Comparison of Parallel Algorithms for Path Expression
Query in Object Database Systems

Guoren Wang, Ge Yu
School of Information Science and
Engineering, Northeastern University,
Shenyang 110006, P.R. China

{wanggr,yuge}@mail.neu.edu.cn

Abstract

In this paper, We proposed a new parallel algorithm for
computing path expression, named Parallel Cascade Semi-
join (PCSJ). Moreover, a new scheduling strategy called
right-deep zigzag tree is designed to further improve the
performance of the PCSJ algorithm. The experiments have
been implemented in a NOW distributed and parallel envi-
ronment. The results show that the PCSJ algorithm out-
performs the other fwo parallel algorithms(the parallel ver-
sion of forward pointer chasing algorithm(PFPC) and the
index splitting parallel algorithm(IndezSplit)) when com-
puting path expressions with restrictive predicates and that
the right-deep zigzag tree scheduling strategy has the better
performance than the right-deep tree scheduling strategy.
Key Words: Object databases, path expressions, parallel
algorithms, scheduling strategies

1 Introduction

Ou one hand, data managed by database management
systems are becoming very large in data-intensive ap-
plications such as E-Comimerce, Digital Library, DNA
Bank, Geographic Information Systems(GIS). Thus cf-
ficient parallel algorithms for accessing and manipulat-
ing a large volume of data are required to provide high
performance for users. The parallel processing is an im-
portaut approach for realizing high-perforinance query
processing in such data-intensive applicatious. Up to
now, a lot of research work has been done for parallel
algorithms in the context of relational database sys-
tems. For example, DeWitt ¢t al. proposed a parallel
Lybrid hash join algorithm in the paper[4] and Kitsure-
gawa presented a centralized GRACE join algorithin([7]
and corresponding parallel algorithm([8]. On the other

Proceedings of the Seventh International Conference on
Database Systems for Advanced Applications. Hong
Kong, April 18-21, 2001.

0-7695-0996-7/01 $10.00 © 2001 IEEE

Kunihiko Kaneko, Akifumi Makinouchi

Graduate School of Information Science and
Electrical Engineering, Kyushu University,

250

Fukuoka 812, Japan
{kaneko,akifumi}@db.is.kyushu-u.ac.jp

hand, relational database systems can not effectively
and efficiently meet the requirements of cmerging ad-
vanced database applications due to the limitations
of their modeling capability. In these application do-
mains, data types and scmantics among data are much
richer than conventional applications. Ouce of promis-
ing approaclies to meet the needs of these domaius is
object-orientation. One distinguished feature of object
database system is path expression and most queries
on an object databasc are based oun path cexpression
because it is the most natural and convenient way to
access the object database, for example, to navigate
the hyper-links in a web-based database. Because of
the orthogonality of OQL[1], a path cxpression can
be placed in SELECT, FROM, and WHERE clauscs.
The following i1s a typical example of OQL statement
which uses path expressions in the SELECT, FROM,
and WHERFE clauses, respectively. In this paper, we
will focus on the parallel execution of the path expres-
sious in WHERE clauses, this kind of path expressions
is also called as complex predicates. I the ODMG 2.0
standard, the expressing capability of path expressions
is limited to some degree[l]. For example, a predicate
can be applied only on the last class in a path. Actu-
ally, the definition of path expressious can be extended
such that cach class in a path expression cau be quali-
fied with one or more predicates. The general form of
a extended path expression is as follows.

’I"U[}l]].NA] [’pz].NAg h)g]...NA.n[p7l+1] (1)
where rv is a range variable, NA;(1 <4 < n) is a nested
attribute of class Cy, pi(1 <@ < n+ 1) is a predicate
applied on class C;. The exteut of class C; is denoted
as C; itsclf.

In recent years, more and more rescarchers are
moving their rescarch interests from parallel rela-
tioual database systems to parallel object database

mailto:inail.neu.edu
mailto:kaneko,akifunii}@db.is.kyushu-u.ac.jp

systems[6][13], and correspondingly some parallel join
algorithms have been proposed for object database
systems[9]. Parallel pointer-based join techniques have
been presented for object-oriented databases in the
paper[9]. However, to the best of our knowledge, few
of approaches have been presented for computing path
expressions in parallel. It is sure that parallel pointer-
based join techniques can be employed for computing
path expressions and they are easy to be parallelized.
However, we think that they can be improved from
the following three aspects. First, these join algo-
rithms do not utilize the cascade feature of path ex-
pressions. That is, a path expression can be computed
in a pipelining way by converting the path expression to
a right-deep tree. Secondly, a path expression can be
converted to an equivalent semi-join rather than join
expression and thereby reducing CPU cost aud com-
munication cost. Thirdly, during the execution of a
semi-join expression, an object’s OID rather than the
whole object is necessary to send from a semi-join oper-
ation to the next one, thus, the cost of communication
for computing the path can be reduced further.

The main contribution of this paper is that it
presents a new parallel algorithm for computing path
expressions: parallel cascade semi-join(PCSJ) which
computes a path expression using semi-join operations
rather than join and thercby dramatically reducing the
cost of computing the path expression compared with
the Pointer-based parallel join algorithm. The exper-
imental results show that the PCSJ algorithm greatly
outperforms the other two typical parallel algorithins.
In order to deal with limited memory size, this pa-
per proposes a new scheduling strategy called right-
deep zigzag tree to further improve the performance of
the PCSJ algorithmm by avoiding extra I/O disk over-
head. Our preliminary experimental result shows that
the right-deep zigzag tree scheduling strategy has the
better performance than the right-deep tree scheduling
strategy.

The remainder of this paper is organized as follows.
Section 2 presents a parallel cascade semi-join algo-
rithm. Section 3 introduces two other kinds of parallel
algorithm for computing path expressions, including
the parallel forward pointer chasing algorithm and the
index splitting approach. Section 4 gives the perfor-
mance analysis and comparison of the PCSJ algorithm
with the other two parallel path algorithms. Finally,
Section 5 coucludes the paper.

2 Parallel cascade semi-join algorithm

In this section, we first explain how to use semi-join op-
eration to compute path expressions, and then describe

251

how to schedule the computation of a path expression,
finally discuss the parallel cxecution of a sub-path ex-
pression.

2.1 Using semi-join to compute path expres-
sions

If there is an extent for cach class in a path expres-
sion, then the implicit joins in the path expression can
be converted into explicit joius for computing the path
expression. For example, the path (sec expression (1))
described in Section 1 can be computed by the follow-
ing join expressions.

NA;

NA, -,

NA
sel(Cy,p1) > sel(Caz,pa)
NA,
sel(Cnypn) 54" sel(Cpyr, Pnt1)

(2)

If each join operation in formula (2) is replaced by
one semi-join operation, an cquivalent semi-join expres-
sion can be obtained as follows.

(sel(Cr,p1) x (sel(Ca,p2) x (---
(sel(Crypn) x 5¢l(Cri1,Pnt1)) - +)))

Formula (2) can be cvaluated and performed in
two reversed directions: forward and backward, respec-
tively, while formula (3) can be performed in only one
direction, i.c., backward. The forward semi-join cx-
pression is not equivalent to the backward semi-join ex-
pression because semi-join operator is not commutable.
In formula (3), the execution of any scmi-join opera-
tion, to say sel(Cy,p;) x sel(Cipy1,pit1)(1 < i < n)
can be roughly described as follows. First, the extent
of class C; is scauned and predicate p; is applied on
the scanned objects, and then the sclected objects are
used to build a hash table for class C; by applying a
hash function on the nested attribute NA;. Sccondly,
the result objects of the previous semi-join operation,
le. sel(Ciy1,piq1) x sel(Ciya, pitz), are used to probe
the hash table of class C; with the same hash function
as that used in the building phase. If an object in
the hash table is matched, then OIDs of the matched
objects is passed to the next semi-join operation, i.c.
sel(Ci—1,pi-1) x sel(Ci,p;). The scmi-join approach
to path cxpressions has the following advantages over
the pointer-based join approach.

®3)

(1) Due to replacement of join operation with semi-
join operation, the exccution cost of the path ex-
pression is greatly reduced, including CPU and
commuuication cost.

(2) For the pointer-based join approach, a projection
operation is needed for projecting objects from the

final results of the join expression, while in the
sewi-join approach it is obvious that this projec-
tion operation is unneccessary because just OIDs
rather than objects are sent from semi-join opera-
tion to the uext onc.

A cascade semi-join expression can be imple-
mented as a scmi-join right-deep tree. The other
feature of a scmi-join cascade query is that the
position of any semi-join operation in the expres-
sion is fixed. Thus optimization of a cascade query
is relatively casier to be done than a general join
query. '

2.2 Right-deep zigzag tree scheduling strategy
For

there

the parallel
somne

evaluation of multi-join queries,
interesting scheduling strategies:
left-lincar(left-deep) trees, left-oriented bushy trees,
wide bushy trees, right-oriented bushy trees, right-
lincar(right-deep) trees described in the paper[14]. The
paper reports the experiences with the implementation
of these strategies for the implementation of multi-join
queries on PRISMA/DB. In addition, the paper[2] ex-
tended the right-deep tree strategy to the segmented
right-deep tree strategy for the execution of pipelined
hash joins and gave the simulation experimental com-
parison of these two strategics. The paper[16] pre-
sented a new schieduling strategy called zigzag tree,
which is intermediate between left-deep tree and right-
deep tree, and the paper[10] analyzed and compared
the zigzag strategy with the right-deep tree and bushy
tree strategies. It is obvious that these scheduling
strategies can not. be directly applicd to the parallel
computation of path expressions except for the right-
deep tree strategy.

are

For a cascade scmi-join operations in a path ex-
pression, if there is not cnough available main mem-
ory holding the hash tables for a path expression, then
the path expression can be broken into several sub-
path expressions such that the hash tables for each
sub-path expression can be held in the available main
memory. For example, for the path expression as shown
in Fig. 1(a). If all hash tables for the path arc expected
to fit into memory, the path can be executed in paral-
lel with the algorithm described in the next subsection.
However, if there is not enough memory, then this path
has to be brokeu into several sub-path cxpressions. As-
sume that the path is broken into two sub-path expres-
sions p; = {result «—— (sel(Cr,p1) x (sel(Ca,pa) x F'
}and po = { ' —— (sel(Cs,p3) x (sel(Ca,ps) x
(5¢l(Cs,ps) x (sel(Coypg) }, as shown in Fig. 1(b).
First, the sub-path cxpression po is scheduled and ex-
ccuted. The result of the sub-path is written into the

disk file F’. And then, the sub-path expression p; is
scheduled and executed. During the exccution of sub-
path p; disk file F’ is read to probe corresponding hash
tables. This is similar to the idea of right-deep tree
scheduling strategy described in papers[3} and [11]. Al-
though the paper[2] has shown that the schema using
scgmented right-deep trees for pipelined hash joins out-
performs the schema using right-decp trees, the seg-
mented right-deep tree schema can not be directly ap-
plied to compute path expressions because of the cas-
cade featurc of path expression. In order to avoid
extra disk I/O overhead, we present a new schedul-

. ing strategy called right-deep zigzag tree as shown in

252

Fig. 1(c¢) and the dynamic bottom-up scheduling strat-
cgy 1s adopted to deal with the memory constraint.
Our scheduling strategy is not ounly a special form of
zigzag tree but also a special form of segmented right-
deep tree, so this scheduling strategy is referred to as
right-deep zigzag tree, which has the following charac-
teristics.

(1) For any sub-path p; of a right-deep zigzag tree, if i
is an odd number then p; is a right-deep sub-tree.
Otherwise, p; is a left-deep sub-tree and the length
of all left-deep sub-trees in a right-deep zigzag tree
is 2. The first sub-path is a right-deep sub-tree.

Just all right-deep sub-paths in a right-deep zigzag
tree are scheduled to execute in parallel. The re-
sult of the ith(z # 1) right-decp sub-path is di-
rectly used to build corresponding hash table for
the execution of the (i-1)th right-deep sub-path
rather than to write back into a disk file and
thereby to avolid extra disk overhead occurring in
right-deep tree scheduling strategy.

Right-deep zigzag tree is an extreme form of zigzag
tree. Right-deep zigzag tree also is an extreme
form of right-deep tree. A right-deep zigzag tree
can also be viewed as a cascade segmented right-
decp tree, i.e. the result of the ith right-deep sub-
path is the left input of the last semi-join operation
of the (i-1)th right-deep sub-path. So, right-deep
zigzag tree can also be named cascade segmented
right-deep tree, to reflect the cascade feature of
path expressions.

2.3 Parallel execution of sub-path expressions

In this subscction, we will discuss the parallel execu-
tion of a right-deep sub-path in a right-deep zigzag tree.
It works in two phases: building and probing. In the
building phase, extents of the classes except for the last

result

(a) A path

{b) Right-deep tree {c) R@ght—deep

zig-zag tree
Figure 1: Scheduling strategies

one class in sub-path expression are partitioned using
a split table and then the hash tables correspouding to
various partitious are built. These n partitioning op-
cratious are performed in parallel. The procedure of
partitioning the extent of class C; is shown in Fig. 2.
First, the extent of class C; is scanned and the opera-
tion sel(p;) is applied on the scanned objects. After a
partitioning hash function phf is imposed ou the join
attribute VA; of the sclected objects, a split table is
used to determine which hash table, to say hash table
HT;, these objects should be inserted into. Then, the
hash function Af; different from phf is used to build
hash table HTj;.

The number of partitions of cach class in the path
expression are the same, which is just dependent on the
number of sites available, that is times of the number
of sites available. We assume that the number of sites
available be mn, then the number of partitions h is times
of m, that is, b = k * m(k > 1). These partitious are
allocated to m sites in round-robin way with formula
siteno(the ith partition) = ¢ modulo m.

Site
Site | Site 2 h modulo m
ash Hash ash
able 1] [Table 2|~ ~[Table h

/S /
ENENE===NY

Hash(join pttribute)

split
table

Building

Ci

Figure 2: Building phase of the PCSJ algorithm

During the probing phase, the extent of class Cpyq1
is scanned and predicate ppy1 is applied on the scanned

253

objects. And then the same hash function phf as that
used in the building phase is computed on the OID of
each sclected object, and the hashed value is used to
determine which hash table is used to probe through
the split table. If hash table HT;, for example, is se-
lected, then only the OID part of the selected object
of class Cpy1 rather than the whole object is sent to
site ¢ nodulo m to probe hash table HT; of class C,.
Similarly, if an object, to say o’, is matched in hash
table HT; of class C,,, then the OID value of o’ is used
to probe a hash table of class Cry1, to say HTj, at
site § modulo m. Finally, in the hash tables of class
C1, all the matched objects are results of the path ex-
pression. The probing phase of the PCSJ algorithm is
demonstrated in Fig. 3. '

/'—_’M

r=-="1 r=--"i r=--"
______ LGl el o6l Gy i:
osie Hash | ash =
h module m ¢ [Table h c h 4

)
Ve e e =)

’ abl

Cn+l

Figure 3: Probing phase of the PCSJ algorithm

3 Other two parallel algorithms for
path expressions

In this section, we introduce other two kinds of parallel
algorithms, the parallel forward pointer chasing algo-
rithm and the index splitting approach, for computing
path expressions so that we can analyze and compare
the performance of PCSJ with that of them.

3.1 Parallel forward pointer chasing algorithm

Since relationships among objects are stored in the-
database, one natural way to execute a path expression
is forward pointer chasing along path instances. In this
way, all objects in the extent of the first class Cy in the
path are first fetched and then predicate p; is imposed
on them. For each fetched and matched object o, its
next object is obtained by forward chasing the pointer
along the path instance and the corresponding predi-
cate is checked. This forward chasing is continuously
going if the object is satisfied with the predicate and
the last object of the path instance is not encountered.
Otherwise, the next path instance is forward chased.

If all predicates in thie path expression are satisfied,
then the object o is one of the result objects with re-
spect to the path expression and is put to the result
buffer. For the sake of performance comparison, we
have been designed and implemented a parallel version
of forward pointer chasing(short for PFPC). Readers
can refer paper the paper[5] for the detailed design and
implementation techniques of the PFPC algorithm.

3.2 Index splitting Approach

Au index splitting approach for path expression is pro-
posed in [12]. Iu the scheme, index is split verti-
cally and horizontally into sub-indices, each of which is
placed on a separate PE (Process Element). Index re-
trieval is done in parallel with minimal communication
cost. Each sub-index of multi-index is called as a V-
partition and each sub-index obtained by splitting a V-
partition horizontally is called a HV-partition. Fig. 4
shows index element denoted by < m,n >. For cx-
ample, path expression is C1.C5.C3.Cy; ¢1, c2, ¢g and
¢y are corresponding OID values i a path instance, so
the path ¢j.¢3.¢3.¢4 1s divided vertically into < ¢y,¢9 >,
< ¢9,¢3 >, < c¢3,¢q >. Before running the algorithim,
all the HV-partitions are stored into the PEs. When a
simple value or an OID is given as a retrieval request,
the retrieval operation is performed as shown in Fig. 4.

V. v v
E: (PE: E - ™
: '"(/ B Nz \\ """ (/ Y
H N1 N ! H:
: N ;
rewievatl N1 |
LN O AN---)- NG I S
. PE { 1o CPED LD . PE
2 Y Y '__
N1 \ N——1 T H.
PZEN 2N H
5> 32> W*\{\E
) PE: 7T PE: L i PE: i retrieval
- <‘(>.4>\ ----- T S B ARt T - -=., request
VTN A :
N -l VH
: N N1 '
X J """ C T C A

Figure 4: Parallel algorithm of index splitting

4 Performance evaluation

In order to further evaluate the performance of the
PCSJ algorithm, we have designed and implemented
the PFPC and IndexSplit algorithms, and have done
much actual test work. This section first introduces
the test environment and the test database, and then
analyzes and compares the speedup and scaleup per-
formance of the PCSJ algorithm with the PFPC and

254

IndexSplit algorithins. “Finally, we also compare the
performance of the right-deep zigzag tree scheduling
strategy and the right-deep tree scheduling strategy.

4;1 Test environment and test database

In order to test the performance of these algorithins,
we design a special test database. Performance tests
include the speedup and scaleup tests. The speedup
means the ability to grows with the system size while
keeping the problem size as constant. Scaleup measures
the ability to grow with both the system size and the
problem size. Scaleup is defined as the ability of an N-
times larger system to perform an N-times larger job
in the same clapsed time as the original system. We
define the class in test database as follows.

class BasicClass: public d_Object {
d_Ref<BasicClass> NA;

selAttr;

otherAttr[strLength];

int
char

}

The attribute sclAttr is used to set restrictive pred-
icates applied on the class. NA is a nested attribute of
class BasicClass(the itemn for the last class in the path
is sct to null). The attribute otherAttr is used to set
the size of objects in the test database. The size of
objects 1s 252 bytes.

In the speedup test, we design test database to com-
pute path expression when the path length is 3, that is
C1.C5.C5.Cy. So we construct 4 extents for 4 classes on
4 sites, and there is 100,000 objects in cach extent. The
tested path expression is Cy[Py].Ca[P,).C3[Ps].Co[Py).
At the same time, we require: (1)The scelectivity of p;
is 90% for class Cj; (2)90% objects in two collection
can be joined.

According to above requirements, the number of re-
sults is about:

100, 000 * 0.9 * 0.9% = 65,610 (4)

In the scalcup test, the length of path expression
is added as sites increase. So ecight exteuts is built to
form the path expression:Cy[Py].Ca[Ps)...C7[Pr].Cs[Ps)
at maximum. We will test Cy[P1].Ca{P2)...C;[P;], when
1 sites are working (1<i<=8).

The hardware counfiguration for testing is cight PCs
connected with high-speed switch. Eight PCs are all
the same in configuration: AMD-K6 233Mhz CPU,
64MB memory and 4.3GB hard disk. The operating
system is Solaris 2.5 and Shusse-Uo system is 2.0[15].
On cvery working site, the WAKASHI server is run-
ning. Shusse-Uo is a distributed and parallel object

database system that has been under development at
Kyushu University of Japan and Northeastern Univer-
sity of China. In the Shusse-Uo system, hecaps are pro-
vided for building databases. A heap counsists of fixed-
length pages. It is persistent when it is mapped onto
a disk, otherwise volatile. A databasc may cousist of
more than one persistent heap. Each heap can be glob-
ally shared by any client in the system. In the testing
database, objects of cach class are stored in different
persistent heap, i.e. 8 persistent heaps are used for the
performance evaluation.

We have tested the parallel forward pointer chas-
ing algorithm(PFPC), parallel cascade semi-join al-
gorithm(PCSJ) and parallel index splitting algo-
rithm(IndexSplit) based on the test database. Also,
we give the performance comparison and analysis of
the right-deep zigzag tree scheduling strategy with the
right-deep tree scheduling strategy.

4.2 Speedup performance

Fig. 5(a) shows the speedup respouse time to com-
pute C1[P1].C2[P2}.C3[P3].C4[Py] from 2 to 8 sites; and
Fig. 5(b) shows the corresponding speedup curve for
three parallel algorithms. We can see that the respounse
time of PFPC and IndexSplit are much longer than
that of PCSJ, especially when there are less working
sites. The speedup performance shows PCSJ is faster
than PFPC and IndexSplit when computing path ex-
pressions with restrictive predivates. For PFPC and
IndexSplit, all objects of classes in the path have to be
scanned and read into memory to check if the predi-
cates on the path is satisfied, so for every traversing
operation from one class to the next class one 1/0 may
occur. Because PFPC and IndexSplit algorithms do
not cousider the memory size counstraint, one object
may be read from disk several times and thereby extra
I/O overhead occurs. Thus the so-called I/O thrash-
ing problem might occur. Because PCSJ considers the
memory size constraint, there is no extra I/O overhead.
So, PCSJ is faster than PFPC and IndexSplit. Be-
cause IndexSplit has to pay additional cost for dealing
with the index, IndexSplit is slower than PFPC. The
common trendency for the three parallel algorithms is
that respouse time decreases as the number of sites in-
creases. And the graph shows that response time will
continue to drop down when the number of sites ex-
ceeds 8.

4.3 Scaleup performance

Fig. 6(a) shows scaleup response time for computing

Cl[Pl].Cz[le...Ci[Pi] when 1 sites are available and

255

1200 e T |
A | IndexSplit -
) -1'
2 1000 ‘
¢ . b"a,,'
2 s
£ 8.,
. S T B,
] 600 ... o
e
o e — N
4
¢ 200 -
0 " ;
2 3 4 ; ' :
Number of sites
8 . — " e
PCSJ ~— - J
PFPC -+--- g
7 IndexSpiit -e- -
Linear -x--
6t
o 5
°©
g
& 4
3
2
; _ .

5
Number of sites

Figure 5: (a)Speedup response time (b)Speedup rate
Fig. 6(b) shows the corresponding scaleup performance
curve for three parallel algorithms. Obviously, the
scaleup performance of PCSJ is much better than that
of PFPC and IndexSplit. In PCSJ, the scaleup curve is
always near to lincar. There is a little interference be-
tween sites in the process of PCSJ, since every hash ta-
ble locates different storage space within DSVM space
and the amount of communication always keeps con-
stant. On the other side, PFPC and IudexSplit have
worse scaleup. The main reason is that the PFPC and
IndexSplit do not adopt the partitioning technique and
thereby the interference among sites increases as the
number of sites increases.

4.4 Discussion

From the previous performance analysis, we can sec
that PCSJ has the best speedup and scaleup per-
formance among the three parallel algorithms when
computing path expressions with restrictive predicates.
However, what happens for path expressions without
restrictive predicates? that is to say, how about the
performance of the three parallel algorithms for path

expressions occurring in the SELECT and/or FROM

350 PCSJ ——) 7 .3
PFPC -+---
IndexSplit - a
300 F T J
250 o 4

Scaleup response time(Seconds)

L L L " n

2 3 4 5 7 8
Number of sites
12}
1.1
1 -

09

0.8

Scaleup

07

06 | e,) |
. T]
...
' | L A
2 N | |

Number of sites

Figure 6: (a)Scaleup response time (b) Scaleup rate
clauses? Fig. 7(a) and Fig. 7(b) show the speedup re-
spouse time and the speedup curves of the three paral-
lel algorithms in the case of path expressions without
predicates, respectively. From the response time, In-
dexSplit is fastest among the three algorithms within
6 sites. This is mainly because PCSJ and PFPC have
to rcad all objects in the path expression from disk no
matter whether or not there exist predicates in the path
cxpression while IndexSplit need not read any object
by the help of index. However, the PCSJ algorithm
outperforms the IndexSplit algorithm as the number
of sites increases beyoud 6. From Fig. 7(b), we can see
that IndexSplit has the worst speedup in the case of
without predicates although IndexSplit has the fastest
respousc time. This is because the overhiead of paral-
lelization dominates the whole response time. The fact
shows that it is unuccessary to parallelize the execution
of path expressions based on the splitting index.

4.5 Right-deep zigzag tree vs right-deep tree
This subsection analyzes the performance of different

scheduling strategies. Fig. 8 gives the performance
curves of right-deep zigzag tree and right-deep tree

256

—

‘ PCSJ ~—
800 | ™ oo 3

i IndexSplit without predicate - 1

N\,

° k

é 700 F A ‘

3

e eo0f . -

£ ™

g SOf . ‘

§ a0l 000 h

S 400} B 4

O S

] S RS

o 300 ’-

el

2

Q.

1]

IndexSplit -e-- e “
Linear -

Speedup

5
Number of sites

Figure 7: (a) Speedup response time without predi-
cates (b) Speedup rate without predicates

scheduling strategies with limited memory, 8 sites. The
length of the path expression is set to 8. The y-axis
value is the response time and the x-axis value is the
percentage of available memory. The percentage of
available memory is given iu the formula: percentage =
% From Fig. 8, we can sec that the response time
of two strategies are same when 100% hash tables are
expected to fit into memory. However, as the size of
the available memory decréases the respouse time of
two schedule strategies increases since the path expres-
sions has to be broken into two several sub-path due
to the memory size constraint. The right-deep zigzag
tree outperforms the right-deep tree. This is mainly be-
cause that when a path expression is brokeun into several
sub-path expressions to compute, the right-deep zigzag
tree schedule strategy just spends overhead to start the
parallel execution of these sub-path expressions while
the right-deep tree scheduling strategy needs extra I/0
disk overhead besides the startup time for each sub-
path expression.

280 | Right-deep zigzag tree ~— |
Right-deep tree -+

260 ™

20 } hN

220

Scaleup

L

140

1 2
Available memory((2"*x)/8)

Figure 8: Right-deep zigzag tree vs right-deep tree with
limited memory

5 Conclusions

This paper studies one of the open problems in parallel
object database systems, namely parallel computation
of path expressions. After analyzing the existing ap-
proaches to path expressions, this paper has presented
anew parallel algorithm PCSJ to compute path expres-
sions in object database systems, and given the perfor-
mance analysis and comparison of algorithm with the
otlier two typical parallel algorithins. The experimen-
tal results show that the PCSJ algorithm outperforms
the other two parallel algorithins when computing path
expressions with restrictive predicates. At the same
time, a new scheduling strategy right-deep zigzag tree
is proposcd to further improve the performance of the
PCSJ algorithm by avoiding extra disk overhead. The
experimental result shows that the right-deep z2igzag
tree outperformus the right-deep tree in the case of lim-
ited memory. The algorithm has been implemented
in an object database system Shusse-Uo which is un-
der development at Kyushu University of Japan and
Northeastern University of China in the environment
of Networks Of Workstations(NOW).

References

[1] R.Cattell, The object database standard: ODMG
2.0. Morgan Kaufmann Publishers, Inc. 1997.

[2] M.-S.Chen, M.Lo, P.S.Yu, ¢t al. “Using segmented
right-deep trees for the execution of pipelined hash
joins.” Proceedings of the 18th VLDDB Conference,
Vancouver, Canada, 1992, pp.15-26.

[3] M.-S.Chen, M.Lo, P.S.Yu, ct al. “Applying seg-
mented right-deep trees to pipelining multiple
hash joins,” IEEE TKDE, 1995, 7(4): pp.656-668.

257

(4] D.DeWitt, S.Ghandeharizadeh, D.Schneider, et
al. “The Gamma database machine project,”
IEEE TKDE, 1990, 2(1): pp.44-62.

Q.Fang, G.Wang, G.Yu, K.Kaneko, and
A Makinouchi, “Design and Performance Evalua-
tion of Parallel Algorithms for Path Expressions.”
1999 International Symposium on Database Appli-
cations in Non- Traditional Environments, Kyoto,
Japan, 1999, pp.373-380.

K.-C.Kim, “Parallelism in object-oriented query
processing,” Proc. of the 6th ICDE Conference,
Feb. 1990, pp.209-217.

M.Kitsuregawa, H.Tanaka, and T.Moto-oka, “Ap-
plication of hash to data base machine and its
architecture,” New Generation Computing, 1983,
1(1).

M.Kitsuregawa, S.Tsudaka, and M.Nakano, “par-
allel GRACE hash join on shared-everything mul-
tiprocessor: Implementation and performance
cvaluation on symmetry s81,” Proceedings of the
8th ICDE Conference, Temper, Arizona, Feb.
1992, pp.256-264.

D.Licuwen, D.DeWitt, and M.Mehta, *Parallel
pointer-based join techniques for object-oriented
databases,” Proceedings of the 2nd PDIS Counfer-
ence, January 1993.

R.S.G.Lanzelotee, P.Valduriez, and M.Zait, “On
the cffectiveness of optimization scarch strategies
for parallel execution spaces.” Proceedings of the
19th VLDDB Conference, Dublin, Ireland, 1993,
pp493-504.

D.A.Schucider and D.J.DeWitt, “Tradeoffs in pro-
cessing complex join queries via hashing in mul-
tiprocessor database machines.” Proceedings of
the 16th VLDB Conference, Btishbane, Australia,
1990, pp.469-480.

T.Tsuji and T.Hochin, “Parallel Index Retrieval
of Complex Objects”, Advanced Database Sys-
tems for Integration of Media and User Environ-
ments’98, Singapore, 1998, pp.179-184.
A.K.Thakore, S.Y.W.Su, and H.X.Lam, *“Al-
gorithmms for asynchronous parallel processing
of object-oriented databases,” IFEEE TKDE,
1995:7(3), pp.487-504. v
A N.Wilschut, J.Folkstra, and P.M.G.Apers,.
“Parallel evaluation of multi-join queries.” Pro-
ceedings of the SIGMOD Conference, San Jose,
CA USA, pp.115-126

G.Yu, K.Kaneko, G.Bai, and A.Makinouchi,
“Transaction management for a distributed ob-
ject storage system WAKASHI-design, implemen-
tation and performance,” Proc. of the 12nd ICDE
Conference, New Orleans, 1996, pp.460-468.
M.Ziane, M.Zait, and P.Borla-Salamet, “Paral-
lel Query Processing with Zigzag Trees.” VLDB
Journal, 1993, 2(3): pp.277-301.

[6]

(7]

[10]

(11]

(12]

(13]

14]

[16]

