
The ANN-tree: An index for efficient approximate nearest neighbor
search

King-Ip Lin Congjun Yang
Division of Computer Science,

Department of Mathematical Sciences
The University of Memphis,
Memphis, T N 38152, USA

Division of Computer Science,
Department of Mathematical Sciences

The University of Memphis,
Memphis, TN 38152, USA

linki@msci.memphis.edu yangc@msci. memphis. edu

Abstract

In th is paper we explore t h e problem of approximate
nearest neighbor searches. W e propose a n i n d e x struc-
ture, t h e A N N - t r e e (approximate nearest neighbor tree)
t o solve this problem. T h e A N N - t r e e supports high
accuracy nearest neighbor search. T h e actual near-
est neighbor of a query poin t can usually be f o u n d in
the f i r s t leaf page accessed. T h e accuracy increases t o
near 100% if a second page is accessed. T h i s i s n o t
achievable via traditional indexes. E v e n if a n exact
nearest nearest neighbor query is desired, t h e A N N - t r e e
i s demonstrably m o r e eff icient t h a n existing structures
like t h e R *-tree. This m a k e s the A N N - t r e e a preferable
i n d e x structure f o r both exac t and approximate nearest
neighbor searches. W e present the i n d e x in detail and
provide experimental results o n both real and syn the t ic
data sets.

1 Introduction

Nowadays many database applications, such as ge-
ographic information systems and web search engines,
require efficient and effective means of answering sim-
ilarity queries. Many such queries come in the form
of nearest neighbor queries. As databases are large
in size, an index is usually devised to facilitate such
queries. Most of them are tree-based structures simi-
lar to the B-tree, the main difference being that a mul-
tidimensional index uses multidimensional regions to
divide the search space, instead of 1-D intervals used
by the B-tree. While nearest neighbor search for num-
bers can be handled effectively by B-trees, for many
applications we need to deal with multi-dimensional
points or objects. There has been a lot of work on

0-7695-0996-7/01 $10.00 0 2001 IEEE

designing efficient nearest neighbor search algorithms
with multi-dimensional indexes. However, most such
algorithms suffer from some degree of inefficiency. For
instance, even if only one nearest neighbor is required,
they usually end up retrieving multiple data pages be-
fore finding the solution. This is because most search
algorithms using a tree-based index are heuristic-based.
If the heuristic makes a bad decision at the higher level
of the tree, then the search is led down the wrong path
and extra pages will be unnecessarily retrieved.

On the other hand, in many cases it is good enough
to obtain a solution that is close to the actual near-
est neighbor. Closeness can be measured in terms of
distance or rank. This is important, for instance, in
Web search engines, where a quick response time for a
very good but not necessarily the best solution is pre-
ferred to a costly wait for the exact solution. Also in
OLAP, an on-line algorithm can quickly display an ap-
proximate solution (which has a high chance of being
correct), while continues to look for the exact solution.

With a tree based index structure, an ideal algo-
rithm should retrieve only one page at each level and
find the nearest neighbor in the first leaf page accessed.
We call such an algorithm t h e minimum access algo-
rithm. In this paper, we first explore the conditions on
the index structure for the minimum access algorithm
to exist. Such an index, while ideal, is impractical to
implement. Hence we design the Approximate Nearest
Neighbor Tree (ANN-tree), to approximate the ideal
index. On the ANN-tree, the minimum access algo-
rithm can be used to perform effective approximate
nearest neighbor searches. The algorithm can be con-
figured to access one or more leaf pages according to
the requirement on accuracy. Our experiments on var-
ious data sets (both synthetic and real world) g’ ive ex-
cellent results: with the minimum access search algo-

174

mailto:linki@msci.memphis.edu

rithm configured to retrieve 1 leaf page, 94% of the
time the exact nearest neighbor is found. The accu-
racy increases to 99% if the algorithm is configured to
retrieve a maximum of two leaf pages. Moreoever, the
ANN-tree supports exact nearest neighbor queries. Ex-
periments show that the ANN-tree beats the R*-tree
structure in such algorithms.

The rest of the paper is organized as follows. Section
2 outlines previous related work. Section 3 describes
our proposed technique in detail. Section 4 provides ex-
perimental results and Section 5 summarizes our work
and discusses future directions.

2 Related work

There has been substantial work on nearest neigho-
bor search on multi-dimensional data. Most algorithms
work with index structures like the R-tree [7, 14, 41
and follow a branch-and-bound approach to traverse
the tree during the search. At each step, a heuristic
is applied to choose a branch to visit next. At the
same time information is collected and used to prune
the search. Various algorithms differ in the order of
the search. Roussopoulos et al. [12] used a depth-first
approach; while Hjaltason and Samet [8] proposed a
“distance-browsing” algorithm, using a priority queue
to maintain all the branches that have been accessed
and choose among them for the next one to visit. Other
techniques modify the index structure itself to improve
performance. Examples include the the SS-tree [15]
(which uses spheres as bounding regions) and the SR-
tree [lo] (which employes the intersections of the min-
imum bounding rectangles and the bounding spheres).

Berchtold et a1 [5] proposed an alternative approach.
Instead of indexing the data points, they index the
Voronoi diagram [3] associated with the data set. A
Voronoi diagram of a data set D is a graph that par-
titions the whole space into Voronoi regions. Each re-
gion corresponds to the set of points that have a cer-
tain point p as the nearest neighbor among the points
in D. Hyperrectangles are used to represent an over-
estimate of each region. The regions are then stored in
a standard index. Thus the nearest neighbor query is
transformed into the point query in that index.

Both nearest neighbor and approximate nearest
neighbor search have been studied in computational ge-
ometry (e.g. see [13]). Some interesting work include:
the €-nearest neighbor search: finding a point whose
distance to the query point is a t most I+€ times the dis-
tance of the query point to the actual nearest neighbor
[l, 21; locality-sensitive hashing techniques for nearest
neighbors [9, 61.

3 The Approximate Nearest Neighbor
Search Tree

As stated previously, our goal is to develop an in-
dex structure that supports nearest neighbor queries
with minimum node access and high accuracy. We
begin this section by defining the notion of minimum
access algorithm for nearest neighbor queries using a
tree-based index structure. We examine the conditions
on a tree-based index for such an algorithm to exist.
Such a structure, while ideal, is unrealistic to imple-
ment, especially in high dimensions. This motivates us
to design a new structure, the ANN-tree.

In what follows, we assume that D is a data set,
Vo(p) the Voronoi region (cf. section 2) of point p in
D, and NND(q) the nearest neighbor of query point
q in data set D. Each node of the index consists of
k branches, B1, B2, . . . , Bk. The bounding region of
branch Bi is denoted as Ri.

3.1 Motivation

Current nearest neighbor search algorithms via
tree-based index structures require traversing multiple
branches of a tree. Ideally, a nearest neighbor search
on an index structure should only traverse one path
since we are looking for the one data point that satis-
fies the query, assuming no ties. In other words, the
algorithm should start from the root of the tree, and
at each level, choose only one branch to traverse down-
ward, until the leaf level is reached. The critical step
in such an algorithm is the branch selection. It can be
viewed as a function f() of the query point q and all
branches of the current node: B1, Bz, . . . , Bk. It re-
turns a value between 1 and k representing the chosen
branch. Algorithm 1 describe the algorithm formally.

Algorithm 1 MznimumAccess
1) Starting from the root node, compute a

branch selection function f (q , BI, . . . , Bk)
for the current node. The chosen branch
is traversed downward, and the process re-
peated until a leaf is reached.

2) The data item in the leaf node that is closest
to q is returned as the solution.

In general, f() can be any function. However, for
all practical purposes, f() has to satisfy at least the
following constraint:

DEFINITION: (well-behaved branch selection function)
A branch selection function f () is well-behaved if Vi, j

175

such that q E Ril q $! Rj we have f (4 , R I , . . . , R k) # j .

In other words, a well-behaved branch selection
function favors the branch that contains the query
point. We assume that f () is well-behaved in the rest
of this paper. We are interested in finding conditions
on tree-based index structures such that the minimum
access nearest neighbor search algorithm returns the
correct results. We first show a sufficiency result.

THEOREM 3.1 For any tree-based index structure, the
minimum access nearest neighbor search algorithm re-
turns the correct result if the following holds:

1. I n every node, a n y two Ri and Rj do not intersect.

2. A t each level of the tree, the union of the bounding
regions of all nodes is the entire data space.

3. A data point p is contained in a subtree if and only
if Vo(p) intersects with the bounding region of the
root node of the subtree.

Notice that a data point may appear in more than
one leaf node, as Vo(p) may intersect with multiple
bounding regions.

Proof: Let D be the data set and q the query point.
Define f (4, B1, BSI. . . , B k) = i where y is contained in
Ri. Condition (1) and (2) ensure that such a function
is well-defined. Also assume that p is the solution of
the query. That means q E V (p) . Suppose L is the
leaf node we reached. By the definition of f (), we have
q E R L , where RL denotes the bounding rectangle of
L. Hence q E V (p) fl RL # @. By condition (3), p is in
L. As a result, the last step will pick p as the nearest
neighbor (since p is the solution, then p must be closer
to q than any other points in L) . QED

The above theorem provides a sufficient condition
for an index to have a correct minimum access nearest
neighbor search algorithm. For necessary conditions,
we have the following:

THEOREM 3.2 For a n y tree-based index structure that
satisfies condition (1) and (2) in theorem 3.1, a mini-
m u m access nearest neighbor search algorithm returns
the correct result only if condition (3) holds.

Proof: Notice that with condition (1) and
(2) and the restriction on f , we must have
f (q , BI , Bz,. ‘ . , B k) = i where q is contained in Ri.
Now if (3) is false, then we can find a point q in the data
set such that there exists a leaf node L whose bound-
ary region intersects with V (q) but does not contain q .
Pick a point in the region where V(y) intersects with

the boundary region of L as the query point. It can
be seen that the search on this point will end up in L.
However, q (the supposed solution) is not in L. QED

There are index structures satisfying condition (1)
and/or (2). For instance, the R+-tree satisfies condi-
tion (1) while the K-D-B tree [ll] satisfies (1) and (2).
However, an index with condition (3) is hard to build.
This is because verifying condition (3) requires know-
ing the Voronoi diagram, which can be hard to store
or build, especially in high dimensional space.

To avoid this difficulty, we estimate the Voronoi re-
gion by a ball. Based on it, we devise an index struc-
ture, called the ANN-tree, satisfying conditions (l),
(2), and relaxed condition (3) where the Voronoi re-
gion is replaced by a ball. More specifically, a point
is contained in a subtree if and only if the ball inter-
sects with the bounding region of the root node of the
subtree. While this does not guarentee the minimum
access search algorithm on the ANN-tree to find the
correct nearest neighbor, our experiments show that it
returns the correct nearest neighbors with very high
accuracy.

E
0

O A

-0 B

O C

O D

Figure 1. Estimate Voronoi region

Estimating the Voronoi Region We illustrate the
process of estimating the Voronoi region by an example
in 2 dimensional space. Consider a data set D , and a
point p in D and its Voronoi region V (p) (Figure 1) .
Assume b is the nearest neighbor of p. By the property
of the Voronoi Diagram, it’s easy to see that the ball
centered at point p with radius Jpml (the distance from
p to m) is completely enclosed in V (p) (The smaller
circle in Figure 1). This is an underestimate of V (p) .

However, this can be a gross underestimate, espe-
cially if b is much closer to p than any other points in
the data set. Thus we propose moving the center of
the ball to the opposite direction of the line bp (For
instance, point p’ in figure l), while using (p’m(as the
radius. This increases the size of the ball and results in
higher accuracy. We denote the increase of the radius

176

by an extension factor f, Ip’ml = f * Ipm(. We discuss
the best value for f in section 4.

3.2 ANN-tree structure and algorithms

The structure of ANN-tree is similar to the R-
trees. A leaf node of the ANN-tree is of the form:
(RECT, Handle l , . . . ,Handle,). Each handle con-
tains the following information (ptid, BALL), where
ptid is the data point, and BALL is an estimate of the
Voronoi region of the point referred to by ptid. BALL
can be represented by radius and center. RECT is a
rectangle called the cover space of the node.

A non-leaf node is of the form (M a x R , B1,. . . , B,)
where M a x R is the largest radius of all BALLS in the
subtree rooted at this node. This information is used
to ensure efficient insertion. Each branch Bi is in the
form (c ldptr ,RECT) where cldptr is a pointer to a
child node and RECT is a rectangle called the cover
space of the child.

Each non-leaf node covers a portion of the whole
space enclosed by a rectangle. To satisfy conditions
(1) and (2) from the previous section, the rectangles
in all branches of a node should form a partition of
the cover space. This means the rectangles of different
branches do not overlap with each other and the union
of them is the cover space of the node.

Nearest Neighbor and Approximate Nearest
Neighbor Search As the ANN-tree is an R-tree like
structure, any existing branch-and-bound exact near-
est neighbor search algorithms such as [12] works cor-
rectly on it.

For approximate nearest neighbor queries, we can
use the minimum access algorithm discribed previously.
If a higher accuracy is desired, we can follow a branch-
and-bound approach to retrieve the second leaf node,
the third leaf node, and so on. That is, once we reached
the first leaf node, we next look for the sibling of the
node that is closest to the query point, and so on. This
process converges to a Nearest Neighbor Search algo-
rithm. Our expirments show that retrieving the second
leaf node yields an accuracy of about 99%. This tells us
that two leaf nodes are usually all we require to locate
the true nearest neighbor.

Insertion Insertion is done in two phases. First, we
estimate the Voronoi region for the point to be inserted,
then we insert this region into the tree. Estimating the
Voronoi region requires finding the nearest neighbor of
the point to be inserted.

After the estimated region is found, we create a han-
dle to the point p. Inserting a new handle to the tree

is done by examining the branches and adding it to
the leaf nodes. The handle is inserted into a branch if
and only if the ball intersects with the cover space of
the branch. Hence, a data point can be inserted into
more than one leaf node. Like the R+ tree, overflowing
nodes are split and the splits are propagated to parent
and possibly children nodes.

Algorithm 2 InsertHundZe(Node N , Handle

1) If N is a non-leaf node, then for each branch
Bi check if the Ri intersect with the BALL
of H . If so, call InsertHandle() recursively
to traverse Bi.

2) If N is a leaf node, add H to N if the cover
space of N intersects with the BALL of H .

3) If N overflows, call Spl i tNode(N)

H)

Algorithm 3 Insert (Tree T, Point p)
1) Find the nearest neighbor p’ of p in T .
2) Compute the estimated Voronoi region

BALL using extension factor f and create
a handle H for (BALL, point).

3) Call InsertHandZe(T, H) to insert H .
4) Call UpdateRegion(p) to update existing

regions in T .

Node split Node splitting is similar to standard R-
tree based indexes. The goal is to find an axis-parallel
split line that partitions the group of branches into
two groups. This can be done via a plane-sweep algo-
rithm. Different R-tree varients have different ways of
choosing such a line. Here since our bounding regions
always cover the entire space, optimizing values such
as volume of the bounding regions becomes secondary.
Rather, we would like to maintain a balance between
the two split nodes. Moreover, similar to Rf-tree, the
split may be propagated downwards as the split line
may cut through the bounding rectangle of a branch
in the node. We would also like to minimize the num-
ber of such branches. Assume node N with n branches
is to be split into two nodes N 1 and N2.with nl and
n2 branches respectively. We have nl + n2 2 n. To
balance N 1 and N 2 , we need to minimize In1 - n21;
to avoid the downward splitting, we need to minimize
nl +n2 -n. Combining the two constraints means that
we would need to minimize maz(n1 , n2) .

Unlike the standard R-tree, in an ANN-tree there
is a slight possibility that an internal node split may
result in multiple nodes. Since a new data point may
be inserted into multiple branches of a subtree, and
each branch may split, it is possible for a node to be

177

split into multiple nodes. Thus the algorithm may have
to pick multiple split lines. However, our experiments
show that such splits are rare.

Algorithm 4 FindSplitAxis (BranchList L)
1) Collect the rectangles from all branches

(handlers) in list L
2) For each axis x[i] , collect all the low bounds

and high bounds of all rectangles, put them
into an array of numbers, and then perform
the following

a. Sort the array of numbers.
b. For each number p in the array, take
P : xli] = p as a candidate partition line
perpendicular to axis x[i] and compute
m a x (n l , n 2) . If m a x (n l , n 2) of P is less
than that of the candidate optimal parti-
tion line, save P as the current optimal
partition line.

3) Output the current optimal partition line.

Algorithm 5 Splat (BranchList L)
1) Call FindSpl i tAxis(L) to get the partition

2) Divide L into two lists L1, L l . For each
line P

branch B, in L Do
a. If B, is below P, add B, to L1
b. If B, is above P , add B, to L2
c. If B, intersects with P , add B, to both
L1 and Lz in case B, is a leaf, or split the
child nodes of B, along P otherwise.

3) Call SpZit(L1) if L1 has more branches than

4) Call Spl i t (L2) if La has more branches than

5) Create a node from each resultant list and

a node can contain.

a node can contain.

output the nodes.

Updating Regions Inserting a new data point p re-
sults in changes in the Voronoi regions of some existing
data points. Thus we need to change (usually shrink)
the estimated Voronoi regions of those points.

Notice that only existing data points that have p as
their nearest neighbor will need to change their regions.
This is because estimations are done using only nearest
neighbor information. This implies we need to traverse
the tree to find nodes that contain the affected points.
This can be sped up by observing the following lemma.

LEMMA 3.1 For any point p an the index structure, let
rP be the radius of the ball estimating V (p) . Then a
point q is the nearest neighbor of p if and only if Ipq(_<

2 * r p / f , where f'is the extension factor and Jpql the
distance between p and q.

Proof: Refer back to figure 1. Notice that 2 * r P / f
is the distance from p to its nearest neighbor in D. So,
for any point q to be the nearest neighbor of p , we must
have Ipq(5 2 * r p / f and vice versa. QED

Thus at each node, we maintain the largest radius
of all the balls in its subtree, enabling us to prune the
search effectively.

Algorithm 6 UpdateRegion (Node N , Point p)
1) If N is a non-leaf node, check if distance

between p and the bounding rectangle of N
is less than 2 * M a x R . If so, recursively call
UpdateRegionO for all branches.

2) If N is a leaf node, then for each point up-
date the approximate Voronoi region if p is
the nearest neighbor of it.

3) Update the M a x R field for the nodes tra-
versed on the way back up.

Algorithm 7 Delete (p)
1) Starting from the root go down the tree

along the branches containing p . Retrieve
the estimated region B A L L of p from the leaf
node reached.

2) Go down the tree to locate all leaf nodes
that intersect B A L L and delete all entries
containing the B A L L . Update M a x R on the
way back up.

3) Remove the points that take p as their near-
est neighbor.

a. Starting from the root, a branch is tra-
versed if and only if the distance from p to
the cover space of that branch is less than
2 * M a x R in that branch.
b. Once a leaf node is reached, then for
each point x in it, remove x from the node
if d* f 5 r , where f is the extension factor,
d the distance from p to x , and r the radius
of B A L L for x.

4) Reinsert the points removed in previous step
using the Insert algorithm.

Deletion Deletion in the ANN-tree is similar to in-
sertion. First, the data point p to be deleted is located
and the estimated Voronoi region B A L L retrieved. A
range search is done to locate all nodes that intersect
with B A L L . These nodes must contain p according to
property (3) in theorem 3.1 and hence p is deleted from
these nodes now. After that we need to update regions

178

of points that have p as their nearest neighbor. Here
we locate the points, simply remove them from the leaf
nodes, and reinsert them using the Insert algorithm.

Dimensionality
Accuracy (%)

4 Experimental results

2 4 6 8 10
95.1 95.3 93.7 93.3 93.1

This section presents the results of our experiments.
We measure how well our index structure performs
against the R*-tree. We choose the R*-tree because
the ANN-tree is a dynamic structure, so comparison
with a fellow dynamic structure is fair. We measure
both accuracy (how often our approximate algorithm
is useful) and efficiency (how much time we save us-
ing an approximate algorithm). We also compare the
results from exact nearest neighbor search algorithms.

We implemented both structures in C + + , and ran
our tests on a machine with 2 500-MHz Pentium I1
processors and 512 MB RAM under SCO UNIX. We
experimented on both synthetic and real world data
sets. The real data set is described in subsequent para-
graphs. For synthetic data, we generated data sets
of various sizes and dimensionalities with uniform and
normal distributions. The results with both distribu-
tions are similar, so in the rest of the section we mainly
present the results from uniformly distributed data.

Extension factor
Accuracy (%)
Extension factor

Accuracy The first thing we measure is the accuracy
of the approximate search. We ran experiments on the
ANN-tree and recorded how often the actual nearest
neighbor was retrieved. As a comparison, we modified
the depth-first nearest neighbor algorithm of [12] such
that the search stops whenever the first leaf node is
reached. This means that we ran the same minimum
access search algorithm ,on the R*-tree but with the
branch selection function f() set to return the branch
with bounding region closest to the query point.

Figure 2 shows the results. We ran the experiments
over various data sets. For each data set we ran 100
queries and averaged the results. The figure shows that
the ANN-tree exhibits a precision of approximately
95%. The same accuracy is maintained with various
data set size, meaning our algorithm scales up very
well. On the other hand, the R*-tree's precision is sig-
nificantly lower than ours, and is decreasing steadily
when the data set size increases. Thus we can see that
the ANN-tree is a much preferred structure in terms of
fast approximation nearest neighbor searches.

We also examined the case of retrieving two leaf
pages from the ANN-tree. The precision rises to ap-
proximately 99%. Moreover, only 30% of time a sec-
ond leaf page access happened. This makes the average
number of data page access to be 1.3.

1.0 1.1 1.2 1.3
93 93 94.5 93
1.4 1.5 1.6 1.7

I Accuracy (%) I 94 91.5 90.5 88.6 I
(b) # of data: 50,000. Dimensionality :' 4

Table 1. Comparison of accuracy using differ-
ent dimensionalities and extension factors

The next set of experiments tests the ANN-tree per-
formance over various dimensionalities of data using
different extension factors respectively. The results are
shown in table 1. It can be seen that the ANN-tree
is robust over different dimensionalities and extension
factors. The extension factor is a parameter that one
may tune. The optimal value may be dependent on
the distribution of the data. The results show that the
performance of ANN search is not very sensitive to the
extension factor and 1.1 to 1.4 is a good range for it.
However, a bigger extension factor produces a bigger
estimated region and hence causes a higher chance for
a point to be inserted into multiple nodes. This will
results in an increased tree size and therefore reduces
the effective branching factor of the tree. From Table
1 we can see that the accuracy does tail off when the
extension factor becomes large. This suggests we are
correct in underestimating the Voronoi region.

of data(x lo4) I 5 10 15 20 25
% wrong answers I 3 5 5 4 6

wrong answers
Error of 0.07 0.14 0.09 0.13 0.13
distance

Table 2. Statistics for approximate anwers of
the ANN-tree

We also want to measure the quality of the retrieved
points if they are not the nearest neighbor of the query
point. Thus we examined the queries that did not re-
turn the correct answers. Table 2 shows the statistics
of such approximate solutions. The table shows that
the approximate answers are in general the second or
third nearest neighbors. Moreover, the average relative

179

Uniformly distributed points Multi-normal distributed points
Dimensionality = 4, f = 1.1, Page size = 6K

of data (x lo4)
1 leaf access
2 leaf access

Figure 2. Comparison of accuracy of various data set size

1 2.5 5 7.5 10
95.2 96.8 96.6 97.2 97.2
98.4- 98.6 98.8 99.0 99.4

error in terms of distance is around 10%. This seems
large, but one has to remember that most of the time
the points retrieved are the second nearest neighbors,
so the error is inherit to the data set. Thus we can say
in cases where the ANN-tree failed to find the near-
est neighbor with one leaf access, it can still find an
excllent approximation.

and longitude. We ran experiments on this set, ran-
domly picking 10,000 to 100,000 points as the database,
and picking points from the set as test queries.

Efficiency Obviously, the approximation algorithm
on ANN-tree is the fastest possible (in terms of num-
ber of pages accessed). We want to measure actual
speed-up to see the trade off between the efficiency and
accuracy. We also compare the efficiency of the exact
nearest neighbor algorithm on both the ANN-tree and
the R*-tree.

Figure 3 shows the results. We measured both the
number of leaf nodes and the total number of nodes.
We can see that the exact nearest neighbor algorithm
for R*-tree retrieves about 3-4 leaf pages for some de-
cent data size. That means the savings in ANN-tree
can be threefold to fourfold. This shows that a high
accuracy approximate algorithm is viable. Also the ap-
proximate algorithm requires half the number of node
access (Figure 3 (b)).

Moreover, the ANN-tree outperforms the R*-tree in
exact nearest neighbor searches by around 30%. The
savings scale up well. We also tested on a data set
with 1,000,000 points, and we still obtain a 30% sav-
ings. Thus the ANN-tree can be beneficial for both
approximate and exact nearest neighbor queries.

Results from a real data set We also ran tests
on a real data set. This was obtained from the
US National Mapping Information web site (URL:
h t t p : //mappings. usgs . gov/www/gnis/). It contains
populated places in the USA, represented by latitude

Table 3. Accuracy (in YO) for the real data set

Table 3 shows the accuracy results for this data set.
Once again, we achieve an accuracy of 95% if we access
only one leaf node. If we allow the algorithm to access
a second leaf node, the accuracy rises to 99%.

We also examined the 1-5% of the incorrect results.
Again, most of the points retrieved are either the sec-
ond or third nearest neighbors. However, there are a
few cases where a “farther away” neighbor is found
(like the lo th nearest neighbor). These are the cases
where the query comes from an outlying region of the
data set and the nearest neighbor is very far away from
the query point. However, for such query points, the
ratio between the distance of the retrieved point to the
query point and the distance of the nearest neighbor to
the query point is very close to one. Thus the retrieved
points are still representative.

5 Conclusion and future work

In this paper, we examined the nearest neighbor
and approximate nearest neighbor searches using tree-
based indexes. We explored the conditions for an in-
dex to perform optimally (in terms of node access).
We also introduced the ANN-tree, an index structure
built on those principles. Our experiments show that

180

4.5 .

4 -

3.5 -

3 .

' 25 .

I . - . . - .
3 . * - . *

50000 l a x n u , l s a m 2 o m o o Z w D o J o a m s m o o u m o
Data -1 UD.

(b) All nodes

Figure 3. Number of nodes accessed for both approx. and exact NN queries

the ANN-tree provides excellent performance on near-
est neighbor queries, both in accuracy on fast approx-
imate nearest neighbor searches, and in efficiency on
exact nearest neighbor searches.

In section 3 we examined sufficient conditions for an
index to achieve minimum node access nearest neighbor
search. An important part of our future work is to nail
down the necessary conditions for such indexes to exist.
This will benefit future research on index structures
and provide a framework to compare indexes.

Another direction to explore is to utilize the ANN-
tree to perform k-nearest neighbor queries. Many ap-
plications require multiple nearest neighbors. We in-
tend to look at how the ANN-tree can be generalized.

References

[I] S. Arya and D. Mount. Approximate nearest neigh-
bor searching. In Proc. of the Fourth Annual A C M -
S I A M Symposium on Discrete Algorithms, pages 271-
280, 1993.

[2] S . Arya, D. Mount, N. Netanyahu, R. Silverman, and
A. Wu. An optimal algorithm for approximate nearest
neighbor searching. In Proc. of the Fifth Annual A C M -
S I A M Symposium on Discrete Algorzthms, pages 573-
582, 1994.

[3] F. Aurenhammer. Voronoi diagrams - a survey of a
fundamental geometric data structure. A C M Com-
puting Surveys, 23(3):345-405, Sept. 1991.

[4] N. Beckmann, H.-P. Kriegel, R. Schneider, and
B. Seeger. The R*-Tree: an efficient and robust ac-
cess method for points and rectangles. Proceedings of
the 1990 A C M SIGMOD International Conference on
Management of Data, pages 322-331, May 1990.

[5] S. Berchtold, B. Ertl, D. A. Keim, H.-P. Kriegel,
and T. Seidl. Fast nearest neighbor search in high-
dimensional spaces. In Proc. of the 14th I E E E Con-
ference on Data Engineering, 23-27 Feb. 1998.

[6] A. Gionis, P. Indyk, and R. Motwani. Similarity
search in high dimensions via hashing. In Proceedings
of the 1999 International Conference o n Very Large
Databases, pages 518-529, 1999.

[7] A. Guttman. R-trees: a dynamic index structure for
spatial searching. Proc. of the 1984 A C M S I G M O D
International Conference o n Management of Data,
pages 47-57, June 1984.

[8] G. R. Hjaltason and H. Samet. Distance browsing
in spatial databases. A C M 'Transactions on Database
Systems, 24(2):265-318, June 1999.

[9] P. Indyk and R. Motwani. Approximate nearest neigh-
bors: Towards removing the curse of dimensionality.
In Proceedings of the 30th Annual A C M Symposium
on Theory of Computing, pages 604-613, 1998.

(101 N. Katayama and S. Satoh. The SR-tree: An in-
dex structure for high-dimensional nearest neighbor
queries. In Proc. of 1997 A C M S I G M O D International
Conference on Management of Data, pages 369-380,
June 1997.

[Il l J. Robinson. The K-D-B-Tree: a search structure
for large multidimensional dynamic indexes. Proc. of
the 1981 A C M S I G M O D International Conference o n
Management of Data, pages 10-18, 1981.

[12] N. Roussopoulos, S. Kelley, and F. Vincent. Nearest
neighbor queries. Proc. of 1995 A C M SIGMOD, In-
ternational Conference on Management of Data, May
1995.

[13] J. Sack and J. Urrutia, editors. Handbook o n Compu-
tational Geometry. North-Holland, 2000.

[14] T. Sellis, N. Roussopoulos, and C. Faloutsos. The R+
tree: a dynamic index for multi-dimensional objects.
In Proc. 13th International Conference on Very Large
Databases, pages 507-518, England, Sept. 1987.

[15] D. A. White and R. Jain. Similarity indexing with
the ss-tree. In Proceedings of the 12th International
Conference on Data Engineering, pages 516-523, Feb.
1996.

181

