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Abstract 
In this paper, we propose an enhanced concurrency 
control algorithm that minimizes the query delay 
effkiently. The factors that delay search operations and 
deteriorate the concurrency of index structures are node 
splits and MBR updates in multi dimensional index 
structures. In our algorithm, to reduce the query delay 
by split operations, we optimize exclusive latching time on 
a split node. It holds exclusive latches not during whole 
split time but only during physical node split time that 
occupies small part of whole split time. Also to avoid 
the query delay by MBR updates we introduce partial lock 
coupling(PLC) technique. The PLC technique increases 
concurrency by using lock coupling only in case of MBR 
shrinking operations that are less frequent than MBR 
expansion operations. For performance evaluation, we 
implement the proposed algorithm and one of the existing 
link technique-based algorithms on M I D A S - m  that is a 
storage system of a B A D A - m  DBMS. We show through 
various experiments that our proposed algorithm 
outperforms the existing algorithm in terms of throughput 
and response time. 

1. Introduction 

Multi-dimensional index structures are the hearts of 
similarity search systems based on multidimensional 
feature vectors search such as CIS, content-based image 
retrieval systems, multimedia database system and so on. 
For the couple of past decades, various multidimensional 
index structures have been proposed, for example R- 
Tree[ I], R*-Tree[ 121, TV-Tree[8], X-Tree[l6], SS- 
Tree[4], SR-Tree[ 131, CIR-Tree[6] and Hybrid-Tree[7]. 
They need concurrency control and recovery methods to 
be used for real life applications in multi-user 
environments. Consequently, several concurrency 
control and recovery methods have been proposed [5, 10, 
1 I ,  15, 171. 
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In multidimensional index structures, split operations 
need rather longer time than other unidimensional index 
structures such as B-Tree and B+-Tree. Generally the 
entries of internal nodes are not ordered so calculating 
split dimensions and split positions require expensive 
costs. Most of existing concurrency control algorithms 
for multi-dimensional index structures hold exclusive 
locks(x4ock) or latches(x-latch) on the nodes where split 
operations are being performed and block search 
operations. Split operations ascend index tree to propagate 
splits to ancestor nodes and may cause other splits of 
ancestor nodes. These split operations are one of the 
primary factors that deteriorate the concurrency of multi- 
dimensional index structures. Also, minimum bounding 
region(MBR) update operations block search operations. 
The MBR update of a node is less expensive than a split 
operation. However, MBR updates are much more 
frequent than split operations so they significantly 
deteriorate the concurrency of index structures. 

Even though several concurrency control algorithms 
were proposed for multi-dimensional index structures, 
none of them could completely avoid the query delay. 
Actually, it is impossible to demolish the above query 
delay completely but we can minimize the query delay. 
In this paper, we propose an enhanced concurrency 
control algorithm that minimizes the query delay. We 
introduce a partial lock coupling(PLC) technique to 
decrease the query delay by MBR updates. Also, to 
alleviate blocking factors by split operations, we propose 
a split method that optimizes x-latch time during node 
splits. 

The remainder of this paper is organized as follows. 
In section 2, we describe and analyze existing 
concurrency control algorithms for multidimensional 
index structures. We then describe the proposed 
algorithm in detail in section 3. In section 4, we perform 
experiments to show the superiority of our concurrency 
control algorithm and discuss the results of the 
performance evaluation. Finally section 5 concludes this 
paper. 
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2. Related works and motivations 

Several concurrency control algorithms for multi- 
dimensional index structures were proposed. They can 
be classified simply into Link-based and Lock Coupling- 
based algorithms. The lock-coupling based 
algorithms[5,17] release the lock on the current node 
when the lock on the next node to traverse is granted 
while processing search operations. While processing 
node splits and MBR(Minimum Bounding Region) 
changes, the scheme holds multiple locks simultaneously 
that significantly degrade concurrency. 

On the other hand, the link-technique based algorithms 
[ 10, 1 1, 151 were presented to solve the problems of lock- 
coupling based concurrency control algorithms. The 
schemes need not perform lock-coupling during search 
operations. That is, at most one lock is held for each 
search operation. However, while backing up trees for 
node splits and MBR updates, the scheme employs lock- 
coupling, i.e., it keeps the child node write-locked until a 
write-lock on the parent is obtained. 

The link-technique, proposed by Leman and Yao in 
[14], was originally for B-Tree. The tree structure is 
modified so that all nodes at the same level are chained all 
together through a right-link on each node, which is a 
pointer to its right sibling node. When a node is split 
into two nodes, appropriate right links are assigned to 
them, All nodes in a right link chain at the same level 
are ordered by their highest keys. When a search 
process visits a node that was split and not yet propagated 
to the parent node, i t  detects that the highest key on that 
node is lower than the key it is looking for and correctly 
concludes that a split must have taken place. This 
guarantees that at most one lock is needed at any case, so 
insert operations can be performed without blocking 
search processes. 

Unfortunately, in multi-dimensional index structures is 
no such an ordering between nodes at the same level. In 
that reason, the algorithm proposed in [ 113 assigns logical 
sequence number(LSN) at each node besides right links 
and an entry associated with a node has the LSN of the 
node. The ordering of LSNs is used to compensate 
missed split. However, while ascending the trees to 
perform node splits and MBR updates, this algorithm 
employs lock coupling, i.e., it keeps child node write 
locked until a write lock on the parent is obtained. The 
lock on the child node may be kept during U 0  time in 
certain case I l l ] .  It degrades the concurrency of the 
index trees. Also in this algorithm, each entry of internal 
nodes has extra information to keep the LSNs of 
associated child nodes. This extra information reduces 
storage utilization. 

Another link-based concurrency control algorithm[ IO] 
for multi-dimensional index structures, called CGIST was 
proposed for reducing the extra information problem. It 

eliminates the needs to keep extra information by using 
global sequence number. In that research, global counter 
is introduced as the method to eliminate the extra 
information from the internal node entry. However, it is 
accompanied by some side effects. The node sequence 
number(NSN) which is the LSN of [ I  1 3  is taken from a 
tree-global, monotonically increasing counter variable. 
During a node split, this counter is incremented and its 
new value assigned to the original node and the new 
sibling node receives the original node’s prior NSN and 
right-link. 

In order for the algorithm to work correctly, when 
splitting a node, we must attain the lock on its parent node 
first, split the node and assign the NSN, and increment 
global counter. Because of that reason, while processing 
node splits it keeps multiple locks on two or more levels. 
This affects search operations and explicitly increases the 
wait time of search operations. 

The concurrency control algorithms briefly explained 
above get multiple locks or latches exclusively on index 
nodes from multiple levels participating in node splits and 
MBR updates. The exclusive locks or latches block 
concurrent search operations and as the results, overall 
search performance is degenerated extremely. 

[15] is the most recent link-technique based 
concurrency control algorithm for multi-dimensional 
index structures trying to solve the problems mentioned in 
the previous paragraph. It introduces top-down index 
region modification(TD1M) technique. That is, when an 
insert operation traverses an index tree to find the most 
suitable node for a new entry, MBR updates are 
performed. In addition to TDIM, the locks that are 
obtained on nodes during MBR updates are compatible 
with queries. It is achieved by the modification of MBR 
in a piecemeal fashion. In [15], also, optimized split 
algorithms are proposed such as copy based concurrent 
update(CCU) and copy based concurrent update with 
nonblocking queries(CCU-NQ). 

The basic idea of the CCU is to perform a split on a 
local copy of a node rather than the shared copy on a 
buffer pool. Queries are free to access the shared copy 
of the node while the split is in progress. Once the split 
completes, the changes are copied back to the shared data 
structure using exclusive locks. By adopting this 
approach, queries may now be blocked only for the 
duration of the copy back rather than the entire split 
process. 

The CCU-NQ makes queries completely wait free, not 
blocking even for the “copy back” interval as in the CCU 
scheme. This wait freedom for queries is achieved by 
atomically switching the existing and updated copies of a 
node during a node split. To atomically switch between 
different versions of a node, it has to ensure that no 
operations are left using the older versions. To ensure 
this, i t  introduces a logical address(LA) for each node. 
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We skip the detailed descriptions on CCU-NQ to save 
space. 

The TDIM technique has some problems. It 
eliminates the necessity of lock-coupling in [ I  1,101 
during insert operations. However, i t  never considers 
delete operations. We need to perform exact match like 
tree traversal to find a target entry of a delete operation. 
Since multidimensional index structures has multiple 
paths from the root node to a target entry, we can not 
assure that the current node we visit is the correct 
ancestors of a target node that contains the target entry. 
Consequently, to modify MBR in top-down fashion, we 
must modify MBR after locating the target entry. The 
problem is not completely solved with these works. 

When delete operations and insert operations are 
performed concurrently using TDIM to update MBRs, 
index trees may reach to inconsistent states since TDIM 
does not perform lock-coupling. We can image the 
following situation easily. An insert operation that tries 
to insert an entry(NE) visits a node(N) and chooses an 
entry(E) that contains a child node(CN) and its MBR. 
The insert operation concludes the MBR does not need to 
be modified and proceeds with its tree traversal. 
Subsequently, a delete operation visits N and modifies the 
MBR of CN in E. This MBR shrinking may exclude NE 
from the MBR of CN and the index tree becomes under 
the inconsistent state. Therefore, the TDIM can not be 
applied in real life applications without modifying MBR 
updates algorithm in some or most part because it  can not 
handle delete operations that are necessary in real life 
applications. 

Also, the CCU and CCU-NQ reduce the delay of 
queries extremely but they are not efficient. They need 
extra spaces to perform split operations and the CCU-NQ 
must perform garbage collection works periodically. 
These features make the implementation of the algorithm 
very difficult. The simplicity of an algorithm reduces 
the development costs. 

In this paper we propose a novel MBR updates 
algorithm called partial lock coupling(PLC) that avoids 
lock-coupling in most cases and considers delete 
operations together. Also we introduce a simple split 
algorithm that minimizes the delay of queries without 
extra spaces and any additional works. 

3. The proposed algorithm 

In this section, we describe the proposed algorithm in 
detail. As mentioned in the previous section, the most 
crucial parts of our algorithm are MBR updates and node 
splits. Therefore, we explain these two algorithms first 
and describe overall algorithms after them. 

3.1. MBR updates with partial lock 
coupling(PLC) technique 

The existing concurrency control methods such as 
[ 10,l I ]  employ latch(lock) coupling to maintain 
consistency of index tree while updated MBR is 
propagated or an overflow occurs. Even though the 
TDIM [ 151 was proposed to solve the problems, i t  is not a 
complete algorithms as we explain in section 2. In our 
concurrency control algorithm, we modify MBRs in 
bottom-up manner like [ IO, ]  I]. However, unlike the 
existing concurrency control method, we avoid lock 
coupling partially by introducing PLC. 

The PLC employs lock coupling only in case of the 
operations that cause MBR shrinking such as node splits 
and deletes. In case of the operations of MBR expansion, 
i t  modifies MBRs without using lock-coupling. Since 
usually MBR expansion cases are much more frequent 
than MBR shrinking cases in multidimensional index 
structures, the PLC guarantees high concurrency. 

However, to use the PLC technique correctly, we must 
avoid the case that index trees are corrupted. Since we 
partially use lock-coupling, index trees may reach 
inconsistent states in some cases without proper 
compensation actions. We will describe this problem in 
the following paragraphs. 

When an entry is inserted into a node, the MBR of the 
node is expanded to include the new entry and propagate 
the modified MBR to ancestors. Until the entry is deleted 
by another transaction or the transaction that inserts the 
entry is rollbacked, the expanded MBR is never shrunken. 
We use these properties to propagate updated MBR to 
ancestors. When an entry is placed on a leaf node and 
the MBR of the leaf node is changed, we will propagate 
the change to ancestors. While we propagate the changed 
MBR, the new entry just placed on the leaf node never 
can be deleted by other transactions since we hold x-lock 
on  the leaf node. Therefore, we only need to check if the 
MBR of the node’s parent contains the new entry. If the 
MBR associated with the leaf node in the parent node 
contains the new entry, we do not need to change MBR 
any more. Otherwise, we change the MBR in the parent to 
include the new entry and ascend the tree to propagate the 
change in the same manner. 

During delete operation, we have to employ lock 
coupling. Checking if the MBR contains the new entry is 
not enough when the delete operation and insert operation 
are concurrently performed. The shrunken MBR due to 
the delete of an entry can be expanded by other insert 
operations before the transaction that deletes the entry is 
committed. Therefore we cannot decide whether the MBR 
should be modified in case of delete operations. In this 
case, lock-coupling can resolve the problem. 
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3.2. Node splits with minimal query delay 

In multi dimensional index structures, node splits are 
usually very expensive operations because the entries of 
intemal nodes are not ordered. Most of existing 
concurrency control algorithms for multi-dimensional 
index structures hold exclusive locks or latches on the 
nodes where split operations are being performed and 
block search operations. Split operations ascend index 
tree to propagate splits to ancestor nodes and may cause 
other splits of ancestor nodes. 

Generally, the node splits are performed in the two 
steps. The first step is to compute split dimensions and 
split positions. This step takes rather long time since the 
entries of index nodes are not ordered. The second step is 
to divide the ovefflowed node into two nodes physically 
with the split dimensions and split positions. As described 
earlier, the first step takes up most time of split operations. 
In figure 1, we compared the time of the first step and the 
second step. As we can see in the figure, the first step 
occupies about 93% of the total split time. In the proposed 
algorithm, we hold x-latch on the overflowed node only 
during the second step and during the first step, s-latch are 
held on the overflowed node. It enables queries to access 
overflowed nodes during the first step that occupies most 
of the total split time. 

I~-mut.c- dhu ~ldr.*.l -mats- b 

E 

I 

Figure 1 Computation time vs. physical split time 

3.3. Insert operations 

An insert operation is carried out in two stages. In the 
first stage, we traverse the tree from root node to find the 
leaf node to insert the new entry. In this stage, we store 
the nodes on the path we take while descending the tree to 
a stack, called the path stack. In the second stage, the 
new entry is inserted to the leaf node. After adding the 
new entry to the node, if the leaf's MBR has changed, we 
propagate the updated MBR to its ancestor nodes until we 
reach a node that does not need to be changed any more. 
On the other hand, a split operation proceeds in the leaf 

node if it does not have enough room to accommodate the 
new entry. We serialize split operations with tree lock. 
The tree-lock is used for a recovery scheme that is not 
mentioned in this paper. Before performing splits we 
must obtain tree lock first. Subsequently, we must insert 
a new internal entry that results from the split operation to 
the parent node and modify the MBR for the split node. 
If ovefflow occurs in the parent node recursively, we split 
the parent node like the leaf split. Above steps are 
repeated until we reach at a node with enough room to 
accommodate a new entry or split the root. 

Figures 2, 3 ,4  and 5 show the pseudo code of the insert 
operation of the proposed concurrency control algorithm 
in this paper. The function FindNode in the figure 3 
finds a leaf node for a new entry. The individual 
procedures do the following. FindNode descends to the 
leaf node to insert a new entry, obtaining s-latch on 
intemal nodes and recording the path along the way, and 
finally gets s-latch and x-lock on the leaf. We obtain x- 
lock on the leaf node for two reasons. The first reason is 
that as we described in section 3.1, the x-lock is used to 
guarantee the consistency of index trees while performing 
MBR updates with PLC technique. The second reason is 
for recovery issues that are not mentioned in this paper. 

The function SplitNode in the figure 5 is called when 
the leaf node does not have enough room to accommodate 
the new entry. It splits the leaf node to cope with the 
overflow as described above recursively. When ascending 
index trees to propagate node splits, we get x-lock on the 
parent node first. We obtain the x-lock on the parent node 
because of the following two reasons. The PLC requests 
s-latches on nodes while processing MBR updates and the 
SplitNode holds s-latches on nodes that split operations 
are being performed during computation phase. This 
situation may drive index trees to inconsistent states. To 
resolve this situation we use x-lock. The MBR updates 
operation, also, holds x-locks on nodes during MBR 
updates. The second reason is to perform PLC. The 
function FixMBR in the figure 4 is called to propagate the 
changed MBR when the leaf's MBR is changed. The 
FixMBR performs lock-coupling during MBR shrinking. 
That is, it keeps x-lock on the current node until i t  obtains 
x-lock on the parent of the current node in case of MBR 
shrinking. 

3.4. Search operations 

Processing search operations in the proposed algorithm 
is the same as that of [lo, 111. Our search operations 
only use latches to read index nodes and does not perform 
latch-coupling. It means that search operations are 
blocked only by node splits, since we hold s-latches on 
index nodes while performing MBR updates. It will 
increase the concurrency of search operations extremely. 
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Function InsertEntry( Entry leafentry, 
Node rootnode ) 

Function Start 
leafnode := FindNode(leafentry, root, path); 
If(overflow is occurred in leafnode due to leafentr) 

Obtain tree lock; 
Split(1eafentry. leafnode, path); 
Release tree lock; 
Release all locks; 
Function End; 

End If 
Release s-latch on leafnode; 
Obtain x-latch on leafnode; 
Add leafentry to leafnode; 
If ( the MBR of leafnode is changed ) 

Release x-latch on leafnode.; 
FixMBR( leafnode, path ); 
Release all locks; 
Function End 

End If 
Release x-latch on leafnode; 
Release all locks; 
Function End 

Figure 2 Insert algorithm(1) - InsertEntry 

Function FindNode( Entry leufentry, Node node, 
PathStack path)  

Function Start 
Obtain s-latch on node; 
currentlevel =node.level ; 
Push [node, node.nsn] into path; 
Loop 

childentry[Node node, MBR mbrJ .= Select the child 
entry from node; 
Subtract 1 from currentlevel; 
Release s-latch on node: 
node := chrldentry.node; 
s-latch on node; 
If ( currentlevel == leaf level ) 

Obtain x-lock on node; 
End If 
If ( global-nsn > nodemn ) 

Select the most appropnate node from its sibling 
nodes; 

End If 
If ( currentlevel == leaflevel ) 

End If 
Push [node, node.nsn] into path; 

End Loop 
Function End 

Exist Loop 

- -  x __x 
~ - 

Figure 3 Insert algorithm(2) - FindNode 

Function FixMBR ( Node node, PathStackpath ) 

Function Start 
parentnode := POP( path ) //decide the parent of node; 
If ( MBR Shrinking ) //delete operations 

Obtain x-lock and s-latch on parentnode; 
Release x-lock on node; 

Else 
Obtain x-lock and s-latch on parentnode; 

End If 
Modify the mbr for node in parent parentnode; 
Release s-latch on parentnode; 
If ( the MBR ofparentnode is changed ) 

Release x-lock on parentnode; 
If ( MBR Expansion ) 

End If 
FixMBR ( parentnode, path ); 

End If 
Function End 

Figure 4 Insert algorithm(3) - FixMBR 

Function SplitNode(Entry leufenhy, Node node, 
PathStackputh ) 

Function Start 
Compute split dimension and split position of node; 
newnode :=allocate a new node; 
Obtain x-lock and x-latch on newnode; 
entries := with split dimension and split position, select 
entries from node to be moved to newnode; 
Copy entries to newnode; 
If ( node is not latched in exclusive mode ) 

End If 
Delete entries from node and reorganize node: 
Copy sibling pointer of node to newnode and set sibling 
pointer of node to newnode; 
Copy node.nsn of node to newnode; 
Increase global-nsn and install its value as the node.” 
Create an intemal entry internalentry[newnode, mbrl; 
Release x-latch of node and newnode; 
parentnode := POP( path ), i.e. decide the parent of node.; 
Obtain x-latch and x-lock on parentnode, and modify the 
mbr for node in parentnode; 
If ( node is not leaf node ) 

End If 
If ( overflow occurred in parentnode due to internalentry ) 

End If 
Add internalentry to parentnode.; 
Release x-latch on parentnode; 
If ( the MBR of parentnode is changed ) 

Release s-latch of node and obtain x-latch on node; 

Release x-lock of node and newnode: 

SplitNode( internalentry, parentnode, path ); 

Release x-latch on parentnode; 
FixMBR(parentnode, path ); 

End If 
Function End 

__II I__ -_I I - _-  x x  

Figure 5 Insert algorithm(4) - SplitNode 
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3.5. Delete operations 

NS(Node Size) 

NB(Number of Page Buffers) 

The delete operations of our proposed algorithm 
proceeds in two phases like the insert operations. The 
first phase is to locate the target entry of a delete 
operation. Locating the target entry is performed in 
similar way to an exact match algorithm. After deleting 
the target entry, the second phase commences. If the 
MBR of the node that contained the target entry is 
changed, the delete operation calls the FixMBR. When 
calling the FixMBR, it does not release the x-lock on the 
node to perform lock-coupling. 

4K, 16K 

40, 80, 120 

4. Performance evaluation 

K(Number of the K of K-NN 
Queries) 

To  evaluate the performance of the proposed algorithm 
relative to the concurrency control algorithm for 
GiST(CGIST), we applied the proposed algorithm(RPLC) 
to CIR-Tree and implemented it  as an access method for 
MiDAS and compared it with the CGIST. We did not 
compare our algorithm with [15], since as we described 
the reason in section 2 we thought that i t  is not a complete 
concurrency control algorithm. The CGIST 
implementation was also applied to CIR-Tree and 
implemented on MiDAS-III. Actually, the CGIST 
consider the no phantom read consistency. However, the 
implemented CGIST in this paper just support the 
repeatable read consistency because currently only our 
proposed algorithm supports the repeatable read 
consistency. 

1 , 2 , 4  

Table 1 Performance Darameters and values 
I Parameters I Values I 
I DS(Database Size) I 50000, 100000 I 

I ND(Number of Dimension) I 10.20 I 

1 NP(Number of processes) I 50, 100 I 
Our experiments are performed for various sizes of data 

set and various performance parameters such as node size, 
number of page buffers of MiDAS-Ill and so on. Table 
1 shows the notations, the descriptions of the performance 
parameters and the values of each parameter are presented. 
To  save space, we discuss the performance comparison 
only when randomly generated 5 n 0000, 20-dimensional 
feature vectors are used, the node size is 16Kbytes and the 
number of page buffers is 120. Since our experiments 
are not to evaluate performance of an index structure but 

to evaluate that of a concurrency control algorithm, we 
just use randomly generated data set. The platform was 
dual Ultra Sparc. processor, Solaris 2.5 with 128 Mbytes 
main memory. The maximum number of concurrent 
processes is 100. We experimented with different 
workloads of insert and query operations. 

4.1. 
search workloads 

Results of various number of insert and 

Figures 6, 7, 8 and 9 compare the performance of 
CGIST and RPLC in terms of response time and 
throughput when the number of insert and search 
processes is varied. Figure 6 shows the response time of 
search operations when the ratios of the number of search 
processes to the number of insert processes are varied 
from 90(search)-lO(insert) to 10-90. The response time 
of RPLC is constant regardless of the change of the ratios 
while that of CGIST increases according to the increase 
of insert processes. Figure 7 shows the response time of 
insert operations under the same condition. Like the 
response time of search processes in figure 6, the 
performance of RPLC is much better than that of CGIST. 
Figure 8 and 9 show the throughput of search processes 
and insert processes respectively. The throughput of 
search processes of RPLC increases slightly according to 
the increase of ratios of insert processes to search 
processes while that of CGIST is reduced rapidly. 

0 6  I ' I  
__-_I :: I --  

Figure 6 Response time of search transactions 
_ _ _ _ _  CGIST --RPLC I 

Figure 7 Response time of insert transactions 
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Figure 8 Throughput of search transactions 

Figure 9 Throughput of insert transactions 

4.2. 
Workloads 

Results of Fixed Search and Varied Insert 

Figures 10, 11, 12 and 13 show the performance of 
CGIST and RPLC in terms of response time and 
throughput when the number of search processes is fixed 
as 40 and that of insert processes is varied from 10 to 60. 
Through these comparisons, we intended to show that 
search operations of RPLC are constant regardless of the 
number of insert processes. Figure 10 shows that the 
response time of search operations is almost constant even 
though the number of insert processes increase from 10 to 
50. Also, the throughput of search processes is not 
affected by the number of insert processes as we can see 
in figure 12. The performance of insert processes is the 
same as that of search processes in figures 1 1 and 13. 

, 

Figure 11 Response time of insert transactions 
with fixed number of search transactions 

- - - _ -  CGlST -RPLC 

Figure 12 Throughput of search transactions 
with fixed number of search transactions 

- - - - - CGlST ----RPLC 

I .  

Figure 13 Throughput of insert transactions with 
fixed number of search transactions 
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4.3. Discussions 

The results described in the section 4.2 indicate that 
RPLC achieves up to about 6 times in search response 
time and about 2 times in insert response time, search 
throughput and insert throughput over CGIST. The 
RPLC also scales very well with the number of processes 
and the ratios of insert processes to search processes. 
The reason why the RPLC outperforms the CGIST is very 
explicit. Search operations are blocked only by split 
operations during physical node split time in the RPLC. 
However, in the CGIST, they are blocked when MBR 
updates and node splits are performed. The MBR 
updates and node splits in the CGIST holds multiple x- 
latches on nodes from multiple levels. Also, the node 
splits in the CGIST hold x-latches on nodes where node 
splits are being performed during whole split time. 
These factors extremely deteriorate the search 
performance and insert performance. However, the 
RPLC repeats frequently latching and releasing during 
split operations to provide higher concurrency. It may 
deteriorate overall concurrency slightly. 

5. Conclusions 

In this paper, we have proposed an enhanced 
concurrency control algorithm for multidimensional index 
structures. Our concurrency control algorithm alleviates 
the problems that delay search operations and deteriorate 
the overall concurrency of index structures. The proposed 
algorithm reduces the query delay by split operations by 
optimizing exclusive latching time on a split node. That is, 
only during the physical split phase we hold x-latches that 
exclude queries. Also, to avoid the query delay by MBR 
updates we introduce PLC technique. It uses lock 
coupling only in case of MBR shrinking operations that is 
less frequent than MBR expansion operations and 
augments the overall concurrency extremely. In 
experimental comparisons with CGIST, we have shown 
that our proposed algorithm outperforms it in terms of 
various factors. Our algorithm achieves up 4 times 
smaller response time and 2 times higher throughput over 
the CGIST. Currently our algorithm does not provide no 
phantom read consistency yet. We  will consider this 
isolation level in the next research. 
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