Improved Third Normal Form Relations (LTK)

(by Ling, Tompa, and Kameda, TODS 1981)

Preparatory Algorithm.

Input. A - a set of attributes, \mathbf{F} - a set of FDs on A.

<u>Step 1.</u> (Remove extraneous attributes and dependencies)

- Eliminate from both sides of each FD in **F** all attributes whose elimination leaves a set of FDs having a closure equal to **F**⁺.
- Eliminate from that modified set all FDs whose right side is empty. Let **F**₁ be the resulting set.

<u>Step 2.</u> (Partition the FDs)

• Partition **F**₁ into a set of classes C such that all FDs in each class have properly equivalent left sides.

<u>Step 3.</u> (Construct relations)

- Each class form a relation
- Let **R**= {R₁, ..., R_n} be the set of relations constructed. Each left side of FDs in each class is a key (called **synthesized key**) of the constructed relation.

<u>Step 4.</u> (Augment the schema, if necessary, for reconstructibility)

If for each relation R_i in **R** with \mathbf{A}_i the set of attributes in R_i such that $\mathbf{A}_i \not\rightarrow \mathbf{A} \in \mathbf{F_1}^+$

then construct a minimal subset A' of A such that $\mathbf{A'} \rightarrow \mathbf{A} \in \mathbf{F_1}^+$

This is an **all key relation**. (i.e. all attributes of the relation is the key of the relation).

Output. The set of relations constructed is called the preparatory relational schema.

Note. The relations constructed may not in 3NF. This preparatory algorithm does not remove transitive dependencies.

Let *R* be preparatory relational schema consisting of relations R_i , each having a set of attributes A_i and a set K_i of **synthesized keys**.

$$\mathbf{R} = \{ R_1 < \mathbf{A}_1, K_1 >, R_2 < \mathbf{A}_2, K_2 >, \dots, R_n < \mathbf{A}_n, K_n > \}$$

Define G_i be the set of synthesized FDs in relation R_i

i.e.
$$G_i = \{ K \rightarrow A_i - K \mid K \in K_i \}$$

Let $G = \bigcup_{i=1}^{n} G_i$

We can show that

$$G^{+} = \mathbf{F}^{+}$$

Definition.

Given a relational schema \mathbf{R} , an attribute B is superfluous in a relation $R_i \in \mathbf{R}$ if its removal form R_i does not affect covering or reconstructibility.

The FDs that do not involve B in R_i may be defined as:

$$D_{i}(B) = \bigcup_{\substack{j \neq i \\ \downarrow \neq i}} \{ K \to \mathbf{A}_{j} - K \mid K \text{ is a key of } R_{j} \}$$
$$\cup \{ K \to \mathbf{A}_{i} - K - B \mid K \text{ is a key of } R_{i} \text{ and } B \notin K \}$$

Note. $D_i(B)$ is defined in terms of **all keys** for all relations in **R**.

The set of all **synthesized FDs** that do not involve B in R_i is:

$$G_i'(\mathbf{B}) = \bigcup_{j \neq i} G_j \cup \{ K \rightarrow \mathbf{A}_i - K - \mathbf{B} \mid \mathbf{B} \notin K \text{ and } K \in K_i \}$$

Where K_i is the set of all synthesized keys of R_i .

e.g.
$$\mathbf{F} = \{A \rightarrow B, B \rightarrow A, AC \rightarrow DE, BD \rightarrow C\}$$

 $\mathbf{R} = \{R_i < AB, \{A, B\} >, R_2 < ABCDE, \{AC, BD\} >\}$
i.e. $\mathbf{R} = \{R_1(\underline{A}, \underline{B},), R_2(\underline{A}, \underline{C}, \underline{B}, \underline{D}, E)\}$
We have $D_2(B) = \{A \rightarrow B, B \rightarrow A, AC \rightarrow DE, AD \rightarrow CE\}$

Since **AD** is an **implicit key** of R₂

However

$$G_1 = \{A \rightarrow B, B \rightarrow A\}, G_2 = \{AC \rightarrow BDE, BD \rightarrow ACE\}$$

 $G_2'(B) = \{A \rightarrow B, B \rightarrow A, AC \rightarrow DE\}$

Note.

- (1) $D_2(\mathbf{B})^+ \neq G_2'(\mathbf{B})^+$
- (2) Either A or B is **superfluous** in R_2 . How to test it?

Definition

An attribute B is **restorable** in R_i

- iff $\exists K \in K_i$ such that $B \notin K$
 - and $K \rightarrow B \in G_i(B)^+$
- (i.e. the B-value in R_i is derivable from the rest of the schema)

Definition

- B is non-essential in R_i
- iff $\forall K \in K_i$ such that $B \in K$, $\exists K' \subseteq \mathbf{A}_i - B \not\ni K' \rightarrow \mathbf{A}_i \in G^+$ and $K \rightarrow K' \in G_i'(B)^+$
- i.e. the closure of *K* relative to $G_i(B)$ contains a key *K*' for R_i (possibly non-synthesized) such that $B \notin K'$.

(i.e. B is not required to derive the value of any other attribute of R_i)

Theorem

Let \mathbf{R} be a preparatory relational schema including R_i , and let B be an attribute in R_i . The attribute B is superfluous in R_i .

iff it is restorable and nonessential in R_i .

e.g. $\mathbf{R} = \{ \mathbf{R}_1(\underline{\mathbf{A}}, \mathbf{B}, \mathbf{C}), \mathbf{R}_2(\underline{\mathbf{B}}, \mathbf{C}) \}$ Attribute C in \mathbf{R}_1 is restorable since $\mathbf{A} \rightarrow \mathbf{C} \in G_1'(\mathbf{C})^+$ Where $G_1 = \{ \mathbf{A} \rightarrow \mathbf{BC} \}, G_2 = \{ \mathbf{B} \rightarrow \mathbf{C} \}$ $G_1'(\mathbf{C}) = \{ \mathbf{A} \rightarrow \mathbf{B} \} \cup G_2$ $= \{ \mathbf{A} \rightarrow \mathbf{B}, \mathbf{B} \rightarrow \mathbf{C} \}$

Attribute C in R₁ is non-essential

since it is not contained in any explicit key of R₁.

So, attribute C is superfluous in R_1 .

Note that B is also non-essential in R_1

C is also non-essential in R₂

They are both non-primes in R_1 and R_2 respectively.

Definition

A relation R_i in a preparatory relational schema **R** is in **improved third normal form** (or **LTK normal form**) if each non-essential attribute is not restorable in R_i .

Theorem:

If R_i is in improved 3NF then it is also in 3NF.

Theorem:

If all relations in a preparatory relational schema \mathbf{R} are in improved 3NF, then there is no superfluous attribute in any relation of \mathbf{R} .

Note.

(1). Any non-prime attribute is non-essential.

(2). If $A \rightarrow B$ is a T.D. in a relation, then B is restorable.

Superfluous attribute detection algorithm

Input R, a preparatory relational schema B, an attribute in R_i (Test whether B is superfluous in R_i)

Step 1. Mark B superfluous Construct $\mathbf{K}_{i}' = \{ K \in K_{i} | B \notin K \}$ (ie. all synthesized keys of R_i which do not contain B) Construct $G_{i}'(B)$

<u>Step 2.</u> (Check restorability)

If K_i ' is empty (*B* is not restorable) then mark B non-superfluous and RETURN Else if $\exists K \in K_i$ ' such that $K \rightarrow B \in G_i$ '(B)⁺ then goto step 3 (*ie. B is restorable in R_i*) else mark B non-superfluous and RETURN

<u>Step 3.</u> (Check non-essentiality) (At this point, B is restorable)

For each key K in $K_i - K_i'$ (i.e. $B \in K$)

WHILE B is marked superfluous DO IF $K \rightarrow \mathbf{A}_i \notin G_i(B)^+$ then let M = the closure of K relative to $G_i(B)$ IF $(M \cap \mathbf{A}_i) - B \rightarrow \mathbf{A}_i \notin G^+$ then mark B non-superfluous else insert into K_i any key of R_i contained in $(M \cap \mathbf{A}_i)$ - B (find a new synthesized key)

Output.If B is marked superfluous
(i.e. B is really superfluous)
then output K_i '
(the new set of synthesized key of R_i ,
none of them contains B).
else output \emptyset .

Deletion Normalization Algorithm

Input. Given a set of attributes \mathbf{A} and a set of FD_s of.

<u>Step 1</u>. (prepare a relational schema)

Use the preparatory algorithm for **A** and **F** to yield **R**. $(\mathbf{R} = \{R_1, ..., R_n\}$ together with their synthesized keys)

<u>Step 2.</u>(Test each relation for superfluous attributes)

For i =1 to $|\mathbf{R}|$ Do For each B in \mathbf{A}_i (*Test for each attribute in* \mathbf{A}_i . *i.e. relation* R_i) if the superfluous attribute detection algorithm return a non-empty set K_i ' for \mathbf{R}_i and B then construct \mathbf{R}_i ' such that $\mathbf{A}_i = \mathbf{A}_i - \mathbf{B}$ and K_i ' is the returned set of keys Replace \mathbf{R}_i by \mathbf{R}_i ' in \mathbf{R} . (*i.e. remove the superfluous attribute B from* R_i with a new set of synthesized keys)

Output. **R**, a relational schema in improved 3NF. (*LTK normal form*).

Definition.

A relation R_i in a relational schema **R** is in **improved BCNF** if no attribute is restorable in R_i .

Result.

Improved BCNF relation is also in BCNF.

Result.

Improved BCNF relation is also in improved 3NF

Example 1. Let $\mathbf{A} = \{A, B, C, D, E, F\}$ and $\mathbf{F} = \{AB \rightarrow CD, A \rightarrow E, B \rightarrow F, EF \rightarrow C\}$

The preparatory algorithm will produce the relational schema

 $\mathbf{R} = \{R_1(\underline{A, B}, D), R_2(\underline{A}, E), R_3(\underline{B}, F), R_4(\underline{E, F}, C)\}$

Note that C is an extraneous attribute in $AB \rightarrow CD$.

There is no attribute that is both nonessential and restorable in \mathbf{R} , therefore all relations are in improved 3NF.

Example 2.

Let $\mathbf{A} = \{A, B, C, D, E, F\}$ $\mathbf{F} = \{AD \rightarrow B, B \rightarrow C, C \rightarrow D, AB \rightarrow E, AC \rightarrow F\}$

The preparatory algorithm will produce

 $\mathbf{R} = \{ R_1(\underline{A, B}, C, D, E, F), R_2(\underline{B}, C), R_3(\underline{C}, D) \}$

The attribute C is <u>nonessential</u> and restorable in R_1 and therefore can be dropped form R_1 .

The resulting schema is in improved 3NF.

Test C is superfluous in R₁.

<u>Step 1.</u> $K_1' = \{AB, AD\}$

<u>Step 2.</u> $G_1'(C) = \{AB \rightarrow DEF, AD \rightarrow BEF\} \cup G_2 \cup G_3$ ={AB \rightarrow DEF, AD \rightarrow BEF, B \rightarrow C, C \rightarrow D}

> Since $AB \rightarrow C \in G_1(C)^+$ C is restorable in R₁.

Step 3. The only explicit key in R_1 which contains C is AC.

Since $C \rightarrow D \in G_1(C)$ $AC \rightarrow AD \in G_1(C)^+$ and $AD \rightarrow ABCDEF \in G_1(C)^+$ C is non-essential in R_1

Hence C is superfluous (not need to find another explicit key)

<u>Step 4.</u> $K_1 = \{AB, AD\}$ and C is marked superfluous. **Example** Let **A** = { S#, IC#, Name, C#, CName, Description, mark, Year}

$$\mathbf{F} = \{S\# \rightarrow IC\#, Name \\ IC\# \rightarrow S\# \\ C\# \rightarrow CName, Description \\ CName \rightarrow C\# \\ S\#, C\# \rightarrow mark \\ IC\#, Cname \rightarrow Year\}$$

The preparatory algorithm (also Bernstein's algorithm) will produce the following relations

R₁ (<u>S#, IC#, Name</u>) R₂ (<u>C#, CName</u>, Description) R₃ (<u>S#, C#, IC#, CName</u>, mark, Year)

Either S# or IC# is superfluous in R₃,

also either C# or CName is superfluous in R₃.

One of the 4 possible improved 3NF schema is

 $\mathbf{R} = \{ R_1(\underline{S\#}, \underline{IC\#}, \text{Name}) \\ R_2(\underline{C\#}, \underline{CName}, \text{Description}) \\ R_3(\underline{S\#}, \underline{CName}, \text{mark}, \text{Year}) \}$