
SOM-Based R*-Tree for Similarity Retrieval

Kun-seok Oh, Yaokai Feng, Kunihiko Kaneko, Akifumi Makinouchi
Department of Intelligent Systems

Graduate School of Information Science & Electrical Engineering
Kyushu University

6- 10- 1 Hakozaki Higashi-ku Fukuoka, Japan 8 12-858 1
{ okseok,kaneko,akifumi} @db.is.kyushu-u.ac.jp

Sang-hyun BAE
Department of Computer Science and Statistics

College of Natural Science Chosun University Korea
375 Seosuk-dong Tong-gu Kwangju, Republic of Korea

shbae @ mail .chosun.ac. kr

Abstract

Feature-based similarity retrieval has become an inipor-
tant research issue in multimedia database systems. The
features of multimedia data are useful for discriminat-
ing between multimedia objects (e.g., documents, images,
video, music score, etc.). For example, images are repre-
sented by their color histograms, texture vectors, and shape
descriptors. A feature vector is a vector that represents a
set of features, and are usually high-dimensional data. The
performance of conventional multidimensional data struc-
tures (e.g., R-tree family, K-D-B tree, grid file, n/-tree)
tends to deteriorate as the number of dimensions of feature
vectors increases. The R’ -tree is the most successful variant
of the R-tree. In this papec we propose a SOM-based R*-
tree as a new indexing method for high-dimensional feature
vectors. The SOM-based R*-tree combines SOM and R*-
tree to achieve search performance more scalable to high
dimensionalities. Self-organizing Maps (SOMs) provide
mapping from high-dimensional feature vectors onto a two-
dimensional space. The mapping preserves the topology of
the feature vectors. The map is called a topological feature
map, and preserves the mutual relationships (similarity) in
the feature spaces of input data, clustering mutually simi-
lar feature vectors in neighboring nodes. Each node of the
topological feature map holds a codebook vector: A best-
matching-image-list (BMIL) holds similar images that are
closest to each codebook vector. In a topological feature
map, there are empty nodes in which no image is classi-
jied. When we build an R’-tree, we use codebook vectors of
topological feature map which eliminates the empty nodes

0-7695-0996-7/01 $10.00 0 2001 IEEE

that cause unnecessary disk access and degrade retrieval
performance. We experimentally compare the retrieval time
cost of a SOM-based R’-tree with that of an SOM and an
R’-tree using color feature vectors extracted from 40,000
images. The results show that the SOM-based R’ -tree out-
performs both the SOM and Rf-tree due to the reduction of
the number of nodes required to build R’-tree and retrieval
time cost.

1. Introduction

With the increasing use of new database applications
Tor dealing with highly multidimensional data sets, technol-
ogy to support effective query processing with such a data
set is considered an important research area. Such appli-
cations include multimedia databases, medical databases,
scientific databases, time-series matching, and data anal-
ysis/data mining. For example, in the case of image
searches, a typical query of content-based image retrieval
[15, 12, 39, 47, 3 1, 71 is ‘‘jind images with similar colors,
texture, or shapes in a collection of color images”. The
features used in this query are useful for discriminating be-
tween multimedia objects (e.g., documents, images, video,
music score etc.). A feature vector is a vector that contains
a set of features, and usually hold high-dimensional data.
Many indexing techniques [I , 38, 3 , 50, 42, 27, 21, 5, 81
have been proposed to access such high-dimensional feature
vectors effectively, referred to as high-dimensional index
trees. These index trees work effectively in low to medium
dimensionality space (up to 20-30 dimensions). However,

182

mailto:db.is.kyushu-u.ac.jp

even a simple sequential scan performs better at higher di-
mensionalities [8].

In this paper, we propose a SOM-based R*-tree as a
new indexing method for high-dimensional feature vectors.
The SOM-based R*-tree combines a Self-organizing Map
(SOM) [23,44] and an R*-tree [3] to achieve search perfor-
mance more scalable to high dimensionalities. In this paper,
we consider a similarity search for image data. SOM, which
is a kind of neural network, provides mapping from a data
set of high-dimensional feature vectors onto a usually two-
dimensional space. The mapping preserves the topology of
the feature vector, and is called a topological feature map.
The vectors contained in each node of the topological fea-
ture map are usually called codebook vectors.

In spite of all the benefits of SOM described above, its
application has been limited by some drawbacks in terms
of the interpretability of a trained SOM and the complexity
of search time for a best-matching node. A best-matching-
image-list (BMIL) holds similar images that are closest to
each codebook vector. Whereas more than one similar im-
age is classified in each node of the topological feature
map, there are empty nodes in which no image is classi-
fied. These empty nodes result in unnecessary disk access,
thus degrading retrieval performance. When we build an
R*-tree, we use codebook vectors of the topological fea-
ture map which eliminates the empty nodes and allows as to
build an index using fewer nodes than the number of nodes
in the SOM. Therefore, using our similarity search tech-
nique, we expect the search time to be faster than the search
time of SOM.

This paper is organized as follows: In Section 2, we pro-
vide an overview of related work. In Section 3, we present
the algorithm of the SOM and R*-tree, and describe the
SOM-based R*-tree proposed in this research. We exper-
iment in order to compare the SOM-based R*-tree with the
SOM and R*-tree alone in terms of retrieval time cost using
color feature vectors extracted from 40,000 images. The ex-
perimental results are discussed in Section 4, and Section 5
presents the concluding remarks.

2. Related Works

In this Section, we describe the related work on cluster-
ing methods and high-dimensional index structures.

Clustering There are supervised and unsupervised clus-
tering methods for clustering similar data [101. During the
training phase in supervised clustering, both the input data
and the desired output are presented to the neural network.
If the output of the neural network differs from the desired
output, the internal weights of the neural network are ad-
justed. In unsupervised clustering, the neural network is
given only the input vectors and the neural network is used

to create abstractions in the input space.
SOM is an unsupervised self-organizing neural network

that is widely used to visualize and interpret large high-
dimensional datasets [36, 24, 22, 9, 19, 201. In this study,
the reasons for using SOM are as follows: (i) No prior as-
sumption is needed for distribution of data, (ii) the learning
algorithm is simple, (iii) we do not need an external super-
vised signal for input and it learns self-organizationally, and
(iv) similarity can be found automatically from multidimen-
sional feature vector, and similar feature vectors are mapped
onto neighboring regions on the topological feature map, in
particular, highly similar feature vectors are mapped on the
same node.

High-dimensional index structure Many techniques, in-
cluding R-tree [I], R+-tree [38], SS-tree [50], SR-tree [21],
X-tree [42], m - t r e e [27], and Hybrid tree [8] have been
proposed to index feature vectors for similarity search. De-
spite various attempts at accessing high-dimensional feature
vectors effectively, the current solutions are far from sat-
isfactory [181. Although these index structures can scale
to medium dimensionalities, above a certain dimensionality
they are outperformed by a simple sequential scan through
the database. This occurs because the data space becomes
sparse at high dimensionalities, causing the bounding re-
gions to become large [8]. We selected the R*-tree from
among other index techniques for the following reasons: (i)
This index structure is the most successful variant of the R-
tree, (ii) i t can be applied to spatial data such as geography
and CAD data, and (i i i) it can be used as an index structure
for feature space such as image retrieval currently.

In order to realize an SOM-based R*-Tree, we built an
R*-tree using a topological feature map and a BMIL by
learning the SOM. The use of an SOM-based R*-tree avoids
unnecessary disk access during searching by eliminating the
empty nodes on the topological feature map. In addition,
our proposed technique can build R*-tree using fewer nodes
than the number of nodes in SOM. Therefore, the number of
node to visit decreases, and search time is shortened. To the
best of our knowledge, there has not been until now notable
indexing techniques like our method.

3. SOM-Based R*-Tree

3.1. Self-organizing Maps

Self-organizing Maps (SOMs) are unsupervised neural
networks that provide mapping from high-dimensional in-
put space to a usually two-dimensional regular grid while
preserving topological relations as faithfully as possible.
The SOM consists of a set of i nodes arranged in a two-
dimensional grid, with a weight vector mi E W' attached
to each node. Elements from the high-dimensional input

183

t

Figure 1. Update SOM. z is input vector which
is feature vector in this paper. mpld and mlew
represent before- and after-modification of
weight vector respectively.

space, referred to as input vector z E X2", are presented to
thz SOM and the best-match-node (BMN) for the presented
input vector is calculated using the Euclidean distance be-
tween the weight vector of the node and the input vector.
In the next step, the weight vector of the BMN (i.e. the
node with the smallest Euclidean distance) is selected as
the 'winner' and is modified so as to more closely resemble
the presented input vector. The weight vector of the winner
is moved towards the presented input vector by a certain
fraction of the Euclidean distance as indicated by a time-
decreasing learning rate a(t) , shown in Figure I , where
t=l,2,3, ... is an integer representing the discrete-time co-
ordinate. a(t)(O < a(t) < l) is a parameter adjusting what
extent close to the input vector z. If a=1, m, is completely
equal to z. a(t) begins with a value close to unity, thereafter
decreasing monotonically. Thus, this BMN will be even
higher the next time the same input vector is presented. Fur-
thermore, the weight vectors of nodes in the neighborhood
of the winner, described by a time-decreasing neighborhood
function a(t) , are modified accordingly, although to a lesser
than the winner. This learning procedure finally leads to a
topologically-ordered mapping of the presented input vec-
tors. Similar input data is mapped onto neighboring regions
on the map [23]. The map is called a topologicalfeature
map, and a weight vector held by a node in the topological
feature map is called a codebook vector. The topological
feature map preserves the mutual relationships (similarity)
of the input data in feature spaces, and clusters mutually
similar feature vectors in neighboring nodes. During the
training phase, the input vectors become ordered on the grid
such that similar input vectors are close to each other and
dissimilar input vectors are far apart. Despite these advan-
tages, SOM applications have been limited. The search for
the BMN dominates the computing time of the SOM algo-
rithm, making it computationally expensive for high input
dimensionalities or large SOM networks. The basic algo-
rithm uses full search, where all the nodes must be con-

R I R 5 R 6 R 7 R E
, - , i . ,

(a) (b)

Figure 2. An example of R*-tree structure; (a)
space of point data, (b) tree access structure.

sidered to find the BMN, increasing the complexity of the
search.

3.2. R*-Tree

In the field of database systems, various index struc-
tures (see Section 2) have been proposed recently as mul-
tidimensional indexing techniques. As one of these tech-
niques, the R*-tree improves the performance of the R-tree
by modifying the insertion and split algorithms and by intro-
ducing the forced reinsertions mechanism [3]. The R*-tree
is proposed as an index structure for spatial data such as ge-
ographical and CAD data. Currently, i t is used as an index
structure of feature space, such as for image retrieval [131.
The R*-tree, the most successful variant of the R-tree, is a
multidimensional index structure for rectangular data, it is a
height-balanced tree corresponding to a hierarchy of nested
rectangles. Nodes and leaves correspond to rectangles in
the hierarchy and a disk page is allocated for each. Each
internal node contains an array of (p , p) entries, where p is
a pointer to one child node of this internal node, and p is
the minimum bounding rectangle (MBR) of the child node
pointed to by the pointer p . Each leaf node contains an ar-
ray of (O I D , p) for spatial objects, where OID is an ob-
ject identifier, and p is the MBR of the object identified by
OID. Therefore, the rectangle of the root node corresponds
to the MBR of all the data entries, while the rectangle of
an internal node corresponds to the MBR of the data entries
contained in its lower leaves. The regions of the R*-tree are
allowed to overlap each other, and because sibling regions
can overlap each other, the search time for a point query
depends on the amount of overlap and not the height of the
tree.

The number of entries in each node is called afanout.
The fanout of a root node is at least 2 unless it is a leaf. The
fanout of the other nodes is between m and M , where 2 <
m < M / 2 . The M value of leaf nodes may be different from
that of internal nodes when objects are point data. Figure 2

184

Figure 3. Relationship between feature vec-
tor and codebook vector; (a) Feature vectors
extracted from images, (b) Codebook vectors
generated by SOM.

shows an example of an R*-tree.

3.3. SOM-Based R*-Tree

The construction of a SOM-based R*-tree consists of
two processes; clustering similar images and construction
of R*-tree, as follows:

Clustering similar images We first generate the topo-
logical feature map using the SOM. We generate the BMIL
by computing the distances between the feature vectors and
codebook vectors from the topological feature map. In or-
der to generate topological feature map, given a learning
parameter (e.g., learning-rate, neighborhood radius, size of
map layer, learning iteration), we perform SOM learning.
The SOM is trained iteratively. At each training step, a fea-
ture vector is sequentially chosen from the input data set.
The distance between the feature vector and all weight vec-
tors are computed. The BMN (node with minimum dis-
tance) is chosen from the map nodes. Next, the weight vec-
tors are updated. The BMN and its topological neighbors
are moved closer to the input feature vector. As a result of
learning, the vector, which is generated on each node of the
map, is called a codebook vector, and is represent by

C B K = [C V Z 1 , C z l i 2 , ..., c v z j , . . . , C V i m] T ,

where i(1 5 i 5 I C) is the node number of the map, m is
the number of input nodes, i.e., the dimensionality of the
feature vector, and k is the number of map nodes.

Using the topological feature map, we classify similar
images to the nearest node, which has the minimum dis-
tance between a given feature vector and all codebook vec-
tors. This classified similar image of each node is called the
best-matching-image-list (BMIL). Similarity between fea-
ture vectors and codebook vectors is calculated by the Eu-
clidean distance. Best-match-node S M N i is

B M N i = min{JJFV - CSQll},
2

Q

Figure 4. SOM-based R*-tree structure;(a) ex-
ample of topological feature map, empty grids
refer to empty nodes, (b) SOM-based R*-tree
structure using topological feature map after
eliminating empty nodes.

where FV is a feature vector. The relationship between
feature vectors and codebook vectors is shown in Figure 3.
Between these two kinds of vectors, there are many-to-one
relationships based on the similarity between each feature
vector. In an ideal situation, there should be a one-to-one
correspondence between the feature vectors of images and
the codebook vectors of SOM nodes in the map. This is
not, however, generally the case and some map nodes still
hold multiple images [26]. This means that empty nodes
occur in a topological feature map when the BMIL is gener-
ated. Empty nodes refer to the portion of the node (vector)
spaces that contains no matching feature vectors. Empty
node indexing causes unnecessary disk access, thus degrad-
ing search performance. The space requirement can be re-
duced by indexing only live nodes (in contrast to empty
nodes).

Construction of R*-tree In the construction of a SOM-
based R*-tree, we use the R*-tree algorithm [3]. Let one
point on the n-dimensional space correspond to each code-
book vector of the topological feature map, and the space
covering all codebook vectors corresponds to the root node.
In order to construct the R*-tree, we select a codebook vec-
tor from the topological feature map as an entry. If it is an
empty node, we select the next codebook vector. Otherwise,
determine the leaf node which insert codebook vector. To
determine the most suitable to accommodate the new entry,
i.e., codebook vector by choosing a subtree whose centroid
is the nearest to the new entry. When a node or a leaf has
space, the entry is added, otherwise, perform reinsertions or
split algorithm. A leaf of the SOM-based R*-tree has the
following structure:

A leaf L consists of entries El , ..., Ei, ..., E p (m 5 p 5
M) , where m and M are the minimum and the maximum

185

number of entries in a leaf. Each entry contains an OID
and its MBR p. The node structure of the SOM-based R*-
tree is the same as that of the R*-tree (see 3.2) as shown in
Figure 4.

Data set
1000

4. Experiments

Map size Empty nodes Ratio (%)

32 x 32 55 1 53

We performed experiments to compare the SOM-based
R*-tree with a normal SOM and R*-tree. Our image
database contains still color images. The experimental im-
age database currently consists of 40,000 artificialhatural
images, including landscapes, animals, buildings, people,
plants, CG, etc., from H'soft' and Stanford University2.
We fixed the image size at 128 x 128 pixels. All experiments
were performed on a COMPAQ DESKPRO (OS: FreeBSD
3.4-STABLE) with 128 MBytes of memory, and all data
was stored on its local disk.

5000
10000
20000
30000
40000

4.1. Experimental Methodology

70 x 70 2634 53
100 x l o o 5395 54
140 x 140 10819 55
175 x 175 18377 60
200 x 200 23706 59

Feature Extraction In this study, we extract color
features from the image data, and use it in the experiments.
To compute feature vectors, we use Haar wavelets [28],
which are a kind of wavelet transform. Haar wavelets pro-
vide the fastest computations and have been found to per-
form well in practice [7]. One disadvantage of using Haar
wavelets is that the computation tends to produce blocky
image artifacts in the most important subbands. How-
ever, this drawback does not noticeably affect similarity re-
trieval [31].

The color space used in this paper for feature vectors
is the YIQ-space (NTSC transmission primaries) [40] with
luminance and chrominance information. We computed 5-
level two-dimensional wavelet transforms for each of the
three color spaces using Haar wavelets. Extracting the low-
est submatrix for the color feature, we generated this sub-
matrix as part of the feature vector. Each element of this
feature vector represents an average of 32x32 pixels of
the original image. The color feature vector has 48 di-
mensions (=4x4x3, where 3 is the three channels of YIQ-
space).

Construction of SOM-based RI-tree As shown in
Table I , the map size is almost the same as the number of
images. We generated the topological feature map using
color feature vectors via the learning of the SOM, and the
BMIL is generated using this feature map. The empty nodes
occupied 53% to 60% of the original map size. As the map
size becomes larger, the number of empty nodes increases.
The existence of empty nodes indecates that images of high

'H2soft, http: / /www. h2sof t . CO. jp.
'Stanford University,

http://WWW-DB.Stanford.EDU/IMAGE/.

Table 1. Map size vs. empty nodes

similarity are classified in the same node, regardless of map
size. Therefore, reducing the number of nodes and speeding
up search time can be realized by eliminating empty nodes;
an R*-tree built with this pruned set of nodes will have a
smaller overall index size.

Table 2 compares the structure of a normal R*-tree with
that of the SOM-based R*-tree for each data set. The height
of the tree is not that different, however both the total num-
ber of nodes and the time cost of building the index de-
crease. These observations reduce memory usage and re-
trieval access time. The larger the data set, the more effi-
cient the index, as can be clearly seen in Table 3.

4.2. Experimental Results

To measure search time, we experimented with four
types of searches; search for (i) normal SOM including
empty nodes, (ii) normal SOM with eliminated empty
nodes, (iii) normal R*-tree, and (iv) SOM-based R*-tree
with eliminated empty nodes. The data set size was from
1,000 to 40,000 images. The search method used was the
k-Nearest Neighbor(") [37] method, which searches for
Ic(k > 1) objects nearest to the given query. In SOM, an ex-
haustive search of the topological feature map is performed,
and finding k (k = l O) nodes nearest to the given query. In the
same manner, the normal R*-tree and SOM-based R*-tree
are applied using the Ic-NN (Ic=IO) search.

A comparison of retrieval time cost is shown in Figures 5
and 6. In both figures, the horizontal axis is the dataset
size. As shown in Figure 5, the retrieval time of SOM
with empty nodes, as compared to the SOM without empty
nodes, grows drastically as the dataset size increases, over 5
times the retrieval time cost at 40,000 images. Thus, elim-
inating empty nodes significantly reduces retrieval time by
removing unnecessary distance computations.

We also compared the performance of the SOM-based
R*-tree with that of the R*-tree based on IO-" retrieval
time cost, as shown in Figure 6. In this comparison, the
nearest OID was obtained for a given query. The retrieval
time of the SOM-based R*-tree is far shorter compared to
the R*-tree, by 3 to 15 times. The results show that building

186

http://WWW-DB.Stanford.EDU/IMAGE

Table 2. Tree Structure

R*-tree
SOM-based R*-tree Total No. of nodes

Data set (x 1000)
1 5 10 20 30 40

119 499 972 2089 3042 3980
51 24 1 483 928 1300 1705

R*-tree
SOM-based R*-tree

R*-tree
SOM-based R*-tree

Height of tree

Time cost (sec)

Table 3. R*-tree file size (real data)

Data set (x 1000)

3 4 4 5 5 5
4 4 4 4 5 3

7.55 50.44 11 1.89 233.89 350.66 476.49
40.76 81.95 115.49 153.92 3.27 19.12

Original feature vector (MB)
SOM-based R*-tree (MB)
Ratio (%)

1 5 10 20 30 40 1 5 10 20 30 40
Data set(xl000) Data set(xl000)

1 5 10 20 30 40
1.38 5.78 11.27 24.22 35.26 46.13
0.59 2.79 5.59 10.75 15.07 19.76
42 48 49 44 42 42

Figure 5. Retrieval time cost. (1) retrieval from
SOM with empty nodes, and (2) retrieval from
SOM without empty nodes.

Figure 6. Comparison of retrieval time cost
between SOM-based R*-tree and R*-tree.

5. Conclusions

the R* -tree with overall original feature vectors improves
retrieval performance. Furthermore, the SOM-based R*-
tree performs much better than SOM alone, which sequen-
tially searches feature vectors. These experimental results
clearly show that a SOM-based R*-tree is more efficient for
similarity retrieval.

In this study, we proposed a SOM-based R*-tree for
dealing with similarity retrieval from high-dimensional data
sets. Using a topological feature map and a best-matching-
image-list (BMIL) obtained via the learning of a SOM, we
constructed an R*-Tree. The major finding of this study is
that building an R*-tree in which the empty nodes in the

187

topological feature map are removed yields an R*-tree with
fewer nodes, thus enhancing performance by decreasing un-
necessary access, node visits, and overall search times.

In an experiment, w e performed a similarity search using
real image data and compared the performance of the SOM-
based R*-tree with a normal SOM and R*-tree, based on re-
trieval time cost. The R*-tree with fewer nodes experimen-
tally verified to shorter search time, and search efficiency
was improved due to the use of a k-NN search, compared to
SOM.

Acknowledgments.
This work was supported in part by a Grant-in-Aid for

Scientific Research (10308012) from the Ministry of Edu-
cation, Science, Sports and Culture of Japan.

References

A.Guttman. R-tree: a dynamic index structure for spatial
searching. In Proc. of ACM SIGMOD Int. Con$ on Manage-
ment of Data, pages 45-57, 1984.
E. Albuz, E. Kocalar, and A. A. Khokhar. Scalable im-
age indexing and retrieval using wavelets. Technical report,
SCAPAL Technical Report, 1998.
N. Beckmann, H. Kriegel, R. Schneider, and B. Seeger. R*-
tree: an efficient and robust access method for points and
rectangles. In Proc. of ACM SIGMOD Int. Con$ on Man-
agement of Data, pages 322-331, Atlantic City, NJ, May
1990.
R. Bellman. Adaptive Control Processes: A Guided Tour.
Princeton University Press, 1961.
S. Berchtold, C. Bohm, and H.-P. Kriegal. The pyramid-
technique: towards breaking the curse of dimensionality. In
Proc. of ACM SIGMOD int. con$ on Management of data,
pages 142-153, Seattle, WA USA, June 1998.
K. Beyer, J. Goldstein, R. Ramakrishnan, and U.Shaft.
When is “nearest neighbor” meaningful? In ICDT, pages

A. F. C. E. Jacobs and D. H. Salesin. Fast Multiresolution
Image Querying. In Proc. SIGGRAPH95, pages 6-1 1, New
York, August 1995. ACM SIGGRAPH.
K. Chakrabarti and S. Mehrotra. High dimensional feature
indexing using hybrid trees. In Proc. of ICDEIYYY, March
1999.
G. Deboeck and T. Kohonen. Visual Explorations in Finance
with Self-organizing Maps. Springer-Verlag, London, 1998.
R. 0. Duda and P. E. Hart. Pattern Classifcation and Scene
Analysis. John Wiley & Sons, 1973.
T. K. et.al. Organization of a massive document collection.
IEEE Transaction on NEURAL NETWORK, 11(3):574-585,
May 2000.
C. Faloutsos, W. Equitz, M. Flickner, W. Niblack,
D. Petkovic, and R. Barber. Efficient and Effective Query
by Image Content. J. of Intell. Inform. SJW., 3:231-262,
1994.

217-235, 1999.

[I31 M. Flickner, H. Sawhney, W. Niblack, J. Ashley, Q. Huang,
B. Dom, M. Gorkani, J. Hafner, D. Lee, D. Petkovic,
D. Steele, and P. Yanker. Query by Image and Video Con-
tent: The QBIC System. IEEE Computer, 28(9):23-32,
September 1995.

[I41 A. Gionis, P. Indyk, and R. Motwani. Similarity search in
high dimensions via hashing. In Proc. of VLDB’99, pages
51 8-529, Edinburgh, Scotland, 1999.

[I51 V. N. Gudivada and V. V. Raghavan. Content-based Image
Retrieval system. IEEE Computer, 28(9): 18-22, September
1995.

[I61 G. R. Hjaltason and H. Samet. Distance browsing in spa-
tial databases. In ACM Transactions on Database Systems,
volume 24, pages 265-3 18,1999.

[17] S.-H. S. Huang and C. K. Wong. Binary search trees with
local rotation. In Proc. 20th Annual Allerton Conference on
Communication, Control, and Computing, pages 48 1-489,
Monticello Illinois, USA, 1982.

[181 P. Indyk and R. Motwani. Approximate nearest neighbors:
Towards removing the curse of dimensionality. In Proc. of
STOC, 1998.

[191 S. Kaski. Dimensionality reduction by random mapping:
Fast similarity computation for clustering. In Proc. of
IJCNN’98, pages 413418, Piscataway, NJ, 1998.

[20] S, Kaski. Fast Winner Search for SOM-Based Monitor-
ing and Retrieval of High-Dimensional Data. In Proc. of
ICANN’Y9, Edinburge, UK, September 1999.

[21] N. Katayama and S. Satoh. The sr-tree: An index structure
for high-dimensional nearest neighbor queries. In Proc. of
the I997 ACM SIGMOD Int. Con8 on Management of Data,
pages 369-380, May 1997.

[22] T. Kohonen. Exploration of very large databases by self-
organizing maps. In Proc. of ICNN’97, pages PLI-PL6,
Piscataway, NJ, 1997. IEEE Service Center.

[23] T. Kohonen. Self-organizing Maps. Springer, Berlin, 1997.
[24] T. Kohonen. Self-organization of Very Large Document

Col1ections:State of the Art. In Proc. of ICNN98, volume 1,
pages 65-74, London, UK, 1998. Springer.

[25] T. Kohonen, J. Hynninen, and J. Laaksonen. S0MPAK:the
Self-organizing Map Program Package. Technical Re-
port A3 1, Helsinki University of Technology, Laboratory of
Computer and Information science, Finland, January 1996.

[26] M. Koskelar. Content-Based Images Retrieval with Self-
Organizing Maps. Master’s thesis, Helsinki University of
Technology, Department of Engineering Physics and Math-
ematics, 1999.

[27] K.4. Lin, H. Jagadish, and C. Faloutsos. The tv-tree: An
index structure for high-dimensional data. In VLDB Journal,
pages 5 17-542, October 1994.

[28] S. G. Mallat. Multifrequency Channel Decompositions of
Images and Wavelet Models. IEEE. Trans., Acoust.,Speech
and Signal Proc., 37(12):2091-2110, December 1989.

[29] M. Minsky and S. Papert. Perceptrons. MIT Press, 1969.
[30] C. Nastar, M. Mitschke, and C. Meilhac. Efficient query

refinement for image retrieval. In Proc. of CVPR ’98, Santa
Barbara, Califomia, 1998.

[31] A. Natsev, R. Rastogi, and K. Shim. WALRUS: A Simi-
larity Retrieval Algorithm for Image Databases. In Proc.
ACM SICMOD International Conference on Management

188

of Data, pages 396-406, Philadephia, PA, June 1999. ACM
SIGMOD.

[32] K.-S. Oh, K. Kaneko, and A. Makinouchi. Image classifi-
cation and retrieval based on wavelete-Som. In DANTE’99,
pages 164-167, Kyoto, Japan, 1999.

[33] K.-S. Oh, K. Kaneko, A. Makinouchi, and A. Ueno. Design,
implementation and performance evaluation of similar im-
age retrieval system based on self-organizing feature maps.
Technical Report of IEICE{DE2000), lOO(3 1):9-16,2000.

[34] E. Oja and S. Kaski. KOHONEN MAPS. ELSEVIER, Am-
sterdam, The Netherlands, 1999.

[35] A. Pentland, R. W. Picard, and S. Schlaroff. Photobook:
Content-Based Manupulation of Image Databases. In Stor-
age and Retrieval for Image and Video Databases 11, San
Joes, 1995. SPIE.

[36] A. Rauber. LabelS0M:On the Labeling of Self-organizing
Maps. In Proc. of IJCNN’99, Washington DC, July 1999.

[37] N. Roussopoulos, S. Kelley, and F. Vincent. Nearest neigh-
bor queries. In Proc. of the ACM SIGMOD, pages 71-79,
San Jose CA, May 1995.

[38] T. S. N. Roussopoulos and C. Faloutsos. The r+-tree: A
dynamic index for multi-dimensional objects. In Proc.
VLDB’87, pages 507-5 18, Brighton, September 1987.

[39] Y. Rui, T. Huang, and S.-E Chang. Image Retrieva1:Current
Techniques, Promising Directions, and Open Issues. J.
Visual Communication and Image RepresentationlJVCIR),

[40] J. C. Russ. The Image Processing Handbook. CRC Press,
Boca Raton, 1995.

[41] S. Santini and R. Jain. Similarity Matching. In Proc. ACCV
95, Asian Conference on Computer Wsion, 1995.

[42] S.Berchtold, D.A.Keim, and H.-P.Kriegel. The x-tree:
An index structure for high-dimensional data. In Proc.
VLDB’96, 1996.

[43] J. R. Smith and S. F. Chang. Visua1SEEK:A Fully Auto-
mated Content-Based Image Query System. In Proc. ACM
Multimedia Conference, pages 87-98, Boston, November
1996.

[44] T.Kohonen. Self-organizing maps. Proc.of The IEEE,
78(9): 1464-1480, 1990.

[45] A. Tversky. Features of Similarity. Psychological review,

[46] J . Vesanto and E. Alhoniemi. Clustering of the self-
organizing map. IEEE Transaction on NEURAL NET-
WORK, 1 1 (3):586-600, May 2000.

[47] J. Z. Wang, G. Wiederhold, 0. Firschein, and S. X.
Wei. Content-based Image Indexing and Searching Using
Daubechies’ Wavelets. International Journal of Digital Li-
braries (IJODL), 1(4):311-328, April 1998.

[48] R. Weber, H.-J. Schek, and S. Blott. A quantitative analy-
sis and performance study for similarity-search methods in
high-dimensional spaces. In Proc. of the 24th VLDB Con$,
New York, USA, September 1998.

[49] D. A. White and R. Jain. Similarity indexing: Algorithms
and performance. In Proc. of the SPIE, volume 2670, pages
62-73, San Jose CA, 1996.

[50] D. A. White and R. Jain. Similarity indexing with the ss-
tree. In Proc. of ICDE’96, pages 516-523, New Orleans,
USA, February 1996.

[Sl] J. K. Wu. Content-Based Indexing of Multimedia Databases.
IEEE Trans. Knowledge and Data Eng., 9(6):978-989, June
1997.

[52] W.Y.Ma and B. S. Manjunath. Image Indexing Using a Tex-
ture Dictionary. In Proc. of SPIE con$ on Image Storage and
Archiving System, volume 2606, pages 288-298, Philadel-
phia, Pennsylvania, October 1995.

10(1):39-62, 1999.

84(4):327-352, July 1977.

189

