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Abstract 

In th is  paper we  explore t h e  problem of approximate 
nearest neighbor searches. W e  propose a n  i n d e x  struc- 
ture,  t h e  A N N - t r e e  (approximate nearest  neighbor tree) 
t o  solve this problem. T h e  A N N - t r e e  supports high 
accuracy nearest neighbor search. T h e  actual near- 
est  neighbor of a query poin t  can  usually be f o u n d  in 
the  f i r s t  leaf page accessed. T h e  accuracy increases t o  
near  100% if a second page is accessed. T h i s  i s  n o t  
achievable via traditional indexes.  E v e n  if a n  exact 
nearest nearest neighbor query is desired, t h e  A N N - t r e e  
i s  demonstrably m o r e  eff icient t h a n  existing structures 
like t h e  R *-tree. This m a k e s  the  A N N - t r e e  a preferable 
i n d e x  structure f o r  both exac t  and  approximate nearest 
neighbor searches. W e  present  the  i n d e x  in detail and 
provide experimental results o n  both real and  syn the t ic  
data sets.  

1 Introduction 

Nowadays many database applications, such as ge- 
ographic information systems and web search engines, 
require efficient and effective means of answering sim- 
ilarity queries. Many such queries come in the form 
of nearest  neighbor queries. As databases are large 
in size, an index is usually devised to facilitate such 
queries. Most of them are tree-based structures simi- 
lar to the B-tree, the main difference being that a mul- 
tidimensional index uses multidimensional regions to 
divide the search space, instead of 1-D intervals used 
by the B-tree. While nearest neighbor search for num- 
bers can be handled effectively by B-trees, for many 
applications we need to deal with multi-dimensional 
points or objects. There has been a lot of work on 
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designing efficient nearest neighbor search algorithms 
with multi-dimensional indexes. However, most such 
algorithms suffer from some degree of inefficiency. For 
instance, even if only one nearest neighbor is required, 
they usually end up retrieving multiple data pages be- 
fore finding the solution. This is because most search 
algorithms using a tree-based index are heuristic-based. 
If the heuristic makes a bad decision at  the higher level 
of the tree, then the search is led down the wrong path 
and extra pages will be unnecessarily retrieved. 

On the other hand, in many cases it is good enough 
to obtain a solution that is close to the actual near- 
est neighbor. Closeness can be measured in terms of 
distance or rank. This is important, for instance, in 
Web search engines, where a quick response time for a 
very good but not necessarily the best solution is pre- 
ferred to a costly wait for the exact solution. Also in 
OLAP, an on-line algorithm can quickly display an ap- 
proximate solution (which has a high chance of being 
correct), while continues to look for the exact solution. 

With a tree based index structure, an ideal algo- 
rithm should retrieve only one page at each level and 
find the nearest neighbor in the first leaf page accessed. 
We call such an algorithm t h e  minimum access algo- 
rithm. In this paper, we first explore the conditions on 
the index structure for the minimum access algorithm 
to exist. Such an index, while ideal, is impractical to 
implement. Hence we design the Approximate Nearest 
Neighbor Tree (ANN-tree), to approximate the ideal 
index. On the ANN-tree, the minimum access algo- 
rithm can be used to perform effective approximate 
nearest neighbor searches. The algorithm can be con- 
figured to access one or more leaf pages according to 
the requirement on accuracy. Our experiments on var- 
ious data sets (both synthetic and real world) g’ ive ex- 
cellent results: with the minimum access search algo- 
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rithm configured to retrieve 1 leaf page, 94% of the 
time the exact nearest neighbor is found. The accu- 
racy increases to 99% if the algorithm is configured to 
retrieve a maximum of two leaf pages. Moreoever, the 
ANN-tree supports exact nearest neighbor queries. Ex- 
periments show that the ANN-tree beats the R*-tree 
structure in such algorithms. 

The rest of the paper is organized as follows. Section 
2 outlines previous related work. Section 3 describes 
our proposed technique in detail. Section 4 provides ex- 
perimental results and Section 5 summarizes our work 
and discusses future directions. 

2 Related work 

There has been substantial work on nearest neigho- 
bor search on multi-dimensional data. Most algorithms 
work with index structures like the R-tree [7, 14, 41 
and follow a branch-and-bound approach to  traverse 
the tree during the search. At each step, a heuristic 
is applied to choose a branch to  visit next. At the 
same time information is collected and used to prune 
the search. Various algorithms differ in the order of 
the search. Roussopoulos et al. [12] used a depth-first 
approach; while Hjaltason and Samet [8] proposed a 
“distance-browsing” algorithm, using a priority queue 
to maintain all the branches that have been accessed 
and choose among them for the next one to visit. Other 
techniques modify the index structure itself to improve 
performance. Examples include the the SS-tree [15] 
(which uses spheres as bounding regions) and the SR- 
tree [lo] (which employes the intersections of the min- 
imum bounding rectangles and the bounding spheres). 

Berchtold et a1 [5] proposed an alternative approach. 
Instead of indexing the data points, they index the 
Voronoi diagram [3] associated with the data set. A 
Voronoi diagram of a data set D is a graph that par- 
titions the whole space into Voronoi regions. Each re- 
gion corresponds to the set of points that have a cer- 
tain point p as the nearest neighbor among the points 
in D. Hyperrectangles are used to  represent an over- 
estimate of each region. The regions are then stored in 
a standard index. Thus the nearest neighbor query is 
transformed into the point query in that index. 

Both nearest neighbor and approximate nearest 
neighbor search have been studied in computational ge- 
ometry (e.g. see [13]). Some interesting work include: 
the €-nearest neighbor search: finding a point whose 
distance to the query point is a t  most I+€ times the dis- 
tance of the query point to the actual nearest neighbor 
[l, 21; locality-sensitive hashing techniques for nearest 
neighbors [9, 61. 

3 The Approximate Nearest Neighbor 
Search Tree 

As stated previously, our goal is to develop an in- 
dex structure that supports nearest neighbor queries 
with minimum node access and high accuracy. We 
begin this section by defining the notion of minimum 
access algorithm for nearest neighbor queries using a 
tree-based index structure. We examine the conditions 
on a tree-based index for such an algorithm to exist. 
Such a structure, while ideal, is unrealistic to  imple- 
ment, especially in high dimensions. This motivates us 
to  design a new structure, the ANN-tree. 

In what follows, we assume that D is a data set, 
Vo(p)  the Voronoi region (cf. section 2) of point p in 
D, and NND(q) the nearest neighbor of query point 
q in data  set D. Each node of the index consists of 
k branches, B1, B2, . . . , Bk. The bounding region of 
branch Bi is denoted as Ri. 

3.1 Motivation 

Current nearest neighbor search algorithms via 
tree-based index structures require traversing multiple 
branches of a tree. Ideally, a nearest neighbor search 
on an index structure should only traverse one path 
since we are looking for the one data point that satis- 
fies the query, assuming no ties. In other words, the 
algorithm should start from the root of the tree, and 
at each level, choose only one branch to traverse down- 
ward, until the leaf level is reached. The critical step 
in such an algorithm is the branch selection. It can be 
viewed as a function f() of the query point q and all 
branches of the current node: B1, Bz, . . . , Bk. It re- 
turns a value between 1 and k representing the chosen 
branch. Algorithm 1 describe the algorithm formally. 

Algorithm 1 MznimumAccess 
1)  Starting from the root node, compute a 

branch selection function f ( q ,  BI, . . . , Bk) 
for the current node. The chosen branch 
is traversed downward, and the process re- 
peated until a leaf is reached. 

2) The data item in the leaf node that is closest 
to q is returned as the solution. 

In general, f() can be any function. However, for 
all practical purposes, f() has to satisfy at least the 
following constraint: 

DEFINITION: (well-behaved branch selection function) 
A branch selection function f () is well-behaved if Vi, j 
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such that q E Ril q $! Rj we have f ( 4 ,  R I , .  . . , R k )  # j .  

In other words, a well-behaved branch selection 
function favors the branch that contains the query 
point. We assume that f ( )  is well-behaved in the rest 
of this paper. We are interested in finding conditions 
on tree-based index structures such that the minimum 
access nearest neighbor search algorithm returns the 
correct results. We first show a sufficiency result. 

THEOREM 3.1 For any tree-based index structure, the 
minimum access nearest neighbor search algorithm re- 
turns the correct result if the following holds: 

1. I n  every node, a n y  two Ri and Rj do not intersect. 

2. A t  each level of the tree, the union of the bounding 
regions of all nodes is the entire data space. 

3. A data  point p is contained in a subtree if and only 
if Vo(p)  intersects with the bounding region of the 
root node of the subtree. 

Notice that a data point may appear in more than 
one leaf node, as Vo(p) may intersect with multiple 
bounding regions. 

Proof: Let D be the data set and q the query point. 
Define f (4, B1, BSI. . . , B k )  = i where y is contained in 
Ri. Condition (1) and (2) ensure that such a function 
is well-defined. Also assume that p is the solution of 
the query. That means q E V ( p ) .  Suppose L is the 
leaf node we reached. By the definition of f (), we have 
q E R L ,  where RL denotes the bounding rectangle of 
L. Hence q E V ( p )  fl RL # @. By condition (3), p is in 
L. As a result, the last step will pick p as the nearest 
neighbor (since p is the solution, then p must be closer 
to q than any other points in L ) .  QED 

The above theorem provides a sufficient condition 
for an index to have a correct minimum access nearest 
neighbor search algorithm. For necessary conditions, 
we have the following: 

THEOREM 3.2 For a n y  tree-based index structure that  
satisfies condition (1)  and (2) in theorem 3.1, a mini- 
m u m  access nearest neighbor search algorithm returns 
the correct result only if condition (3) holds. 

Proof: Notice that with condition (1) and 
(2) and the restriction on f ,  we must have 
f ( q ,  BI , Bz,. ‘ . , B k )  = i where q is contained in Ri. 
Now if (3) is false, then we can find a point q in the data 
set such that there exists a leaf node L whose bound- 
ary region intersects with V ( q )  but does not contain q .  
Pick a point in the region where V(y) intersects with 

the boundary region of L as the query point. It can 
be seen that the search on this point will end up in L.  
However, q (the supposed solution) is not in L.  QED 

There are index structures satisfying condition (1) 
and/or (2). For instance, the R+-tree satisfies condi- 
tion (1) while the K-D-B tree [ll] satisfies (1) and (2). 
However, an index with condition (3) is hard to build. 
This is because verifying condition (3) requires know- 
ing the Voronoi diagram, which can be hard to store 
or build, especially in high dimensional space. 

To avoid this difficulty, we estimate the Voronoi re- 
gion by a ball. Based on it, we devise an index struc- 
ture, called the ANN-tree, satisfying conditions (l), 
(2), and relaxed condition (3) where the Voronoi re- 
gion is replaced by a ball. More specifically, a point 
is contained in a subtree if and only if the ball inter- 
sects with the bounding region of the root node of the 
subtree. While this does not guarentee the minimum 
access search algorithm on the ANN-tree to  find the 
correct nearest neighbor, our experiments show that it 
returns the correct nearest neighbors with very high 
accuracy. 

E 
0 

O A  

-0 B 

O C  

O D  

Figure 1. Estimate Voronoi region 

Estimating the Voronoi Region We illustrate the 
process of estimating the Voronoi region by an example 
in 2 dimensional space. Consider a data set D ,  and a 
point p in D and its Voronoi region V ( p )  (Figure 1) .  
Assume b is the nearest neighbor of p.  By the property 
of the Voronoi Diagram, it’s easy to see that the ball 
centered at point p with radius Jpml (the distance from 
p to m) is completely enclosed in V ( p )  (The smaller 
circle in Figure 1). This is an underestimate of V ( p ) .  

However, this can be a gross underestimate, espe- 
cially if b is much closer to p than any other points in 
the data set. Thus we propose moving the center of 
the ball to the opposite direction of the line bp (For 
instance, point p’ in figure l),  while using (p’m( as the 
radius. This increases the size of the ball and results in 
higher accuracy. We denote the increase of the radius 
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by an extension factor f, Ip’ml = f * Ipm(. We discuss 
the best value for f in section 4. 

3.2 ANN-tree structure and algorithms 

The structure of ANN-tree is similar to the R- 
trees. A leaf node of the ANN-tree is of the form: 
(RECT, Handle l , .  . . ,Handle,). Each handle con- 
tains the following information (ptid, BALL),  where 
ptid is the data point, and BALL is an estimate of the 
Voronoi region of the point referred to by ptid. BALL 
can be represented by radius and center. RECT is a 
rectangle called the cover space of the node. 

A non-leaf node is of the form ( M a x R ,  B1,. . . , B,) 
where M a x R  is the largest radius of all BALLS in the 
subtree rooted at this node. This information is used 
to ensure efficient insertion. Each branch Bi is in the 
form (c ldptr ,RECT)  where cldptr is a pointer to a 
child node and RECT is a rectangle called the cover 
space of the child. 

Each non-leaf node covers a portion of the whole 
space enclosed by a rectangle. To satisfy conditions 
(1) and ( 2 )  from the previous section, the rectangles 
in all branches of a node should form a partition of 
the cover space. This means the rectangles of different 
branches do not overlap with each other and the union 
of them is the cover space of the node. 

Nearest Neighbor and Approximate Nearest 
Neighbor Search As the ANN-tree is an R-tree like 
structure, any existing branch-and-bound exact near- 
est neighbor search algorithms such as [12] works cor- 
rectly on it. 

For approximate nearest neighbor queries, we can 
use the minimum access algorithm discribed previously. 
If a higher accuracy is desired, we can follow a branch- 
and-bound approach to retrieve the second leaf node, 
the third leaf node, and so on. That is, once we reached 
the first leaf node, we next look for the sibling of the 
node that is closest to the query point, and so on. This 
process converges to a Nearest Neighbor Search algo- 
rithm. Our expirments show that retrieving the second 
leaf node yields an accuracy of about 99%. This tells us 
that two leaf nodes are usually all we require to locate 
the true nearest neighbor. 

Insertion Insertion is done in two phases. First, we 
estimate the Voronoi region for the point to be inserted, 
then we insert this region into the tree. Estimating the 
Voronoi region requires finding the nearest neighbor of 
the point to be inserted. 

After the estimated region is found, we create a han- 
dle to the point p.  Inserting a new handle to the tree 

is done by examining the branches and adding it to  
the leaf nodes. The handle is inserted into a branch if 
and only if the ball intersects with the cover space of 
the branch. Hence, a data point can be inserted into 
more than one leaf node. Like the R+ tree, overflowing 
nodes are split and the splits are propagated to parent 
and possibly children nodes. 

Algorithm 2 InsertHundZe(Node N ,  Handle 

1)  If N is a non-leaf node, then for each branch 
Bi check if the Ri intersect with the BALL 
of H .  If so, call InsertHandle() recursively 
to  traverse Bi. 

2) If N is a leaf node, add H to N if the cover 
space of N intersects with the BALL of H .  

3) If N overflows, call Spl i tNode(N)  

H )  

Algorithm 3 Insert (Tree T, Point p )  
1 )  Find the nearest neighbor p’ of p in T .  
2 )  Compute the estimated Voronoi region 

BALL using extension factor f and create 
a handle H for (BALL,  point). 

3) Call InsertHandZe(T, H )  to insert H .  
4) Call UpdateRegion(p) to  update existing 

regions in T .  

Node split Node splitting is similar to standard R- 
tree based indexes. The goal is to find an axis-parallel 
split line that partitions the group of branches into 
two groups. This can be done via a plane-sweep algo- 
rithm. Different R-tree varients have different ways of 
choosing such a line. Here since our bounding regions 
always cover the entire space, optimizing values such 
as volume of the bounding regions becomes secondary. 
Rather, we would like to maintain a balance between 
the two split nodes. Moreover, similar to Rf-tree, the 
split may be propagated downwards as the split line 
may cut through the bounding rectangle of a branch 
in the node. We would also like to  minimize the num- 
ber of such branches. Assume node N with n branches 
is to be split into two nodes N 1  and N2.with nl and 
n2 branches respectively. We have nl + n2 2 n. To 
balance N 1  and N 2 ,  we need to minimize In1 - n21; 
to avoid the downward splitting, we need to  minimize 
nl +n2 -n. Combining the two constraints means that 
we would need to minimize maz(n1 ,  n2) .  

Unlike the standard R-tree, in an ANN-tree there 
is a slight possibility that an internal node split may 
result in multiple nodes. Since a new data point may 
be inserted into multiple branches of a subtree, and 
each branch may split, it is possible for a node to  be 
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split into multiple nodes. Thus the algorithm may have 
to pick multiple split lines. However, our experiments 
show that such splits are rare. 

Algorithm 4 FindSplitAxis (BranchList L )  
1) Collect the rectangles from all branches 

(handlers) in list L 
2 )  For each axis x[ i ] ,  collect all the low bounds 

and high bounds of all rectangles, put them 
into an array of numbers, and then perform 
the following 

a. Sort the array of numbers. 
b. For each number p in the array, take 
P : xli] = p as a candidate partition line 
perpendicular to axis x[ i ]  and compute 
m a x ( n l , n 2 ) .  If m a x ( n l , n 2 )  of P is less 
than that of the candidate optimal parti- 
tion line, save P as the current optimal 
partition line. 

3 )  Output the current optimal partition line. 

Algorithm 5 Splat (BranchList L )  
1) Call FindSpl i tAxis(L)  to get the partition 

2 )  Divide L into two lists L1, L l .  For each 
line P 

branch B, in L Do 
a. If B, is below P, add B, to L1 
b. If B, is above P ,  add B, to L2 
c. If B, intersects with P ,  add B, to both 
L1 and Lz in case B, is a leaf, or split the 
child nodes of B, along P otherwise. 

3 )  Call SpZit(L1) if L1 has more branches than 

4) Call Spl i t (L2)  if La has more branches than 

5 )  Create a node from each resultant list and 

a node can contain. 

a node can contain. 

output the nodes. 

Updating Regions Inserting a new data point p re- 
sults in changes in the Voronoi regions of some existing 
data points. Thus we need to change (usually shrink) 
the estimated Voronoi regions of those points. 

Notice that only existing data points that have p as 
their nearest neighbor will need to change their regions. 
This is because estimations are done using only nearest 
neighbor information. This implies we need to  traverse 
the tree to  find nodes that contain the affected points. 
This can be sped up by observing the following lemma. 

LEMMA 3.1 For any point p an the index structure, let 
rP be the radius of the ball estimating V ( p ) .  Then a 
point q is the nearest neighbor of p if and only if Ipq( _< 

2 * r p / f ,  where f'is the extension factor and Jpql the 
distance between p and q. 

Proof: Refer back to figure 1. Notice that 2 * r P /  f 
is the distance from p to its nearest neighbor in D. So, 
for any point q to be the nearest neighbor of p ,  we must 
have Ipq( 5 2 * r p /  f and vice versa. QED 

Thus at  each node, we maintain the largest radius 
of all the balls in its subtree, enabling us to prune the 
search effectively. 

Algorithm 6 UpdateRegion (Node N ,  Point p )  
1) If N is a non-leaf node, check if distance 

between p and the bounding rectangle of N 
is less than 2 * M a x R .  If so, recursively call 
UpdateRegionO for all branches. 

2 )  If N is a leaf node, then for each point up- 
date the approximate Voronoi region if p is 
the nearest neighbor of it. 

3 )  Update the M a x R  field for the nodes tra- 
versed on the way back up. 

Algorithm 7 Delete ( p )  
1) Starting from the root go down the tree 

along the branches containing p .  Retrieve 
the estimated region B A L L  of p from the leaf 
node reached. 

2 )  Go down the tree to locate all leaf nodes 
that intersect B A L L  and delete all entries 
containing the B A L L .  Update M a x R  on the 
way back up. 

3 )  Remove the points that take p as their near- 
est neighbor. 

a. Starting from the root, a branch is tra- 
versed if and only if the distance from p to 
the cover space of that branch is less than 
2 * M a x R  in that branch. 
b. Once a leaf node is reached, then for 
each point x in it, remove x from the node 
if d* f 5 r ,  where f is the extension factor, 
d the distance from p to x ,  and r the radius 
of B A L L  for x. 

4) Reinsert the points removed in previous step 
using the Insert  algorithm. 

Deletion Deletion in the ANN-tree is similar to in- 
sertion. First, the data point p to be deleted is located 
and the estimated Voronoi region B A L L  retrieved. A 
range search is done to locate all nodes that intersect 
with B A L L .  These nodes must contain p according to 
property ( 3 )  in theorem 3.1 and hence p is deleted from 
these nodes now. After that we need to update regions 
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of points that have p as their nearest neighbor. Here 
we locate the points, simply remove them from the leaf 
nodes, and reinsert them using the Insert algorithm. 

Dimensionality 
Accuracy (%) 

4 Experimental results 

2 4 6 8 10 
95.1 95.3 93.7 93.3 93.1 

This section presents the results of our experiments. 
We measure how well our index structure performs 
against the R*-tree. We choose the R*-tree because 
the ANN-tree is a dynamic structure, so comparison 
with a fellow dynamic structure is fair. We measure 
both accuracy (how often our approximate algorithm 
is useful) and efficiency (how much time we save us- 
ing an approximate algorithm). We also compare the 
results from exact nearest neighbor search algorithms. 

We implemented both structures in C + + ,  and ran 
our tests on a machine with 2 500-MHz Pentium I1 
processors and 512 MB RAM under SCO UNIX. We 
experimented on both synthetic and real world data  
sets. The real data set is described in subsequent para- 
graphs. For synthetic data, we generated data sets 
of various sizes and dimensionalities with uniform and 
normal distributions. The results with both distribu- 
tions are similar, so in the rest of the section we mainly 
present the results from uniformly distributed data. 

Extension factor 
Accuracy (%) 
Extension factor 

Accuracy The first thing we measure is the accuracy 
of the approximate search. We ran experiments on the 
ANN-tree and recorded how often the actual nearest 
neighbor was retrieved. As a comparison, we modified 
the depth-first nearest neighbor algorithm of [12] such 
that the search stops whenever the first leaf node is 
reached. This means that we ran the same minimum 
access search algorithm ,on the R*-tree but with the 
branch selection function f() set to return the branch 
with bounding region closest to the query point. 

Figure 2 shows the results. We ran the experiments 
over various data sets. For each data set we ran 100 
queries and averaged the results. The figure shows that 
the ANN-tree exhibits a precision of approximately 
95%. The same accuracy is maintained with various 
data set size, meaning our algorithm scales up very 
well. On the other hand, the R*-tree's precision is sig- 
nificantly lower than ours, and is decreasing steadily 
when the data set size increases. Thus we can see that 
the ANN-tree is a much preferred structure in terms of 
fast approximation nearest neighbor searches. 

We also examined the case of retrieving two leaf 
pages from the ANN-tree. The precision rises to ap- 
proximately 99%. Moreover, only 30% of time a sec- 
ond leaf page access happened. This makes the average 
number of data page access to be 1.3. 

1.0 1.1 1.2 1.3 
93 93 94.5 93 
1.4 1.5 1.6 1.7 

I Accuracy (%) I 94 91.5 90.5 88.6 I 
(b) # of data: 50,000. Dimensionality :' 4 

Table 1. Comparison of accuracy using differ- 
ent dimensionalities and extension factors 

The next set of experiments tests the ANN-tree per- 
formance over various dimensionalities of data using 
different extension factors respectively. The results are 
shown in table 1. It can be seen that the ANN-tree 
is robust over different dimensionalities and extension 
factors. The extension factor is a parameter that one 
may tune. The optimal value may be dependent on 
the distribution of the data. The results show that the 
performance of ANN search is not very sensitive to the 
extension factor and 1.1 to 1.4 is a good range for it. 
However, a bigger extension factor produces a bigger 
estimated region and hence causes a higher chance for 
a point to be inserted into multiple nodes. This will 
results in an increased tree size and therefore reduces 
the effective branching factor of the tree. From Table 
1 we can see that the accuracy does tail off when the 
extension factor becomes large. This suggests we are 
correct in underestimating the Voronoi region. 

# of data(x lo4) I 5 10 15 20 25 
% wrong answers I 3 5 5 4 6 

wrong answers 
Error of 0.07 0.14 0.09 0.13 0.13 
distance 

Table 2. Statistics for approximate anwers of 
the ANN-tree 

We also want to  measure the quality of the retrieved 
points if they are not the nearest neighbor of the query 
point. Thus we examined the queries that did not re- 
turn the correct answers. Table 2 shows the statistics 
of such approximate solutions. The table shows that 
the approximate answers are in general the second or 
third nearest neighbors. Moreover, the average relative 
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Uniformly distributed points Multi-normal distributed points 
Dimensionality = 4, f = 1.1, Page size = 6K 

# of data (x lo4) 
1 leaf access 
2 leaf access 

Figure 2. Comparison of accuracy of various data set size 

1 2.5 5 7.5 10 
95.2 96.8 96.6 97.2 97.2 
98.4- 98.6 98.8 99.0 99.4 

error in terms of distance is around 10%. This seems 
large, but one has to remember that most of the time 
the points retrieved are the second nearest neighbors, 
so the error is inherit to the data set. Thus we can say 
in cases where the ANN-tree failed to find the near- 
est neighbor with one leaf access, it can still find an 
excllent approximation. 

and longitude. We ran experiments on this set, ran- 
domly picking 10,000 to 100,000 points as the database, 
and picking points from the set as test queries. 

Efficiency Obviously, the approximation algorithm 
on ANN-tree is the fastest possible (in terms of num- 
ber of pages accessed). We want to measure actual 
speed-up to see the trade off between the efficiency and 
accuracy. We also compare the efficiency of the exact 
nearest neighbor algorithm on both the ANN-tree and 
the R*-tree. 

Figure 3 shows the results. We measured both the 
number of leaf nodes and the total number of nodes. 
We can see that the exact nearest neighbor algorithm 
for R*-tree retrieves about 3-4 leaf pages for some de- 
cent data size. That means the savings in ANN-tree 
can be threefold to fourfold. This shows that a high 
accuracy approximate algorithm is viable. Also the ap- 
proximate algorithm requires half the number of node 
access (Figure 3 (b)). 

Moreover, the ANN-tree outperforms the R*-tree in 
exact nearest neighbor searches by around 30%. The 
savings scale up well. We also tested on a data set 
with 1,000,000 points, and we still obtain a 30% sav- 
ings. Thus the ANN-tree can be beneficial for both 
approximate and exact nearest neighbor queries. 

Results from a real data set We also ran tests 
on a real data set. This was obtained from the 
US National Mapping Information web site (URL: 
h t t p  : //mappings. usgs . gov/www/gnis/). It contains 
populated places in the USA, represented by latitude 

Table 3. Accuracy (in YO) for the real data set 

Table 3 shows the accuracy results for this data set. 
Once again, we achieve an accuracy of 95% if we access 
only one leaf node. If we allow the algorithm to  access 
a second leaf node, the accuracy rises to 99%. 

We also examined the 1-5% of the incorrect results. 
Again, most of the points retrieved are either the sec- 
ond or third nearest neighbors. However, there are a 
few cases where a “farther away” neighbor is found 
(like the lo th  nearest neighbor). These are the cases 
where the query comes from an outlying region of the 
data set and the nearest neighbor is very far away from 
the query point. However, for such query points, the 
ratio between the distance of the retrieved point to the 
query point and the distance of the nearest neighbor to  
the query point is very close to one. Thus the retrieved 
points are still representative. 

5 Conclusion and future work 

In this paper, we examined the nearest neighbor 
and approximate nearest neighbor searches using tree- 
based indexes. We explored the conditions for an in- 
dex to perform optimally (in terms of node access). 
We also introduced the ANN-tree, an index structure 
built on those principles. Our experiments show that 
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Figure 3. Number of nodes accessed for both approx. and exact NN queries 

the ANN-tree provides excellent performance on near- 
est neighbor queries, both in accuracy on fast approx- 
imate nearest neighbor searches, and in efficiency on 
exact nearest neighbor searches. 

In section 3 we examined sufficient conditions for an 
index to achieve minimum node access nearest neighbor 
search. An important part of our future work is to nail 
down the necessary conditions for such indexes to exist. 
This will benefit future research on index structures 
and provide a framework to compare indexes. 

Another direction to explore is to utilize the ANN- 
tree to perform k-nearest neighbor queries. Many ap- 
plications require multiple nearest neighbors. We in- 
tend to look at how the ANN-tree can be generalized. 
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