
Comparison of Parallel Algorithms for Path Expression
Query in Object Database Systems

Guoren Wang, Ge Yu
School of Inforination Science and

Engineering, Northeastern University,
Shenyang 110006, P.R. China

{ wanggr, yuge} @inail.neu.edu .cn

Kunihiko Kaneko, Akifiiini Makinouchi
Graduate School of Inforination Science and
Electrical Engineering, Kyushu University,

Fukuoka 812, Japan
{ kaneko,akifunii}@db.is.kyushu-u.ac.jp

A bSt rac t
In this paper? We proposed a new parallel algorithm for
computing path expression, named Parallel Cascade Semi-
join (PCSJ). Moreover. a iiew sclieduliiig strategy called
right-deep zigzag tree is designed to further improve the
performance of the PCSJ algorithm. The experinleiits have
been iiiiplenieiited in a NOW distributed aiid parallel envi-
ronment. The results show that tlie PCSJ algorithm out-
performs the other two parallel algorithms(tlie parallel ver-
sion of forward pointer chasing algorithm(PFPC) and the
index splitting parallel algoritlim(lndezS~~z~)) wheii ctmi-
puting path expressions with restrictive predicates and that
tlie right-deep zigzag tree scheduling strategy has tlie better
performance than the right-deep tree sclieduliiig strategy.
Key Words: Object databases. path expressi(ons. parallel
algorithms, schecluling strategies

1 Introduction

0 1 1 OllC llalld. da ta Irlallagctl by database lrlallagclrlcllt
systcrris :ire becoining very large iii data-iiitciisivc iip-
plications such as E-Coiriiricrcc, Digital Library. DNA
Barik, Geographic Iiiforrnatioii Systciris(GIS). Thus cf-
ficiciit parallel a lgori thm for acccssiiig aiid rriaiiipulat-
iiig a large volurric of d a t a arc required to provide liigli
perfoririaiicc for users. Tlic parallel processing is aii iiii-
portaiit approach for realiziiig liigli-perfoririaiicc query
proccssiiig in such data-iiitciisive applicatioiis. Up to
iiow. a lot of research work lias lxcii doiic for ~ ~ . r d l ~ l
algoritliiris iii tlic coiitcxt of relatioiial database sys-
tciris. For cxairiplc, DeWitt et al. proposed a parallel
hybrid hasli joiii algorithm in tlic papcr[4] ai id Kitsurc-
gawa preseiitcd a cciitralixcd GRACE joiii algoritliiri[7]
aiid correspoiidiiig parallel algoritlirri[8]. 011 tlic other

Proceedings of the Seventh International Conference on
Database Systems for Advanced Applications. Hong
Kong, April 18-21, 2001.

Iiaiid, rclatioiial database systciiis caii iiot cff'cctivcly
u i d cfficiciitly iricct tlic rcquircinciits of ciiiergiiig atl-
vaiiccd database applications tliic t o tlic liiiiitatioiis
of tlicir iriodcliiig capability. 111 tlicsc applicatioii do-
iiiaiiis, da ta types arid sciiiaiiti rlrlollg da ta arc lllucll
riclicr tliaii coiivciitioiial applicatioiis. Oiic of proinis-
iiig q>proaclics t o iricct tlic iiccds of tlicsc doiliairis is
object-oriciitatioii. Oiic tlistiiiguislictl feature of object
database systciri is path cxprcssioii i i i id iiiost queries
oii aii object tlatabasc arc Ixrscd oil patli cxprcssioii
l>cc:~iisc i t is tlic iriost iiatural ir i id coiivciiiciit way to
iicccss tlic object database, for cxaiiiplc! to iiavigatc
tlic hyper-liiiks iii a web-based database. l3ccausc of
tlic ortliogoiiality of O()L[I]! a patli cxprcssioii ciiii

be placed in SELECT. FROM. i i i ic l WHERE clauses.
Tlic followiiig is ii typical cxaiiiplc of OQL statciriciit
wliicli iiscs Ixrtli cxprcssioiis iii the SELECT. FROM.
i i i id WHERE cliitiscs, respectively. 111 this paper1 we
will focus oii the pmillcl cxccutioii of tlic patli cxprcs-
sioiis iii WHERE cliiiiscs? this kiiicl of p t l i cxprcssioiis
is iilso callcd as coiriplcx prctlicatcs. Iii tlic ODMG 2.0
staiitlartl! tlic cxprcssiiig capability of Ixrtli cxprcssioiis
is liiriitcd to soiiic degree[11. For e x a i ~ i ~ h , a predicate
caii be qqAicd oiily oii tlic last class iii ii piitli. Actu-
ally, tlic dcfiiiitioii of Ixrtli cxprcssioiis cirii be cxtciitlccl
sucli that cacli class iii a patli cxprcssioii c u i be quali-
fied with oiic or ~rrorc predicates. Tlic gciicral foriri of
a cxtciidcd patli cxprcssioii is ;is follows.

wlicrc rv is a raiigc variable? N A ; (1 5 ,i 5 TL) is a iicstccl
attr ibute of class Ci, p t (l 5 ,i 5 n + 1) is a predicate
applied oii class C;. Tlic cxtciit of class C; is tlciiotctl
tis Ci itself.

I11 rcceiit ycirrs! l l io~c alld 111orc rcscarcl1crs arc
irioviiig tlicir rcscarcli interests froiri pardlcl rcla-
tioiial database systciris to parallel object clatabax

250
0-7695-0996-7/01 $10.00 0 2001 IEEE

mailto:inail.neu.edu
mailto:kaneko,akifunii}@db.is.kyushu-u.ac.jp

systerris[6] [131, and corresporidiiigly some parallel join
algorithms have been proposed for object database
systerris[9]. Parallel pointer-based joiii techniques have
been preserited for object-oriented databases in tlie
paper[9]. However, to tlie best of our knowledge, few
of approaches have beeii presented for coIriputiIig path
expressioiis iii parallel. It is sure that parallel poiiiter-
based join techniques can be employed for cornputiiig
path expressioris aiid they are easy to be parallelixed.
However, we thiiik that they can be irriproved from
the following three aspects. First, these join algo-
ritlinis do not utilize tlie cascade feature of path ex-
pressions. That is, a path expression can be computed
in a pipelining way by corivertiiig the path cxpressioii to
a right-deep tree. Secoridly, a path expression can be
converted to an cquivaleiit semi-join rather than join
expression and thereby reducing CPU cost aiid com-
rnuiiicatioii cost. Thirdly, during tlie execution of a
semi-join expression, an object's OID rather than the
whole object is iiecessary to seiid from a semi-joiii oper-
ation to the iiext oiie, thus, tlie cost of corrirnunicatioii
for computing tlie path can be reduced further.

The rriaiii coiitributioii of this paper is that it
presents a new parallel algorithm for computing path
expressioiis: yurmlled cuscude serrri-j;oirL(PCSJ) which
computes a path expression using semi-join operations
rather than join aiid thereby dramatically reducing the
cost of computing the path expression corripared with
the Pointer-based parallel joiii algorithm. The exper-
imental results show that the PCSJ algoritlirri greatly
outperforms tlie other two typical parallel algorithms.
In order to deal with limited memory size, this pa-
per proposes a new scheduling strategy called riglit-
deep zigzag tree to further improve the pcrforrriaricc of
the PCSJ algoritlirri by avoiding extra 1/0 disk over-
head. Our prelirriiiiary experirrieiital result shows that
the right-deep zigzag tree schedulirig strategy has the
better performalice than the right-deep tree scheduliiig
strategy.

The remainder of this paper is organized as follows.
Section 2 preserits a parallel cascade semi-join algo-
rithm. Sectioii 3 iiitroduces two other kinds of parallel
algorithm for corriputiiig path expressioris, iiicludiiig
tlie parallel forward pointer chasiiig algorithm and the
index splittiiig approacli. Section 4 gives tlie perfor-
mance analysis t ~ i i d coiriparisoii of the PCSJ algorithm
with the other two parallcl path algorithms. Finally,
Section 5 concludes the paper.

2 Parallel cascade semi-join algorithm
111 this section, we first explain how to use semi-join op-
eration to compute path expressioiis, slid then describe

how to schedule the corriputatioii of a path expressioii,
filially discuss tlie parallel execution of a sub-patli cx-
pressioii.

2.1 Using semi-join to compute path expres-
sions

If there is a11 extent for each class iii ii path expres-
sion, then tlic implicit joiiis iii the path expression can
be converted iiito explicit joiiis for corriputiiig the path
expression. For example, the path (sec expressioii (1))
described iii Scctioii 1 can be corriputcd by the follow-
ing join expressioiis.

If each join operation in forrriula (2) is replaced by
one semi-joiii operation, an equivalent semi-join expres-
sioii can be obtaiiicd a s follows.

Formula (2) caii be evaluated aiid performed iii
two reversed dircctioiis: forward and backward, rcspec-
tively, while formula (3) caii be performed iii oiily oiic
direction, i.e., backward. The forward semi-joiii cx-
pressioii is iiot cquivalciit to tlie backward seirii-join cx-
prcssion because semi-joiii operator is not coirirnutablc.
In formula (3), the cxccutioii of aiiy semi-join opera-
tion, to say sd (Ci , y ;) x sed(Ci+1,pi+l)(I 5 i 5 n)
can be roughly described a s follows. First, the cxteiit
of class C; is scaiiiied aiid predicate pi is applied on
tlic scaiiried objects, a d theii tlie selected objects arc
used to build a hash table for class Ci by applyiiig a
hash functioii oii tlie Iicstcd attribute NAi . Sccoiidly,
the result objects of the previous scrrii-join operation,
i.e. sed(Ci+l,pi+l) x sed(Ci+2,pif2), are used to probe
tlic hash table of class Ci with the sanie hash functioii
as that used in tlie buildiiig phasc. If a i i object iii
tlie hash table is matched, then OIDs of tlic iriatclicd
objects is passed to the next seirii-join operation, i.e.
sed(Ci-1,pi-l) x sed(Ci ,p;) . The semi-join approach
to path cxprcssioiis has the followiiig advaiitagcs over
the poiritcr-based joiii ~ ~ p p ~ o d i .

(1) Due to replacelrielit of joiii operatioii with scini-
join operation, tlic cxccutioii cost of the path ex-
pressioii is greatly rcdiiccd, iricludiiig CPU aiid

communication cost.

(2) For tlic pointer-based joiii approach, a projcctioii
operation is iiccded for projecting objects froin the

251

filial results of tlic joiii cxprcssioii, wliilc iii tlic
seirii-join approacli it is obvious that this projcc-
tioii opcratioii is uiiiicccss~~ry because just OIDs
ratlicr tliaii objects arc sciit from scirii-join opera-
tioii to tlic iicxt oiie.

(3) A c ~ ~ ~ l c scrrii-joiii cxprcssioii caii be iiriplc-
iiiciitetl a s a scini-join riglit-deep tree. The other
feature of a scirii-joiii cascade query is tliat tlic
position of aiiy scrrii-joiii opcratioii iii the cxprcs-
sioii is fixed. Tlius optiiriizatioii of a cascade query
is relatively easier to be doiic tliaii a gciicral join
query.

2.2 Right-deep zigzag tree scheduling strategy

For the parallcl cvaluatioii of iriulti-joiii queries,
tlicrc arc sorric iiitcrcstiiig sclicduliiig strategies:
lcft-liiicar(lcft-dcep) trees, left-oriciitcd bushy trees,
wide busliy trees, riglit-oriciitcd l~usliy trees, riglit-
liiiear(rig1it-deep) trccs,dcscribcd in tlic paper[l4]. The
paper reports the cxpcrieiiccs with tlic irriplciriciitatioii
of tlicsc strategies for tlic irriplciriciitatioii of rriulti-joiii
queries oii PRISMA/DB. Iii iidditioii, the papcr[2] ex-
tciidcd tlic riglit-tlccp tree strategy to the scgirieiited
riglit-dccp tree strategy for tlic cxecutioii of pipeliiied
1i:wli joiiis aiid gave tlic siiriulatioii expcrirriciital coiri-
parisoii of tlicsc two strategies. Tlic paper[l6] pre-
sciitcd a iiew sclieduliiig strategy called zigzag tree,
which is iiitcririediatc betwccii left-deep tree aiitl right-

tlic x igmg stratcgy with tlic riglit-dccp tree i~iicl bushy
tree strategies. I t is obvious tliat tliesc sclicdiiliiig
strategies ciiii iiot be directly applied to tlic pamllel
computation of path exprcssioiis except for tlic riglit-

For ii cascade scirii-join operatioils iii a patli ex-
prcssioii, if tlicrc is iiot ciiough available rriaiii rricrri-
ory lioldiiig tlic hash tables for i~ path cxprcssioii, tlieii
tlic piitli cxprcssioii can be brokcii iiito several sub-
path cxprcssioiis sucli that tlic liash tables for cacli
sub-path cxprcssioii caii be licltl in tlic availablc rriaiii
iriciriory. For cxairiple, for tlic path cxprcssioii as shown
iii Fig. l(a). If all hash tables for the path w e expected
to fit iiito iriciriory, tlic patli caii be executed iii paral-
lel with the algoritliiri described iii tlie iicxt subscctioii.
However? if tlicrc is iiot eiiougli iriciriory, tlicii tliis path
has to be brokcii iiito several sub-patli cxprcssioiis. As-
siiiiie that tlic patli is brokcii into two sub-patli cxprcs-
sioiis pi = {result t- (~ d (C 1 , p I) x (s c l (C z , p z) x F’

(scI(C5,p5) x (sel(C~,p~) }, as sliowii in Fig. l (b) .
First, tlic sub-path cxprcssioii p z is scliedulcd aiid ex-
ecuted. Tlic result of the sub-patli is written into the

deep tree, alld the paper[101 allalyzcd allcl coiriparcd

deep tree strategy.

} a~ i id p2 = { F’ +- (s L ‘ I (C ~ , ~ ~) x (sel(C4,~4) x

disk file F’. Aiid thcii, the sub-patli cxprcssioii p i is
sclicdulcd aiid executed. Duriiig tlic cxccutioii of sub-
path p1 disk file F’ is read to probe corrcspoiidiiig liash
tables. This is siiriilar to tlic idea of right-deep tree
sclicdulirig strategy described iii papcrs[3] aiid [ll]. Al-
though tlic paper[2] has sliowii that tlic sclierria usiiig
scgiriciited riglit-deep trees for pipeliiicd liasli joiiis out-
pcrforrris tlie sclieiria usiiig riglit-dccy trees. tlie scg-
rriciitcd riglit-deep tree sclierria caii iiot be directly ap-
plied to coiripute patli expressioris because of tlie cas-
cade fcaturc of path cxprcssioii. Iii order to avoid
extra disk 1/0 overhead, we present a iicw scliedul-
iiig strategy called right-deep zigzag tree as shown in
Fig. l (c) aid the dyiiarnic bottoin-up sclieduling strat-
egy is adopted to deal with tlic rricrriory constrailit.
Our sclicduliiig strategy is iiot only a special foriri of
zigzag tree but also a special form of scgiriciited riglit-
deep tree, so this sclicduliiig strategy is referred to as
riglit-deep zigzag tree, whicli lias the followiiig charac-
teristics.

(1) For aiiy sub-path p z of a riglit-deep zigzag tree, if i
is iiii odd number tlieii pz is a right-deep sub-tree.
Otherwise, p z is a left-deep sub-tree aiid the length
of all left-deep sub-trees iii a right-deep zigxag tree
is 2. The first sub-path is a right-deep sub-tree.

(2) Just all right-deep sub-paths iii a right-deep zigxag
tree arc scliedulcd to execute iii parallel. The re-
sult of the itli(i # I) right-deep sub-patli is di-
rectly used to build corrcspoiidiiig liasli table for
the execution of the (i-l) t l i right-deep sub-path
ratlicr tliaii t o write back iiito a disk file aid
thereby to avoid extra. disk overhead occurriiig in
right-deep tree sclicdulirig strategy.

(3) Right-deep zigzag tree is aii cxtrciric foriii of zigzag
tree. Right-deep zigzag tree also is aii extreme
form of riglit-deep tree. A riglit-deep zigzag tree
caii also be viewed as a cascade scgrriciitcd right-
deep tree. i.e. tlic result of the itli riglit-deep sub-
path is the left iiiput of tlic last semi-join operatioil
of the (i-1)tli riglit-deep sub-patli. So, riglit-deep
zigzag tree car1 also be iiarricd cascade seginciited
riglit-deep tree, to reflect tlie cascade feature of
patli exprcssioris.

2.3 Parallel execution of sub-path expressions

111 this subscctioii, we will discuss the parallel execu-
tioii of a riglit-deep sub-patli iii a riglit-deep zigzag tree.
It works iii two pliascs: buildiiig aiid probing. In the
buildiiig phase, cxtcrits of the classes except for the last

252

resu1 t result result

la) A path lb) Right-deep tree IC) Right-deep
zig-zag G e e

Figure 1: Sclieduliiig strategies

oiie class iii sub-patli cxprcssioii are partitioiiccl usiiig
a split table aid tlieii tlic liasli tables corrcspoiidiiig to
various partitions are built. Tliesc I I partitioiiiiig op-
cratioiis are pcrforrried iii parallel. The procedure of
partitioiiiiig the extent of class C, is sliowii in Fig. 2.
First, tlic cxtciit of class Ci is scaiiiicd aiid tlic opera-
tiori s d (p ;) is applied OII the scaiiiicd objects. After a
partitioiiirig hash function p l ~ f is irriposcd oii tlie join
attribute N A ; of tlic selected objects? a split table is
used to tletcrrriiiic wliicli liasli table, to say liasli table
H T j , tliesc objects s l i o~ ld be iiiscrtcd iiito. Tlie~i? tlic
l ias l i function I L f j tliffereiit from phf is used to build
llahsll table HTj .

The iiuiribcr of partitioiis of eacli class iii the path
expression arc the sairic, wliicli is just tlcpciitlcrit oii the
iiniiibcr of sites available, that is tiirics of the iiuiribcr
of sites available. We assiiirie that tlic iiuiribcr of sites
avi~ilablc be 111, tlicii the iiurribcr of partitioiis 11 is tiirics
of in, tliat is. 11 = k * m(k 2 1). Tliesc partitioils are
allocated to III sites iii rouiid-robiii way with forrriula
siteao(thc i t h p(Lrtit%o.u) = ,i riiwtlulo ‘m.

Site
Site I Site 2 h modulo m

split I 1 I 2] - _ _ _ _ I
table

Hashuoin ttribute)

select(pi) 4 Building i
Ci

Figure 2: Builtliiig plisse of tlie PCSJ algoritlini

Duriiig tile probiiig plii~sc. the extciit of ClthSS cn+l
is scariiied aiid predicate pn+l is applied oii the scaiiiied

objects. Arid tlieii the same hash furictioii p l ~ f as that
used in the building phase is corriputed on the OID of
eacli selected object, and the hashed value is used to
deterrriirie which hash table is used to probe through
the split table. If liash table HT,, for example, is se-
lected, then only the OID part of the selected object
of class Cn+l rather than the whole object is sent to
site i rrmdulo m to probe hash table HTi of class C,.
Sirriilarly, if aii object, to say o’, is matched in has11
table HT, of class C,, then the OID value of o’ is used

site j rruxfulo rrL. Finally, in the hash tables of class
C,, all the rriatclicd objects are results of the path ex-
pression. Tlie probing phase of tlie PCSJ algoritlirn is
derrioiistrated in Fig. 3.

to probe a has11 table of class Cn+l, to say H T j , at

Figure 3: Probing phase of the PCSJ algoritliiri

3 Other two parallel algorithms for
path expressions

Iii this sectioii, we iiitroducc otlier two kiiids of parallel
algoritlinis, tlie parallel forward poiiitcr cliasiiig algo-
ritlirri aiid the iiidex splitting approach, for coinputing
path expressioiis so that we can aiialyze and corripare
tlic pcrforrriaiice of PCSJ with that of tlicrri.

3.1 Parallel forward pointer chasing algorithm

Siiicc relationships arnong objects are stored iii tlie
database, oiie iiatural way to execute a path expression
is forward poiiiter cliasiiig along path instarices. In this
way, all objects in tlie extent of the first class C1 in the
path are first fetched and then predicate y1 is imposed
oii tlierri. For each fetched and matched object o, its
iiext object is obtaiiied by forward chasing tlie poiiiter
along the path iiistaiice aiid the correspoiidiiig prcdi-
cate is checked. This forward chasing is continuously
goiiig if the object is satisfied with the predicate aiid
tlic last object of the path iiistaiice is iiot encountered.
Otherwise, the next path iiistaiice is forward chased.

253

If all predicates iii the path cxpressioii are satisfied.
tlicii the object o is oiic of the result objects with rc-
spect t o the patli cxpressioii aiid is put to the result
buffer. For the sake of perforrriaiicc coiripiLrisoii, we
1iwe been designed arid iiriplcrriciited a parallel vcrsioii
of forward pointer cliasirig(s1iort for PFPC) . Readers
cui refer paper tlic papcr[5] for the detailed dcsigii i~iid
irriplcirieiitatioii tccliiiiqucs of tlic P F P C algorithrri.

3.2 Index splitting Approach

Aii iiidex splittiiig approach for path exprcssioii is pro-
posed iii (121. Iii the sclieme, iiidcx is split vcrti-
cally aiid horixoiitally iiito sub-iiidices, each of wliich is

trieval is doiie iii parallel witli iriiiiirrial corrirriuiiicatioii
cost. Each sub-iiidcx of multi-index is called as a V-
partitioii alid each sub-iiidcx obtained by splittiiig a V-
partitioii liorixoiitally is called a HV-partitioii. Fig. 4
shows iiidex elerrieiit dciioted by < rm, r L >. For cx-
ainple. patli expression is C1.Cg.C3.C4: c1, cg, c3 a i i d

c4 arc corrcspoiidiiig OID values in a patli iiistancc. so
tlic path c1.c2.c3.c4 is divided vertically iiito < cl, cg >,
< cg, c3 >, < c3, c4 >. Before ruiiiiiiig the algoritliiri,
all the HV-partitioiis are stored irito the PES. Whcii a
simple value or aii OID is givcii as a retrieval request.
the retrieval opcratioii is pcrforined as sliowii iii Fig. 4.

placet1 011 LL separate PE (Process Elerrieiit). Iiidex re-

V. V V

H

H

-..

relrlevill

request

H

Figure 4: Parallel algorithrri of iiidcx splitting

4 Performance evaluation

In order to further evaluate the pcrforrriaiicc of tlie
PCSJ algoritlini, we have desigiicd aiid irriplerriciitcd
the PFPC ant1 IritlexSplit algoritlirris, aiid liavc done
rriucli actual test work. This section first iritroduccs
tlie test environment aiid the test database, aiid thcii
analyzes aid cornpares tlic speedup aiid scaleup per-
formance of the PCSJ algoritlirri with the P F P C and

IiidcxSplit algoritliiris. Filially. we also coiriparc tlic
pcrfoririaiicc of tlic riglit-deep zigzag tree sclictluliiig
strategy aiid the riglit-tlccp tree sclictluliiig strategy.

4.1 Test environment and test database

In ortlcr to test tlic pcrforiiiaiicc of tlicsc algoritliiris,
we dcsigii a special test database. Pcrfoririaiicc tests
include the speedup aiid scaleup tests. The spccdup
rrieiLiis tlic ability to grows witli tlic systciri size wliilc
kccpiiig tlic problcrri size a s coiistaiit. Scaleup ir ic~~s~ircs
tlic ability to grow witli both tlic systciri size and the
problcin size. Scaleup is defiiied as tlic ability of a i i N-
tiirics laigcr systcrri to perform aii N-tiiiics larger job
iii tlic bairie elapsed tirric as tlic origiiial systciri. We
dcfiiic tlie class in test database a s follows.

c l a s s B a s i c c l a s s : p u b l i c d-Object {
d-Ref<BasicClass> NA;
i n t s e l A t t r ;
char o t h e r A t t r [s t rLength] ;

3

Tlic attribute sclAttr is used to set restrictive prcd-
icatcs applied on tlic class. NA is a iicstcd attribute of
class Basicclass(the itciri for the last class in the path
is set to 111111). Tlic attribute otlicrAttr is used to set
the size of objects iii tlic test database. Tlic size of
objects is 252 bytes.

In tlic speedup test, we dcsigii test database to coiri-
putc path cxprcssioii wlicii tlic patli lciigtli is 3: that is
C,.C,.C,.C,. so we coiistruct 4 cxtcrits for 4 classes 011

4 sites, a r i d tlicrc is 100>000 objects i i i cacli cxtciit. Tlic
tested path cxprcssioii is C1 [Pl].Cs [Ps].C3 [P3].C4[P4].
At tlic sairic time, we require: (1)Tlic selectivity of p i
is 90% for class Ci; (2)90% objects iii two collcctioii
c i ~ i i be joiiied.

Accordiiig to above rccluirciiiciits, tlic iiuiribcr of rc-
sultu is about:

100,000 * 0.9 * 0.g3 = 65,610 (4)

111 tlic scaleup test, tlic lciigtli of patli expression
is added a s sites iiicrcasc. So ciglit cxtciits is built to
foriri tlic pat,li cxpressioii:C1 [PI] .Cz [Ps] ... C7[P,].Cs (PSI
at iriaxiinuin. We will test C l [P ~] . C z [P ~] ... C , [P ~] , wlicii
i sites arc workiiig (l<i<=8).

Tlic liartlwarc coiifiguratioii for tcstiiig is ciglit PCs
coiiiicctcd with liigli-speed switch. Eiglit PCs arc all
tlic S:LIIIC iii coiifiguratioii: AMD-KG 233Mliz CPU:
G4MB rriciriory aiid 4.3GB liard disk. Tlic opcratiiig
system is Solaris 2.5 aiid Sliussc-Uo systciri is 2.0[15].
On every workiiig site, tlie WAKASHI server is ruii-

iiiiig. Sliussc-Uo is a distributed aiitl parallel object

254

database systeiri that lias beeii uiider dcveloprrieiit at
Kyusliu University of Japan aiid Nortlieastcrii Univer-
sity of Cliiiia. 111 the Sliussc-Uo system, licaps arc pro-
vided for building databases. A heap consists of fixcd-
length pages. I t is persisterit when it is mapped oiito
a disk. otlicrwise volatile. A database rriay coiisist of
IKIOW tliaii one persistelit lieap. Each licap can be glob-
ally sliared by aiiy client iii the system. 111 the testing
database, objects of cacli class are stored in different
persistelit lieap, i.e. 8 persistent heaps are used for the
pcrforrriaiice evaluation.

We liave tested the parallel forward poiiiter clias-
iiig algoritlirri(PFPC), parallel cascade semi-joiii al-
gorithrri(PCSJ) and parallel index splitting algo-
ritlirri(IndexSp1it) based on tlic test database. Also,
we give tlie perforrriaiicc corriparisoii aiid aiialysis of
the right-deep z ipag tree sclieduliiig strategy with the
right-deep tree sclieduliiig strategy.

4.2 Speedup performance

Fig. 5(a) sliows the speedup respoiisc time to coiii-
pute C~[P~].C~[PZ].C~[P~].C~[P~] from 2 to 8 sites; aid
Fig. 5(b) shows tlic correspoiidiiig speedup curve for
three parallel algorithms. We can see that tlie response
time of PFPC and IiidexSplit are I K I U C ~ longer tlian
that of PCSJ, especially wheii there are less working
sites. The speedup pcrforrriaiice shows PCSJ is faster
tliaii PFPC and IridexSplit wlieri corriputiIig path ex-
pressioris with restrictive predivates. For PFPC aiid
IndexSplit, all objects of classes in the path have to be
scanned aiid read into rriemory to check if the predi-
cates OIL tlie path is satisfied, so for every traversiiig
operation from oiie class to the next class one 1/0 may
occur. Because P F P C and IiidexSplit algoritlirris do
not consider the rrierriory size colistrailit. oiic object
may be read from disk several times and thereby extra
1/0 overliead occurs. Thus tlie so-called 1/0 thrash-
ing probleiri rriiglit occur. Because PCSJ considers tlic
rrierriory sizc constraint, therc is IIO extra 1/0 overhead.
So. PCSJ is faster thari PFPC aiid IridexSplit. Be-
cause IiidexSplit lias to pay additional cost for dealing
with tlie iiidex, IiidexSplit is slower tliaii PFPC. The
comrrioii treiiclciicy for the three parallel algorithms is
that response tirrie decreases as tlie i i u ~ ~ i b ~ of sites in-
creases. And tlic graph sliows that respoiisc time will
continue to drop down wlieii tlie number of sites ex-
ceeds 8.

4.3 Scaleup performance

Fig. S(a) sliows scaleup rcspoiise time for corriputiiig
Cl[Pl].C~[P2] ... C;[P;] wheii i sites arc available arid

1200 '\., 1 '.._,

lo00 c ".. ..

PCSJ -
PFPC -+--

Indexsplit -*.-

20:2; Number of sites

I
2 3 4 5 6 7 8

Number of sites

Figure 5: (a)Spcedup respoiisc tirrie (b)Spectlup rate
Fig. G(b) sliows tlic corrcspoiidiiig scaleup pcrforrriaiicc
curve for three parallel algoritlims. Obviously, the
scalcup pcrforrriaiicc of PCSJ is rriucli better thaii that
of PFPC aiid IiidcxSplit. Iri PCSJ, tlic scaleup curve is
always iicar to liiicar. Tlicrc is a little iiitcrferciicc he-
twccii sites iii tlie process of PCSJ, siiicc every liash ta-
ble locates differerit storage space witliiii DSVM space
and tlic arriouiit of coirirriuiiicatioii always keeps coii-
staiit. On the otlicr side, P F P C aiitl IiidexSplit liavc
worse scaleup. Tlic rriaii i rcasoii is that tlic PFPC aid
IridexSplit do not adopt the partitioiiiiig tccliiiiqlue aiid
thereby tlic interferelice airioiig sites iiicrcascs as the
iiurriber of sites iiicrcascs.

4.4 Discussion

From tlic previous perforinancc analysis. we caii see
that PCSJ lias tlic best speedup aiid scaleup per-
forrriaiicc airioiig tlie t h e e parallel algoritlirris wlieii
corriputiiig path cxprcssioiis with restrictive prcdicates.
However, wliat happens for path cxprcssioiis witliout
restrictive predicates'! that is to say. how about tlic
pcrforrriaiicc of tlic tlirce parallel algoritlirrls for patli
expressions occurriiig in tlic SELECT and/or FROM

255

2 3 4 5 6 7 8
Number of sites

I I

1.1 t PFPC .*--
IndexSplit e

Linear *

08

07 -
06 - U

0 5

0 4

-

33 .
- 0

2 3 4 5 6 7 8
Number of sites

.........

....

--%.
'y: ..I..+

-.___ .-__ *.__
...U ---..

33.

....

0.7 -
0.6 -
0.5 o....

.Q

.......
-

0 4 l t
2 3 4 5 6 7 8

Number of sites

Figure 6: (a)Scalcup respoiisc time (b) Scaleup rate
clauses'! Fig. 7(a) aiid Fig. 7(b) sliow the speedup re-
spoiisc time aid the speedup curves of tlie tlirce paral-
lcl algoritlirris in tlic case of path expressioiis without
predicates, respectively. Froin the response time. Iii-
dcxSplit is fastest airioiig tlic t h e e algoritlirris w i t h
6 sites. This is rriaiiily bccausc PCSJ aiid P F P C have
to read all objects iii tlic path expressioii from disk xio

matter wlicther or iiot tlicrc exist predicates in tlie path
cxpressioii wliile IridexSplit iieed iiot read aiiy object
by tlic liclp of index. However, tlic PCSJ algorithin
outperforms tlic IiidcxSplit algoritlim as the riurnber
of sites iiicrcascs bcyoiitl 6. From Fig. 7(b), we can sec
that IiitlexSplit has the worst speedup in the case of
without predicates altliougli IiidcxSplit lias tlie fastest
rcspoiisc time. This is because the overhead of paral-
lelizatioii dorriiiiates tlie wliolc rcspoiisc time. Tlie fact
sliows tliat it is uiiiiccessary to parallelizc tlic cxecutioii
of path expressions bascd oil the splitting index.

4.5

This subsectiou aiialyzes tlic perforrnaiicc of different
sclicduliiig strategies. Fig. 8 gives tlie performance
curves of right-deep zigzag tree aiid right-deep tree

Right-deep zigzag tree vs right-deep tree

200 c -I

.......... 5 e ? ' .

0' I
3 4 5 6 7 8

Number of sites

I
2 3 4 5 6 7 8

Number of sites

Figure 7: (a) Speedup resporise time without predi-
cates (b) Speedup rate without predicates

schcduliiig strategies with limited rnernory, 8 sites. The
lerigtli of the path expression is set t o 8. Tlie y-axis
value is tlie response time and the x-axis value is the
percentage of available rncrnory. The percentage of
available rriernory is giveii iii the forinula: percentage =
$. From Fig. 8, we can see that the response time
of two strategies are same wheii 100% l iss l i tables are
expected to fit into memory. However, as the size of
the available memory decreases the rcspoiise time of
two schedule strategies increases since tlie path expres-
sions lias to be broke11 iiito two several sub-path due
to the rrierriory size colistrailit. The right-deep zigzag
tree outperforms the riglit-deep tree. This is mainly be-
cause that whexi a path exprcssioii is broken into several
sub-path expressions to corripute, tlic right-deep zigzag
tree schedule strategy just spends overhead to start the
parallel cxecutioii of these sub-path expressions while
the right-deep tree schcduliiig strategy weds extra I/O
disk overhead besides the startup time for each sub-
path exprcssioii.

256

Right-deep zigzag tree +

Right-deep tree -*---
280 i\

140 I
0 1 2 3

Available memory((2“x)/8)

Figure 8: Right-deep zigzag tree vs right-deep tree with
limited incrriory

5 Conclusions

This ~xipcr studies oiic of tlic open problcrris iii’parallcl
object database systeiris, iianicly parallel coinputatioii
of path expressions. After analyziiig the cxistiiig kip-
proaclics to path cxprcssioiis, tliis paper has prcseiitetl
a iicw paraillel algorithm PCSJ to corriputc path cxprcs-
sioiis iii object database systems, and givcii the pcrfor-
I I I M I C ~ aiiiilysis aiid corriparisoii of algoritlirri with the
otlicr two typical p2~r:~llcl algoritliins. Tlie cxpcrirncii-
tal results show tliat tlic PCSJ algoritlirii outperform
tlic otlicr two p:~I;~llcl algoritlirris wlicii corriputiiig path
expressions with restrictive predicates. At the Silllie

time, a iicw schcduliiig strategy r i g h t - d e e p zigtug tree
is proposed to furtlicr iinprovc the pcrforrriaiicc of tlic
PCSJ algoritlirn by avoidiiig extra disk overhead. Tlic
cxpcrirriciital result shows that tlic ~vigclht-dee-y zigzag
tr’ee outperforiris tlic right-deep tree iii the case of liiri-
itcd rriciriory. Tlic algorithiri lias bceii irriplcrrieiited
i i i aii object database systerri Shusse-Uo wliicli is uii-
der tlcvclopiiieiit a t Kyusliu University of Japaii aid
Nortlicastcrii Uiiivcrsity of Chiiia iii tlic ciiviroiirrieiit
of Networks Of Workstatioiis(N0W).

References

[l] R.Cattcl1, The olrjcct d o t u b u s e .stu,ri.dard: ODMG
2.0. MoIg~i i Kaufrriaiiii Publishers, Inc. 1997.

[2] M.-S.Clicii, M.Lo, P.S.Yu, et al. Wsiiig segriiciitcd
riglit-deep trees for tlic cxccutioii of pipcliiicd liash
joiiis.” Pwceedings of tlie 18th VLDB Co,rAference,
Vi~~icouvcr~ Ca~iada, 1992, pp.15-26.

[3] M.-S.Clieii, M.Lo, P.S.Yu, et id. “Applying seg-
iricritcd riglit-deep trees to pipcliiiiiig multiple
liasli joiiis,?’ IEEE TKDE, 1995, 7(4): pp.656-668.

[4] D.DeWitt, S.Gliaiideharizadeli, D.SchIieider, e t
al. “The Gamrna database rriachiiie project,”

[5] Q.Faiig, G.Warig, G.Yu, K.KaIieko, arid
A.Makinouchi, “Desigii and Perforrriaiice Evalua-
tion of Parallel Algorithms for Pa th Expressions.”
1999 Iriterriutionul SyrrLposiurri o n Dutubuse Appli-
cutions in Non- Traditionul Ewuironments, Kyoto,

[6] K.-C.Kirn, “Parallelism in object-oriented query
processing,” Proc. of the 6th ICDE Co,riference,

[7] M.Kitsuregawa, H.Tanaka, and T.Moto-oka, “Ap-
plication of hash to data base machine aiid its
arcliitecture,” New Generutio,ri Cowiputirig, 1983,

(81 M.Kitsuregawa, S.Tsudaka, arid M.Nakaiio, “par-
allel GRACE liasli join oii sliared-everything rriul-
tiproccssor: Implerneiitatiou and perforrriance
cvaluatiori on syrnmetry ~81,” Proceedings of the
8th ICDE Conference, Temper, Arizoiia, Feb.

[9] D.Licuweii, D.DcWitt, aiid M.Mehta, *‘Parallcl
poiiitcr-based join techniques for object-oriented
databases,” Proceedings of the 2nd PDIS Confer-
ence , J ; ~ i i i i ~ y 1993.

[lo] R.S.G.Laiizclotec, P.Valduriez, arid M.Zait, “Ori
the cffectivciiess of optirriizatioii search strategies
for parallel cxccutioii spaces.” P~.oceed.inys of the
19th VLDB Conference, Dublin, Ireland, 1993,
pp493-504.

111 D.A.Scliiicider aid D.J.DcWitt, .’Tradeoff‘s in pro-
cessirig corriplex joiii queries via hashing iii mul-
tiprocessor database rriacliiiics.“ Proceedings of
the 16th VLDB Co,riference, Btishbaiie, Australia,

121 T.Tsuji aiid T.Hochiii, .‘P;~rdlcl Iridcx Retrieval
of Complex Objects”, Akuu,ricetl Dotubuse $ys-
tems f o r I;rr.tegrmtz’on of Mekiu und User E r w i w r i -
rrc.ents ’98, Siiigapore, 1998, pp.179-184.

[U] A.K.Tliakore, S.Y.W.Su, aiid H.X.Lam, “Al-
goritliiris for asyricliroiious parallel processing
of object-orieiited databases,“ IEEE TKDE,

[14] A.N.Wilschut, J.Folkstra, aiid P.M.G.Apers,
”Parallel cvaluatioii of rriulti-join queries.” Pro-
ceedings of the SIGMOD Co,r i$mxce, Sail Jose,

(151 G.Yu, K.Kaiieko, G.Bai, aiid A.Makinouchi,
“Traiisactioii rrianagernent for a distributed ob-
ject storage system WAKASHI-design, irriplemen-
tation aiid performance,” Pwc. of the 1 2 n d ICDE
Confe,rence, New Orleitiis, 1996, pp.460-468.

[16] M.Ziaiie, M.Zait? aiid P.Borla-Salarnet, *‘Pard-
le1 Query Processing with Zigzag Trees.” VLDB
JowrriuZ, 1993, 2(3): pp.277-301.

IEEE TKDE, 1990, 2(1): pp.44-62.

J apa~ i , 1999, pp.373-380.

Feb. 1990, pp.209-217.

1(1)-

1992, pp.256-264.

1990! pp.469-480.

1995:7(3), pp.487-504.

CA USA, pp.115-126

257

