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A bSt rac t 
In this paper? We proposed a new parallel algorithm for 
computing path expression, named Parallel Cascade Semi- 
join (PCSJ). Moreover. a iiew sclieduliiig strategy called 
right-deep zigzag tree is designed to further improve the 
performance of the PCSJ algorithm. The experinleiits have 
been iiiiplenieiited in a NOW distributed aiid parallel envi- 
ronment. The results show that tlie PCSJ algorithm out- 
performs the other two parallel algorithms( tlie parallel ver- 
sion of forward pointer chasing algorithm(PFPC) and the 
index splitting parallel algoritlim(lndezS~~z~)) wheii ctmi- 
puting path expressions with restrictive predicates and that 
tlie right-deep zigzag tree scheduling strategy has tlie better 
performance than the right-deep tree sclieduliiig strategy. 
Key Words: Object databases. path expressi(ons. parallel 
algorithms, schecluling strategies 

1 Introduction 

0 1 1  OllC llalld. da ta  Irlallagctl by database lrlallagclrlcllt 
systcrris :ire becoining very large iii data-iiitciisivc iip- 
plications such as E-Coiriiricrcc, Digital Library. DNA 
Barik, Geographic Iiiforrnatioii Systciris( GIS). Thus  cf- 
ficiciit parallel a lgori thm for acccssiiig aiid rriaiiipulat- 
iiig a large volurric of d a t a  arc required to  provide liigli 
perfoririaiicc for users. Tlic parallel processing is aii iiii- 
portaiit approach for realiziiig liigli-perfoririaiicc query 
proccssiiig in such data-iiitciisive applicatioiis. Up to  
iiow. a lot of research work lias lxcii  doiic for ~ ~ . r d l ~ l  
algoritliiris iii tlic coiitcxt of relatioiial database sys- 
tciris. For cxairiplc, DeWitt et  al. proposed a parallel 
hybrid hasli joiii algorithm in tlic papcr[4] ai id  Kitsurc- 
gawa preseiitcd a cciitralixcd GRACE joiii algoritliiri[7] 
aiid correspoiidiiig parallel algoritlirri[8]. 011 tlic other 
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Iiaiid,  rclatioiial database systciiis caii iiot cff'cctivcly 
u i d  cfficiciitly iricct tlic rcquircinciits of ciiiergiiig atl- 
vaiiccd database applications tliic t o  tlic liiiiitatioiis 
of tlicir iriodcliiig capability. 111 tlicsc applicatioii do- 
iiiaiiis, da ta  types arid sciiiaiiti rlrlollg da ta  arc lllucll 
riclicr tliaii coiivciitioiial applicatioiis. Oiic of proinis- 
iiig q>proaclics t o  iricct tlic iiccds of tlicsc doiliairis is 
object-oriciitatioii. Oiic tlistiiiguislictl feature of object 
database systciri is path cxprcssioii i i i id iiiost queries 
oii aii  object tlatabasc arc Ixrscd oil patli cxprcssioii 
l>cc:~iisc i t  is tlic iriost iiatural ir i id coiivciiiciit way to 
iicccss tlic object database, for cxaiiiplc! to iiavigatc 
tlic hyper-liiiks iii a web-based database. l3ccausc of 
tlic ortliogoiiality of O()L[I]! a patli cxprcssioii ciiii 

be placed in SELECT. FROM. i i i ic l  WHERE clauses. 
Tlic followiiig is ii typical cxaiiiplc of OQL statciriciit 
wliicli iiscs Ixrtli cxprcssioiis iii the SELECT. FROM. 
i i i id  WHERE cliitiscs, respectively. 111 this paper1 we 
will focus oii the pmillcl cxccutioii of tlic patli cxprcs- 
sioiis iii WHERE cliiiiscs? this kiiicl of p t l i  cxprcssioiis 
is iilso callcd as coiriplcx prctlicatcs. Iii tlic ODMG 2.0 
staiitlartl! tlic cxprcssiiig capability of Ixrtli cxprcssioiis 
is liiriitcd to  soiiic degree[ 11. For e x a i ~ i ~ h ,  a predicate 
caii be qqAicd oiily oii tlic last class iii ii piitli. Actu- 
ally, tlic dcfiiiitioii of Ixrtli cxprcssioiis cirii be cxtciitlccl 
sucli that  cacli class iii a patli cxprcssioii c u i  be quali- 
fied with oiic or ~rrorc predicates. Tlic gciicral foriri of 
a cxtciidcd patli cxprcssioii is ;is follows. 

wlicrc rv is a raiigc variable? N A ; (  1 5 ,i 5 TL) is a iicstccl 
attr ibute of class Ci, p t ( l  5 ,i 5 n + 1) is a predicate 
applied oii class C;. Tlic cxtciit of class C; is tlciiotctl 
tis Ci itself. 

I11 rcceiit ycirrs! l l io~c  alld 111orc rcscarcl1crs arc 
irioviiig tlicir rcscarcli interests froiri pardlcl  rcla- 
tioiial database systciris to parallel object clatabax 
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systerris[6] [ 131, and corresporidiiigly some parallel join 
algorithms have been proposed for object database 
systerris[9]. Parallel pointer-based joiii techniques have 
been preserited for object-oriented databases in tlie 
paper[9]. However, to  tlie best of our knowledge, few 
of approaches have beeii presented for coIriputiIig path 
expressioiis iii parallel. It is sure that  parallel poiiiter- 
based join techniques can be employed for cornputiiig 
path expressioris aiid they are easy to  be parallelixed. 
However, we thiiik that  they can be irriproved from 
the following three aspects. First, these join algo- 
ritlinis do not utilize tlie cascade feature of path ex- 
pressions. That  is, a path expression can be computed 
in a pipelining way by corivertiiig the path cxpressioii to 
a right-deep tree. Secoridly, a path expression can be 
converted to an cquivaleiit semi-join rather than join 
expression and thereby reducing CPU cost aiid com- 
rnuiiicatioii cost. Thirdly, during tlie execution of a 
semi-join expression, an object's OID rather than the 
whole object is iiecessary to seiid from a semi-joiii oper- 
ation to  the iiext oiie, thus, tlie cost of corrirnunicatioii 
for computing tlie path can be reduced further. 

The rriaiii coiitributioii of this paper is that it 
presents a new parallel algorithm for computing path 
expressioiis: yurmlled cuscude serrri-j;oirL(PCSJ) which 
computes a path expression using semi-join operations 
rather than join aiid thereby dramatically reducing the 
cost of computing the path expression corripared with 
the Pointer-based parallel joiii algorithm. The exper- 
imental results show that the PCSJ algoritlirri greatly 
outperforms tlie other two typical parallel algorithms. 
In order to  deal with limited memory size, this pa- 
per proposes a new scheduling strategy called riglit- 
deep zigzag tree to further improve the pcrforrriaricc of 
the PCSJ algoritlirri by avoiding extra 1/0 disk over- 
head. Our prelirriiiiary experirrieiital result shows that 
the right-deep zigzag tree schedulirig strategy has the 
better performalice than the right-deep tree scheduliiig 
strategy. 

The remainder of this paper is organized as follows. 
Section 2 preserits a parallel cascade semi-join algo- 
rithm. Sectioii 3 iiitroduces two other kinds of parallel 
algorithm for corriputiiig path expressioris, iiicludiiig 
tlie parallel forward pointer chasiiig algorithm and the 
index splittiiig approacli. Section 4 gives tlie perfor- 
mance analysis t ~ i i d  coiriparisoii of the PCSJ algorithm 
with the other two parallcl path algorithms. Finally, 
Section 5 concludes the paper. 

2 Parallel cascade semi-join algorithm 
111 this section, we first explain how to use semi-join op- 
eration to compute path expressioiis, slid then describe 

how to schedule the corriputatioii of a path expressioii, 
filially discuss tlie parallel execution of a sub-patli cx- 
pressioii. 

2.1 Using semi-join to compute path expres- 
sions 

If there is a11 extent for each class iii ii path expres- 
sion, then tlic implicit joiiis iii the path expression can 
be converted iiito explicit joiiis for corriputiiig the path 
expression. For example, the path (sec expressioii ( 1 ) )  
described iii Scctioii 1 can be corriputcd by the follow- 
ing join expressioiis. 

If each join operation in forrriula (2) is replaced by 
one semi-joiii operation, an equivalent semi-join expres- 
sioii can be obtaiiicd a s  follows. 

Formula ( 2) caii be evaluated aiid performed iii 
two reversed dircctioiis: forward and backward, rcspec- 
tively, while formula ( 3 )  caii be performed iii oiily oiic 
direction, i.e., backward. The forward semi-joiii cx- 
pressioii is iiot cquivalciit to tlie backward seirii-join cx- 
prcssion because semi-joiii operator is not coirirnutablc. 
In formula (3), the cxccutioii of aiiy semi-join opera- 
tion, to say sd (Ci , y ; )  x sed(Ci+1,pi+l)(I 5 i 5 n) 
can be roughly described a s  follows. First, the cxteiit 
of class C; is scaiiiied aiid predicate pi is applied on 
tlic scaiiried objects, a d  theii tlie selected objects arc 
used to build a hash table for class Ci by applyiiig a 
hash functioii oii tlie Iicstcd attribute NAi .  Sccoiidly, 
the result objects of the previous scrrii-join operation, 
i.e. sed(Ci+l,pi+l) x sed(Ci+2,pif2), are used to probe 
tlic hash table of class Ci with the sanie hash functioii 
as that  used in tlie buildiiig phasc. If a i i  object iii 
tlie hash table is matched, then OIDs of tlic iriatclicd 
objects is passed to  the next seirii-join operation, i.e. 
sed(Ci-1,pi-l) x sed(Ci ,p;) .  The semi-join approach 
to path cxprcssioiis has the followiiig advaiitagcs over 
the poiritcr-based joiii ~ ~ p p ~ o d i .  

(1) Due to replacelrielit of joiii operatioii with scini- 
join operation, tlic cxccutioii cost of the path ex- 
pressioii is greatly rcdiiccd, iricludiiig CPU aiid 

communication cost. 

(2) For tlic pointer-based joiii approach, a projcctioii 
operation is iiccded for projecting objects froin the 
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filial results of tlic joiii cxprcssioii, wliilc iii tlic 
seirii-join approacli it is obvious that  this projcc- 
tioii opcratioii is uiiiicccss~~ry because just OIDs 
ratlicr tliaii objects arc sciit from scirii-join opera- 
tioii to  tlic iicxt oiie. 

( 3 )  A c ~ ~ ~ l c  scrrii-joiii cxprcssioii caii be iiriplc- 
iiiciitetl a s  a scini-join riglit-deep tree. The other 
feature of a scirii-joiii cascade query is tliat tlic 
position of aiiy scrrii-joiii opcratioii iii the cxprcs- 
sioii is fixed. Tlius optiiriizatioii of a cascade query 
is relatively easier to be doiic tliaii a gciicral join 
query. 

2.2 Right-deep zigzag tree scheduling strategy 

For the parallcl cvaluatioii of iriulti-joiii queries, 
tlicrc arc sorric iiitcrcstiiig sclicduliiig strategies: 
lcft-liiicar(lcft-dcep) trees, left-oriciitcd bushy trees, 
wide busliy trees, riglit-oriciitcd l~usliy trees, riglit- 
liiiear(rig1it-deep) trccs,dcscribcd in tlic paper[l4]. The 
paper reports the cxpcrieiiccs with tlic irriplciriciitatioii 
of tlicsc strategies for tlic irriplciriciitatioii of rriulti-joiii 
queries oii PRISMA/DB. Iii iidditioii, the papcr[2] ex- 
tciidcd tlic riglit-tlccp tree strategy to  the scgirieiited 
riglit-dccp tree strategy for tlic cxecutioii of pipeliiied 
1i:wli joiiis aiid gave tlic siiriulatioii expcrirriciital coiri- 
parisoii of tlicsc two strategies. Tlic paper[l6] pre- 
sciitcd a iiew sclieduliiig strategy called zigzag tree, 
which is iiitcririediatc betwccii left-deep tree aiitl right- 

tlic x igmg stratcgy with tlic riglit-dccp tree i~iicl bushy 
tree strategies. I t  is obvious tliat tliesc sclicdiiliiig 
strategies ciiii iiot be directly applied to tlic pamllel 
computation of path exprcssioiis except for tlic riglit- 

For ii cascade scirii-join operatioils iii a patli ex- 
prcssioii, if tlicrc is iiot ciiough available rriaiii rricrri- 
ory lioldiiig tlic hash tables for i~ path cxprcssioii, tlieii 
tlic piitli cxprcssioii can be brokcii iiito several sub- 
path cxprcssioiis sucli that  tlic liash tables for cacli 
sub-path cxprcssioii caii be licltl in tlic availablc rriaiii 
iriciriory. For cxairiple, for tlic path cxprcssioii as shown 
iii Fig. l(a). If all hash tables for the path w e  expected 
to  fit iiito iriciriory, tlic patli caii be executed iii paral- 
lel with the algoritliiri described iii tlie iicxt subscctioii. 
However? if tlicrc is iiot eiiougli iriciriory, tlicii tliis path 
has to be brokcii iiito several sub-patli cxprcssioiis. As- 
siiiiie that  tlic patli is brokcii into two sub-patli cxprcs- 
sioiis pi = {result t- ( ~ d ( C 1 , p I )  x ( s c l ( C z , p z )  x F’ 

(scI(C5,p5) x (sel(C~,p~) }, as sliowii in Fig. l (b) .  
First, tlic sub-path cxprcssioii p z  is scliedulcd aiid ex- 
ecuted. Tlic result of the sub-patli is written into the 

deep tree, alld the paper[ 101 allalyzcd allcl  coiriparcd 

deep tree strategy. 

} a~ i id  p2 = { F’ +- ( s L ‘ I ( C ~ , ~ ~ )  x (sel(C4,~4) x 

disk file F’. Aiid thcii, the sub-patli cxprcssioii p i  is 
sclicdulcd aiid executed. Duriiig tlic cxccutioii of sub- 
path p1 disk file F’ is read to  probe corrcspoiidiiig liash 
tables. This is siiriilar to  tlic idea of right-deep tree 
sclicdulirig strategy described iii papcrs[3] aiid [ll]. Al- 
though tlic paper[2] has sliowii that tlic sclierria usiiig 
scgiriciited riglit-deep trees for pipeliiicd liasli joiiis out- 
pcrforrris tlie sclieiria usiiig riglit-dccy trees. tlie scg- 
rriciitcd riglit-deep tree sclierria caii iiot be directly ap- 
plied to  coiripute patli expressioris because of tlie cas- 
cade fcaturc of path cxprcssioii. Iii order to  avoid 
extra disk 1/0 overhead, we present a iicw scliedul- 
iiig strategy called right-deep zigzag tree as shown in 
Fig. l (c)  aid the dyiiarnic bottoin-up sclieduling strat- 
egy is adopted to deal with tlic rricrriory constrailit. 
Our sclicduliiig strategy is iiot only a special foriri of 
zigzag tree but also a special form of scgiriciited riglit- 
deep tree, so this sclicduliiig strategy is referred to  as 
riglit-deep zigzag tree, whicli lias the followiiig charac- 
teristics. 

(1) For aiiy sub-path p z  of a riglit-deep zigzag tree, if i 
is iiii odd number tlieii pz is a right-deep sub-tree. 
Otherwise, p z  is a left-deep sub-tree aiid the length 
of all left-deep sub-trees iii a right-deep zigxag tree 
is 2. The first sub-path is a right-deep sub-tree. 

(2) Just all right-deep sub-paths iii a right-deep zigxag 
tree arc scliedulcd to  execute iii parallel. The re- 
sult of the itli(i # I)  right-deep sub-patli is di- 
rectly used to  build corrcspoiidiiig liasli table for 
the execution of the (i-l) t l i  right-deep sub-path 
ratlicr tliaii t o  write back iiito a disk file aid 
thereby to  avoid extra. disk overhead occurriiig in 
right-deep tree sclicdulirig strategy. 

( 3 )  Right-deep zigzag tree is aii cxtrciric foriii of zigzag 
tree. Right-deep zigzag tree also is aii extreme 
form of riglit-deep tree. A riglit-deep zigzag tree 
caii also be viewed as a cascade scgrriciitcd right- 
deep tree. i.e. tlic result of the itli riglit-deep sub- 
path is the left iiiput of tlic last semi-join operatioil 
of the (i-1)tli riglit-deep sub-patli. So, riglit-deep 
zigzag tree car1 also be iiarricd cascade seginciited 
riglit-deep tree, to  reflect tlie cascade feature of 
patli exprcssioris. 

2.3 Parallel execution of sub-path expressions 

111 this subscctioii, we will discuss the parallel execu- 
tioii of a riglit-deep sub-patli iii a riglit-deep zigzag tree. 
It works iii two pliascs: buildiiig aiid probing. In the 
buildiiig phase, cxtcrits of the classes except for the last 
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resu1 t result result 

la) A path lb) Right-deep tree IC) Right-deep 
zig-zag G e e  

Figure 1: Sclieduliiig strategies 

oiie class iii sub-patli cxprcssioii are partitioiiccl usiiig 
a split table aid tlieii tlic liasli tables corrcspoiidiiig to 
various partitions are built. Tliesc I I  partitioiiiiig op- 
cratioiis are pcrforrried iii parallel. The procedure of 
partitioiiiiig the extent of class C, is sliowii in Fig. 2. 
First, tlic cxtciit of class Ci is scaiiiicd aiid tlic opera- 
tiori s d ( p ; )  is applied OII the scaiiiicd objects. After a 
partitioiiirig hash function p l ~  f is irriposcd oii tlie join 
attribute N A ;  of tlic selected objects? a split table is 
used to tletcrrriiiic wliicli liasli table, to say liasli table 
H T j ,  tliesc objects s l i o~ ld  be iiiscrtcd iiito. Tlie~i? tlic 
l ias l i  function I L  f j  tliffereiit from phf is used to  build 
llahsll table HTj .  

The iiuiribcr of partitioiis of eacli class iii the path 
expression arc the sairic, wliicli is just tlcpciitlcrit oii the 
iiniiibcr of sites available, that is tiirics of the iiuiribcr 
of sites available. We assiiirie that  tlic iiuiribcr of sites 
avi~ilablc be 111, tlicii the iiurribcr of partitioiis 11 is tiirics 
of in, tliat is. 11 = k * m(k 2 1). Tliesc partitioils are 
allocated to III sites iii rouiid-robiii way with forrriula 
siteao(thc i t h  p(Lrtit%o.u) = ,i riiwtlulo ‘m. 

Site 
Site I Site 2 h modulo m 

split I 1 I 2 ] - _ _ _ _ I  
table 

Hashuoin ttribute) 

select(pi) 4 Building i 
Ci 

Figure 2: Builtliiig plisse of tlie PCSJ algoritlini 

Duriiig tile probiiig plii~sc. the extciit of ClthSS cn+l 
is scariiied aiid predicate pn+l is applied oii the scaiiiied 

objects. Arid tlieii the same hash furictioii p l ~ f  as that  
used in the building phase is corriputed on the OID of 
eacli selected object, and the hashed value is used to 
deterrriirie which hash table is used to probe through 
the split table. If liash table HT,, for example, is se- 
lected, then only the OID part of the selected object 
of class Cn+l rather than the whole object is sent to  
site i rrmdulo m to  probe hash table HTi of class C,. 
Sirriilarly, if aii object, to  say o’, is matched in has11 
table HT,  of class C,, then the OID value of o’ is used 

site j rruxfulo rrL. Finally, in the hash tables of class 
C,, all the rriatclicd objects are results of the path ex- 
pression. Tlie probing phase of tlie PCSJ algoritlirn is 
derrioiistrated in Fig. 3. 

to probe a has11 table of class Cn+l, to say H T j ,  at 

Figure 3: Probing phase of the PCSJ algoritliiri 

3 Other two parallel algorithms for 
path expressions 

Iii this sectioii, we iiitroducc otlier two kiiids of parallel 
algoritlinis, tlie parallel forward poiiitcr cliasiiig algo- 
ritlirri aiid the iiidex splitting approach, for coinputing 
path expressioiis so that we can aiialyze and corripare 
tlic pcrforrriaiice of PCSJ with that of tlicrri. 

3.1 Parallel forward pointer chasing algorithm 

Siiicc relationships arnong objects are stored iii tlie 
database, oiie iiatural way to  execute a path expression 
is forward poiiiter cliasiiig along path instarices. In this 
way, all objects in tlie extent of the first class C1 in the 
path are first fetched and then predicate y1 is imposed 
oii tlierri. For each fetched and matched object o, its 
iiext object is obtaiiied by forward chasing tlie poiiiter 
along the path iiistaiice aiid the correspoiidiiig prcdi- 
cate is checked. This forward chasing is continuously 
goiiig if the object is satisfied with the predicate aiid 
tlic last object of the path iiistaiice is iiot encountered. 
Otherwise, the next path iiistaiice is forward chased. 
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If all predicates iii the path cxpressioii are satisfied. 
tlicii the object o is oiic of the result objects with rc- 
spect t o  the patli cxpressioii aiid is put to the result 
buffer. For the sake of perforrriaiicc coiripiLrisoii, we 
1iwe been designed arid iiriplcrriciited a parallel vcrsioii 
of forward pointer cliasirig(s1iort for PFPC) .  Readers 
cui refer paper tlic papcr[5] for the detailed dcsigii i~iid 
irriplcirieiitatioii tccliiiiqucs of tlic P F P C  algorithrri. 

3.2 Index splitting Approach 

Aii iiidex splittiiig approach for path exprcssioii is pro- 
posed iii (121. Iii the sclieme, iiidcx is split vcrti- 
cally aiid horixoiitally iiito sub-iiidices, each of wliich is 

trieval is doiie iii parallel witli iriiiiirrial corrirriuiiicatioii 
cost. Each sub-iiidcx of multi-index is called as a V- 
partitioii alid each sub-iiidcx obtained by splittiiig a V- 
partitioii liorixoiitally is called a HV-partitioii. Fig. 4 
shows iiidex elerrieiit dciioted by < rm,  r L  >. For cx- 
ainple. patli expression is C1.Cg.C3.C4: c1, cg, c3 a i i d  

c4 arc corrcspoiidiiig OID values in a patli iiistancc. so 
tlic path c1.c2.c3.c4 is divided vertically iiito < cl, cg >, 
< cg, c3 >, < c3, c4 >. Before ruiiiiiiig the algoritliiri, 
all the HV-partitioiis are stored irito the PES. Whcii a 
simple value or aii OID is givcii as a retrieval request. 
the retrieval opcratioii is pcrforined as sliowii iii Fig. 4. 

placet1 011 LL separate PE (Process Elerrieiit). Iiidex re- 

V. V V 

H 

H 

-.. 

relrlevill 

request 

H 

Figure 4: Parallel algorithrri of iiidcx splitting 

4 Performance evaluation 

In order to  further evaluate the pcrforrriaiicc of tlie 
PCSJ algoritlini, we have desigiicd aiid irriplerriciitcd 
the PFPC ant1 IritlexSplit algoritlirris, aiid liavc done 
rriucli actual test work. This section first iritroduccs 
tlie test environment aiid the test database, aiid thcii 
analyzes aid cornpares tlic speedup aiid scaleup per- 
formance of the PCSJ algoritlirri with the P F P C  and 

IiidcxSplit algoritliiris. Filially. we also coiriparc tlic 
pcrfoririaiicc of tlic riglit-deep zigzag tree sclictluliiig 
strategy aiid the riglit-tlccp tree sclictluliiig strategy. 

4.1 Test environment and test database 

In ortlcr to  test tlic pcrforiiiaiicc of tlicsc algoritliiris, 
we dcsigii a special test database. Pcrfoririaiicc tests 
include the speedup aiid scaleup tests. The spccdup 
rrieiLiis tlic ability to  grows witli tlic systciri size wliilc 
kccpiiig tlic problcrri size a s  coiistaiit. Scaleup ir ic~~s~ircs  
tlic ability to  grow witli both tlic systciri size and the 
problcin size. Scaleup is defiiied as tlic ability of a i i  N- 
tiirics laigcr systcrri to perform aii N-tiiiics larger job 
iii tlic bairie elapsed tirric as tlic origiiial systciri. We 
dcfiiic tlie class in test database a s  follows. 

c l a s s  B a s i c c l a s s :  p u b l i c  d-Object { 
d-Ref<BasicClass> NA; 
i n t  s e l A t t r ;  
char  o t h e r A t t r  [s t rLength]  ; 

3 

Tlic attribute sclAttr is used to  set restrictive prcd- 
icatcs applied on tlic class. NA is a iicstcd attribute of 
class Basicclass( the itciri for the last class in the path 
is set to  111111). Tlic attribute otlicrAttr is used to set 
the size of objects iii tlic test database. Tlic size of 
objects is 252 bytes. 

In tlic speedup test, we dcsigii test database to  coiri- 
putc path cxprcssioii wlicii tlic patli lciigtli is 3: that  is 
C,.C,.C,.C,. so we coiistruct 4 cxtcrits for 4 classes 011 

4 sites, a r i d  tlicrc is 100>000 objects i i i  cacli cxtciit. Tlic 
tested path cxprcssioii is C1 [Pl].Cs [Ps].C3 [P3].C4[P4]. 
At tlic sairic time, we require: (1)Tlic selectivity of p i  
is 90% for class Ci; (2)90% objects iii two collcctioii 
c i ~ i i  be joiiied. 

Accordiiig to  above rccluirciiiciits, tlic iiuiribcr of rc- 
sultu is about: 

100,000 * 0.9 * 0.g3 = 65,610 (4) 

111 tlic scaleup test, tlic lciigtli of patli expression 
is added a s  sites iiicrcasc. So ciglit cxtciits is built to 
foriri tlic pat,li cxpressioii:C1 [PI] .Cz [Ps] ... C7[P,].Cs (PSI 
at iriaxiinuin. We will test C l [ P ~ ] . C z [ P ~ ]  ... C , [ P ~ ] ,  wlicii 
i sites arc workiiig ( l<i<=8).  

Tlic liartlwarc coiifiguratioii for tcstiiig is ciglit PCs 
coiiiicctcd with liigli-speed switch. Eiglit PCs  arc all 
tlic S:LIIIC iii coiifiguratioii: AMD-KG 233Mliz CPU: 
G4MB rriciriory aiid 4.3GB liard disk. Tlic opcratiiig 
system is Solaris 2.5 aiid Sliussc-Uo systciri is 2.0[15]. 
On every workiiig site, tlie WAKASHI server is ruii- 

iiiiig. Sliussc-Uo is a distributed aiitl parallel object 
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database systeiri that lias beeii uiider dcveloprrieiit at 
Kyusliu University of Japan aiid Nortlieastcrii Univer- 
sity of Cliiiia. 111 the Sliussc-Uo system, licaps arc pro- 
vided for building databases. A heap consists of fixcd- 
length pages. I t  is persisterit when it is mapped oiito 
a disk. otlicrwise volatile. A database rriay coiisist of 
IKIOW tliaii one persistelit lieap. Each licap can be glob- 
ally sliared by aiiy client iii the system. 111 the testing 
database, objects of cacli class are stored in different 
persistelit lieap, i.e. 8 persistent heaps are used for the 
pcrforrriaiice evaluation. 

We liave tested the parallel forward poiiiter clias- 
iiig algoritlirri(PFPC), parallel cascade semi-joiii al- 
gorithrri(PCSJ) and parallel index splitting algo- 
ritlirri(IndexSp1it) based on tlic test database. Also, 
we give tlie perforrriaiicc corriparisoii aiid aiialysis of 
the right-deep z ipag  tree sclieduliiig strategy with the 
right-deep tree sclieduliiig strategy. 

4.2 Speedup performance 

Fig. 5(a) sliows the speedup respoiisc time to  coiii- 
pute C~[P~].C~[PZ].C~[P~].C~[P~] from 2 to  8 sites; aid  
Fig. 5(b) shows tlic correspoiidiiig speedup curve for 
three parallel algorithms. We can see that  tlie response 
time of PFPC and IiidexSplit are I K I U C ~  longer tlian 
that of PCSJ, especially wheii there are less working 
sites. The speedup pcrforrriaiice shows PCSJ is faster 
tliaii PFPC and IridexSplit wlieri corriputiIig path ex- 
pressioris with restrictive predivates. For PFPC aiid 
IndexSplit, all objects of classes in the path have to  be 
scanned aiid read into rriemory to  check if the predi- 
cates OIL tlie path is satisfied, so for every traversiiig 
operation from oiie class to  the next class one 1/0 may 
occur. Because P F P C  and IiidexSplit algoritlirris do 
not consider the rrierriory size colistrailit. oiic object 
may be read from disk several times and thereby extra 
1/0 overliead occurs. Thus tlie so-called 1/0 thrash- 
ing probleiri rriiglit occur. Because PCSJ considers tlic 
rrierriory sizc constraint, therc is IIO extra 1/0 overhead. 
So. PCSJ is faster thari PFPC aiid IridexSplit. Be- 
cause IiidexSplit lias to  pay additional cost for dealing 
with tlie iiidex, IiidexSplit is slower tliaii PFPC. The 
comrrioii treiiclciicy for the three parallel algorithms is 
that  response tirrie decreases as tlie i i u ~ ~ i b ~  of sites in- 
creases. And tlic graph sliows that respoiisc time will 
continue to  drop down wlieii tlie number of sites ex- 
ceeds 8. 

4.3 Scaleup performance 

Fig. S(a) sliows scaleup rcspoiise time for corriputiiig 
Cl[Pl].C~[P2] ... C;[P;] wheii i sites arc available arid 

1200 '\., 1 '.._, 

lo00 c ".. .. 

PCSJ - 
PFPC -+-- 

Indexsplit -*.- 

20:2; Number of sites 

I 
2 3 4 5 6 7 8 

Number of sites 

Figure 5: (a)Spcedup respoiisc tirrie (b)Spectlup rate 
Fig. G(b) sliows tlic corrcspoiidiiig scaleup pcrforrriaiicc 
curve for three parallel algoritlims. Obviously, the 
scalcup pcrforrriaiicc of PCSJ is rriucli better thaii that 
of PFPC aiid IiidcxSplit. Iri PCSJ, tlic scaleup curve is 
always iicar to  liiicar. Tlicrc is a little iiitcrferciicc he- 
twccii sites iii tlie process of PCSJ, siiicc every liash ta- 
ble locates differerit storage space witliiii DSVM space 
and tlic arriouiit of coirirriuiiicatioii always keeps coii- 
staiit. On the otlicr side, P F P C  aiitl IiidexSplit liavc 
worse scaleup. Tlic rriaii i  rcasoii is that  tlic PFPC aid 
IridexSplit do not adopt the partitioiiiiig tccliiiiqlue aiid 
thereby tlic interferelice airioiig sites iiicrcascs as the 
iiurriber of sites iiicrcascs. 

4.4 Discussion 

From tlic previous perforinancc analysis. we caii see 
that  PCSJ lias tlic best speedup aiid scaleup per- 
forrriaiicc airioiig tlie t h e e  parallel algoritlirris wlieii 
corriputiiig path cxprcssioiis with restrictive prcdicates. 
However, wliat happens for path cxprcssioiis witliout 
restrictive predicates'! that is to  say. how about tlic 
pcrforrriaiicc of tlic tlirce parallel algoritlirrls for patli 
expressions occurriiig in tlic SELECT and/or FROM 
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Figure 6: (a)Scalcup respoiisc time (b) Scaleup rate 
clauses'! Fig. 7(a) aiid Fig. 7(b) sliow the speedup re- 
spoiisc time aid the speedup curves of tlie tlirce paral- 
lcl algoritlirris in tlic case of path expressioiis without 
predicates, respectively. Froin the response time. Iii- 
dcxSplit is fastest airioiig tlic t h e e  algoritlirris w i t h  
6 sites. This is rriaiiily bccausc PCSJ aiid P F P C  have 
to read all objects iii tlic path expressioii from disk xio 

matter wlicther or iiot tlicrc exist predicates in tlie path 
cxpressioii wliile IridexSplit iieed iiot read aiiy object 
by tlic liclp of index. However, tlic PCSJ algorithin 
outperforms tlic IiidcxSplit algoritlim as the riurnber 
of sites iiicrcascs bcyoiitl 6. From Fig. 7(b), we can sec 
that IiitlexSplit has the worst speedup in the case of 
without predicates altliougli IiidcxSplit lias tlie fastest 
rcspoiisc time. This is because the overhead of paral- 
lelizatioii dorriiiiates tlie wliolc rcspoiisc time. Tlie fact 
sliows tliat it  is uiiiiccessary to  parallelizc tlic cxecutioii 
of path expressions bascd oil the splitting index. 

4.5 

This subsectiou aiialyzes tlic perforrnaiicc of different 
sclicduliiig strategies. Fig. 8 gives tlie performance 
curves of right-deep zigzag tree aiid right-deep tree 

Right-deep zigzag tree vs right-deep tree 

200 c -I 

.......... ............. 5 .............. e ...... ? ' .  

0' I 
3 4 5 6 7 8 

Number of sites 

I 
2 3 4 5 6 7 8 

Number of sites 

Figure 7: (a) Speedup resporise time without predi- 
cates (b) Speedup rate without predicates 

schcduliiig strategies with limited rnernory, 8 sites. The 
lerigtli of the path expression is set t o  8. Tlie y-axis 
value is tlie response time and the x-axis value is the 
percentage of available rncrnory. The percentage of 
available rriernory is giveii iii the forinula: percentage = 
$. From Fig. 8, we can see that  the response time 
of two strategies are same wheii 100% l iss l i  tables are 
expected to  fit into memory. However, as the size of 
the available memory decreases the rcspoiise time of 
two schedule strategies increases since tlie path expres- 
sions lias to  be broke11 iiito two several sub-path due 
to  the rrierriory size colistrailit. The right-deep zigzag 
tree outperforms the riglit-deep tree. This is mainly be- 
cause that  whexi a path exprcssioii is broken into several 
sub-path expressions to  corripute, tlic right-deep zigzag 
tree schedule strategy just spends overhead to  start the 
parallel cxecutioii of these sub-path expressions while 
the right-deep tree schcduliiig strategy weds extra I/O 
disk overhead besides the startup time for each sub- 
path exprcssioii. 
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Figure 8: Right-deep zigzag tree vs right-deep tree with 
limited incrriory 

5 Conclusions 

This ~xipcr  studies oiic of tlic open problcrris iii’parallcl 
object database systeiris, iianicly parallel coinputatioii 
of path expressions. After analyziiig the cxistiiig kip- 
proaclics to  path cxprcssioiis, tliis paper has prcseiitetl 
a iicw paraillel algorithm PCSJ to  corriputc path cxprcs- 
sioiis iii object database systems, and givcii the pcrfor- 
I I I M I C ~  aiiiilysis aiid corriparisoii of algoritlirri with the 
otlicr two typical p2~r:~llcl algoritliins. Tlie cxpcrirncii- 
tal results show tliat tlic PCSJ algoritlirii outperform 
tlic otlicr two p:~I;~llcl algoritlirris wlicii corriputiiig path 
expressions with restrictive predicates. At the Silllie 

time, a iicw schcduliiig strategy r i g h t - d e e p  zigtug tree 
is proposed to furtlicr iinprovc the pcrforrriaiicc of tlic 
PCSJ algoritlirn by avoidiiig extra disk overhead. Tlic 
cxpcrirriciital result shows that  tlic ~vigclht-dee-y zigzag 
tr’ee outperforiris tlic right-deep tree iii the case of liiri- 
itcd rriciriory. Tlic algorithiri lias bceii irriplcrrieiited 
i i i  aii object database systerri Shusse-Uo wliicli is uii- 
der tlcvclopiiieiit a t  Kyusliu University of Japaii aid 
Nortlicastcrii Uiiivcrsity of Chiiia iii tlic ciiviroiirrieiit 
of Networks Of Workstatioiis(N0W). 
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