
An Enhanced Concurrency Control Scheme for Multi-Dimensional Index
Structures

Seok I1 Song*, Young Ho Kim**, Jae So0 Yoo*

* Department of Computer and Communication Engineering, Chungbuk National University
prince@netdb.chungbuk.ac.kr, yjs @cbucc.chungbuk.ac.kr

Technology Labs. Internet Service Department.
kyh05Qetri.re.kr

**
Electronics and Telecommunications Research Institute. Computer and Software

Abstract
In this paper, we propose an enhanced concurrency
control algorithm that minimizes the query delay
effkiently. The factors that delay search operations and
deteriorate the concurrency of index structures are node
splits and MBR updates in multi dimensional index
structures. In our algorithm, to reduce the query delay
by split operations, we optimize exclusive latching time on
a split node. It holds exclusive latches not during whole
split time but only during physical node split time that
occupies small part of whole split time. Also to avoid
the query delay by MBR updates we introduce partial lock
coupling(PLC) technique. The PLC technique increases
concurrency by using lock coupling only in case of MBR
shrinking operations that are less frequent than MBR
expansion operations. For performance evaluation, we
implement the proposed algorithm and one of the existing
link technique-based algorithms on M I D A S - m that is a
storage system of a B A D A - m DBMS. We show through
various experiments that our proposed algorithm
outperforms the existing algorithm in terms of throughput
and response time.

1. Introduction

Multi-dimensional index structures are the hearts of
similarity search systems based on multidimensional
feature vectors search such as CIS, content-based image
retrieval systems, multimedia database system and so on.
For the couple of past decades, various multidimensional
index structures have been proposed, for example R-
Tree[I], R*-Tree[121, TV-Tree[8], X-Tree[l6], SS-
Tree[4], SR-Tree[131, CIR-Tree[6] and Hybrid-Tree[7].
They need concurrency control and recovery methods to
be used for real life applications in multi-user
environments. Consequently, several concurrency
control and recovery methods have been proposed [5, 10,
1 I , 15, 171.

0-7695-0996-7/01 $10.00 0 2001 IEEE

In multidimensional index structures, split operations
need rather longer time than other unidimensional index
structures such as B-Tree and B+-Tree. Generally the
entries of internal nodes are not ordered so calculating
split dimensions and split positions require expensive
costs. Most of existing concurrency control algorithms
for multi-dimensional index structures hold exclusive
locks(x4ock) or latches(x-latch) on the nodes where split
operations are being performed and block search
operations. Split operations ascend index tree to propagate
splits to ancestor nodes and may cause other splits of
ancestor nodes. These split operations are one of the
primary factors that deteriorate the concurrency of multi-
dimensional index structures. Also, minimum bounding
region(MBR) update operations block search operations.
The MBR update of a node is less expensive than a split
operation. However, MBR updates are much more
frequent than split operations so they significantly
deteriorate the concurrency of index structures.

Even though several concurrency control algorithms
were proposed for multi-dimensional index structures,
none of them could completely avoid the query delay.
Actually, it is impossible to demolish the above query
delay completely but we can minimize the query delay.
In this paper, we propose an enhanced concurrency
control algorithm that minimizes the query delay. We
introduce a partial lock coupling(PLC) technique to
decrease the query delay by MBR updates. Also, to
alleviate blocking factors by split operations, we propose
a split method that optimizes x-latch time during node
splits.

The remainder of this paper is organized as follows.
In section 2, we describe and analyze existing
concurrency control algorithms for multidimensional
index structures. We then describe the proposed
algorithm in detail in section 3. In section 4, we perform
experiments to show the superiority of our concurrency
control algorithm and discuss the results of the
performance evaluation. Finally section 5 concludes this
paper.

200

2. Related works and motivations

Several concurrency control algorithms for multi-
dimensional index structures were proposed. They can
be classified simply into Link-based and Lock Coupling-
based algorithms. The lock-coupling based
algorithms[5,17] release the lock on the current node
when the lock on the next node to traverse is granted
while processing search operations. While processing
node splits and MBR(Minimum Bounding Region)
changes, the scheme holds multiple locks simultaneously
that significantly degrade concurrency.

On the other hand, the link-technique based algorithms
[10, 1 1, 151 were presented to solve the problems of lock-
coupling based concurrency control algorithms. The
schemes need not perform lock-coupling during search
operations. That is, at most one lock is held for each
search operation. However, while backing up trees for
node splits and MBR updates, the scheme employs lock-
coupling, i.e., it keeps the child node write-locked until a
write-lock on the parent is obtained.

The link-technique, proposed by Leman and Yao in
[14], was originally for B-Tree. The tree structure is
modified so that all nodes at the same level are chained all
together through a right-link on each node, which is a
pointer to its right sibling node. When a node is split
into two nodes, appropriate right links are assigned to
them, All nodes in a right link chain at the same level
are ordered by their highest keys. When a search
process visits a node that was split and not yet propagated
to the parent node, i t detects that the highest key on that
node is lower than the key it is looking for and correctly
concludes that a split must have taken place. This
guarantees that at most one lock is needed at any case, so
insert operations can be performed without blocking
search processes.

Unfortunately, in multi-dimensional index structures is
no such an ordering between nodes at the same level. In
that reason, the algorithm proposed in [113 assigns logical
sequence number(LSN) at each node besides right links
and an entry associated with a node has the LSN of the
node. The ordering of LSNs is used to compensate
missed split. However, while ascending the trees to
perform node splits and MBR updates, this algorithm
employs lock coupling, i.e., it keeps child node write
locked until a write lock on the parent is obtained. The
lock on the child node may be kept during U 0 time in
certain case I l l] . It degrades the concurrency of the
index trees. Also in this algorithm, each entry of internal
nodes has extra information to keep the LSNs of
associated child nodes. This extra information reduces
storage utilization.

Another link-based concurrency control algorithm[IO]
for multi-dimensional index structures, called CGIST was
proposed for reducing the extra information problem. It

eliminates the needs to keep extra information by using
global sequence number. In that research, global counter
is introduced as the method to eliminate the extra
information from the internal node entry. However, it is
accompanied by some side effects. The node sequence
number(NSN) which is the LSN of [I 1 3 is taken from a
tree-global, monotonically increasing counter variable.
During a node split, this counter is incremented and its
new value assigned to the original node and the new
sibling node receives the original node’s prior NSN and
right-link.

In order for the algorithm to work correctly, when
splitting a node, we must attain the lock on its parent node
first, split the node and assign the NSN, and increment
global counter. Because of that reason, while processing
node splits it keeps multiple locks on two or more levels.
This affects search operations and explicitly increases the
wait time of search operations.

The concurrency control algorithms briefly explained
above get multiple locks or latches exclusively on index
nodes from multiple levels participating in node splits and
MBR updates. The exclusive locks or latches block
concurrent search operations and as the results, overall
search performance is degenerated extremely.

[15] is the most recent link-technique based
concurrency control algorithm for multi-dimensional
index structures trying to solve the problems mentioned in
the previous paragraph. It introduces top-down index
region modification(TD1M) technique. That is, when an
insert operation traverses an index tree to find the most
suitable node for a new entry, MBR updates are
performed. In addition to TDIM, the locks that are
obtained on nodes during MBR updates are compatible
with queries. It is achieved by the modification of MBR
in a piecemeal fashion. In [15], also, optimized split
algorithms are proposed such as copy based concurrent
update(CCU) and copy based concurrent update with
nonblocking queries(CCU-NQ).

The basic idea of the CCU is to perform a split on a
local copy of a node rather than the shared copy on a
buffer pool. Queries are free to access the shared copy
of the node while the split is in progress. Once the split
completes, the changes are copied back to the shared data
structure using exclusive locks. By adopting this
approach, queries may now be blocked only for the
duration of the copy back rather than the entire split
process.

The CCU-NQ makes queries completely wait free, not
blocking even for the “copy back” interval as in the CCU
scheme. This wait freedom for queries is achieved by
atomically switching the existing and updated copies of a
node during a node split. To atomically switch between
different versions of a node, it has to ensure that no
operations are left using the older versions. To ensure
this, i t introduces a logical address(LA) for each node.

201

We skip the detailed descriptions on CCU-NQ to save
space.

The TDIM technique has some problems. It
eliminates the necessity of lock-coupling in [I 1,101
during insert operations. However, i t never considers
delete operations. We need to perform exact match like
tree traversal to find a target entry of a delete operation.
Since multidimensional index structures has multiple
paths from the root node to a target entry, we can not
assure that the current node we visit is the correct
ancestors of a target node that contains the target entry.
Consequently, to modify MBR in top-down fashion, we
must modify MBR after locating the target entry. The
problem is not completely solved with these works.

When delete operations and insert operations are
performed concurrently using TDIM to update MBRs,
index trees may reach to inconsistent states since TDIM
does not perform lock-coupling. We can image the
following situation easily. An insert operation that tries
to insert an entry(NE) visits a node(N) and chooses an
entry(E) that contains a child node(CN) and its MBR.
The insert operation concludes the MBR does not need to
be modified and proceeds with its tree traversal.
Subsequently, a delete operation visits N and modifies the
MBR of CN in E. This MBR shrinking may exclude NE
from the MBR of CN and the index tree becomes under
the inconsistent state. Therefore, the TDIM can not be
applied in real life applications without modifying MBR
updates algorithm in some or most part because it can not
handle delete operations that are necessary in real life
applications.

Also, the CCU and CCU-NQ reduce the delay of
queries extremely but they are not efficient. They need
extra spaces to perform split operations and the CCU-NQ
must perform garbage collection works periodically.
These features make the implementation of the algorithm
very difficult. The simplicity of an algorithm reduces
the development costs.

In this paper we propose a novel MBR updates
algorithm called partial lock coupling(PLC) that avoids
lock-coupling in most cases and considers delete
operations together. Also we introduce a simple split
algorithm that minimizes the delay of queries without
extra spaces and any additional works.

3. The proposed algorithm

In this section, we describe the proposed algorithm in
detail. As mentioned in the previous section, the most
crucial parts of our algorithm are MBR updates and node
splits. Therefore, we explain these two algorithms first
and describe overall algorithms after them.

3.1. MBR updates with partial lock
coupling(PLC) technique

The existing concurrency control methods such as
[10,l I] employ latch(lock) coupling to maintain
consistency of index tree while updated MBR is
propagated or an overflow occurs. Even though the
TDIM [151 was proposed to solve the problems, i t is not a
complete algorithms as we explain in section 2. In our
concurrency control algorithm, we modify MBRs in
bottom-up manner like [IO,] I]. However, unlike the
existing concurrency control method, we avoid lock
coupling partially by introducing PLC.

The PLC employs lock coupling only in case of the
operations that cause MBR shrinking such as node splits
and deletes. In case of the operations of MBR expansion,
i t modifies MBRs without using lock-coupling. Since
usually MBR expansion cases are much more frequent
than MBR shrinking cases in multidimensional index
structures, the PLC guarantees high concurrency.

However, to use the PLC technique correctly, we must
avoid the case that index trees are corrupted. Since we
partially use lock-coupling, index trees may reach
inconsistent states in some cases without proper
compensation actions. We will describe this problem in
the following paragraphs.

When an entry is inserted into a node, the MBR of the
node is expanded to include the new entry and propagate
the modified MBR to ancestors. Until the entry is deleted
by another transaction or the transaction that inserts the
entry is rollbacked, the expanded MBR is never shrunken.
We use these properties to propagate updated MBR to
ancestors. When an entry is placed on a leaf node and
the MBR of the leaf node is changed, we will propagate
the change to ancestors. While we propagate the changed
MBR, the new entry just placed on the leaf node never
can be deleted by other transactions since we hold x-lock
on the leaf node. Therefore, we only need to check if the
MBR of the node’s parent contains the new entry. If the
MBR associated with the leaf node in the parent node
contains the new entry, we do not need to change MBR
any more. Otherwise, we change the MBR in the parent to
include the new entry and ascend the tree to propagate the
change in the same manner.

During delete operation, we have to employ lock
coupling. Checking if the MBR contains the new entry is
not enough when the delete operation and insert operation
are concurrently performed. The shrunken MBR due to
the delete of an entry can be expanded by other insert
operations before the transaction that deletes the entry is
committed. Therefore we cannot decide whether the MBR
should be modified in case of delete operations. In this
case, lock-coupling can resolve the problem.

202

3.2. Node splits with minimal query delay

In multi dimensional index structures, node splits are
usually very expensive operations because the entries of
intemal nodes are not ordered. Most of existing
concurrency control algorithms for multi-dimensional
index structures hold exclusive locks or latches on the
nodes where split operations are being performed and
block search operations. Split operations ascend index
tree to propagate splits to ancestor nodes and may cause
other splits of ancestor nodes.

Generally, the node splits are performed in the two
steps. The first step is to compute split dimensions and
split positions. This step takes rather long time since the
entries of index nodes are not ordered. The second step is
to divide the ovefflowed node into two nodes physically
with the split dimensions and split positions. As described
earlier, the first step takes up most time of split operations.
In figure 1, we compared the time of the first step and the
second step. As we can see in the figure, the first step
occupies about 93% of the total split time. In the proposed
algorithm, we hold x-latch on the overflowed node only
during the second step and during the first step, s-latch are
held on the overflowed node. It enables queries to access
overflowed nodes during the first step that occupies most
of the total split time.

I~-mut.c- dhu ~ldr.*.l -mats- b

E

I

Figure 1 Computation time vs. physical split time

3.3. Insert operations

An insert operation is carried out in two stages. In the
first stage, we traverse the tree from root node to find the
leaf node to insert the new entry. In this stage, we store
the nodes on the path we take while descending the tree to
a stack, called the path stack. In the second stage, the
new entry is inserted to the leaf node. After adding the
new entry to the node, if the leaf's MBR has changed, we
propagate the updated MBR to its ancestor nodes until we
reach a node that does not need to be changed any more.
On the other hand, a split operation proceeds in the leaf

node if it does not have enough room to accommodate the
new entry. We serialize split operations with tree lock.
The tree-lock is used for a recovery scheme that is not
mentioned in this paper. Before performing splits we
must obtain tree lock first. Subsequently, we must insert
a new internal entry that results from the split operation to
the parent node and modify the MBR for the split node.
If ovefflow occurs in the parent node recursively, we split
the parent node like the leaf split. Above steps are
repeated until we reach at a node with enough room to
accommodate a new entry or split the root.

Figures 2, 3 ,4 and 5 show the pseudo code of the insert
operation of the proposed concurrency control algorithm
in this paper. The function FindNode in the figure 3
finds a leaf node for a new entry. The individual
procedures do the following. FindNode descends to the
leaf node to insert a new entry, obtaining s-latch on
intemal nodes and recording the path along the way, and
finally gets s-latch and x-lock on the leaf. We obtain x-
lock on the leaf node for two reasons. The first reason is
that as we described in section 3.1, the x-lock is used to
guarantee the consistency of index trees while performing
MBR updates with PLC technique. The second reason is
for recovery issues that are not mentioned in this paper.

The function SplitNode in the figure 5 is called when
the leaf node does not have enough room to accommodate
the new entry. It splits the leaf node to cope with the
overflow as described above recursively. When ascending
index trees to propagate node splits, we get x-lock on the
parent node first. We obtain the x-lock on the parent node
because of the following two reasons. The PLC requests
s-latches on nodes while processing MBR updates and the
SplitNode holds s-latches on nodes that split operations
are being performed during computation phase. This
situation may drive index trees to inconsistent states. To
resolve this situation we use x-lock. The MBR updates
operation, also, holds x-locks on nodes during MBR
updates. The second reason is to perform PLC. The
function FixMBR in the figure 4 is called to propagate the
changed MBR when the leaf's MBR is changed. The
FixMBR performs lock-coupling during MBR shrinking.
That is, it keeps x-lock on the current node until i t obtains
x-lock on the parent of the current node in case of MBR
shrinking.

3.4. Search operations

Processing search operations in the proposed algorithm
is the same as that of [lo, 111. Our search operations
only use latches to read index nodes and does not perform
latch-coupling. It means that search operations are
blocked only by node splits, since we hold s-latches on
index nodes while performing MBR updates. It will
increase the concurrency of search operations extremely.

203

Function InsertEntry(Entry leafentry,
Node rootnode)

Function Start
leafnode := FindNode(leafentry, root, path);
If(overflow is occurred in leafnode due to leafentr)

Obtain tree lock;
Split(1eafentry. leafnode, path);
Release tree lock;
Release all locks;
Function End;

End If
Release s-latch on leafnode;
Obtain x-latch on leafnode;
Add leafentry to leafnode;
If (the MBR of leafnode is changed)

Release x-latch on leafnode.;
FixMBR(leafnode, path);
Release all locks;
Function End

End If
Release x-latch on leafnode;
Release all locks;
Function End

Figure 2 Insert algorithm(1) - InsertEntry

Function FindNode(Entry leufentry, Node node,
PathStack path)

Function Start
Obtain s-latch on node;
currentlevel =node.level ;
Push [node, node.nsn] into path;
Loop

childentry[Node node, MBR mbrJ .= Select the child
entry from node;
Subtract 1 from currentlevel;
Release s-latch on node:
node := chrldentry.node;
s-latch on node;
If (currentlevel == leaf level)

Obtain x-lock on node;
End If
If (global-nsn > nodemn)

Select the most appropnate node from its sibling
nodes;

End If
If (currentlevel == leaflevel)

End If
Push [node, node.nsn] into path;

End Loop
Function End

Exist Loop

- - x __x
~ -

Figure 3 Insert algorithm(2) - FindNode

Function FixMBR (Node node, PathStackpath)

Function Start
parentnode := POP(path) //decide the parent of node;
If (MBR Shrinking) //delete operations

Obtain x-lock and s-latch on parentnode;
Release x-lock on node;

Else
Obtain x-lock and s-latch on parentnode;

End If
Modify the mbr for node in parent parentnode;
Release s-latch on parentnode;
If (the MBR ofparentnode is changed)

Release x-lock on parentnode;
If (MBR Expansion)

End If
FixMBR (parentnode, path);

End If
Function End

Figure 4 Insert algorithm(3) - FixMBR

Function SplitNode(Entry leufenhy, Node node,
PathStackputh)

Function Start
Compute split dimension and split position of node;
newnode :=allocate a new node;
Obtain x-lock and x-latch on newnode;
entries := with split dimension and split position, select
entries from node to be moved to newnode;
Copy entries to newnode;
If (node is not latched in exclusive mode)

End If
Delete entries from node and reorganize node:
Copy sibling pointer of node to newnode and set sibling
pointer of node to newnode;
Copy node.nsn of node to newnode;
Increase global-nsn and install its value as the node.”
Create an intemal entry internalentry[newnode, mbrl;
Release x-latch of node and newnode;
parentnode := POP(path), i.e. decide the parent of node.;
Obtain x-latch and x-lock on parentnode, and modify the
mbr for node in parentnode;
If (node is not leaf node)

End If
If (overflow occurred in parentnode due to internalentry)

End If
Add internalentry to parentnode.;
Release x-latch on parentnode;
If (the MBR of parentnode is changed)

Release s-latch of node and obtain x-latch on node;

Release x-lock of node and newnode:

SplitNode(internalentry, parentnode, path);

Release x-latch on parentnode;
FixMBR(parentnode, path);

End If
Function End

__II I__ -_I I - _- x x

Figure 5 Insert algorithm(4) - SplitNode

204

3.5. Delete operations

NS(Node Size)

NB(Number of Page Buffers)

The delete operations of our proposed algorithm
proceeds in two phases like the insert operations. The
first phase is to locate the target entry of a delete
operation. Locating the target entry is performed in
similar way to an exact match algorithm. After deleting
the target entry, the second phase commences. If the
MBR of the node that contained the target entry is
changed, the delete operation calls the FixMBR. When
calling the FixMBR, it does not release the x-lock on the
node to perform lock-coupling.

4K, 16K

40, 80, 120

4. Performance evaluation

K(Number of the K of K-NN
Queries)

To evaluate the performance of the proposed algorithm
relative to the concurrency control algorithm for
GiST(CGIST), we applied the proposed algorithm(RPLC)
to CIR-Tree and implemented it as an access method for
MiDAS and compared it with the CGIST. We did not
compare our algorithm with [15], since as we described
the reason in section 2 we thought that i t is not a complete
concurrency control algorithm. The CGIST
implementation was also applied to CIR-Tree and
implemented on MiDAS-III. Actually, the CGIST
consider the no phantom read consistency. However, the
implemented CGIST in this paper just support the
repeatable read consistency because currently only our
proposed algorithm supports the repeatable read
consistency.

1 , 2 , 4

Table 1 Performance Darameters and values
I Parameters I Values I
I DS(Database Size) I 50000, 100000 I

I ND(Number of Dimension) I 10.20 I

1 NP(Number of processes) I 50, 100 I
Our experiments are performed for various sizes of data

set and various performance parameters such as node size,
number of page buffers of MiDAS-Ill and so on. Table
1 shows the notations, the descriptions of the performance
parameters and the values of each parameter are presented.
To save space, we discuss the performance comparison
only when randomly generated 5 n 0000, 20-dimensional
feature vectors are used, the node size is 16Kbytes and the
number of page buffers is 120. Since our experiments
are not to evaluate performance of an index structure but

to evaluate that of a concurrency control algorithm, we
just use randomly generated data set. The platform was
dual Ultra Sparc. processor, Solaris 2.5 with 128 Mbytes
main memory. The maximum number of concurrent
processes is 100. We experimented with different
workloads of insert and query operations.

4.1.
search workloads

Results of various number of insert and

Figures 6, 7, 8 and 9 compare the performance of
CGIST and RPLC in terms of response time and
throughput when the number of insert and search
processes is varied. Figure 6 shows the response time of
search operations when the ratios of the number of search
processes to the number of insert processes are varied
from 90(search)-lO(insert) to 10-90. The response time
of RPLC is constant regardless of the change of the ratios
while that of CGIST increases according to the increase
of insert processes. Figure 7 shows the response time of
insert operations under the same condition. Like the
response time of search processes in figure 6, the
performance of RPLC is much better than that of CGIST.
Figure 8 and 9 show the throughput of search processes
and insert processes respectively. The throughput of
search processes of RPLC increases slightly according to
the increase of ratios of insert processes to search
processes while that of CGIST is reduced rapidly.

0 6 I ' I
__-_I :: I --

Figure 6 Response time of search transactions
_ _ _ _ _ CGIST --RPLC I

Figure 7 Response time of insert transactions

205

-CGIST - - - - - RPLC

I, .1

" X

5 I = - U,

0 85

/I m

I ,
I

I
I

/
I ,

I

- - J - -

- - - J

llLlll . Ism .IJ," .s.. Y I I l ./I,"

Figure 8 Throughput of search transactions

Figure 9 Throughput of insert transactions

4.2.
Workloads

Results of Fixed Search and Varied Insert

Figures 10, 11, 12 and 13 show the performance of
CGIST and RPLC in terms of response time and
throughput when the number of search processes is fixed
as 40 and that of insert processes is varied from 10 to 60.
Through these comparisons, we intended to show that
search operations of RPLC are constant regardless of the
number of insert processes. Figure 10 shows that the
response time of search operations is almost constant even
though the number of insert processes increase from 10 to
50. Also, the throughput of search processes is not
affected by the number of insert processes as we can see
in figure 12. The performance of insert processes is the
same as that of search processes in figures 1 1 and 13.

,

Figure 11 Response time of insert transactions
with fixed number of search transactions

- - - _ - CGlST -RPLC

Figure 12 Throughput of search transactions
with fixed number of search transactions

- - - - - CGlST ----RPLC

I .

Figure 13 Throughput of insert transactions with
fixed number of search transactions

206

4.3. Discussions

The results described in the section 4.2 indicate that
RPLC achieves up to about 6 times in search response
time and about 2 times in insert response time, search
throughput and insert throughput over CGIST. The
RPLC also scales very well with the number of processes
and the ratios of insert processes to search processes.
The reason why the RPLC outperforms the CGIST is very
explicit. Search operations are blocked only by split
operations during physical node split time in the RPLC.
However, in the CGIST, they are blocked when MBR
updates and node splits are performed. The MBR
updates and node splits in the CGIST holds multiple x-
latches on nodes from multiple levels. Also, the node
splits in the CGIST hold x-latches on nodes where node
splits are being performed during whole split time.
These factors extremely deteriorate the search
performance and insert performance. However, the
RPLC repeats frequently latching and releasing during
split operations to provide higher concurrency. It may
deteriorate overall concurrency slightly.

5. Conclusions

In this paper, we have proposed an enhanced
concurrency control algorithm for multidimensional index
structures. Our concurrency control algorithm alleviates
the problems that delay search operations and deteriorate
the overall concurrency of index structures. The proposed
algorithm reduces the query delay by split operations by
optimizing exclusive latching time on a split node. That is,
only during the physical split phase we hold x-latches that
exclude queries. Also, to avoid the query delay by MBR
updates we introduce PLC technique. It uses lock
coupling only in case of MBR shrinking operations that is
less frequent than MBR expansion operations and
augments the overall concurrency extremely. In
experimental comparisons with CGIST, we have shown
that our proposed algorithm outperforms it in terms of
various factors. Our algorithm achieves up 4 times
smaller response time and 2 times higher throughput over
the CGIST. Currently our algorithm does not provide no
phantom read consistency yet. We will consider this
isolation level in the next research.

Acknowledgement
This work was supported by Korea Science and
Engineering Foundation(K0SEF. 1999- 1-303-007-3).

References

1. A. Guttman. “R-Trees: a dynamic index structure for spatial
searching,” Proceeding of International Conference ACM
SIGMOD, 1984, pp. 47-57.

2. C. Mohan, D. Harderle, B. Lindsay, H. Pirahesh and P.
Schwarz. “ARIES: A Transaction Recovery Method
Supporting Fine-Granularity Locking and Partial Rollbacks
Using Write Ahead Logging,” ACM TODS, 17 (I) , March

3. C. Mohan and F. Levine. “ARIES/IM: An Efficient and High
Concurrency Index Management Method Using Write-Ahead
Logging,” Proceeding of international Conference ACM
SIGMOD, June 1992, pp. 371-380.

4. D. A. White and R. Jain. “Similarity Indexing with the SS-
tree, Proceeding of International Conference On Data
Engineering,” 1996, pp. 5 16-523.

5 . J. K. Chen and Y.F. Huang. “A Study of Concurrent
Operations on R-Trees,” Information Sciences 98, 1997, pp

6. Jae So0 Yoo, Myung Geun Shin, Seok Hee Lee, Kil Seong
Choi, Ki Hyung Cho and Dae Young Hur. “An Efficient
Index Structure for High Dimensional Image Data,”
Proceedings of AMCP98, 1998, pp. 134-147.

7. K. Chakrabarti and S. Mehrotra. “The Hybrid Tree : an index
structure for high-dimensional feature spaces,” Proceeding of
ICDE Conf., 1999, pp. 440-447.

8. K. 1. Lin, H. Jagadish and C. Faloutsos. “The TV-tree : An
Index Structure for High Dimensional Data,” VLDB Journal,

9. M. Chae, K. Hong, M. Lee, J. Kim, 0. Joe, S . Jeon and Y.
Kim. “Design of the Object Kernel of BADA-Ill: An Object-
Oriented Database Management System for Multimedia Data
Service,” The 1995 Workshop on Network and System
Management, 1995.

IO. M. Komacker, C. Mohan and J. M. Hellerstein.
“Concurrency and Recovery in Generalized Search Trees,”
Proceeding of International Conference ACM SIGMOD,
May 1997, pp. 62-72.

11 . M. Komacker and D. Banks. “High-Concurrency Locking in
R-Trees,” Proceeding of International Conference VLDB,
September 1995, pp. 134-145.

12. N. Beckmann, H.P. Komacker, R. Schneider and B. Seeger.
“The R*-Tree: An Efficient and Robust Access Method for
Points and Rectangles,” Proceeding of International
Conference ACM SIGMOD., 1990, pp. 322-33 1.

13. N. Katayama and S. Satoh. “The SR-tree: An Index Structure
for High-Dimensional Nearest Neighbor Queries,”
Proceeding of Intemational Conference ACM SIGMOD,
May 1997.

14. P. L. Lehmann and S.B. Yao. “Efficient Locking for
Concurrent Operations on B-Trees,” ACM TODS 6(4),
December 1981, pp. 650-670.

15. K.V. Ravi. Kanth,.D. Serena; A. K. Singh, “Improved
concurrency control techniques for multi-dimensional index
structures,” Proceedings of the First Merged International
and Symposium on Parallel and Distributed Processing
(IPPSISPDP), 1998., pp. 580 -586.

16. S. Berchtold, D. A. Keim, and H. P. Kriegel. “The X-Tree: an
index structure for high-dimensional data,” In Proc. of VLDB
Conf., 1996, pp. 28-39.

17. V. Ng and T. Kamada. “Concurrent Accesses to R-Trees,”
Proceeding of Symposium on Large Spatial Databases, 1993,

1992, pp. 94-162.

263-300.

VOI 3, 1994, pp. 517-542.

pp. 142-161.

207

