
RING: A Strategy for Minimizing the Cost of
Online Data Placement Reorganization for Btree Indexed Database over

Shared-nothing Parallel Machines

Hisham Feelifl Masaru Kitsuregawa
Institute of Industrial Science, The University of Tokyo

7-22- 1, Roppongi, Minato-ku, Tokyo 106-8558, Japan
(hisham, kitsurc) @ tk1.iis.u-tokyo.ac..jp

Tel: +8 1-3-3402-623 I ,Fax: +8 1-3-3423-2834

Abstract
In this paper, we propose a new strategy called RING
that utilizes a ring configuration of the range
partition strategy to achieve eficient online data
placement reorganization in shared-nothing
environments. In the event of reorganization, it has
been observed that the range partition strategy in its
well-known configuration, the linear configuration,
can lead to two main drawbacks: high reorganization
costs and performance dependency on hotspot
locations in a system, Thus we modify the
configuration into a ring seeking to minimize the
effect of these drawbacks. We also introduce a new
standalone heat-balancing algorithm to support the
ring configuration, where its migration decisions are
deduced by taking into account reorganization costs
while balancing a system. RING is based on simple
but effective approaches that incur only little
overhead so that performance is almost optimized for
free. Our simulation results indicate that under a
wide range of requirements, Performance can be
considerably improved by modifying the underlying
structure to support the ring configuration.

1. Introduction
High data volume in various fields like the Internet, Web
and data warehouse has dramatically increased the need
for efficient and flexible mechanisms to provide high
performance in parallel database systems. Added to its
scalability and cost, shared-nothing architecture is one of
the attractive approaches for high-performance database
systems [8]. However unlike other architectures, e.g.
shared-disk, it suffers from the load (heat) balancing
problems, where load balancing is difficult to achieve
because it relies on the effectiveness of database
partitioning for the query workloads [8] . Thus for efficient
processing, data are typically declustered and indexed
across the system processing elements (PES), however,

access patterns are inherently skew that can lead to
performance bottleneck as some PES become hotspot
while many other PES are cold (idle). Therefore, data
reorganization among the PES is essential and should be
done online for optimum system performance. While data
are being reorganized, the corresponding indices have to
be modified as well; thus online data reorganization
should also satisfactorily deal with the index modification
[1,2,3,6]. We follow this direction and we base our
strategy on minimizing costs of modifying indices.
We ideally seek an online reorganization strategy that not
only does good heat balancing, but also minimizes the
reorganization costs in the event of reorganization. Here,
reorganization cost is defined as the amount of data (and
the related objects, e.g. indices) that must be reorganized.
Minimization of reorganization costs is an important goal
especially when the reorganization has to be performed
online, since the amount of data to be reorganized
generally determines the duration of the reorganization,
which in turn determines the time that concurrent
operations experience degraded performance. A very
effective way of reducing the duration of reorganization is
to minimize the amount of data to be reorganized [I] .
We assume that data are initially range partitioned across
the PES so that a parallel access method can be easily
implemented as well as a heat-balancing facility can be
employed in a system. However, i t imposes restrictive
rules at the edge PES (the rightmost PE and the leftmost
PE), where the rightmost PE can only migrate data with
its left neighbour and the leftmost PE can only migrate
data with its right neighbour. Such restrictions can lead to
high reorganization costs that degrade performance for
concurrent operations. And it can lead to performance
dependency on hotspot locations in a system [2]. By
relaxing such restrictions as supporting migration between
the edge PES, it increases migration freedom in a system
and it creates a good chance to minimize reorganization
costs. Because migration can be wrapped around at the
edge PES we refer to this configuration of migration under

190
0-7695-0996-7/01 $10.00 0 2001 IEEE

http://tk1.iis.u-tokyo.ac..jp

the range partition strategy by the ring configuration.
Allowing the ring configuration in a system and
preserving the partitioning strategy in the same time leads
to modify the underlying structure, which in turn imposes
additional goal to minimize such modification cost so that
the ring would be more feasible for online reorganization.
In this paper, we propose a new strategy called RING that
utilizes the ring configuration to achieve more efficient
online data placement reorganization in shared-nothing
environments. The strategy basically extends the existing
ones, e.g. [2,3], in several points. First it modifies the
underlying structure to support the ring configuration with
almost negligible cost, so that if the ring will lead to better
performance, the performance is almost improved for
free. Second it introduces a new heat-balancing algorithm,
called 2-bag, that can distribute a given heat among the
PES, as evenly as possible and as fast as possible, if so is
required. The main mechanism of the algorithm is
motivated to minimize reorganization costs under a given
performance requirement. The strategy is further
supported by parameters that can be tuned to cover a wide
range of performance requirements in terms of
distributing accesses among the PES, and, partitioning
reorganization jobs which indicates the speed for a system
to adapt itself to an access pattern. Third as a result of
minimizing reorganization costs and increasing migration
freedom in a system, RING can remove the dependency
of reorganization costs on hotspot locations in a system.
So that performance during reorganization is mainly
correlated to an access pattern’s skew rather than to its
skew and its favourite locations in a system. Through
simulation studies, the conduct results prove that
performance can be considerably improved by modifying
the underlying structure to support the ring configuration
The rest of the paper is as follows. Section 2 discusses the
related work. Section 3 describes the underlying index.
Section 4 presents the ring configuration in terms of its
costs and benefits for online reorganization. Section 5
introduces the 2-bag algorithm. Section 6 reports our
experimental study. Section 7 considers our remarks for
future work, and finally, we conclude the paper.

2. Related Work
Recently, researchers have noted the advantage of online
reorganization that can provide high performance
database systems. In [5] , they present online efficient
methods for the dynamic redistribution of data, however,
they do not consider index modification while
reorganization. In [4], they outline the issues involved in
changing of all references to a record when its primary
identifier is changed due to a record move. The
techniques of [4,7] are proposed for centralized DBMS
and require the use of locks, where using locks during
reorganization can degrade performance significantly [11.
In [l] , they present two elegant alternatives for

performing the necessary index modifications, called
OAT page movement and BULK page movement.
However, the underlying structure is B+-tree that can lead
to a considerable cost while modifying indices [2,3,6].
By modifying structure and supporting bulk migration, in
[6] they use the Fat-Btree structure that can minimize
index-modification costs. However, their objective is to
balance the number of pages across the PES (space
balancing) rather than heat balancing. Access pattern
skew can lead to performance bottleneck even though
there is a space balance in a system [3]. The techniques of
[2,3,6] are based on the linear configuration that can lead
to high migration workloads and performance dependency
on hotspot locations. In contrast, we propose the ring
configuration by which migration workloads are
minimized and performance can be improved.

3. The Underlying Index
Data are initially range partitioned across the PES so that
the access method can associatively access data for strict
match queries, range queries and cluster data with similar
values together. Such partition allows reductions in
redundant I/O operations, and introduces inter-operation
parallelism as well as intra-operation parallelism. One
solution to associative access is to have a global index
mechanism. Conceptually the global index is a two-tier
index; the first-tier index directs the search to the PE
wherein the data are stored, and the second-tier index
directs the search to the data pages wherein the records
are stored. The non-overlapping data partitioning gives
also non-overlapping indices so that the first-tier index
can be easily implemented as a partitioning vector, with
entries number equals the PES number. To ensure that
there is no central PE, the first-tier index is further
replicated in all the PES [3].
Using a B-tree based index enables more efficient
processing of range queries than a hashed index. Thus the
second-tier index is a collection of aBtrees [3], one at
each PE; each aBtree independently indexes its data. An
aBtree is a variant of Btree, where its root node can be a
fur node, i.e., for a Btree of order d, and maximum of 2d
entries, the root node can contain more than 2d entries.
This property of aBtrees gives the ability to design a tree
with a predefined height while inserting keys in the tree.
We design the tree height to be the same across the PES so
that the amount of data to be migrated corresponds to the
entirety of one or more branches of the Btree at a source
PE. The attachment of branches at a destination tree and
detachment these branches at a source tree are essentially
pointer updates instead of updating the whole trees (or
some of their nodes) by inserting/deleting the keys of the
migrated data one at time, e.g. the OAT technique [l] .
This minimizes the required U 0 cost to modify the
structures, which in turn speeds up migration issues in a
system. Such bulk migration does not change the tree

191

structure, but it causes an update in root nodes of Btrees at
a source and a destination PE, which requires the first-tier
index copies to be updated. This is can be done in a lazy
manner by piggybacking update messages onto messages
used for other purposes [3].

4. The Ring Configuration
Since data is range partitioned across the PES, we can
only move data from one PE to its neighbors PES that
hold the preceding or succeeding ranges. The edge PES
violate this rule, where the rightmost PE that can only
migrate data with its left neighbour and the leftmost PE
that can only migrate data with its right neighbour. We
always refer to this data partition with its possible
migrations as the linear configuration.

Thr 1lnew mnr$ur.uon

e @ -2-.->- rdd,tdlacent ranges

PE -2

Figure 1: (a) Configurations (b) Index structure at
a PE holding 2-key ranges (2 trees).

In the event of migration, it has been observed that the
PES can be logically configured into a ring rather than a
linear set, and meanwhile, it is possible to preserve the
assumed partition strategy. So that migration can be
wrapped around at the edge PES and data can be migrated
without restrictions at these PES. It establishes a fair rule
at each of the PES, each has exactly two neighbors, and it
gives a good chance to minimize migration workloads and
improve performance. However, the edge PES, which are
ring neighbors, hold non-adjacent trees that may
disorganize the structure during migration. Allowing these
PES to hold two trees instead of only one can protect the
structure at these PES from any disturbance that may
occur during migration. Permitting only non-adjacent
trees at these PES is not sufficient since as migration is
taking place, those non-adjacent trees can be occurred at
any other PE. We consequently support this modification
of holding “two trees” at each of the PES. The location of
the non-adjacent trees is dependent on migration decisions
that have been done so far. But, if there are non-adjacent
trees at some PE, then the structure at any other PE should
be abstracted by only one tree. Therefore, this
modification, in its worst case, will lead to N+1 trees in a
system instead of N trees as in the linear configuration,
where N is the PES number. The corresponding cost is
equivalent to that of adding one tree to a system. Since the
underlying index is based on the aBtree structure, which

basically supports a root node of multiple pages, ‘Ifat
root”, thus the implementation of holding two trees at a
PE can be easily achieved without additional overheads,
see Fig. 1 . In Figure 1 the encountered root is a 2-page
root each page corresponds to one tree. The structure does
not change too much but this modification actually
exploits its support for data reorganization. We always
refer to this modification with its possible migrations as
the ring configuration.
To demonstrate the effect of holding two trees at a PE,
assume we have 4 PES with the following key ranges:
PE0 is assigned to hold 1-25, PE1 26-50, PE2 51-75, and
PE3 76-100. If PE0 is hotspot, then we have the freedom
to migrate heat (data) with some key range, say 10-25, to
PE1 or to migrate heat of other key range, say 1-15, to
PE3. If for some reason we select the key range 1-15 for
migration to PE3, then PE3 will hold two key ranges, one
adjacent range to PE2, 76- 100, and the other is a non
adjacent range, 1-15. Migration of key range 1-15 to PE3
should be reflected on the first-tier copies. Inserting a new
entry into the first-tier copies can reflect such change so
that the future search for that range will be directed to
PE3. The cost of inserting a new entry into the first tier
copies is equivalent to that of updating them, which is
normally done after acknowledging every migration in a
system. Thus the effect of having two trees at a PE has
zero cost on updating the first-tier copies. Meanwhile, if
after some interval of time PE3 becomes hotspot and PE0
becomes cold, then PE3 can migrate data of its key ranges
to PEO. It is possible to reunion the whole key range (1-
15) with that of PEO, or some part of it or all of it plus
other key range that originally belongs to PE3, say 90-
100. The range itself is dependent on the heat to be
migrated from PE3 to PEO, but the example demonstrates
the dynamic processes that can be occurred in the ring
configuration during migration. The location of the
nonadjacent trees is dynamically changed, and the number
of entries of the first-tier index (at any copy) is
dynamically alternated between N and N+1. The
maximum of this alternation will never exceed N+1 since
there is always two nonadjacent ranges as configuring a
linear set of key ranges into a ring as shown in Figure 1.
Modifying the structure implies also modifying all
procedures that deal with search operations and migration
issues. It has been found that the upgrade code for that is
simple and straightforward. Figure 2 gives an example for
an upgrade code to extracts a required heat from a source
PE in the ring configuration using that of the linear one.
Although its effect may be imagined as adding a new PE
to a system but modifying the structure to support the ring
configuration incurs less cost and it is almost negligible.
To show the gain we achieve from this modification,
assume first that it is required to have a smooth heat
distribution among linearly configured PES. So that
migration can be cascaded from the hotspot PE to the

192

coldest PE which can be several PES away (in ripple
ways). This ripple migration can lead to high volumes of
data movement which in turn degrades performance as
many PES are involved in migration issues. For example,
assume a system of 8 PES with; PE0 is the hotspot and
PE7 is the coldest PE. To satisfy the given smooth
requirement, PE0 migrates data to PEl , which in turn
migrate data to PE2, this expensive process could be
repeated until some hot data being reached at PE7 as
shown in Fig. 3. However, with ring configured PES it
would be easy to migrate directly hot data from PE0 to
PE7, and thus saving a lot of migration jobs at the mid-
PES, which certainly will be reflected on the performance.
This will be more beneficial in systems of large size of
PES working under highly skew environments, where
migration workloads are proportionally related to the
amount of data (heat) to be migrated, and, the number of
the PES that should be involved in migration issues.
Linear-GetHeatFromTree(PEs, TreeNo, Heat)
return all index branches that correspond to Heat
int FindAdjacentTree(PEs, DestRange)
N for every tree at PES find the minimal adjacency with the
// DestRange and retrun the corresponding tree no.
RingGetHeatFromPE(PEs, DestRange, Heat)

HeatType H=O;int TreeNo;
TreeNo=FindAdjacentTree(PEs, DestRange);
while (H<Heat) (

H+ = Linear-GetHeatFromTree(PEs, TreeNo, Heat);
TreeNo=l-TreeNo;) //get the other tree, if there is.

return All index branches to be migrated.
Figure. 2: Upgrade code, an example.

Thc h<r lspol PH T h e coldest PE

Figure 3: Ripple migrations in the linear
configuration, an example

1 2
Hotsoot location

Figure 4: Effect of hotspot locations, an example.
It has been observed that because of its inflexibility at the
edge PES, the linear configuration can lead to migration
workloads that are dependent on hotspot locations in a
system. If the hotspot occurs at the edge PES, it would be
more costly than that if it occurs at some other locations,
e.g. at the middle. This dependency dominates the system
performance during reorganization. Ideally, performance

during reorganization should be correlated to skew of
access patterns rather than to their skew as well as to their
favourite locations in a system. We generally cannot
predict where will hotspots occur? But we can support a
system by an inexpensive mechanism to remove such
unfavourable effect. To demonstrate this point, assume a
system of 4 PES and a heat distribution (100,200,300,400)
that can be assigned to the PES with the following
combinations; [(400,300,200,1 00), (100,400,300,200),
(200,100,400,300), (300,200,100,400)]. The first distribution
represents the hotspot at PEO, while the second represents
the hotspot at PEl , and so on. Assume further, it is
required to balance the system so that each of the PES has
250 (average heat). Approximating the migration
workload by migration workload = heat to be migrated
can give some insight to the problem. Fig. 4 shows the
resulting migration workload against the variation of the
hotspot location in the given distributions. It shows that
there are hotspot locations that give the minimal
workload, e.g. hotspot at PE1 and at PE3. It also gives
some information about the percentage of the maximal to
the minimal workload, which is 250 %. This high
percentage enhances our objectives to remove or reduce
such effect that mainly occurs because of the migration
restrictions at the edge PES in the linear configuration.
The ring configuration relaxes such restrictive migration
by supporting migration between the edge PES. It can be
imagined that under each of the given distributions we can
track the change in the hotspot location so that the given
distribution can be mapped (arranged) into the linear one
that gives the minimal workload.
This mapping can be viewed as virtually cutting the ring
at some proper point so that it converts the given ring into
the linear set that gives the minimal workload. For
example, consider the distribution of (PEk400, PE1=300,
PE2=200, PE3=I 00) with the ring configuration. By
preventing migration (or virtually cutting the link)
between PE0 and PEl , i t converts the ring into the linear
one of (PE1=3OO, PE3=200, PE3=100 PEk400). Its
migration behavior is equivalent to that of
(300,200,100,400) in the linear configuration, which gives
the minimal workload as shown in Figure 4. By applying
this cutting technique on each of the given distributions,
the figure shows the ring configuration can remove the
workload dependency on the hotspot location in the given
distributions, and thus it can save a lot of migration
workloads that may be done if the configuration were
linear. Apart of its complexity (as exhaustively search for
the proper cut), the cutting technique generally does not
give the minimal workload because it is possible to obtain
such minimal without need to prevent migration between
two PES in a system. But, we use it for demonstration and
to give some insight to the balancing problem in the ring
configuration, which is covered in the next section.

193

5. Heat Balancing: The Two-bag Algorithm
In this section, we present a new standalone heat-
balancing algorithm to extract migration decisions that
minimize reorganization costs for a ring-configured
system. First we present the problem then we discuss the
details of the proposed solution.
5.1 The Problem and The Solution Strategy
We are given N ring-configured objects, e.g. PES or disks,
their heat distribution, and a performance requirement is
represented by parameters 6 and a. The parameter 5
represents a requirement for heat distribution, so that the
heat at each of the PES is no more than a threshold heat,
where the threshold heat = (l+E,) x average heat. The
parameter a, 05 a 5 1, represents a requirement for the
required speed (steps) to adapt a system to an access
pattern, i.e. how many steps (=l /a) are required to
balance a system [3]. The problem is to find migration
decisions that are required to satisfy the requirement (E ,
a) on the given ring with the minimal migration
workload. Clearly, the problem belongs to the
optimization problems and it can be solved using a greedy
mechanism. A solution can be found if we succeed first to
answer the following simple questions:
(1) At which object we should start balancing’?
(2) If we succeed to select some objects as a starting

point, then, how can we progress this selection to
cover more objects, so that the system is heat-
balanced by the minimal migration workload.

The initial objective for any heat balancing should
intuitively focus first on the hotspot object, where the
performance degradation comes from. Since it is required
to include a threshold requirement, then i t would be better
to ensure that the hotspot object is being covered by any
possible solution. We therefore select the hotspot object
as a starting point. Then there will be a local requirement
to migrate its excess heat (its heat - threshold heat) to
one/both of its ring neighbors. Hence the second question
comes, which neighbor we should select, the clockwise or
the anti-clockwise neighbor or both of them? We select
neighbors that lead to minimize migration workloads.
Accordingly, we use migration workloads as an objective
function that to be minimized while balancing a system.
Since the migration workload is proportionally related to
the heat to be migrated, we therefore evaluate it by;
migration workload = heat to be migrated, so that i t can be
simply evaluated from the given distribution. Given this
simple strategy, we must translate it into code. To
simplify matters, in the next subsections we first consider
the solution for (E , 1) requirements, then we will
generalize it for (6, a) requirements.

5.2 Definitions and Mechanisms
I- Marked-arc: is the arc that connects all the selected
objects (PES) so far. The Initial marked-arc = (the hotspot

PE) . As selection is taking place, the arc is dynamically
expanded, by including more PES, in the directions that
minimize migration workloads. During the course of the
algorithm, the PES may be thought of as divided into three
categories as follows (see Fig. 6). (a) Marked PES: PES
that belongs to the marked arc constructed so far. (b)
Fringe PES: not in the marked arc, but adjacent to some
PES in the marked arc. (c) Unseen PES: All others. If a PE
belongs to fringe or unseen PES, we refer it as unmarked
11- Heat Requirement (HR): it represents the amount of
the excesdmissing heat that required for balance a current
marked-arc. Since a marked-arc has two ends, then there
will be generally two heat requirements that have to be
satisfied. Its two ends (Endl and End2) and its heat
requirements (HRI and H R 2) can represent a marked-arc
by a structure of components (Endl , End2, H R I , HR2) .
Each H R has the corresponding cost to satisfy it. If a
marked-arc has one (or both) of its end has (have) zero
heat requirement(s), it means the given arc is already
balanced at such end (ends) and thus the corresponding
cost(s) will set to zero.

Figure 5: Notations of the 2-bag Mechanism
111 - 2-bag Mechanism: A Heat-collection Mechanism
While constructing a marked-arc, we have to satisfy its
heat requirements (HRI and H R 2) and evaluate their cost.
The procedure to satisfy one HR with minimal workloads
can be abstractly formulated as collecting this HR from
the nearest unmarked PES that minimize workloads,
which is equivalent to attaching some unmarked PES to
the encountered marked-arc. Since a ring gives the chance
to simultaneously collect heat from both ends of a
marked-arc, we introduce a mechanism, called 2-bag, that
utilizes this property of a ring to satisfy a HR. The
collection is done through two bags, one for each end of a
marked-arc, each bag has the following structure:
typedef struct
(PeType Pointer; // a pointer to the current unmarked PE.

Direction; I / clockwise or anti-clockwise
Collected; I/ collected heat so far
Excess; N the accumulated excess/missing heat.
Workload; // migration workload evaluation.

Activity; // 1 active, 0 reset.

DirType
HeatType
HeatType
CostType
DecsType *Decisions; // migration decisions
FlagType

) HeatBagType;
The “ P ointer” component points to the current unmarked
PE during heat collection, while the “Direction” gives its
advance direction (clockwise or anti-clockwise). The
component “Collected” indicates the collected heat by a
bag to satisfy a H R . During traversing the unmarked PES,
the accumulated excess-heat at the current PE is

94

calculated by, Excess +=(Heat(PE)- threshold heat). The
function of this component is as follows, if we accept the
collected heat of a bag, we can simply generate a new heat
requirement for the corresponding end of a marked-arc
by, HR= - Excess of that bag. The “Workload” component
evaluates the migration workload while collecting heat
using the mentioned workload function, it also indicates
the less expensive (lighter) bag. The “Decisions”
component traces all the steps to collect the heat denoted
by “Collected”. The “Activio” indicates that if the
corresponding bag is active or not.
Assume a marked-arc, a heat requirement HR, and two
bags, one for each of its ends. One bag collects heat from
the fringe PE of Endl towards End2 of the marked-arc,
while the other collects from the fringe PE of End2
towards Endl , see Figure 5 . Note that the bags’ pointers
are synchronized in their advance to discover the nearest
unmarked PES that minimize workloads. As heat is being
collected, we can accept one of two bags or both,
depending on the sign of the “Collected” component at
each bag and that of the current HR by the following
acceptance rule:
If sign (This.Collect) == sign (H R)

If sign (Other. Collect) == sign (H R)
If I H R I >= I This.Collected + 0rher.Collecred I accept both
Else accept the bag that has the minimal workload.

Else accept This.
Else reset This.
This rule ensures that the current marked-arc is expanded
as selecting its nearest unmarked PES that can balance it
with minimal workloads. Once a bag’s collection has been
accepted, the current HR is updated accordingly and the
corresponding migration decisions referenced by
“Decisions” are stored as well. The collection procedure
will terminate once the current HR becomes zero or there
is no benefit to collect more heat.
While heat is being collected and as a result of the
opposite movements of the bags’ pointers, it is possible
that the pointers collide at some PE, which can lead to
invalid collection. However, we solve this problem by
providing a locking mechanism, and, an activity-resetting
mechanism. The locking mechanism ensures that any
amount of excess/missing heat at an unmarked PE is
being considered by only one bag and thus there is no
multiple consideration for any amount of heat. The
activity-resetting mechanism gives the possibility to
minimize workloads as collecting heat by only one bag
instead of two. The mechanism detects whenever bags’
pointers collide, then it checks for a bag that have to be
reset, by applying the above acceptance rule that also
gives the bag to be reset, if there is. If so it resets the
proper bag to its last accepted state and unlock the way
for the accepted bag to continue its traversekollection.
This also gives the possibility to minimize workloads
without essence to synchronize the pointers’ advances.

Both mechanisms ensure that heat is collected with
minimal workloads and without contradictions that may
be occurred as a result of two opposite moving pointers.
5-3 The Algorithm
The algorithm starts by picking up the hotspot PE from
the given ring. If one or both its neighbors are hotspot too,
then they virtually combine into one hotspot PE. This
hotspot PE has only one heat requirement, HRO= Heat
(the hotspot PE) - threshold heat, that can be satisfied
through the 2-bag mechanism.. The 2-bag mechanism
generates a new marked-arc with two heat requirements
(HRI, HR2). Each requirement can be satisfied using the
2-bag mechanism again, thus the algorithm constructs two
marked-arcs, one corresponds for each requirement. To
further minimize migration workloads, it accepts the
marked-arc that has the minimal workloads. If a marked-
arc has only one HR = 0, then it only considers the other
HR. As accepting a marked-arc it generates new heat
requirements by which the process can be repeated again
until there is no more requirements. The algorithm
terminates whenever the set of the unmarked PES is
empty, or, all of the unmarked PES are not hotspot.
While constructing a marked-arc, it is possible to obtain
one that has zero HR at its both ends and the algorithm
termination is not satisfied. It means the encountered
marked-arc is heat-balanced, we therefore store it and
construct a new one from the current unmarked PES by
picking up their local hotspot PE and repeating the whole
procedure until the algorithm termination is reached.
Therefore, the algorithm output is generally a set of
marked-arcs, each marked-arc has the required decisions
to balance it with minimal workloads.
If all decisions generated so far are issued then they
balance the system according to the parameter 5 and in a
one step (a=l). This one-step reorganization implies that
it does the whole work in a short time, which may be
relevant for some applications, e.g. WWW servers, or
irrelevant (or harmful or expensive) for the others.
Representing a migration decision by Source, Desrinarion,
and RequiredHeat components, and normalizing every
“RequiredHeat” component by “a* RequiredHeat”, we
can additionally introduce the speed effect while
reorganizing a system [2]. So that the overall
reorganization is partitioned into l/a parts (steps), each
part can be separately issued to the system at some
appropriate intervals or even in periodic ways. This
Partitioning gives incremental reorganizations, where
their steady state conditions are identical to that of one-
step reorganization. Both parameters 6 and a give the
ability to cover a range of performance requirements in
terms of distributing jobs among the PES and controlling
the system speed to adapt itself to access patterns. Figure
6 shows the general structure of the 2-bag algorithm with
its two main parameters 5 and a.

195

The algorithm could be generally used to balance N ring-
configured objects with minimal costs regardless of the
assumed migration unit. In the next section, we adapt it
for the ring configuration with an index branch as a
migration unit over shared-nothing parallel machines.

Parameter
System Parameters
Number of PES in the cluster
Network bandwidth
Time to redwrite a data page
Database Parameters
Number of records
Index node size
Data page size
Query Parameters
Zipf distribution decay factor
Mean arrival rate
Mean service time
Others
The hot-spot location
Speed parameter (a)
Heat distribution parameter (5)

Procedure FitSpeedRequirement (a)

Procedure NewMarkedArc(\)
For E in migration decisions do E.RequiredHeat *= a.

Pick up the local hotspot PE and initiate a marked-arc;
HRO = Heat (local hotspot PE) -Threshold heat (6)

4lgorithm: TwoBags(a, 6)
HRO=NewMarkedArc(\)
while “it does not terminate” do

Apply 2-BagMechanism (HRO) and check termination
For HRi in (HRI, HR2) do 2-BagMechanism (HRi)
Accept the marked-arc that gives the minimal workloads.
If (marked-arc has zero requirements) NewMarkedArc(E,)

FitSpeedRequirement(a)

Figure 6: The general structure of the algorithm.

6. Simulation Result
In this section, we describe our experiments to study and
validate the performance of our strategy for online data
placement reorganization. We evaluate the system
performance in the linear and the ring configurations,
where the metric used is the impact on the system
migration workload and response time during
reorganization. Table 1 shows the major parameters and
their used values.
We first create an initial aBtree with the tuple key values
generated using a uniform distribution (space balance).
Then we generate range queries using Zipf distribution,
the queries are generated with skew defined by the decay
factor (T) of Zipf distribution. Thus, there are more range
queries are issued at one PE than the other PES depending
on T. This heat skew initiates the migration of branches
among the PES, depending on the given requirement. We
select one-step reorganization, a= 1, as default
requirements with a relatively high skew of ~ = 0 . 3 to show
in addition the worst cases (and the effects) of fast
reorganizations. We model each of the PES as a resource
and the queries as entities. We assume that heat balancing
is done in centralized scheme and it is checkedlinitiated
every 100 x N queries, where N is the PES number. If
there is a need for data reorganization we extract the
required migration decisions using the algorithm of [2] in
the linear configuration while the 2-bag algorithm in the
ring one. We express the system migration workload as
the accumulation of the individual migration workload at
each of the PES. We express the PE migration workload
as the accumulation of time intervals in which the given
PE is involved as a source or as a destination.
In the first set of experiments, we study the configuration
effect on migration workloads. To visualize migrations
among the PES in both configurations, we record the PE

Default values I variation

16 132.
120 Mbits1s
8 ms.

1 million,
.4KB, key = 4 byte.
4KB.

0.3/ 0.1 -+ 0.9.
20.0 1 8.0 per second
500 ms.

01 0 -+ 15 for 16 PES.
11 {O, 116, 118)
0.11 0 -+ 0.5

migration workload in each configuration as shown in
Figure 7. It shows the ripple migration effect on both
configurations that gives bell-like curves with local
maximum at some PES, e.g.. PE4 in the linear, and, PE4
and PE15 in the ring one. It shows also the added
capability at PEO, the hotspot, to migrate its excess heat to
other PES through PE15. Therefore, workloads at the mid-
PES are greatly reduced, compared to that of the linear,
and the system migration workload is reduced
accordingly. As shown because of the given 6, some PES
have zero workloads, e.g. from PE12 to PE15 in the linear
and from PE7 and PE12 in the ring one, where their
resulting heats are less than the threshold heat.

Table 1 : Major parameters and their used values.

With the ring one, there are workload increments at some
PES, e.g. at PEO, PE13, PE14 and, PE15. The increments
at PE13, PE14 and PE15 do not have the considerable
effect on the performance because all of these PES are
almost idle (cold) before reorganization, see their
workloads in the linear configuration. But, the workload
increment at PEO, the hotspot, can not be ignored and it
certainly degrades its performance during reorganization.
Such increment can not be avoided because otherwise the
migration workload will not be minimized. It occurs
because the excess heat at PE1 is migrated to other PES,
e.g. PE13 and PE14, through PE0 and PE15 so that the
given 4 requirement is satisfied across the PES.
Studying the migration behavior of the hotspot PE in the
ring configuration shows that it is involved in the ripple
migrations of (PEl+PEO+PE15 + ..) by which it is
involved as a source and as destination in the same time
(in the same sequence of decisions [2]). A similar
situation occurs in the linear but at another PE, PEl ,
which is involved in the ripple migrations of
(PEO+PEl+PE2-+ ..). To some extent, these similar
situations give nearly similar migration workloads at PE 1
in the linear, and, at PE0 in the ring, see Figure 7.
Therefore, the workload of PE0 in the ring configuration

196

could be occurred in the system regardless of the used
configuration. Furthermore, it is also possible to have a
heat distribution that leads to migration decisions in
which the hotspot of the given distribution is involved as
a source and as a destination in the same time, regardless
of the configuration. For example assume 4 PES are
linearly configured with the following heat distribution
(PE0=50, PE1=400, PE2=300, PE4=250), so that each PE has
250 unit of heat after balancing. The corresponding
migration decisions gives the hotspot PE, PEl, as a source
for the decision PE1 +PE0 of heat =200, and in the same
time as a destination, for the decision PE2 -+PE1 of heat
= 50. Thus the ring configuration does not introduce a
negative effect, as it increases the hotspot workload.
Regardless of the used configuration in section 7 we
present one solution to improve performance of a hotspot
PE that has conditions of migration workload and arrival
rate similar to that of PE0 in the ring configuration.
Figure 8 compares the sensitivity of the system migration-
workload to 5 parameter in both configurations. It shows
the migration workloads saving in the ring configuration
to fit 5 requirements, e.g. i t saves about 350% for 5 0
requirements. As 5 increases the saving decreases until
the configuration (reorganization itself) does not have the
great effect on the system performance, where the
performance degrades as 5 increases.
To evaluate the influence of the hotspot location on
migration workloads, the query set is designed so that the
hotspot location can be changed from 0 to N - I , so that a
query set (i), i= O , l , .. , N - 1 , represents the hotspot at the
PEi. Figure 9 shows the system migration workload for
each of the query sets in both configurations. As expected,
migration workloads in the linear configuration are
dependent on hotspot locations. It shows that the approach
of minimizing migration workloads, which is employed in
the ring configuration and the 2-bag algorithm, is efficient
in removing such dependency. Consequently migration
workloads are mainly correlated to access patterns' skew
rather than to their skew as well as to their favorite
locations in a system. The figure also shows that the
percentage of the maximal workload in the linear to that
of the ring is about 320%, and, the average saving in
migration workloads is about 163 %.
To study the average saving in migration workloads under
different environments of access patterns and hotspot
locations, we repeat the pervious experiment under a
range of the skew factor (7). However, to cover a range of
z the experiment is conducted with; a low arrival rate of 8
queries/sec, and, migration is initiated to fit the 5
requirement regardless if there is a steep degradation in
the system response or not. Figure 10 compares the
system's average migration workload in both
configurations. It shows the ring capability to save a lot of
migration workloads, and this capability is proportionally

related to z. To demonstrate scalability in the same time,
we repeated this experiment over a cluster of 32PEs. As
the number of PES employed is increased, the
reorganization costs is increased proportionally, and more
saving in such costs can be achieved by the ring
configuration as shown in figure. The experiment proves
that the ring is more reasonable in its reorganization under
a wide range of working environments.
To reflect the ring effect on the system performance, we
observe the system average response without migration,
and, with migration in both configurations. Figure 11
traces the system average response during reorganization.
It basically affirms the effectiveness of data
reorganization, in general, and heat balancing, in specific,
in correcting the performance degradation that can be
occurred as a result of access skew. And, it shows the
effectiveness of the ring configuration in improving the
system performance during reorganization. Since both
configurations do the same heat balancing under the given
requirements, however, the amount of data to be
reorganized is different which in turn determines the time
that concurrent operations experience degraded
performance. As shown, it gives better performance in
terms of the fastest response for users' queries and the
fastest speed for the system to adapt itself to the given
access pattern. This better performance can be viewed as
achieving a new upper-limit of the system adaptation
speed, which is not easily achievable with linearly
configured systems because of their high reorganization
costs. This performance can be also achieved regardless
of the hotspot locations of the access pattern.

7. Discussion and Future Work
In this section, we discudextend the experimental results
of section 6 as well as we cover our future goals.
Under fast reorganization requirements, the potential
possibility of high migration workload at a hotspot PE in
both configurations (e.g. consider Figure 7 and PE0 in the
ring) leads to consider some local optimization techniques
at this PE to hide (absorb) its high workload from its
performance. One of these techniques is based on
scheduling migration decisions in which this hotspot PE is
involved. For example, issuing first the decisions in which
the hotspot PE is a source (e.g. PEO-+PEl5 in the ring)
and postponing the ones in which this PE is a destination
(e.g. PEl+PEO in the ring). Then, once its response
becomes within some accepted level, the postponed
decisions can be considered later. Applying this simple
scheduling technique on PE0 in the ring, Figure 12 shows
that the hotspot response in both configurations can be
brought to similar levels of performance and therefore its
workload increment has been hidden from its
performance. Figure 1 1 also reflects this effect on the
system response time, which is not equivalent to that
effect at the hotspot PE because the system response is

197

already improved by the ring effect (as minimizing
migration workloads in a global respect). Although the
above technique is simple and sufficient but more
research is required to generalize it in cases of multiple
hotspot PES having similar conditions to that of PE0 in
the ring. In a future work we intend to consider that as
well as to exploit more local optimization techniques to
optimize performance.
Studying of figures 7, 11, and 12 shows that the
effectiveness of minimizing reorganziation costs in
improving not only the average system performance but
also the performance at each of the PES during
reorganization which is quit fair for all of the system’s
users during reorganization. This is not easily achievable
with the linear configuration because of high migration
workloads at many PES. Fast reorganizations with the
linear configuration improve the hotspot performance as
fast as required but in the same time they degrade the
performance at many PES as well. Users during steady
state conditions (after reorganization) are the luckiest ones
but most of users during reorganization form a dark
picture of victims for fast reorganizations, e.g. users of
PE0 - PE8 during reorganization. This picture is
distributed across many PES in the system, which in turn
limits the possibility of using some local optimization
techniques to improve performance during reorganization.
However with the ring only PEO’s users during
reorganization represent the real victims in correcting the
system degradation as fast as possible. Since there is only
one PE, or generally a few of PES, at which performance
degrades, thus performance can be more improved by
local optimization techniques as shown in Figure 1 1.
Tuning the parameter cx in its global respect can control a
system reaction to an access pattern at a desired level.
Figure 13 shows this ability, where a=O represents
performance without reorganization, and, 0 < a I 1
represents performance with incremental reorganization
of steps = l/a. We plan automatically tuning this
parameter according to dynamics of access patterns in
both local and global respects. So that performance can be
optimized over a wide range of access dynamics.
Due to its high cost, it may be even more desirable to
operate the system in skew conditions than to perform the
required data reorganization. For example, in Bubba [8]
the system estimates the data reorganization cost and
decides whether to tolerate the skew condition or to
perform the required data reorganization. To demonstrate
such tradeoff in terms of the 5 parameter, we measure the
system average response in the ring configuration under
various values of 5. Figure 14 shows the obtained results,
which affirms that as 5 increases, reorganization cost
decreases and the performance degrades accordingly.
Under the given condition of skew and arrival rate,
performance/reorganization tradeoffs of 5 10.5, are

inefficient in correcting the system degradation because
the resulting reorganizations are not sufficient for the
given condition. The system should be more reorganized
by decreasing the value of 6 up to the most inexpensive
level, which means there is a critical value of 6 at which
the amount of data to be reorganized is quite necessary
and sufficient to keep performance within some accepted
levels. More investigation is required to explore a general
methodology by which such critical 5 can be determined
under a given condition of skew and arrival rate.

8. Conclusion
Data placement reorganization in parallel database
systems is a critical factor in determining performance.
Given the dynamic nature of access patterns, the optimal
placement of relations will change over time and this will
necessitate some reorganization to maintain the system
performance at acceptable levels. In this paper, we
focused on one particular aspect -namely, how does the
choice of a migration configuration affect the subsequent
reorganization costs in parallel databases? This is an
important practical issue since the amount of data to be
reorganized directly affects the duration of the online
reorganization, which in turn determines the duration over
which concurrent operations experience degraded
performance due to contention with the reorganizer. We
have developed an online data reorganization strategy
over shared-nothing machines. It demonstrates that
modifying the underlying structure to support the proper
configuration is efficient in optimizing the system
performance. Apart from complexity, simulation is
chosen at first to gain some quantitative insight into the
performance of our strategy. Developing strategies that
automate data reorganization and minimize its subsequent
costs is a crucially important problem. We believe that
this paper is a promising approach to solve this problem.

References
1. Achyutuni, K.J., Omiecinski, E., and Navathe, S.B. Two Techniques
for On-line Index Modification in Shared Nothing Parallel Databases.
Procs ACM SIGMOD 1996, 125- 136.
2. Feelifl, H., Kitsuregawa, M., and Ooi, B.C. A Fast Convergence
Technique for Online Heat-balancing of Btree Indexed Database over
Shared-Nothing Parallel System. LNCS, DEXAOO, pp. 846-858, 2000.
3. Lee, M.L., Kitsuregawa, M., Ooi, B.C., Tan, K, and Mondal, A.
Towards Self-Tuning Data Placement in Parallel Database Systems,
Procs. ACM SIGMOD, pp. 22.5-236, 2000.
4. Salzberg, B. and Dimock, A.. Principles of Transaction-based On-line
reorganization. VLDB, pp. 5 1 1-520,1992.
5. Scheuermann, P. Weikum, G., and Zabback, P. Adaptive Load
Balancing in Disk Arrays. FODO, 1993
6.Yokota, H., Kanemasa, Y. and Miyaazaki, J . Fat-Btree: An Update-
Conscious Directory Structure. IEEE Data Engineering, 1999,448-457.
7. Zou, C. and Salzberg, B. “On-Line Reorganization of Sparsrly-
Populated B+ Trees”. Procs. ACM, SIGMOD 1996, 1 15-124.
8. Valduriez, P. Parallel Database Systems: Open Problems and New
Issues. Distributed and Parallel Databases 1(2), April 1993, 137-165,
Kluwer Academic Publishers, Boston, MA.

198

Figure 7: Configuration effect on the PES
migration workload

~. .a-. . Linear configuration
.-fling confisuraton

..

0 0. t 0.2 0 3 0.4 0.5
- -

r
Figure 8: Effect of parameter on the system

migration-workload in each configuration.

I 1500 2

t
1

0 2 4 6 8 1 0 1 2 1 4
Hotspot Location at PE

L

Figure 9: The effect of hotspot locations.

. - -+. . Linear configuration-I

.A fling configuration-16

.-$- Linear configuration- - Ring configuration-32

" - "I 0.3 ~ 0.5 0.7

Figure 10: Average migration workloads under a
range of z for clusters of 16 and 32 PES.

25000 -p"- t I

20000

15000

10000

5000

0

.-e- Without m. ration - + -Linear coagiuration

.-Ring configurati
A R i g + local opt1

0 1000 2000 3000 400

Time in sec I
Figure 11 : Effect of heat balancing. li 4

80000

60000

40000

20000

0
0 1000 2000 3000 400

1 lime in sec

Figure 12: The hotspot PE's response.

4

0 4000 8000 120c

Time in sec

Figure 13: Effect of CL parameter in the ring
configuration.

r 20000 r---- ""-------=
---<=lo---,-

--6-+01, '

0 1000 2000 3000 400

T i m in sec

Figure 14: Effect of 6 parameter on the system
average response in the ring configuration.

199

