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Abstract 

Feature-based similarity retrieval has become an inipor- 
tant research issue in multimedia database systems. The 
features of multimedia data are useful for discriminat- 
ing between multimedia objects (e.g., documents, images, 
video, music score, etc.). For example, images are repre- 
sented by their color histograms, texture vectors, and shape 
descriptors. A feature vector is a vector that represents a 
set of features, and are usually high-dimensional data. The 
performance of conventional multidimensional data struc- 
tures (e.g., R-tree family, K-D-B tree, grid file, n/-tree) 
tends to deteriorate as the number of dimensions of feature 
vectors increases. The R’ -tree is the most successful variant 
of the R-tree. In this papec we propose a SOM-based R*- 
tree as a new indexing method for  high-dimensional feature 
vectors. The SOM-based R*-tree combines SOM and R*- 
tree to achieve search performance more scalable to high 
dimensionalities. Self-organizing Maps (SOMs) provide 
mapping from high-dimensional feature vectors onto a two- 
dimensional space. The mapping preserves the topology of 
the feature vectors. The map is called a topological feature 
map, and preserves the mutual relationships (similarity) in 
the feature spaces of input data, clustering mutually simi- 
lar feature vectors in neighboring nodes. Each node of the 
topological feature map holds a codebook vector: A best- 
matching-image-list (BMIL) holds similar images that are 
closest to each codebook vector. In a topological feature 
map, there are empty nodes in which no image is classi- 
jied. When we build an R’-tree, we use codebook vectors of 
topological feature map which eliminates the empty nodes 
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that cause unnecessary disk access and degrade retrieval 
performance. We experimentally compare the retrieval time 
cost of a SOM-based R’-tree with that of an SOM and an 
R’-tree using color feature vectors extracted from 40,000 
images. The results show that the SOM-based R’ -tree out- 
performs both the SOM and Rf-tree due to the reduction of 
the number of nodes required to build R’-tree and retrieval 
time cost. 

1. Introduction 

With the increasing use of new database applications 
Tor dealing with highly multidimensional data sets, technol- 
ogy to support effective query processing with such a data 
set is considered an important research area. Such appli- 
cations include multimedia databases, medical databases, 
scientific databases, time-series matching, and data anal- 
ysis/data mining. For example, in the case of image 
searches, a typical query of content-based image retrieval 
[ 15, 12, 39, 47, 3 1, 71 is ‘‘jind images with similar colors, 
texture, or shapes in a collection of color images”. The 
features used in this query are useful for discriminating be- 
tween multimedia objects (e.g., documents, images, video, 
music score etc.). A feature vector is a vector that contains 
a set of features, and usually hold high-dimensional data. 
Many indexing techniques [ I ,  38, 3 ,  50, 42, 27, 21, 5, 81 
have been proposed to access such high-dimensional feature 
vectors effectively, referred to as high-dimensional index 
trees. These index trees work effectively in low to medium 
dimensionality space (up to 20-30 dimensions). However, 
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even a simple sequential scan performs better at higher di- 
mensionalities [8]. 

In this paper, we propose a SOM-based R*-tree as a 
new indexing method for high-dimensional feature vectors. 
The SOM-based R*-tree combines a Self-organizing Map 
(SOM) [23,44] and an R*-tree [3] to achieve search perfor- 
mance more scalable to high dimensionalities. In this paper, 
we consider a similarity search for image data. SOM, which 
is a kind of neural network, provides mapping from a data 
set of high-dimensional feature vectors onto a usually two- 
dimensional space. The mapping preserves the topology of 
the feature vector, and is called a topological feature map. 
The vectors contained in each node of the topological fea- 
ture map are usually called codebook vectors. 

In spite of all the benefits of SOM described above, its 
application has been limited by some drawbacks in terms 
of the interpretability of a trained SOM and the complexity 
of search time for a best-matching node. A best-matching- 
image-list (BMIL) holds similar images that are closest to 
each codebook vector. Whereas more than one similar im- 
age is classified in each node of the topological feature 
map, there are empty nodes in which no image is classi- 
fied. These empty nodes result in unnecessary disk access, 
thus degrading retrieval performance. When we build an 
R*-tree, we use codebook vectors of the topological fea- 
ture map which eliminates the empty nodes and allows as to 
build an index using fewer nodes than the number of nodes 
in the SOM. Therefore, using our similarity search tech- 
nique, we expect the search time to be faster than the search 
time of SOM. 

This paper is organized as follows: In Section 2, we pro- 
vide an overview of related work. In Section 3, we present 
the algorithm of the SOM and R*-tree, and describe the 
SOM-based R*-tree proposed in this research. We exper- 
iment in order to compare the SOM-based R*-tree with the 
SOM and R*-tree alone in terms of retrieval time cost using 
color feature vectors extracted from 40,000 images. The ex- 
perimental results are discussed in Section 4,  and Section 5 
presents the concluding remarks. 

2. Related Works 

In this Section, we describe the related work on cluster- 
ing methods and high-dimensional index structures. 

Clustering There are supervised and unsupervised clus- 
tering methods for clustering similar data [ 101. During the 
training phase in supervised clustering, both the input data 
and the desired output are presented to the neural network. 
If the output of the neural network differs from the desired 
output, the internal weights of the neural network are ad- 
justed. In unsupervised clustering, the neural network is 
given only the input vectors and the neural network is used 

to create abstractions in the input space. 
SOM is an unsupervised self-organizing neural network 

that is widely used to visualize and interpret large high- 
dimensional datasets [36, 24, 22, 9,  19, 201. In this study, 
the reasons for using SOM are as follows: (i) No prior as- 
sumption is needed for distribution of data, (ii) the learning 
algorithm is simple, (iii) we do  not need an external super- 
vised signal for input and it learns self-organizationally, and 
(iv) similarity can be found automatically from multidimen- 
sional feature vector, and similar feature vectors are mapped 
onto neighboring regions on the topological feature map, in 
particular, highly similar feature vectors are mapped on the 
same node. 

High-dimensional index structure Many techniques, in- 
cluding R-tree [ I], R+-tree [38], SS-tree [50], SR-tree [21], 
X-tree [42], m - t r e e  [27], and Hybrid tree [8] have been 
proposed to index feature vectors for similarity search. De- 
spite various attempts at accessing high-dimensional feature 
vectors effectively, the current solutions are far from sat- 
isfactory [ 181. Although these index structures can scale 
to medium dimensionalities, above a certain dimensionality 
they are outperformed by a simple sequential scan through 
the database. This occurs because the data space becomes 
sparse at high dimensionalities, causing the bounding re- 
gions to become large [8]. We selected the R*-tree from 
among other index techniques for the following reasons: (i) 
This index structure is the most successful variant of the R- 
tree, (ii) i t  can be applied to spatial data such as geography 
and CAD data, and ( i i i )  it can be used as an index structure 
for feature space such as image retrieval currently. 

In order to realize an SOM-based R*-Tree, we built an 
R*-tree using a topological feature map and a BMIL by 
learning the SOM. The use of an SOM-based R*-tree avoids 
unnecessary disk access during searching by eliminating the 
empty nodes on the topological feature map. In addition, 
our proposed technique can build R*-tree using fewer nodes 
than the number of nodes in  SOM. Therefore, the number of 
node to visit decreases, and search time is shortened. To the 
best of our knowledge, there has not been until now notable 
indexing techniques like our method. 

3. SOM-Based R*-Tree 

3.1. Self-organizing Maps 

Self-organizing Maps (SOMs) are unsupervised neural 
networks that provide mapping from high-dimensional in- 
put space to a usually two-dimensional regular grid while 
preserving topological relations as faithfully as possible. 
The SOM consists of a set of i nodes arranged in a two- 
dimensional grid, with a weight vector mi E W' attached 
to each node. Elements from the high-dimensional input 
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Figure 1. Update SOM. z is input vector which 
is feature vector in this paper. mpld and mlew 
represent before- and after-modification of 
weight vector respectively. 

space, referred to as input vector z E X2", are presented to 
thz SOM and the best-match-node (BMN) for the presented 
input vector is calculated using the Euclidean distance be- 
tween the weight vector of the node and the input vector. 
In the next step, the weight vector of the BMN (i.e. the 
node with the smallest Euclidean distance) is selected as 
the 'winner' and is modified so as to more closely resemble 
the presented input vector. The weight vector of the winner 
is moved towards the presented input vector by a certain 
fraction of the Euclidean distance as indicated by a time- 
decreasing learning rate a(t) ,  shown in Figure I ,  where 
t=l,2,3, ... is an integer representing the discrete-time co- 
ordinate. a(t)(O < a(t)  < l) is a parameter adjusting what 
extent close to the input vector z. If a=1, m, is completely 
equal to z. a( t )  begins with a value close to unity, thereafter 
decreasing monotonically. Thus, this BMN will be even 
higher the next time the same input vector is presented. Fur- 
thermore, the weight vectors of nodes in  the neighborhood 
of the winner, described by a time-decreasing neighborhood 
function a( t ) ,  are modified accordingly, although to a lesser 
than the winner. This learning procedure finally leads to a 
topologically-ordered mapping of the presented input vec- 
tors. Similar input data is mapped onto neighboring regions 
on the map [23]. The map is called a topologicalfeature 
map, and a weight vector held by a node in the topological 
feature map is called a codebook vector. The topological 
feature map preserves the mutual relationships (similarity) 
of the input data in feature spaces, and clusters mutually 
similar feature vectors in neighboring nodes. During the 
training phase, the input vectors become ordered on the grid 
such that similar input vectors are close to each other and 
dissimilar input vectors are far apart. Despite these advan- 
tages, SOM applications have been limited. The search for 
the BMN dominates the computing time of the SOM algo- 
rithm, making it  computationally expensive for high input 
dimensionalities or large SOM networks. The basic algo- 
rithm uses full search, where all the nodes must be con- 
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Figure 2. An example of R*-tree structure; (a) 
space of point data, (b) tree access structure. 

sidered to find the BMN, increasing the complexity of the 
search. 

3.2. R*-Tree 

In the field of database systems, various index struc- 
tures (see Section 2) have been proposed recently as mul- 
tidimensional indexing techniques. As one of these tech- 
niques, the R*-tree improves the performance of the R-tree 
by modifying the insertion and split algorithms and by intro- 
ducing the forced reinsertions mechanism [3]. The R*-tree 
is proposed as an index structure for spatial data such as ge- 
ographical and CAD data. Currently, i t  is used as an index 
structure of feature space, such as for image retrieval [ 131. 
The R*-tree, the most successful variant of the R-tree, is a 
multidimensional index structure for rectangular data, it is a 
height-balanced tree corresponding to a hierarchy of nested 
rectangles. Nodes and leaves correspond to rectangles in 
the hierarchy and a disk page is allocated for each. Each 
internal node contains an array of ( p ,  p )  entries, where p is 
a pointer to one child node of this internal node, and p is 
the minimum bounding rectangle (MBR) of the child node 
pointed to by the pointer p .  Each leaf node contains an ar- 
ray of ( O I D , p )  for spatial objects, where OID is an ob- 
ject identifier, and p is the MBR of the object identified by 
OID. Therefore, the rectangle of the root node corresponds 
to the MBR of all the data entries, while the rectangle of 
an internal node corresponds to the MBR of the data entries 
contained in its lower leaves. The regions of the R*-tree are 
allowed to overlap each other, and because sibling regions 
can overlap each other, the search time for a point query 
depends on the amount of overlap and not the height of the 
tree. 

The number of entries in each node is called afanout. 
The fanout of a root node is at least 2 unless it is a leaf. The 
fanout of the other nodes is between m and M ,  where 2 < 
m < M / 2 .  The M value of leaf nodes may be different from 
that of internal nodes when objects are point data. Figure 2 
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Figure 3. Relationship between feature vec- 
tor and codebook vector; (a) Feature vectors 
extracted from images, (b) Codebook vectors 
generated by SOM. 

shows an example of an R*-tree. 

3.3. SOM-Based R*-Tree 

The construction of a SOM-based R*-tree consists of 
two processes; clustering similar images and construction 
of R*-tree, as follows: 

Clustering similar images We first generate the topo- 
logical feature map using the SOM. We generate the BMIL 
by computing the distances between the feature vectors and 
codebook vectors from the topological feature map. In or- 
der to generate topological feature map, given a learning 
parameter (e.g., learning-rate, neighborhood radius, size of 
map layer, learning iteration), we perform SOM learning. 
The SOM is trained iteratively. At each training step, a fea- 
ture vector is sequentially chosen from the input data set. 
The distance between the feature vector and all weight vec- 
tors are computed. The BMN (node with minimum dis- 
tance) is chosen from the map nodes. Next, the weight vec- 
tors are updated. The BMN and its topological neighbors 
are moved closer to the input feature vector. As a result of 
learning, the vector, which is generated on each node of the 
map, is called a codebook vector, and is represent by 

C B K  = [ C V Z 1 , C z l i 2 ,  ..., c v z j ,  . . . , C V i m ] T ,  

where i(1 5 i 5 I C )  is the node number of the map, m is 
the number of input nodes, i.e., the dimensionality of the 
feature vector, and k is the number of map nodes. 

Using the topological feature map, we classify similar 
images to the nearest node, which has the minimum dis- 
tance between a given feature vector and all codebook vec- 
tors. This classified similar image of each node is called the 
best-matching-image-list (BMIL). Similarity between fea- 
ture vectors and codebook vectors is calculated by the Eu- 
clidean distance. Best-match-node S M N i  is 

B M N i  = min{JJFV - CSQll}, 
2 

Q 

Figure 4. SOM-based R*-tree structure;(a) ex- 
ample of topological feature map, empty grids 
refer to empty nodes, (b) SOM-based R*-tree 
structure using topological feature map after 
eliminating empty nodes. 

where FV is a feature vector. The relationship between 
feature vectors and codebook vectors is shown in Figure 3. 
Between these two kinds of vectors, there are many-to-one 
relationships based on the similarity between each feature 
vector. In an ideal situation, there should be a one-to-one 
correspondence between the feature vectors of images and 
the codebook vectors of SOM nodes in the map. This is 
not, however, generally the case and some map nodes still 
hold multiple images [26]. This means that empty nodes 
occur in a topological feature map when the BMIL is gener- 
ated. Empty nodes refer to the portion of the node (vector) 
spaces that contains no matching feature vectors. Empty 
node indexing causes unnecessary disk access, thus degrad- 
ing search performance. The space requirement can be re- 
duced by indexing only live nodes (in contrast to empty 
nodes). 

Construction of R*-tree In the construction of a SOM- 
based R*-tree, we use the R*-tree algorithm [3]. Let one 
point on the n-dimensional space correspond to each code- 
book vector of the topological feature map, and the space 
covering all codebook vectors corresponds to the root node. 
In order to construct the R*-tree, we select a codebook vec- 
tor from the topological feature map as an entry. If it is an 
empty node, we select the next codebook vector. Otherwise, 
determine the leaf node which insert codebook vector. To 
determine the most suitable to accommodate the new entry, 
i.e., codebook vector by choosing a subtree whose centroid 
is the nearest to the new entry. When a node or a leaf has 
space, the entry is added, otherwise, perform reinsertions or 
split algorithm. A leaf of the SOM-based R*-tree has the 
following structure: 

A leaf L consists of entries El ,  ..., Ei, ..., E p ( m  5 p 5 
M ) ,  where m and M are the minimum and the maximum 
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number of entries in a leaf. Each entry contains an OID 
and its MBR p. The node structure of the SOM-based R*- 
tree is the same as that of the R*-tree (see 3.2) as shown in 
Figure 4. 

Data set 
1000 

4. Experiments 

Map size Empty nodes Ratio (%) 

32 x 32 55 1 53 

We performed experiments to compare the SOM-based 
R*-tree with a normal SOM and R*-tree. Our image 
database contains still color images. The experimental im- 
age database currently consists of 40,000 artificialhatural 
images, including landscapes, animals, buildings, people, 
plants, CG, etc., from H'soft' and Stanford University2. 
We fixed the image size at 128 x 128 pixels. All experiments 
were performed on a COMPAQ DESKPRO (OS: FreeBSD 
3.4-STABLE) with 128 MBytes of memory, and all data 
was stored on its local disk. 

5000 
10000 
20000 
30000 
40000 

4.1. Experimental Methodology 

70 x 70 2634 53 
100 x l o o  5395 54 
140 x 140 10819 55 
175 x 175 18377 60 
200 x 200 23706 59 

Feature Extraction In this study, we extract color 
features from the image data, and use it  in the experiments. 
To compute feature vectors, we use Haar wavelets [28], 
which are a kind of wavelet transform. Haar wavelets pro- 
vide the fastest computations and have been found to per- 
form well in practice [7]. One disadvantage of using Haar 
wavelets is that the computation tends to produce blocky 
image artifacts in  the most important subbands. How- 
ever, this drawback does not noticeably affect similarity re- 
trieval [31]. 

The color space used in this paper for feature vectors 
is the YIQ-space (NTSC transmission primaries) [40] with 
luminance and chrominance information. We computed 5- 
level two-dimensional wavelet transforms for each of the 
three color spaces using Haar wavelets. Extracting the low- 
est submatrix for the color feature, we generated this sub- 
matrix as part of the feature vector. Each element of this 
feature vector represents an average of 32x32 pixels of 
the original image. The color feature vector has 48 di- 
mensions (=4x4x3, where 3 is the three channels of YIQ- 
space). 

Construction of SOM-based RI-tree As shown in 
Table I ,  the map size is almost the same as the number of 
images. We generated the topological feature map using 
color feature vectors via the learning of the SOM, and the 
BMIL is generated using this feature map. The empty nodes 
occupied 53% to 60% of the original map size. As the map 
size becomes larger, the number of empty nodes increases. 
The existence of empty nodes indecates that images of high 

'H2soft, http: / /www. h2sof t . CO. jp. 
'Stanford University, 

http://WWW-DB.Stanford.EDU/IMAGE/. 

Table 1. Map size vs. empty nodes 

similarity are classified in the same node, regardless of map 
size. Therefore, reducing the number of nodes and speeding 
up search time can be realized by eliminating empty nodes; 
an R*-tree built with this pruned set of nodes will have a 
smaller overall index size. 

Table 2 compares the structure of a normal R*-tree with 
that of the SOM-based R*-tree for each data set. The height 
of the tree is not that different, however both the total num- 
ber of nodes and the time cost of building the index de- 
crease. These observations reduce memory usage and re- 
trieval access time. The larger the data set, the more effi- 
cient the index, as can be clearly seen in Table 3. 

4.2. Experimental Results 

To measure search time, we experimented with four 
types of searches; search for (i) normal SOM including 
empty nodes, (ii) normal SOM with eliminated empty 
nodes, (iii) normal R*-tree, and ( iv )  SOM-based R*-tree 
with eliminated empty nodes. The data set size was from 
1,000 to 40,000 images. The search method used was the 
k-Nearest Neighbor(") [37] method, which searches for 
Ic(k > 1) objects nearest to the given query. In SOM, an ex- 
haustive search of the topological feature map is performed, 
and finding k ( k = l O )  nodes nearest to the given query. In the 
same manner, the normal R*-tree and SOM-based R*-tree 
are applied using the Ic-NN (Ic=IO) search. 

A comparison of retrieval time cost is shown in Figures 5 
and 6. In both figures, the horizontal axis is the dataset 
size. As shown in Figure 5, the retrieval time of SOM 
with empty nodes, as compared to the SOM without empty 
nodes, grows drastically as the dataset size increases, over 5 
times the retrieval time cost at 40,000 images. Thus, elim- 
inating empty nodes significantly reduces retrieval time by 
removing unnecessary distance computations. 

We also compared the performance of the SOM-based 
R*-tree with that of the R*-tree based on IO-" retrieval 
time cost, as shown in Figure 6. In this comparison, the 
nearest OID was obtained for a given query. The retrieval 
time of the SOM-based R*-tree is far shorter compared to 
the R*-tree, by 3 to 15 times. The results show that building 
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Table 2. Tree Structure 

R*-tree 
SOM-based R*-tree Total No. of nodes 

Data set ( x  1000) 
1 5 10 20 30 40 

119 499 972 2089 3042 3980 
51 24 1 483 928 1300 1705 

R*-tree 
SOM-based R*-tree 

R*-tree 
SOM-based R*-tree 

Height of tree 

Time cost (sec) 

Table 3. R*-tree file size (real data) 

Data set ( x  1000) 

3 4 4 5 5 5 
4 4 4 4 5 3 

7.55 50.44 11 1.89 233.89 350.66 476.49 
40.76 81.95 115.49 153.92 3.27 19.12 

Original feature vector (MB) 
SOM-based R*-tree (MB) 
Ratio (%) 

1 5 10 20 30 40 1 5 10 20 30 40 
Data set(xl000) Data set(xl000) 

1 5  10 20 30 40 
1.38 5.78 11.27 24.22 35.26 46.13 
0.59 2.79 5.59 10.75 15.07 19.76 
42 48 49 44 42 42 

Figure 5. Retrieval time cost. (1) retrieval from 
SOM with empty nodes, and (2) retrieval from 
SOM without empty nodes. 

Figure 6. Comparison of retrieval time cost 
between SOM-based R*-tree and R*-tree. 

5. Conclusions 

the R* -tree with overall original feature vectors improves 
retrieval performance. Furthermore, the SOM-based R*- 
tree performs much better than SOM alone, which sequen- 
tially searches feature vectors. These experimental results 
clearly show that a SOM-based R*-tree is more efficient for 
similarity retrieval. 

In this study, we proposed a SOM-based R*-tree for 
dealing with similarity retrieval from high-dimensional data 
sets. Using a topological feature map and a best-matching- 
image-list (BMIL) obtained via the learning of a SOM, we 
constructed an R*-Tree. The major finding of this study is 
that building an R*-tree in which the empty nodes in the 
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topological feature map are removed yields an R*-tree with 
fewer nodes, thus enhancing performance by decreasing un- 
necessary access, node visits, and overall search times. 

In an experiment, w e  performed a similarity search using 
real image data and compared the performance of the SOM- 
based R*-tree with a normal SOM and R*-tree, based on  re- 
trieval time cost. The R*-tree with fewer nodes experimen- 
tally verified to  shorter search time, and search efficiency 
was improved due to  the use of a k-NN search, compared to  
SOM. 
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