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Abstract 
In this paper, we propose a new strategy called RING 
that utilizes a ring configuration of the range 
partition strategy to achieve eficient online data 
placement reorganization in shared-nothing 
environments. In the event of reorganization, it has 
been observed that the range partition strategy in its 
well-known configuration, the linear configuration, 
can lead to two main drawbacks: high reorganization 
costs and performance dependency on hotspot 
locations in a system, Thus we modify the 
configuration into a ring seeking to minimize the 
effect of these drawbacks. We also introduce a new 
standalone heat-balancing algorithm to support the 
ring configuration, where its migration decisions are 
deduced by taking into account reorganization costs 
while balancing a system. RING is based on simple 
but effective approaches that incur only little 
overhead so that performance is almost optimized for  
free. Our simulation results indicate that under a 
wide range of requirements, Performance can be 
considerably improved by modifying the underlying 
structure to support the ring configuration. 

1. Introduction 
High data volume in various fields like the Internet, Web 
and data warehouse has dramatically increased the need 
for efficient and flexible mechanisms to provide high 
performance in parallel database systems. Added to its 
scalability and cost, shared-nothing architecture is one of 
the attractive approaches for high-performance database 
systems [8]. However unlike other architectures, e.g. 
shared-disk, it suffers from the load (heat) balancing 
problems, where load balancing is difficult to achieve 
because it relies on the effectiveness of database 
partitioning for the query workloads [ 8 ] .  Thus for efficient 
processing, data are typically declustered and indexed 
across the system processing elements (PES), however, 

access patterns are inherently skew that can lead to 
performance bottleneck as some PES become hotspot 
while many other PES are cold (idle). Therefore, data 
reorganization among the PES is essential and should be 
done online for optimum system performance. While data 
are being reorganized, the corresponding indices have to 
be modified as well; thus online data reorganization 
should also satisfactorily deal with the index modification 
[1,2,3,6]. We follow this direction and we base our 
strategy on minimizing costs of modifying indices. 
We ideally seek an online reorganization strategy that not 
only does good heat balancing, but also minimizes the 
reorganization costs in  the event of reorganization. Here, 
reorganization cost is defined as the amount of data (and 
the related objects, e.g. indices) that must be reorganized. 
Minimization of reorganization costs is an important goal 
especially when the reorganization has to be performed 
online, since the amount of data to be reorganized 
generally determines the duration of the reorganization, 
which in turn determines the time that concurrent 
operations experience degraded performance. A very 
effective way of reducing the duration of reorganization is 
to minimize the amount of data to be reorganized [ I ] .  
We assume that data are initially range partitioned across 
the PES so that a parallel access method can be easily 
implemented as well as a heat-balancing facility can be 
employed in a system. However, i t  imposes restrictive 
rules at the edge PES (the rightmost PE and the leftmost 
PE), where the rightmost PE can only migrate data with 
its left neighbour and the leftmost PE can only migrate 
data with its right neighbour. Such restrictions can lead to 
high reorganization costs that degrade performance for 
concurrent operations. And it  can lead to performance 
dependency on hotspot locations in a system [2]. By 
relaxing such restrictions as supporting migration between 
the edge PES, it  increases migration freedom in a system 
and it creates a good chance to minimize reorganization 
costs. Because migration can be wrapped around at the 
edge PES we refer to this configuration of migration under 
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the range partition strategy by the ring configuration. 
Allowing the ring configuration in a system and 
preserving the partitioning strategy in the same time leads 
to modify the underlying structure, which in turn imposes 
additional goal to minimize such modification cost so that 
the ring would be more feasible for online reorganization. 
In this paper, we propose a new strategy called RING that 
utilizes the ring configuration to achieve more efficient 
online data placement reorganization in shared-nothing 
environments. The strategy basically extends the existing 
ones, e.g. [2,3], in several points. First it modifies the 
underlying structure to support the ring configuration with 
almost negligible cost, so that if the ring will lead to better 
performance, the performance is almost improved for 
free. Second it introduces a new heat-balancing algorithm, 
called 2-bag, that can distribute a given heat among the 
PES, as evenly as possible and as fast as possible, if so is 
required. The main mechanism of the algorithm is 
motivated to minimize reorganization costs under a given 
performance requirement. The strategy is further 
supported by parameters that can be tuned to cover a wide 
range of performance requirements in terms of 
distributing accesses among the PES, and, partitioning 
reorganization jobs which indicates the speed for a system 
to adapt itself to an access pattern. Third as a result of 
minimizing reorganization costs and increasing migration 
freedom in a system, RING can remove the dependency 
of reorganization costs on hotspot locations in a system. 
So that performance during reorganization is mainly 
correlated to an access pattern’s skew rather than to its 
skew and its favourite locations in a system. Through 
simulation studies, the conduct results prove that 
performance can be considerably improved by modifying 
the underlying structure to support the ring configuration 
The rest of the paper is as follows. Section 2 discusses the 
related work. Section 3 describes the underlying index. 
Section 4 presents the ring configuration in terms of its 
costs and benefits for online reorganization. Section 5 
introduces the 2-bag algorithm. Section 6 reports our 
experimental study. Section 7 considers our remarks for 
future work, and finally, we conclude the paper. 

2. Related Work 
Recently, researchers have noted the advantage of online 
reorganization that can provide high performance 
database systems. In [ 5 ] ,  they present online efficient 
methods for the dynamic redistribution of data, however, 
they do not consider index modification while 
reorganization. In [4], they outline the issues involved in 
changing of all references to a record when its primary 
identifier is changed due to a record move. The 
techniques of [4,7] are proposed for centralized DBMS 
and require the use of locks, where using locks during 
reorganization can degrade performance significantly [ 11. 
In [ l ] ,  they present two elegant alternatives for 

performing the necessary index modifications, called 
OAT page movement and BULK page movement. 
However, the underlying structure is B+-tree that can lead 
to a considerable cost while modifying indices [2,3,6]. 
By modifying structure and supporting bulk migration, in 
[6] they use the Fat-Btree structure that can minimize 
index-modification costs. However, their objective is to 
balance the number of pages across the PES (space 
balancing) rather than heat balancing. Access pattern 
skew can lead to performance bottleneck even though 
there is a space balance in a system [3]. The techniques of 
[2,3,6] are based on the linear configuration that can lead 
to high migration workloads and performance dependency 
on hotspot locations. In contrast, we propose the ring 
configuration by which migration workloads are 
minimized and performance can be improved. 

3. The Underlying Index 
Data are initially range partitioned across the PES so that 
the access method can associatively access data for strict 
match queries, range queries and cluster data with similar 
values together. Such partition allows reductions in 
redundant I/O operations, and introduces inter-operation 
parallelism as well as intra-operation parallelism. One 
solution to associative access is to have a global index 
mechanism. Conceptually the global index is a two-tier 
index; the first-tier index directs the search to the PE 
wherein the data are stored, and the second-tier index 
directs the search to the data pages wherein the records 
are stored. The non-overlapping data partitioning gives 
also non-overlapping indices so that the first-tier index 
can be easily implemented as a partitioning vector, with 
entries number equals the PES number. To ensure that 
there is no central PE, the first-tier index is further 
replicated in all the PES [3]. 
Using a B-tree based index enables more efficient 
processing of range queries than a hashed index. Thus the 
second-tier index is a collection of aBtrees [3], one at 
each PE; each aBtree independently indexes its data. An 
aBtree is a variant of Btree, where its root node can be a 
fur node, i.e., for a Btree of order d, and maximum of 2d 
entries, the root node can contain more than 2d entries. 
This property of aBtrees gives the ability to design a tree 
with a predefined height while inserting keys in the tree. 
We design the tree height to be the same across the PES so 
that the amount of data to be migrated corresponds to the 
entirety of one or more branches of the Btree at a source 
PE. The attachment of branches at a destination tree and 
detachment these branches at a source tree are essentially 
pointer updates instead of updating the whole trees (or 
some of their nodes) by inserting/deleting the keys of the 
migrated data one at time, e.g. the OAT technique [ l ] .  
This minimizes the required U 0  cost to modify the 
structures, which in turn speeds up migration issues in a 
system. Such bulk migration does not change the tree 
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structure, but it causes an update in root nodes of Btrees at 
a source and a destination PE, which requires the first-tier 
index copies to be updated. This is can be done in a lazy 
manner by piggybacking update messages onto messages 
used for other purposes [3]. 

4. The Ring Configuration 
Since data is range partitioned across the PES, we can 
only move data from one PE to its neighbors PES that 
hold the preceding or succeeding ranges. The edge PES 
violate this rule, where the rightmost PE that can only 
migrate data with its left neighbour and the leftmost PE 
that can only migrate data with its right neighbour. We 
always refer to this data partition with its possible 
migrations as the linear configuration. 

Thr 1lnew mnr$ur.uon 

e @ -2-.->- rdd,tdlacent ranges 

PE -2 

Figure 1: (a) Configurations (b) Index structure at 
a PE holding 2-key ranges (2 trees). 

In the event of migration, it has been observed that the 
PES can be logically configured into a ring rather than a 
linear set, and meanwhile, it is possible to preserve the 
assumed partition strategy. So that migration can be 
wrapped around at the edge PES and data can be migrated 
without restrictions at these PES. It establishes a fair rule 
at each of the PES, each has exactly two neighbors, and it 
gives a good chance to minimize migration workloads and 
improve performance. However, the edge PES, which are 
ring neighbors, hold non-adjacent trees that may 
disorganize the structure during migration. Allowing these 
PES to hold two trees instead of only one can protect the 
structure at these PES from any disturbance that may 
occur during migration. Permitting only non-adjacent 
trees at these PES is not sufficient since as migration is 
taking place, those non-adjacent trees can be occurred at 
any other PE. We consequently support this modification 
of holding “two trees” at each of the PES. The location of 
the non-adjacent trees is dependent on migration decisions 
that have been done so far. But, if there are non-adjacent 
trees at some PE, then the structure at any other PE should 
be abstracted by only one tree. Therefore, this 
modification, in  its worst case, will lead to N+1 trees in a 
system instead of N trees as in the linear configuration, 
where N is the PES number. The corresponding cost is 
equivalent to that of adding one tree to a system. Since the 
underlying index is based on the aBtree structure, which 

basically supports a root node of multiple pages, ‘Ifat 
root”, thus the implementation of holding two trees at a 
PE can be easily achieved without additional overheads, 
see Fig. 1 .  In Figure 1 the encountered root is a 2-page 
root each page corresponds to one tree. The structure does 
not change too much but this modification actually 
exploits its support for data reorganization. We always 
refer to this modification with its possible migrations as 
the ring configuration. 
To demonstrate the effect of holding two trees at a PE, 
assume we have 4 PES with the following key ranges: 
PE0 is assigned to hold 1-25, PE1 26-50, PE2 51-75, and 
PE3 76-100. If PE0 is hotspot, then we have the freedom 
to migrate heat (data) with some key range, say 10-25, to 
PE1 or to migrate heat of other key range, say 1-15, to 
PE3. If for some reason we select the key range 1-15 for 
migration to PE3, then PE3 will hold two key ranges, one 
adjacent range to PE2, 76- 100, and the other is a non 
adjacent range, 1-15. Migration of key range 1-15 to PE3 
should be reflected on the first-tier copies. Inserting a new 
entry into the first-tier copies can reflect such change so 
that the future search for that range will be directed to 
PE3. The cost of inserting a new entry into the first tier 
copies is equivalent to that of updating them, which is 
normally done after acknowledging every migration in a 
system. Thus the effect of having two trees at a PE has 
zero cost on updating the first-tier copies. Meanwhile, if 
after some interval of time PE3 becomes hotspot and PE0 
becomes cold, then PE3 can migrate data of its key ranges 
to PEO. It is possible to reunion the whole key range (1- 
15) with that of PEO, or some part of it or all of it plus 
other key range that originally belongs to PE3, say 90- 
100. The range itself is dependent on the heat to be 
migrated from PE3 to PEO, but the example demonstrates 
the dynamic processes that can be occurred in the ring 
configuration during migration. The location of the 
nonadjacent trees is dynamically changed, and the number 
of entries of the first-tier index (at any copy) is 
dynamically alternated between N and N+1. The 
maximum of this alternation will never exceed N+1 since 
there is always two nonadjacent ranges as configuring a 
linear set of key ranges into a ring as shown in Figure 1. 
Modifying the structure implies also modifying all 
procedures that deal with search operations and migration 
issues. It has been found that the upgrade code for that is 
simple and straightforward. Figure 2 gives an example for 
an upgrade code to extracts a required heat from a source 
PE in the ring configuration using that of the linear one. 
Although its effect may be imagined as adding a new PE 
to a system but modifying the structure to support the ring 
configuration incurs less cost and it is almost negligible. 
To show the gain we achieve from this modification, 
assume first that it is required to have a smooth heat 
distribution among linearly configured PES. So that 
migration can be cascaded from the hotspot PE to the 
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coldest PE which can be several PES away (in ripple 
ways). This ripple migration can lead to high volumes of 
data movement which in turn degrades performance as 
many PES are involved in migration issues. For example, 
assume a system of 8 PES with; PE0 is the hotspot and 
PE7 is the coldest PE. To satisfy the given smooth 
requirement, PE0 migrates data to PEl ,  which in turn 
migrate data to PE2, this expensive process could be 
repeated until some hot data being reached at PE7 as 
shown in Fig. 3. However, with ring configured PES it 
would be easy to migrate directly hot data from PE0 to 
PE7, and thus saving a lot of migration jobs at the mid- 
PES, which certainly will be reflected on the performance. 
This will be more beneficial in systems of large size of 
PES working under highly skew environments, where 
migration workloads are proportionally related to the 
amount of data (heat) to be migrated, and, the number of 
the PES that should be involved in migration issues. 
Linear-GetHeatFromTree(PEs, TreeNo, Heat) 
return all index branches that correspond to Heat 
int FindAdjacentTree(PEs, DestRange) 
N for every tree at PES find the minimal adjacency with the 
// DestRange and retrun the corresponding tree no. 
RingGetHeatFromPE(PEs, DestRange, Heat) 

HeatType H=O;int TreeNo; 
TreeNo=FindAdjacentTree(PEs, DestRange); 
while (H<Heat) ( 

H+ = Linear-GetHeatFromTree(PEs, TreeNo, Heat); 
TreeNo=l-TreeNo;) //get the other tree, if there is. 

return All  index branches to be migrated. 
Figure. 2: Upgrade code, an example. 

Thc h<r lspol  PH T h e  coldest  PE 

Figure 3: Ripple migrations in the linear 
configuration, an example 

1 2 
Hotsoot location 

Figure 4: Effect of hotspot locations, an example. 
It has been observed that because of its inflexibility at the 
edge PES, the linear configuration can lead to migration 
workloads that are dependent on hotspot locations in a 
system. If the hotspot occurs at the edge PES, it would be 
more costly than that if it occurs at some other locations, 
e.g. at the middle. This dependency dominates the system 
performance during reorganization. Ideally, performance 

during reorganization should be correlated to skew of 
access patterns rather than to their skew as well as to their 
favourite locations in a system. We generally cannot 
predict where will hotspots occur? But we can support a 
system by an inexpensive mechanism to remove such 
unfavourable effect. To demonstrate this point, assume a 
system of 4 PES and a heat distribution (100,200,300,400) 
that can be assigned to the PES with the following 
combinations; [(400,300,200,1 00), (100,400,300,200), 
(200,100,400,300), (300,200,100,400)]. The first distribution 
represents the hotspot at PEO, while the second represents 
the hotspot at PEl ,  and so on. Assume further, it is 
required to balance the system so that each of the PES has 
250 (average heat). Approximating the migration 
workload by migration workload = heat to be migrated 
can give some insight to the problem. Fig. 4 shows the 
resulting migration workload against the variation of the 
hotspot location in the given distributions. It shows that 
there are hotspot locations that give the minimal 
workload, e.g. hotspot at PE1 and at PE3. It also gives 
some information about the percentage of the maximal to 
the minimal workload, which is 250 %. This high 
percentage enhances our objectives to remove or reduce 
such effect that mainly occurs because of the migration 
restrictions at the edge PES in the linear configuration. 
The ring configuration relaxes such restrictive migration 
by supporting migration between the edge PES. It can be 
imagined that under each of the given distributions we can 
track the change in the hotspot location so that the given 
distribution can be mapped (arranged) into the linear one 
that gives the minimal workload. 
This mapping can be viewed as virtually cutting the ring 
at some proper point so that it converts the given ring into 
the linear set that gives the minimal workload. For 
example, consider the distribution of (PEk400, PE1=300, 
PE2=200, PE3=I 00) with the ring configuration. By 
preventing migration (or virtually cutting the link) 
between PE0 and PEl ,  i t  converts the ring into the linear 
one of (PE1=3OO, PE3=200, PE3=100 PEk400). Its 
migration behavior is equivalent to that of 
(300,200,100,400) in the linear configuration, which gives 
the minimal workload as shown in Figure 4. By applying 
this cutting technique on each of the given distributions, 
the figure shows the ring configuration can remove the 
workload dependency on the hotspot location in the given 
distributions, and thus it can save a lot of migration 
workloads that may be done if the configuration were 
linear. Apart of its complexity (as exhaustively search for 
the proper cut), the cutting technique generally does not 
give the minimal workload because it is possible to obtain 
such minimal without need to prevent migration between 
two PES in a system. But, we use it for demonstration and 
to give some insight to the balancing problem in the ring 
configuration, which is covered in the next section. 
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5. Heat Balancing: The Two-bag Algorithm 
In this section, we present a new standalone heat- 
balancing algorithm to extract migration decisions that 
minimize reorganization costs for a ring-configured 
system. First we present the problem then we discuss the 
details of the proposed solution. 
5.1 The Problem and The Solution Strategy 
We are given N ring-configured objects, e.g. PES or disks, 
their heat distribution, and a performance requirement is 
represented by parameters 6 and a. The parameter 5 
represents a requirement for heat distribution, so that the 
heat at each of the PES is no more than a threshold heat, 
where the threshold heat = (l+E,) x average heat. The 
parameter a, 05 a 5 1, represents a requirement for the 
required speed (steps) to adapt a system to an access 
pattern, i.e. how many steps (=l /a)  are required to 
balance a system [3]. The problem is to find migration 
decisions that are required to satisfy the requirement ( E ,  
a) on the given ring with the minimal migration 
workload. Clearly, the problem belongs to the 
optimization problems and it can be solved using a greedy 
mechanism. A solution can be found if we succeed first to 
answer the following simple questions: 
(1)  At which object we should start balancing’? 
(2) If we succeed to select some objects as a starting 

point, then, how can we progress this selection to 
cover more objects, so that the system is heat- 
balanced by the minimal migration workload. 

The initial objective for any heat balancing should 
intuitively focus first on the hotspot object, where the 
performance degradation comes from. Since it  is required 
to include a threshold requirement, then i t  would be better 
to ensure that the hotspot object is being covered by any 
possible solution. We therefore select the hotspot object 
as a starting point. Then there will be a local requirement 
to migrate its excess heat (its heat - threshold heat) to 
one/both of its ring neighbors. Hence the second question 
comes, which neighbor we should select, the clockwise or 
the anti-clockwise neighbor or both of them? We select 
neighbors that lead to minimize migration workloads. 
Accordingly, we use migration workloads as an objective 
function that to be minimized while balancing a system. 
Since the migration workload is proportionally related to 
the heat to be migrated, we therefore evaluate it by; 
migration workload = heat to be migrated, so that i t  can be 
simply evaluated from the given distribution. Given this 
simple strategy, we must translate it  into code. To 
simplify matters, in the next subsections we first consider 
the solution for ( E ,  1) requirements, then we will 
generalize it for (6, a) requirements. 

5.2 Definitions and Mechanisms 
I- Marked-arc: is the arc that connects all the selected 
objects (PES) so far. The Initial marked-arc = (the hotspot 

PE) .  As selection is taking place, the arc is dynamically 
expanded, by including more PES, in the directions that 
minimize migration workloads. During the course of the 
algorithm, the PES may be thought of as divided into three 
categories as follows (see Fig. 6). (a) Marked PES: PES 
that belongs to the marked arc constructed so far. (b) 
Fringe PES: not in the marked arc, but adjacent to some 
PES in the marked arc. (c) Unseen PES: All others. If a PE 
belongs to fringe or unseen PES, we refer it  as unmarked 
11- Heat Requirement (HR):  it represents the amount of 
the excesdmissing heat that required for balance a current 
marked-arc. Since a marked-arc has two ends, then there 
will be generally two heat requirements that have to be 
satisfied. Its two ends (Endl and End2) and its heat 
requirements (HRI and H R 2 )  can represent a marked-arc 
by a structure of components (Endl ,  End2,  H R I ,  HR2) .  
Each H R  has the corresponding cost to satisfy it. If a 
marked-arc has one (or both) of its end has (have) zero 
heat requirement(s), it means the given arc is already 
balanced at such end (ends) and thus the corresponding 
cost(s) will set to zero. 

Figure 5: Notations of the 2-bag Mechanism 
111 - 2-bag Mechanism: A Heat-collection Mechanism 
While constructing a marked-arc, we have to satisfy its 
heat requirements (HRI and H R 2 )  and evaluate their cost. 
The procedure to satisfy one HR with minimal workloads 
can be abstractly formulated as collecting this HR from 
the nearest unmarked PES that minimize workloads, 
which is equivalent to attaching some unmarked PES to 
the encountered marked-arc. Since a ring gives the chance 
to simultaneously collect heat from both ends of a 
marked-arc, we introduce a mechanism, called 2-bag, that 
utilizes this property of a ring to satisfy a HR. The 
collection is done through two bags, one for each end of a 
marked-arc, each bag has the following structure: 
typedef struct 
( PeType Pointer; // a pointer to the current unmarked PE. 

Direction; I /  clockwise or anti-clockwise 
Collected; I/ collected heat so far 
Excess; N the accumulated excess/missing heat. 
Workload; // migration workload evaluation. 

Activity; // 1 active, 0 reset. 

DirType 
HeatType 
HeatType 
CostType 
DecsType *Decisions; // migration decisions 
FlagType 

) HeatBagType; 
The “ P  ointer” component points to the current unmarked 
PE during heat collection, while the “Direction” gives its 
advance direction (clockwise or anti-clockwise). The 
component “Collected” indicates the collected heat by a 
bag to satisfy a H R .  During traversing the unmarked PES, 
the accumulated excess-heat at the current PE is 
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calculated by, Excess +=(Heat(PE)- threshold heat). The 
function of this component is as follows, if we accept the 
collected heat of a bag, we can simply generate a new heat 
requirement for the corresponding end of a marked-arc 
by, HR= - Excess of that bag. The “Workload” component 
evaluates the migration workload while collecting heat 
using the mentioned workload function, it also indicates 
the less expensive (lighter) bag. The “Decisions” 
component traces all the steps to collect the heat denoted 
by “Collected”. The “Activio” indicates that if the 
corresponding bag is active or not. 
Assume a marked-arc, a heat requirement HR, and two 
bags, one for each of its ends. One bag collects heat from 
the fringe PE of Endl towards End2 of the marked-arc, 
while the other collects from the fringe PE of End2 
towards Endl ,  see Figure 5 .  Note that the bags’ pointers 
are synchronized in their advance to discover the nearest 
unmarked PES that minimize workloads. As heat is being 
collected, we can accept one of two bags or both, 
depending on the sign of the “Collected” component at 
each bag and that of the current HR by the following 
acceptance rule: 
If sign (This.Collect ) == sign ( H R )  

If sign (Other. Collect ) == sign ( H R )  
If I H R  I >= I This.Collected + 0rher.Collecred I accept both 
Else accept the bag that has the minimal workload. 

Else accept This. 
Else reset This. 
This rule ensures that the current marked-arc is expanded 
as selecting its nearest unmarked PES that can balance it 
with minimal workloads. Once a bag’s collection has been 
accepted, the current HR is updated accordingly and the 
corresponding migration decisions referenced by 
“Decisions” are stored as well. The collection procedure 
will terminate once the current HR becomes zero or there 
is no benefit to collect more heat. 
While heat is being collected and as a result of the 
opposite movements of the bags’ pointers, it is possible 
that the pointers collide at some PE, which can lead to 
invalid collection. However, we solve this problem by 
providing a locking mechanism, and, an activity-resetting 
mechanism. The locking mechanism ensures that any 
amount of excess/missing heat at an unmarked PE is 
being considered by only one bag and thus there is no 
multiple consideration for any amount of heat. The 
activity-resetting mechanism gives the possibility to 
minimize workloads as collecting heat by only one bag 
instead of two. The mechanism detects whenever bags’ 
pointers collide, then it checks for a bag that have to be 
reset, by applying the above acceptance rule that also 
gives the bag to be reset, if there is. If so it  resets the 
proper bag to its last accepted state and unlock the way 
for the accepted bag to continue its traversekollection. 
This also gives the possibility to minimize workloads 
without essence to synchronize the pointers’ advances. 

Both mechanisms ensure that heat is collected with 
minimal workloads and without contradictions that may 
be occurred as a result of two opposite moving pointers. 
5-3 The Algorithm 
The algorithm starts by picking up the hotspot PE from 
the given ring. If one or both its neighbors are hotspot too, 
then they virtually combine into one hotspot PE. This 
hotspot PE has only one heat requirement, HRO= Heat 
(the hotspot PE) - threshold heat, that can be satisfied 
through the 2-bag mechanism.. The 2-bag mechanism 
generates a new marked-arc with two heat requirements 
(HRI, HR2). Each requirement can be satisfied using the 
2-bag mechanism again, thus the algorithm constructs two 
marked-arcs, one corresponds for each requirement. To 
further minimize migration workloads, it accepts the 
marked-arc that has the minimal workloads. If a marked- 
arc has only one HR = 0, then it only considers the other 
HR. As accepting a marked-arc it generates new heat 
requirements by which the process can be repeated again 
until there is no more requirements. The algorithm 
terminates whenever the set of the unmarked PES is 
empty, or, all of the unmarked PES are not hotspot. 
While constructing a marked-arc, it is possible to obtain 
one that has zero HR at its both ends and the algorithm 
termination is not satisfied. It means the encountered 
marked-arc is heat-balanced, we therefore store it and 
construct a new one from the current unmarked PES by 
picking up their local hotspot PE and repeating the whole 
procedure until the algorithm termination is reached. 
Therefore, the algorithm output is generally a set of 
marked-arcs, each marked-arc has the required decisions 
to balance it with minimal workloads. 
If all decisions generated so far are issued then they 
balance the system according to the parameter 5 and in a 
one step (a=l). This one-step reorganization implies that 
it does the whole work in a short time, which may be 
relevant for some applications, e.g. WWW servers, or 
irrelevant (or harmful or expensive) for the others. 
Representing a migration decision by Source, Desrinarion, 
and RequiredHeat components, and normalizing every 
“RequiredHeat” component by “a* RequiredHeat”, we 
can additionally introduce the speed effect while 
reorganizing a system [2]. So that the overall 
reorganization is partitioned into l/a parts (steps), each 
part can be separately issued to the system at some 
appropriate intervals or even in periodic ways. This 
Partitioning gives incremental reorganizations, where 
their steady state conditions are identical to that of one- 
step reorganization. Both parameters 6 and a give the 
ability to cover a range of performance requirements in 
terms of distributing jobs among the PES and controlling 
the system speed to adapt itself to access patterns. Figure 
6 shows the general structure of the 2-bag algorithm with 
its two main parameters 5 and a. 
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The algorithm could be generally used to balance N ring- 
configured objects with minimal costs regardless of the 
assumed migration unit. In the next section, we adapt it 
for the ring configuration with an index branch as a 
migration unit over shared-nothing parallel machines. 

Parameter 
System Parameters 
Number of PES in the cluster 
Network bandwidth 
Time to redwrite a data page 
Database Parameters 
Number of records 
Index node size 
Data page size 
Query Parameters 
Zipf distribution decay factor 
Mean arrival rate 
Mean service time 
Others 
The hot-spot location 
Speed parameter (a)  
Heat distribution parameter (5) 

Procedure FitSpeedRequirement (a) 

Procedure NewMarkedArc(\) 
For E in migration decisions do E.RequiredHeat *= a. 

Pick up the local hotspot PE and initiate a marked-arc; 
HRO = Heat (local hotspot PE) -Threshold heat (6) 

4lgorithm: TwoBags(a, 6) 
HRO=NewMarkedArc(\) 
while “it does not terminate” do 

Apply 2-BagMechanism (HRO) and check termination 
For HRi in (HRI, HR2) do 2-BagMechanism (HRi) 
Accept the marked-arc that gives the minimal workloads. 
If (marked-arc has zero requirements) NewMarkedArc(E,) 

FitSpeedRequirement(a) 

Figure 6: The general structure of the algorithm. 

6. Simulation Result 
In this section, we describe our experiments to study and 
validate the performance of our strategy for online data 
placement reorganization. We evaluate the system 
performance in the linear and the ring configurations, 
where the metric used is the impact on the system 
migration workload and response time during 
reorganization. Table 1 shows the major parameters and 
their used values. 
We first create an initial aBtree with the tuple key values 
generated using a uniform distribution (space balance). 
Then we generate range queries using Zipf distribution, 
the queries are generated with skew defined by the decay 
factor (T) of Zipf distribution. Thus, there are more range 
queries are issued at one PE than the other PES depending 
on T. This heat skew initiates the migration of branches 
among the PES, depending on the given requirement. We 
select one-step reorganization, a= 1,  as default 
requirements with a relatively high skew of ~ = 0 . 3  to show 
in addition the worst cases (and the effects) of fast 
reorganizations. We model each of the PES as a resource 
and the queries as entities. We assume that heat balancing 
is done in centralized scheme and it  is checkedlinitiated 
every 100 x N queries, where N is the PES number. If  
there is a need for data reorganization we extract the 
required migration decisions using the algorithm of [2] in 
the linear configuration while the 2-bag algorithm in the 
ring one. We express the system migration workload as 
the accumulation of the individual migration workload at 
each of the PES. We express the PE migration workload 
as the accumulation of time intervals in which the given 
PE is involved as a source or as a destination. 
In the first set of experiments, we study the configuration 
effect on migration workloads. To  visualize migrations 
among the PES in both configurations, we record the PE 

Default values I variation 

16 132. 
120 Mbits1s 
8 ms. 

1 million, 
.4KB, key = 4 byte. 
4KB. 

0.3/ 0.1 -+ 0.9. 
20.0 1 8.0 per second 
500 ms. 

01 0 -+ 15 for 16 PES. 
11 {O, 116, 118) 
0.11 0 -+ 0.5 

migration workload in each configuration as shown in 
Figure 7. It shows the ripple migration effect on both 
configurations that gives bell-like curves with local 
maximum at some PES, e.g.. PE4 in the linear, and, PE4 
and PE15 in the ring one. It shows also the added 
capability at PEO, the hotspot, to migrate its excess heat to 
other PES through PE15. Therefore, workloads at the mid- 
PES are greatly reduced, compared to that of the linear, 
and the system migration workload is reduced 
accordingly. As shown because of the given 6, some PES 
have zero workloads, e.g. from PE12 to PE15 in the linear 
and from PE7 and PE12 in the ring one, where their 
resulting heats are less than the threshold heat. 

Table 1 : Major parameters and their used values. 

With the ring one, there are workload increments at some 
PES, e.g. at PEO, PE13, PE14 and, PE15. The increments 
at PE13, PE14 and PE15 do not have the considerable 
effect on the performance because all of these PES are 
almost idle (cold) before reorganization, see their 
workloads in the linear configuration. But, the workload 
increment at PEO, the hotspot, can not be ignored and it 
certainly degrades its performance during reorganization. 
Such increment can not be avoided because otherwise the 
migration workload will not be minimized. It occurs 
because the excess heat at PE1 is migrated to other PES, 
e.g. PE13 and PE14, through PE0 and PE15 so that the 
given 4 requirement is satisfied across the PES. 
Studying the migration behavior of the hotspot PE in the 
ring configuration shows that it is involved in the ripple 
migrations of (PEl+PEO+PE15 + ..) by which it is 
involved as a source and as destination in the same time 
(in the same sequence of decisions [2]). A similar 
situation occurs in the linear but at another PE, PEl ,  
which is involved in the ripple migrations of 
(PEO+PEl+PE2-+ ..). To some extent, these similar 
situations give nearly similar migration workloads at PE 1 
in the linear, and, at PE0 in the ring, see Figure 7. 
Therefore, the workload of PE0 in the ring configuration 
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could be occurred in the system regardless of the used 
configuration. Furthermore, it is also possible to have a 
heat distribution that leads to migration decisions in 
which the hotspot of the given distribution is involved as 
a source and as a destination in the same time, regardless 
of the configuration. For example assume 4 PES are 
linearly configured with the following heat distribution 
(PE0=50, PE1=400, PE2=300, PE4=250), so that each PE has 
250 unit of heat after balancing. The corresponding 
migration decisions gives the hotspot PE, PEl, as a source 
for the decision PE1 +PE0 of heat =200, and in the same 
time as a destination, for the decision PE2 -+PE1 of heat 
= 50. Thus the ring configuration does not introduce a 
negative effect, as it increases the hotspot workload. 
Regardless of the used configuration in section 7 we 
present one solution to improve performance of a hotspot 
PE that has conditions of migration workload and arrival 
rate similar to that of PE0 in the ring configuration. 
Figure 8 compares the sensitivity of the system migration- 
workload to 5 parameter in both configurations. It shows 
the migration workloads saving in the ring configuration 
to fit 5 requirements, e.g. i t  saves about 350% for 5 0 
requirements. As 5 increases the saving decreases until 
the configuration (reorganization itself) does not have the 
great effect on the system performance, where the 
performance degrades as 5 increases. 
To evaluate the influence of the hotspot location on 
migration workloads, the query set is designed so that the 
hotspot location can be changed from 0 to N - I ,  so that a 
query set (i), i= O , l ,  .. , N - 1 ,  represents the hotspot at the 
PEi. Figure 9 shows the system migration workload for 
each of the query sets in both configurations. As expected, 
migration workloads in the linear configuration are 
dependent on hotspot locations. It shows that the approach 
of minimizing migration workloads, which is employed in 
the ring configuration and the 2-bag algorithm, is efficient 
in removing such dependency. Consequently migration 
workloads are mainly correlated to access patterns' skew 
rather than to their skew as well as to their favorite 
locations in a system. The figure also shows that the 
percentage of the maximal workload in the linear to that 
of the ring is about 320%, and, the average saving in 
migration workloads is about 163 %. 
To study the average saving in migration workloads under 
different environments of access patterns and hotspot 
locations, we repeat the pervious experiment under a 
range of the skew factor (7). However, to cover a range of 
z the experiment is conducted with; a low arrival rate of 8 
queries/sec, and, migration is initiated to fit the 5 
requirement regardless if there is a steep degradation in 
the system response or not. Figure 10 compares the 
system's average migration workload in both 
configurations. It shows the ring capability to save a lot of 
migration workloads, and this capability is proportionally 

related to z. To demonstrate scalability in the same time, 
we repeated this experiment over a cluster of 32PEs. As 
the number of PES employed is increased, the 
reorganization costs is increased proportionally, and more 
saving in such costs can be achieved by the ring 
configuration as shown in figure. The experiment proves 
that the ring is more reasonable in its reorganization under 
a wide range of working environments. 
To reflect the ring effect on the system performance, we 
observe the system average response without migration, 
and, with migration in both configurations. Figure 11 
traces the system average response during reorganization. 
It basically affirms the effectiveness of data 
reorganization, in general, and heat balancing, in specific, 
in correcting the performance degradation that can be 
occurred as a result of access skew. And, it shows the 
effectiveness of the ring configuration in improving the 
system performance during reorganization. Since both 
configurations do the same heat balancing under the given 
requirements, however, the amount of data to be 
reorganized is different which in turn determines the time 
that concurrent operations experience degraded 
performance. As shown, it gives better performance in 
terms of the fastest response for users' queries and the 
fastest speed for the system to adapt itself to the given 
access pattern. This better performance can be viewed as 
achieving a new upper-limit of the system adaptation 
speed, which is not easily achievable with linearly 
configured systems because of their high reorganization 
costs. This performance can be also achieved regardless 
of the hotspot locations of the access pattern. 

7. Discussion and Future Work 
In this section, we discudextend the experimental results 
of section 6 as well as we cover our future goals. 
Under fast reorganization requirements, the potential 
possibility of high migration workload at a hotspot PE in 
both configurations (e.g. consider Figure 7 and PE0 in the 
ring) leads to consider some local optimization techniques 
at this PE to hide (absorb) its high workload from its 
performance. One of these techniques is based on 
scheduling migration decisions in which this hotspot PE is 
involved. For example, issuing first the decisions in which 
the hotspot PE is a source (e.g. PEO-+PEl5 in the ring) 
and postponing the ones in which this PE is a destination 
(e.g. PEl+PEO in the ring). Then, once its response 
becomes within some accepted level, the postponed 
decisions can be considered later. Applying this simple 
scheduling technique on PE0 in the ring, Figure 12 shows 
that the hotspot response in both configurations can be 
brought to similar levels of performance and therefore its 
workload increment has been hidden from its 
performance. Figure 1 1  also reflects this effect on the 
system response time, which is not equivalent to that 
effect at the hotspot PE because the system response is 
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already improved by the ring effect (as minimizing 
migration workloads in a global respect). Although the 
above technique is simple and sufficient but more 
research is required to generalize it in cases of multiple 
hotspot PES having similar conditions to that of PE0 in 
the ring. In a future work we intend to consider that as 
well as to exploit more local optimization techniques to 
optimize performance. 
Studying of figures 7, 11, and 12 shows that the 
effectiveness of minimizing reorganziation costs in 
improving not only the average system performance but 
also the performance at each of the PES during 
reorganization which is quit fair for all of the system’s 
users during reorganization. This is not easily achievable 
with the linear configuration because of high migration 
workloads at many PES. Fast reorganizations with the 
linear configuration improve the hotspot performance as 
fast as required but in the same time they degrade the 
performance at many PES as well. Users during steady 
state conditions (after reorganization) are the luckiest ones 
but most of users during reorganization form a dark 
picture of victims for fast reorganizations, e.g. users of 
PE0 - PE8 during reorganization. This picture is 
distributed across many PES in the system, which in turn 
limits the possibility of using some local optimization 
techniques to improve performance during reorganization. 
However with the ring only PEO’s users during 
reorganization represent the real victims in correcting the 
system degradation as fast as possible. Since there is only 
one PE, or generally a few of PES, at which performance 
degrades, thus performance can be more improved by 
local optimization techniques as shown in Figure 1 1. 
Tuning the parameter cx in its global respect can control a 
system reaction to an access pattern at a desired level. 
Figure 13 shows this ability, where a=O represents 
performance without reorganization, and, 0 < a I 1 
represents performance with incremental reorganization 
of steps = l/a. We plan automatically tuning this 
parameter according to dynamics of access patterns in 
both local and global respects. So that performance can be 
optimized over a wide range of access dynamics. 
Due to its high cost, it may be even more desirable to 
operate the system in skew conditions than to perform the 
required data reorganization. For example, in Bubba [8] 
the system estimates the data reorganization cost and 
decides whether to tolerate the skew condition or to 
perform the required data reorganization. To demonstrate 
such tradeoff in terms of the 5 parameter, we measure the 
system average response in the ring configuration under 
various values of 5. Figure 14 shows the obtained results, 
which affirms that as 5 increases, reorganization cost 
decreases and the performance degrades accordingly. 
Under the given condition of skew and arrival rate, 
performance/reorganization tradeoffs of 5 10.5, are 

inefficient in correcting the system degradation because 
the resulting reorganizations are not sufficient for the 
given condition. The system should be more reorganized 
by decreasing the value of 6 up to the most inexpensive 
level, which means there is a critical value of 6 at which 
the amount of data to be reorganized is quite necessary 
and sufficient to keep performance within some accepted 
levels. More investigation is required to explore a general 
methodology by which such critical 5 can be determined 
under a given condition of skew and arrival rate. 

8. Conclusion 
Data placement reorganization in parallel database 
systems is a critical factor in determining performance. 
Given the dynamic nature of access patterns, the optimal 
placement of relations will change over time and this will 
necessitate some reorganization to maintain the system 
performance at acceptable levels. In this paper, we 
focused on one particular aspect -namely, how does the 
choice of a migration configuration affect the subsequent 
reorganization costs in parallel databases? This is an 
important practical issue since the amount of data to be 
reorganized directly affects the duration of the online 
reorganization, which in turn determines the duration over 
which concurrent operations experience degraded 
performance due to contention with the reorganizer. We 
have developed an online data reorganization strategy 
over shared-nothing machines. It demonstrates that 
modifying the underlying structure to support the proper 
configuration is efficient in optimizing the system 
performance. Apart from complexity, simulation is 
chosen at first to gain some quantitative insight into the 
performance of our strategy. Developing strategies that 
automate data reorganization and minimize its subsequent 
costs is a crucially important problem. We believe that 
this paper is a promising approach to solve this problem. 
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Figure 7: Configuration effect on the PES 
migration workload 

~. .a-. . Linear configuration 
.-fling confisuraton 

.. 

0 0. t 0.2 0 3  0.4 0.5 
- -  

r 
Figure 8: Effect of parameter on the system 

migration-workload in each configuration. 

I 1500 2 

t 
1 

0 2 4 6 8 1 0 1 2 1 4  
Hotspot Location at PE 

L 

Figure 9: The effect of hotspot locations. 
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Figure 10: Average migration workloads under a 
range of z for clusters of 16 and 32 PES. 
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Figure 12: The hotspot PE's response. 
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Figure 13: Effect of CL parameter in the ring 
configuration. 
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Figure 14: Effect of 6 parameter on the system 
average response in the ring configuration. 
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