on
10 different sets of documents. We can clearly see that
SISC outperforms the other algorithms in effectiveness.

Figure 3: Comparison of quality of clusters by
different clustering algorithms

Next we turn to the data set downloaded from
the UCI archive, which contains data from various

newsgroups. The newsgroups contain topics like
atheism, computer graphics, Mac hardware, pc hardware,
x-windows, basketball, hockey, cryptography,
electronics, space and Christianity. Due to limitation of
space, we only show the result of cluster quality
comparison in figure 4.

100 200 300 400 500

Number Of Documents

I S I X K-M eans Buckshot Fractionation I
Figure 4: Comparison of quality of clusters by

different algorithms on UCI document set

The figure shows that our algorithm worked
well with the data from the UCI document archive and
clearly outperformed the others.

4.2 Execution time

We also measured the execution time of
various algorithms. Figure 5 gives the comparison of
execution times.

,.
a G 40.00
2 35.00
2 30.00
5 2.5.00
2 20.00

.- 8 10.00

.- c 15.00

5 5.00
.-
4 0.00

200 400 600 800 1000

Number of Documents

--O-SISC -.- K-Means
-A- Buckshot X Fractionation

Figure 5: Execution times of various clustering
algorithms

45

As the graph shows, SISC outperforms almost
all other algorithms in execution time, especially as the
number of documents increase.

To see how effective randomization is, we
compared the execution times of our algorithm with and
without randomization.

200 400 600 800 10oO

Number Of Documents

<-Without Randomization

Figure 6: Execution times of SISC with and without
randomization

We can observe from Figure 6 that introducing
randomization cuts down the running time significantly.
This shows the effectiveness of using the randomization
approach.

Of course, we need to justify randomization by
comparing the cluster quality. We use the quantitative
measure to compare the two algorithms to see if they
give similar results.

Figure 7 shows that both algorithms give
roughly the same number of matches. In fact, the
difference is less than 5%; thus, we can justify the use of
randomization to speed up the algorithm.

70.00
65.00

60.00
z 55.00
2 50.00 r:

45.00 0
5 40.00

z

v

s

c, 5 35.00
30.00

200 400 600 800 1000

Number Of Documents

1 OWithout Randomization W With Randomization I

Figure 7: Comparison of cluster quality:
randomization vs. no randomization

4.3 Web search results

We also tested SISC on the results from Web
search engines. We downloaded documents returned
from the Google search engine (www.goo,gle.com).
After that, we clustered the documents using our
algorithm and displayed the results. Limitation on space
prohibits us from showing the full results. Here we show
some clusters that we found by clustering the top 100
URLs returned from searching the term “cardinal”. The
categories correspond to the common usage of the word
“cardinal” in documents over the Web (name of baseball
teams, name of football teams, nickname for schools, a
kind of bird, and a Catholic clergy). Figure 8 shows
some of the clusters formed by SISC.

Cluster results: Keywords and sample r R2;,, i
documents 1

Benes, rookie, players, hit, innings,

Brewers vs. Cardinals

Leadership

Burke
1 . NFL Cardinals Forum
2 . Arizona Cardinals

Figure 8: Clusters formed for search term
“cardinals” by SISC

5. Conclusions:

In this paper, we introduced SISC; a soft
clustering algorithm based on similarity measures, and
applied it to document clustering. The algorithm
introduces various techniques such as randomization to

46

help make soft clustering efficient. Our experiments
show that SISC algorithm is able to discover clusters that
cannot be detected by non-fuzzy algorithms, while
maintaining a high degree of efficiency.

We mentioned using clustering for Web search
engines. Currently SISC is practical to cluster about 600-
800 documents, while maintaining reasonable (less than
a minute) response time. We are looking at various
techniques to improve this.

We also believe that the randomization
techniques can be used to improve fuzzy clustering in
general. We would like to explore more possibilities
along this avenue.

6. References:

[l] A. Baraldi, P. Blonda, A survey of fuzzy
clustering algorithms for pattern recognition, Technical Report
TR-98-038, International Computer Science Institute, Berkeley,
CA, Oct 1998.

[2] J.L. Bezdek, Pattern Recognition With Fuzzy
Objective Function Algorithms, Plenum Press, Nyew York,
NY. 1981.

[3] M.S. Chen, J. Han, and P.S. Yu, Data Mining: An
Overview from a Database Perspective, IEEE Transactions on
Knowledge and Data Engineering, 8(6): 866-883, 1996.

[4] Douglass R. Cutting, David R. Karger, Jan 0.
Pedersen, John W. Tukey, ScattedGather: A Cluster-based
Approach to Browsing Large Document Collections, In
Proceedings of the Flyteenth Annual International ACM SIGIR
Conference, pp 318-329, June 1992.

[SI Dean, P. M. Ed., Molecular Similarity in Drug
Design, Blackie Academic & Professional, 1995, pp 11 1 -137.

[6] A.P. Dempster, N.M. Laird, and D. B. Rubin,
Maximum likelihood from incomplete data via the EM
algorithm, Journal of the Royal Statistical Society, Series B,
39(1), 1-38, 1977.

[7] D. R. Hill, A vector clustering technique, in:
Samuelson (Ed.), Mechanized Information Storage, Retrieval
and Dissemination, North-Holland, Amsterdam, 1968.

[8] A.K. Jain, M.N. .Murty and P.J. Flynn, Data
Clustering: A Review, ACM Computing Surveys. 31(3): 264-
323, Sept 1999.

[9] Kamal Nigam, Andrew Kachites Mccallum,
Sebastian Thrun and Tom Mitchell, Text Classification from
Labeled and Unlabeled Documents using EM. Machine
Learning 39(2-3): 103- 134, 2000.

[lo] W.J. Krzanowski and F.H. Marriott,
Multivariate Analysis: Classifcation, Covariance Structures
and Repeated Measurements. Amold, London, 1998.

[I l l Y. Linde, A. Buzo and R.M. Gray, An
Algorithm for Vector Quantization Design, IEEE Transactions
on Communications, 28(l), 1980.

[12] Jerome Moore, Eui-Hong (Sam) Han, Daniel
Boley, Maria Gini, Robert Gross, Kyle Hastings, George
Karypis, Vipin Kumar, and Bamshad Mobasher, Web Page
Categorization and Feature Selection Using Association Rule
and Principal Component Clustering, In Proceedings ofseventh

Workshop on Information Technologies and Systems
(WITS‘97), December 1997.

[131 M.N. Murty and A. K. Jain, Knowledge-based
clustering scheme for collection management and retrieval of
library books, Pattern recognition 28,946-964, 1995.

[141 Albert0 Munoz, Compound key word generation
from document databases using a Hierarchical clustering ART
Model, Intelligent Datu Analysis, 1(1), Jan 1997. http://www-
east.elsevier.com/ida/browse/96-5/ida96-5.htm

[IS] J. J. Rocchio, Document retrieval systems -
optimization and evaluation, Ph. D. Thesis, Harvard University,
1966.

[161 Dmitri Roussinov, Kristine Tolle, Marshall
Ramsey and Hsinchun Chen, “Interactive Intemet search
through Automatic clustering: an empirical study”, In
Proceedings of the International ACM SIGIR Conference,
pages 289-290, 1999.

[171 Robert E. Tarjan, Data Structures and Network
Algorithms, Society for Industrial and Applied Mathematics,
1983.

[1 8]htrp://kdd. ics. uci. etlu/tkitubnsus/~0neM;sproups/2
Onei~~snroul~s.htm1, last visited September 271h, 2000.

[19] Wong, S.K.M., Cai, Y.J., and Yao, Y.Y,
Computation of Term Association by neural Network. In
Proceedings of the Sixteenth Annual International ACM SIGIR
Conference on Research and Development in Information
Retrieval, pp 107-1 15, 1993.

[20] P.Willett, V. Winterman and D. Bawden,
”Implementation of Nearest Neighbour Searching in an Online
Chemical Structure Search System”, Journal of Chemical
Information and Computer Sciences, 26, 36-4 1,1986.

[21] P.Willett, Recent trends in hierarchical
document clustering: a critical review, Information processing
and management, 24: 577-97, 1988.

[22] O.Zamir, O.Etzioni, Web document clustering: a
feasibility demonstration, in Proceedings of I q h international
ACM SIGIR conference on research and development in
information retrieval (SICIR 98) , 1998, pp 46-54.

47

http://www

