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Abstract: 
Document clustering is an important tool for  

applications such as Web search engines. Clustering 
documents enables the user to have a good overall view 
of the information contained in the documents that he 
has. However, existing algorithms sufSer from various 
aspects; hard clustering algorithms (where each 
document belongs to exactly one cluster) cannot detect 
the multiple themes of a document, while soft clustering 
algorithms (where each document can belong to multiple 
clusters) are usually ineficient. We propose SISC 
(Slmilarity-based Soft Clustering), an eficient soft 
clustering algorithm based on a given similarity 
measure. SISC requires only a similarity measure for  
clustering and uses randomization to help make the 
clustering eficient. Comparison with existing hard 
clustering algorithms like K-means and its variants 
shows that SISC is both effective and eficient. 

1. Introduction 

Clustering is an important tool in data mining 
and knowledge discovery. The ability to automatically 
group similar items together enables one to discover 
hidden similarity and key concepts, as well as 
summarize a large amount of data into a small number of 
groups. This enables the users to comprehend a large 
amount of data. 

One example is searching the World Wide 
Web. The World Wide Web is a large repository of 
many kinds of information. The sheer size of it  makes it 
hard for any user to find information relevant to him. 
Nowadays many search engines allow users to query the 
Web, usually via keyword search. However, a typical 
keyword search returns a large number of Web pages, 
making it  hard for the user to comprehend the results and 
find the information that he/she really needs. One way of 
getting around this problem is to cluster the retrieved 
pages into different topics. This enables the user to grasp 
what kind of information he/she really needs. For 
instance, when the user searches the Web using the 
keyword “tiger”, the pages returned can have topics 
varying from “wild animals” (tiger as an animal) to 

“golf” (the golfer Tiger Woods) to “census” (TIGER is 
the name of the on-line mapping service provided by US 
Census Bureau) to Memphis (the University of Memphis 
has tiger as its sports mascot). 

Some search engines have pre-defined subjects 
that are used to categorize the output (for instance, 
yahoo.com). However, few search engines provide a 
dynamic clustering mechanism - i.e. clustering 
algorithms that are applied only to the resulting 
documents of the query. We believe that this is an 
important service for any search engine over the Web 
and is highly beneficial to users. Thus, in this paper we 
explore dynamic clustering for documents. 

A challenge in document clustering is that 
many documents contain multiple subjects. For instance, 
a Web page discussing the University of Memphis’s 
research on wild tiger fits under the categories of both 
“wild animals” and “Memphis”. Thus, the clustering 
algorithm should discover this and put the document 
under both clusters. This suggests the use of “soft 
clustering” algorithm - an algorithm that allows a 
document to appear in multiple clusters. This can help 
users to discover multiple themes in a document - by 
looking at the multiple clusters that a document belongs 
to. Soft clustering can also help form clusters containing 
combination of existing topics. For instance, we might 
want to have a separate cluster of documents about the 
University’s research on wild tigers. This is possible if 
documents can fall into multiple clusters. 

Many soft clustering algorithms have been 
developed and most of them are based on the 
Expectation-Maximization (EM) algorithm [6 ] .  They 
assume an underlying probability model with parameters 
that describe the probability that an object belongs to a 
certain cluster. Based on the data given, the algorithms 
try to find the best estimation of the parameters. 
However, a drawback of such algorithms is that they 
tend to be computationally expensive. 

In this paper, we take a different approach. 
Instead of assuming an underlying probability model, we 
only assume that we are given a similarity functionflx, 
y) ,  which given documents x and y ,  returns a value 
between 0 and 1 denoting the similarity of these two 
documents. We develop SISC (Similarity-based Soft 

40 
0-7695-0996-7/01 $10.00 0 2001 IEEE 

http://msci.memphis.edu


Clustering), a soft-clustering algorithm based on the 
similarity function given. SISC is similar to many other 
soft clustering algorithms like fuzzy C-means [2]. That 
is, it starts out with a carefully selected set of initial 
clusters, and uses an iterative approach to improve the 
clusters. At the end, SISC produces a set of clusters with 
each document belonging to several potential clusters. 
This approach only requires a similarity function to be 
defined properly, and does not rely on any underlying 
probability assumptions (other than those made by the 
similarity function). To speed up execution, we propose 
using randomization to speed up the algorithm. This 
allows SISC to overcome problems of standard soft 
clustering algorithms mentioned above, without paying 
any price in efficiency (in fact, we outperform K-means 
based algorithm in many cases). 

The rest of the paper is organized as follows: 
Section 2 summarizes related work in the field. Section 3 
describes SISC in more detail. Section 4 provides some 
preliminary experimental results. Section 5 outlines 
future direction of this work. 

N documents into ‘m’ buckets where each bucket 
contains N/m documents. Fractionation takes an input 
parameter p, which indicates the reduction factor for 
each bucket. The standard clustering algorithm is applied 
so that if there are ‘n’ documents in each bucket, they are 
clustered into n/p clusters. Now each of these clusters is 
treated as if they were individual documents and the 
whole process is repeated until ‘K‘ clusters are left. 

Most of the algorithms above use a word-based 
approach to find the similarity between two documents. 
In [22] a phrase-based approach called STC (suffix-tree 
clustering) was proposed. STC uses a suffix-tree to form 
common phrases of documents enabling it to form 
clusters depending not only on individual words but also 
on the ordering of the words. 

Various other clustering techniques have been 
applied to document clustering. This includes using 
association rules and hypergraph partitioning [ 121, self- 
organizing maps [16], neural networks [19, 141, and EM- 
based techniques [9]. 

3. Description of SISC 
2. Related Work: 

Clustering is important in many different fields 
such as data mining [3], image compression [ l l ]  and 
information retrieval [ 131. [8] provides an extensive 
survey of various clustering techniques. In this section, 
we highlight the work most related to our research. 

We can divide clustering algorithms into hard 
and soft clustering algorithms. According to [lo], there 
are four different kinds of clustering algorithms: 
hierarchical, partition, model fitting and density based. 
These algorithms form clusters by putting each item into 
a single cluster. Soft clustering allows each item to 
associate with multiple clusters, by introducing a 
membership function W ,  between each cluster-item pair 
to measure the degree of association. Expectation- 
maximization [6] serves as the basis of many soft- 
clustering algorithms. A good survey of such algorithms 
can be found in [ I ] .  

Many clustering techniques have been used for 
document clustering. Most of the early work [7, 151 
applied traditional clustering algorithms like K-means to 
the sets of documents to be clustered. Willett [21] 
provided a survey on applying hierarchical clustering 
algorithms into clustering documents. 

Cutting et al. [4] proposed speeding up the 
partition-based clustering by using techniques that 
provide good initial clusters. Two techniques, Buckshot 
and Fractionation are mentioned. Buckshot selects a 
small sample of documents to pre-cluster using a 
standard clustering algorithm and assigns the rest of the 
documents to the clusters formed. Fractionation splits the 

SISC aims at providing soft clustering on a set 
of documents based on a given similarity measure. It has 
the following goals: 

Enable soft clustering: documents can be 
clustered into multiple clusters. 
Efficient: SISC should be able to run faster than 
traditional hard clustering algorithms. 
Cluster discovery: the algorithm should be able 
to find clusters that hard clustering algorithms 
cannot find. 
Handle outliers: the algorithm should be robust 
against outliers. 
SISC requires a similarity measure between 

documents: that is, given two documents x and y, there is 
a function 0 I f(x, y )  5 1 which returns how similar 
x and y are. It also requires a number k ,  which denotes 
the number of clusters that the user is expecting. Note 
that SISC can decide to produce a different number of 
clusters, depending on the input documents. 

SISC produces a set of clusters at the end. Each 
cluster c is denoted by a set of documents called cluster 
centroids. The centroids serve two purposes: to define 
the set of documents most representative of the cluster, 
and to determine the degree of membership between c 
and each document. A measure m(c, x) is defined to 
represent how similar a document x is to cluster c. 
Intuitively, the documents within each cluster centroid 
should be close to one another: that is, having f(x,  y) 
large for x, y belonging to the same cluster centroid. We 
will discuss how “large” is quantified later. 
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SISC can be broadly divided into four steps: a 
pre-processing step to clean up and transform the data; 
an initial cluster generation step to initialize clusters and 
remove outliers; an iterative step to build clusters; and a 
post-processing step to present the results. Each step is 
described below: 

3.1 Pre-processing 

In this step each document is transformed into a 
structure that will be used by the similarity function f ( ) .  
One such representation is a vector, with each dimension 
denoting the presence/absence of a certain word in that 
document. In addition, we remove all the stop words 
(like articles, propositions and auxiliaries verbs) that are 
not helpful in clustering. 

3.2 Initial cluster generation 

At this step the input is analyzed, initial clusters 
are produced and outliers are removed. 

The first thing for SISC to do is to decide what 
constitute as “similar” documents. Essentially, we need 
to find a threshold value A such that two documents are 
considered similar if and only if f ( ~ ,  y )  2 1. Since 
SISC is designed to adapt to different similarity 
measuresf, it is not reasonable for the user to supply a 
value for 1. As a result, SISC determines the 
appropriate value of A based on the input documents. 
The value of A can neither be too high, such that no 
documents will be clustered at the end; nor too low, such 
that all documents will be clustered into one cluster. 
Thus, the algorithm chooses A such that half’ of the 
documents are assigned at least to one cluster centroid. 
This is done by the following method: 

Pick a set of k documents, assigning each one as 
the initial cluster centroid of a cluster. 
Pick A as the largest value such that for half of 
the documents q in the data set, there exists a p 
such that f ( p , q )  2 A ,  p E C , q  E D where 
C is the set of cluster centroids and D is the 
document set. This can be done by calculating 
all the similarity values 
f ( p , q ), V p E C , V q E D and sorting 

them. 
This ensures that at least half of the documents 

are close to at least one of the clusters, so that enough 
interesting clusters can be found. An issue here is how 
the initial cluster centroids are picked. The simple way is 

1. 

2. 

’ We experimented with different values and find out the half of the 
document produce excellent results. 

to pick a random set of documents. However, since the 
initial cluster centroids can have a significant effect on 
the algorithm, it  pays to be more careful. We want to 
avoid picking too many cluster centroids that are close to 
one another (so they should actually belong to the same 
cluster). One way to overcome i t  is to start with picking 
a random document as the first centroid, and then pick 
the document that is least similar to it as the second 
centroid. Subsequent centroids are chosen such that they 
are farthest away from those centroids that are already 
picked. 

One drawback of this approach is that outliers 
can easily be picked as centroids, rendering the 
clustering method ineffective. To remedy that, the 
algorithm makes use of the threshold value 1 selected. 
After A is picked, the chosen cluster centroids are re- 
examined to make sure that there is at least one 
document similar to it  (i.e. with f() 2 A). Otherwise, 
the document is viewed as an outlier and is discarded, 
and replaced with an alternate document chosen as a 
centroid (the same test is applied to the new document to 
ensure that it is not an outlier itself). 

To make the algorithm more robust to the initial 
choice of cluster centroids, SISC starts with 2k instead of 
k initial clusters. This makes the algorithm more flexible 
to find the right number of clusters. 

3.3 Iterative step 

In this step, clusters are refined. Since SISC 
uses cluster centroids as representative of each cluster, 
this step examines each cluster and decides whether the 
centroids should change. The algorithm terminates when 
no more such changes are made. 

To determine whether a document should be in 
a cluster centroid, we need a measure of similarity 
between the document and the cluster. Thus, we define a 
measure m(c, x)  that denotes the similarity of document x 
for cluster c. It is defined as the average similarity of x 
for the documents in the current centroid of cluster c. At 
each iteration, the value of each m(c, x)  is re-calculated. 
If the value is larger than the threshold A ,  then 
document x is put into the centroid of c. However, if for 
any document y E c , the new value of m ( c ,  y ) 7c ;1 , 
then it is removed from that cluster centroid 

The drawback of the above is that during every 
iteration, the value of m(c, y )  has to be recalculated for 
each (c, y) pair. This can very time consuming. 
However, we observed that in most cases membership 
for the cluster centroid changes only for documents that 
are already close to the threshold value. Thus, we can 
speed up the algorithm by using randomization. Rather 
than calculating every m(c, y )  pair, SISC recalculates the 
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new value of m(c, y) with the probability of m ( c ,  y ) / A  ; 
i.e. the chance of recalculating the similarity measure is 
proportional to how close it is to the threshold. This cuts 
down on many unnecessary calculations while 
maintaining the cluster quality. 

One addition step SISC needs to perform during 
each iteration is the merging of clusters. Though we are 
careful in choosing initial clusters centroids, similar 
documents can still be chosen as different cluster 
centroids. Since documents can be in multiple clusters, 
the cluster centroids for those clusters will converge in 
subsequent iterations. Therefore, we need to merge 
clusters with similar cluster centroids. We experimented 
with various schemes and found that merging two 
clusters when at least half the documents in one cluster 
centroid appear on the other gives the best results. Two 
clusters are also merged if one is a subset of the other. 

3.4 Displaying clusters and keywords 

We need to display the final clusters at the end 
of the algorithm. Each cluster c is represented by the 
cluster centroids as the representatives. Moreover, for 
each document y, m(c, y) is used as the measure of 
similarity. Thus for each cluster, the documents can be 
sorted by this value to determine its association with the 
cluster and the results can be displayed accordingly. 

One final step is to annotate each cluster with 
keywords (terms) so that summary information about the 
clusters can be provided. For each cluster c, we keep 
track of the terms that appear in the documents of that 
cluster’s centroid. For each term in the documents in the 
centroid, we calculate two values: 

1. n,  the number of documents in the cluster 

2. w = C m ( c ,  y >  , V  y E x , where X 

is the set of all the documents in which the 
word appears. 
W e  ordered the terms by n * w, and displayed 

the top 6-7 of them. We experimented with different 
formulae and found this way of calculating keywords for 
a cluster as the best. 

centroid that it  appears in. 

4. Experiments & Results 

This section describes the results of the various 
experiments with SISC. In order to evaluate the 
performance, we compared SISC with other algorithms 
like K-Means, Fractionation and Buckshot [4]. 

The adhoc test bed consists of 4000 documents 
downloaded from the Web. We downloaded 2000 
documents from various categories like Food, Cricket, 
Astronomy, Clustering, Genetic Algorithms, Baseball, 

Movies, Virus, XML, Albert Einstein, Salsa (Dance), 
Salsa (food), Health care, stocks, Cancer, Tigers and the 
Olympics. We downloaded another 2000 documents 
from the UCI KDD archive [18], which has documents 
from 20 different news groups. 

In our experiments we used “Tanimoto 
coefficient” [5, 201 as the similarity measure. It is 
defined as follows: If nl is the number of terms in the 
first document and n2 is the number of terms in the 
second document and m is the number of common terms 
then the similarity measure between the two documents 

is given by m . Note that SISC does not 

preclude the use of other measures. We chose the 
Tanimoto coefficient because of its simplicity. 

All the experiments described in this section are 
carried out on a 333 MHz, 196 MB RAM PC. We did 
experiments on different document sets of different 
sizes. We ran the algorithm to get the clusters and tested 
the effectiveness of clustering (the types of clusters 
formed), both qualitatively and quantitatively. We also 
compared the execution times of all the algorithms for 
document sets of different sizes. 

n l +  n 2  - m 

4.1 Effectiveness of clustering 

We did many experiments with the document 
sets of different sizes that are taken from the above- 
mentioned test bed. All the algorithms were run to 
produce the same number of clusters with same input 
parameter settings. SISC formed clusters for each of the 
different categories in the document sets, while the other 
algorithms (K-Means, Fractionation and Buckshot) did 
not. In addition, the other algorithms formed clusters 
with documents of many categories that are not related 
to each other. 

To test the effectiveness of our approach, we 
deliberately downloaded some documents that are 
related to more than one of the categories listed above 
(For example, documents about baseball movies which 
include both baseball and movies). K-Means, 
Fractionation and Buckshot formed only clusters about 
baseball and Movies and did not form a cluster for 
documents related to both categories. However, SISC 
formed a cluster for baseball-movies and put the 
documents related to baseball-movies in that cluster. 
This shows the effectiveness of our method compared to 
other algorithms. 

Figure 1 shows sample output from one of the 
experiments with a document set of 500 documents 
picked from 12 of the categories mentioned above. The 
categories include Food, agents, XML, Jordan (the 
middle east country), Genetic algorithms, baseball, 
movies, Astronomy, Michael Jordan, Consciousness, 
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Virus and baseball-movies. All the algorithms were run 
with an input number of 12 clusters. Other algorithms 
formed 12 clusters but they did not form a cluster for 
baseball movies. SISC formed a cluster for that as shown 
in the above table. Since SISC starts with twice the 
actual number of clusters and combines the clusters, we 

also tested other algorithms with twice the number of 
clusters as input. However, they failed to produce the 
correct clusters even with twice the actual number of 
clusters. 

r I _ _ x  ~ 

Cluster results: ~- Commonwords a g s a m p l e  I__ ~- docs 
Movie, Baseball, camera, Costner, Crash, Days 

1. Love of the Game 
"--I" "~ -~ 8 2. Kevin _Ix I_ Costner 

#genetic algorithm, offspring 
x x -  

1. The genetic algorithm archive 
2. Evolutiona_ry computation--grmp ~ -~ - 

1 Information, SGML, Xlink, Xpointer, group 
! 1 .  XML: Linking Language 

1 1 .  Virus-hoax information 1 2. The great Virus-Hoax 

1 
j 2. Glen's Recipes links page 
! - P G p c s m a l s ,  comparative, conscious, mind, 
1 1. Online papers on consciousness 

TCGvernment, Arab, country, culture, desert 
/ 1 .  Middle East 
1 i I-- 2. The Arab I ^- revzlution 

2. ZML-Xpointer reguirements " _  "___x 

Hoax, area, email, address 

__^_ 

course, Gourmet, enjoy 
1. Cookbooks 

2. Animal Consciousness 
~ - - ~  

xx-_I __xxx - 

w, Solar, Stars, Sun, System 

2. NASA Watch: Space news 
j Michael, Bulls, career, Chicago, Finals, game, greatest 

1. MSU's baseball news 

The table in the figure 2 compares the clusters 
formed by different algorithms 

1 

I 
1 

I 
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Figure 2: Comparison of clusters formed by 
different algorithms 

We also measured the effectiveness of the 
clustering algorithm quantitatively. W e  compared the 
clusters formed by the documents against the documents 
in the original categories and matched the clusters with 
the categories one-to-one. For each matching, we 
counted the number of documents that are common in 
corresponding clusters. The matching with the largest 
number of common documents is used to measure the 
effectiveness. This matching can be found by a 
maximum weight bipartite matching algorithm [ 171. We 
return the number of documents in the matching. The 
more documents that are matched, the more they 
resemble the clusters are to the original categories. For 
our algorithm, and for the purpose of this comparison, 
we assigned each document to the cluster that has the 
largest similarity value. 

Figure 3 shows the number of matches with the 
original categories for different algorithms averaged on 
10 different sets of documents. We can clearly see that 
SISC outperforms the other algorithms in effectiveness. 

Figure 3: Comparison of quality of clusters by 
different clustering algorithms 

Next we turn to the data set downloaded from 
the UCI archive, which contains data from various 

newsgroups. The newsgroups contain topics like 
atheism, computer graphics, Mac hardware, pc hardware, 
x-windows, basketball, hockey, cryptography, 
electronics, space and Christianity. Due to limitation of 
space, we only show the result of cluster quality 
comparison in figure 4. 

100 200 300 400 500 

Number Of Documents 

I S I X  K-M eans Buckshot Fractionation I 
Figure 4: Comparison of quality of clusters by 

different algorithms on UCI document set 

The figure shows that our algorithm worked 
well with the data from the UCI document archive and 
clearly outperformed the others. 

4.2 Execution time 

We also measured the execution time of 
various algorithms. Figure 5 gives the comparison of 
execution times. 

,. 
a G 40.00 
2 35.00 
2 30.00 
5 2.5.00 
2 20.00 

.- 8 10.00 

.- c 15.00 

5 5.00 
.- 
4 0.00 

200 400 600 800 1000 

Number of Documents 

--O-SISC -.- K-Means 
-A- Buckshot X Fractionation 

Figure 5: Execution times of various clustering 
algorithms 
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As the graph shows, SISC outperforms almost 
all other algorithms in execution time, especially as the 
number of documents increase. 

To see how effective randomization is, we 
compared the execution times of our algorithm with and 
without randomization. 

200 400 600 800 10oO 

Number Of Documents 

<-Without Randomization 

Figure 6: Execution times of SISC with and without 
randomization 

We can observe from Figure 6 that introducing 
randomization cuts down the running time significantly. 
This shows the effectiveness of using the randomization 
approach. 

Of course, we need to justify randomization by 
comparing the cluster quality. We use the quantitative 
measure to compare the two algorithms to see if they 
give similar results. 

Figure 7 shows that both algorithms give 
roughly the same number of matches. In fact, the 
difference is less than 5%; thus, we can justify the use of 
randomization to speed up the algorithm. 

70.00 
65.00 

60.00 
z 55.00 
2 50.00 r: 

45.00 0 
5 40.00 

z 

v 

s 

c, 5 35.00 
30.00 

200 400 600 800 1000 

Number Of Documents 

1 OWithout Randomization W With Randomization I 

Figure 7: Comparison of cluster quality: 
randomization vs. no randomization 

4.3 Web search results 

We also tested SISC on the results from Web 
search engines. We downloaded documents returned 
from the Google search engine (www.goo,gle.com). 
After that, we clustered the documents using our 
algorithm and displayed the results. Limitation on space 
prohibits us from showing the full results. Here we show 
some clusters that we found by clustering the top 100 
URLs returned from searching the term “cardinal”. The 
categories correspond to the common usage of the word 
“cardinal” in documents over the Web (name of baseball 
teams, name of football teams, nickname for schools, a 
kind of bird, and a Catholic clergy). Figure 8 shows 
some of the clusters formed by SISC. 

Cluster results: Keywords and sample r R2;,, i 
documents 1 

Benes, rookie, players, hit, innings, 

Brewers vs. Cardinals 

Leadership 

Burke 
1 .  NFL Cardinals Forum 
2 .  Arizona Cardinals 

Figure 8: Clusters formed for search term 
“cardinals” by SISC 

5. Conclusions: 

In this paper, we introduced SISC; a soft 
clustering algorithm based on similarity measures, and 
applied it to document clustering. The algorithm 
introduces various techniques such as randomization to 
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help make soft clustering efficient. Our experiments 
show that SISC algorithm is able to discover clusters that 
cannot be detected by non-fuzzy algorithms, while 
maintaining a high degree of efficiency. 

We mentioned using clustering for Web search 
engines. Currently SISC is practical to cluster about 600- 
800 documents, while maintaining reasonable (less than 
a minute) response time. We are looking at various 
techniques to improve this. 

We also believe that the randomization 
techniques can be used to improve fuzzy clustering in 
general. We would like to explore more possibilities 
along this avenue. 
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