
ICRA: Effective Semantics for Ranked XML Keyword
Search

Bo Chen Jiaheng Lu Tok Wang Ling
School of Computing, National University of Singapore

3 Science Drive 2, Singapore 117543

{chenbo,lujiahen,lingtw}@comp.nus.edu.sg

ABSTRACT
Keyword search is a user-friendly way to query XML data-
bases. Most previous efforts in this area focus on keyword
proximity search in XML based on either tree data model or
graph (or digraph) data model. Tree data model for XML is
generally simple and efficient for keyword proximity search.
However, it cannot capture connections such as ID refer-
ences in XML databases. In the contrast, techniques based
on graph (or digraph) data model capture connections, but
are generally inefficient to compute. In this paper, we pro-
pose interconnected object trees model for keyword search to
achieve the efficiency of tree model and meanwhile to cap-
ture the connections such as ID references in XML by fully
exploiting the property and schema information of XML
databases. In particular, we propose ICA (Interested Com-
mon Ancestor) semantics to find all predefined interested
objects that contain all query keywords. We also introduce
novel IRA (Interested Related Ancestors) semantics to cap-
ture the conceptual connections between interested objects
and include more objects that only contain some query key-
words. Then, a novel ranking metric, RelevanceRank, is
studied to dynamically assign higher ranks to objects that
are more relevant to a given keyword query according to
the conceptual connections in IRAs. We design and ana-
lyze efficient algorithms for keyword search based on our
data model; and experiment results show our approach is
efficient and outperforms most existing systems in terms of
result quality. A prototype of our ICRA system (ICRA =
ICA + IRA) on the updated 321M DBLP data is available
at http://xmldb.ddns.comp.nus.edu.sg/.

1. INTRODUCTION
Keyword search is a proven user-friendly way of querying

HTML documents in the World Wide Web. Keyword search
is also well-suited to XML documents since it allows users to
easily pose queries without the knowledge of complex query
languages and/or the structure of the underlying data.

Over the recent years, extensive research efforts have been

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘07,September 23-28, 2007, Vienna, Austria.
Copyright 2007 VLDB Endowment, ACM 978-1-59593-649-3/07/09.

conducted on efficient and effective processing of keyword
search in XML databases. Majority of them focus on key-
word proximity search, which generally assumes closer co-
occurrence of all keywords of a query indicates a better re-
sult. In XML context, the problem of keyword proximity
search can be reduced to the problem of finding the smallest
sub-structures of XML that contain all the query keywords.

There are two main existing data model for keyword prox-
imity search in XML documents, tree data model and general
graph (or digraph) data model. In tree data model ([18, 9,
21, 16, 10]), the Smallest LCA (Smallest Lowest Common
Ancestor) [21, 16]1 is an effective representation of the small-
est sub-structure for keyword proximity search. We say an
XML node n contains a keyword k if k appears in PCDATA
or CDATA (or tag names depending on whether or not the
application wants to include tag names in keyword search)
of n or descendants of n. A subtree rooted at n is in the
Smallest LCA results of a list of keywords if n contains all
query keywords and no descendant of n contains all query
keywords. For example, consider the XML data in Fig. 1,
with Dewey (or called prefix) labeling scheme. The answer
to the keyword query “Widom Lorel” is the first “inpro-
ceeding” subtree, as Smallest LCA(1.1.1, 1.2.1)=1. Small-
est LCAs are efficient to evaluate by simply computing the
longest prefix of the Dewey labels as we can see in the ex-
ample. However, the tree data model cannot exploit the
ID references in XML data which usually indicate relevance
and preference between objects in real world. For exam-
ple, the important citation information as ID references in
bibliographic data cannot be captured in tree model. On
the other hand, XML documents can also be modeled as
digraphs when ID reference edges are taken into account
([8, 13, 4, 12, 11]). With digraph model, a keyword search
engine captures a richer semantics than that based on tree
model. The key concept in existing semantics can be viewed
as reduced subtrees ([8, 13]). Given an XML graph G and
a list of keywords K, a subgraph T of G is a reduced tree
with respect to K if T contains all keywords in K, but no
proper subtree of T contains all these keywords. For exam-
ple, “1.1.1 ← 1.1 ← 1 → 1.2 → 1.2.1” is a reduced subtree
for query “Widom Lorel” in Figure 1. However, the prob-
lem of finding and enumerating results by increasing sizes
of reduce-trees for keyword proximity is NP-hard; the well-
known Steiner tree problem [7] for graph can be reduced to
it (see reduction approach in [15]). Thus keyword proximity
search based on digraph model are usually intrinsically ex-
pensive, heuristics-based and less efficient than that based

1In [16], the Smallest LCA is referred as Meaningful LCA.

ε

dblp

1

inproceeding

2

inproceeding

3

inproceeding

1.1

author

1.2

title

1.3

year

2.1

author

2.2

author

2.3

title

2.4

year

3.1

author

3.2

author

3.3

title

3.4

conference

3.5

cite

3.6

cite

1.1.1

“Widom”

1.2.1

“Lorel”

1.3.1

“1997”

2.1.1

“Levy”

2.2.1

“Suciu”

2.3.1

“semistructured”

2.4.1

“1998”

3.1.1

“McHugh”

3.2.1

“Goldman”

3.3.1

“XML”

3.4.1

“VLDB”

Tree edge

Reference edge

Figure 1: Example XML document (with Dewey numbers)

on tree data model.
Despite the pros and cons for tree or digraph model for

keyword proximity search in XML, most of those existing
efforts do not exploit schema information of the underlining
XML data and application.Although schema-independent
keyword proximity search implementation is designed to be
general for all data instances (thus simplifying the job of
developers from tuning the implementation to fit different
application), implementations without schema have two lim-
itations. First, schema-independent systems may have diffi-
culties in representing results as also addressed in [11]. For
example, in DBLP bibliography where authors are subele-
ments of papers, given a keyword query of one author’s
names, the Smallest LCAs or reduced-trees would be a list of
author elements of the same author. However, it is not quite
useful to return such elements containing only the author’s
names since the user already know the name and it makes
no sense to repeat the query itself as the results. Notice
the navigation feature of user interface does not solve the
problem as users will not know from which author name to
start navigation. This problem gets even worse for queries
of only one keyword (the result of Smallest LCA or reduced
trees would be a list of such keywords). Thus it is impor-
tant for the system to present enough information in each
single result rather than the smallest possible element (or
sub-structure).

Second, schema-independent implementations may return
many irrelevant results. For example, Smallest LCA seman-
tics based on tree model may return a large tree includ-
ing many irrelevant results. Let us consider the keyword
query “Suciu XML” in DBLP data, which most likely looks
for XML papers written by Suciu. Suppose there was no
Suciu’s paper with “XML” in the title, then the LCA of
the two keywords would be the root of whole bibliography
tree which overwhelmingly includes all papers. [10] tries
to solve this problem by introducing MCTs (minimum con-
necting trees) to exclude the subtrees rooted at the LCAs
(or Smallest LCAs) that do not contain query keywords. For
example, MCT for previous query “Suciu XML” would in-
clude all papers whose authors are named “Suciu” or titles
include “XML” instead of the LCA result of whole bibliog-
raphy tree. However, MCT semantics may still return many
irrelevant results since neither all Suciu’s papers are related

to XML nor all XML papers are written by Suciu. There-
fore, the LCA semantics and its variation, based on tree
model may return many irrelevant results. Notice that the
ranking methods proposed in XRANK ([9]) are not adequate
to solve the problem of overwhelming information since they
focus on ranking among LCAs and cannot rank information
inside a single overwhelming LCA. In digraph model, this
problem can get even worse for reduced-tree semantics since
the keyword proximity results of reduced-trees form a super-
set of MCT results. BANKS ([12]) ranks results in approx-
imate order of result generation by heuristic bi-directional
expansion from “important” nodes via “important” edges
in digraphs. Given a good estimation of “important” nodes
and edges, BANKS seems to work well for a small number of
results. However, it still has the inherited limitation of slow
query response when a large number of results are required.

We believe schema information is usually present in many
XML databases regardless their semi-structured nature. For
example, most of the well studied databases in the literature
have schema information, such as DBLP bibliography and
XMark auction XML databases. When schema information
is available, it can be used for better keyword search as the
focus of this paper; or when schema information is not avail-
able, the previous Smallest LCA or reduced tree semantics
can be adopted.

In this paper, we study a novel data model, interconnected
object trees, to exploit the property and schema information
of XML databases for better keyword proximity search when
schema information is available. Based on this model, we
propose a framework of keyword proximity search system
with novel semantics for ranked result evaluation.

In particular, the database administrator or domain ex-
pert first exploits the schema information of XML docu-
ments to define a set of interested objects and conceptual
connections between interested objects. The interested ob-
jects are modeled as rooted trees containing enough but
not overwhelming information, which can be either physical
or conceptual subtrees in XML database. The conceptual
connection between two interested objects can be (but not
restricted to) ID references between the objects indicating
their relevance relationships. For example, in the auction
XML database, one interested object can be physical sub-
trees rooted at “person” and two persons can have a con-

nection if they share common interests (e.g. they attended
many auctions together); whereas in the DBLP XML data-
base, the interested objects can be publications and two pub-
lications have a connection if one cites another. Note that
end users need not know the schema except that they may
choose an interested object if there are multiple such ob-
jects. In case users do not know their interested object, the
system can choose a default one for them or output results
categorized into different interested objects.

With the concept of interested objects, the problem of
overwhelming Smallest LCAs is automatically solved since
results are restricted to the interested objects which contain
all the keywords. We call such interested objects containing
all query keywords as ICAs (Interested Common Ancestors)
of the keywords in contrast to Smallest LCAs. An immedi-
ate drawback of ICAs is that ICAs may miss relevant results
since it is not necessary that a relevant result must contain
all keywords. For example, consider the query “Suciu XML”
in Figure 1 again, where the interested objects are defined as
publications. There would be no results since no single pub-
lication contains the two words as an ICA. However, with the
bibliography semantics, a domain expert would argue the
second “inproceeding” may be relevant to the query since it
is written by Suciu and related to XML as evidenced from
the citation from an XML paper (“inproceeding” 3). There-
fore, we propose novel IRA (Interested Related Ancestors)
semantics to find relevant objects which do not contain all
keywords. IRA captures conceptual connections which in-
dicate relevance between objects in real world. Informally,
each result of IRA of a list of keywords is a pair of conceptu-
ally connected interested objects such that each object in the
pair contains some keyword and the pair together contain
all keywords. Then, we use conceptual connections in IRA
results to compute our novel ranking metric RelevanceR-
ank to rank interested objects according to their scores of
relevance to the query for output. Our RelevanceRank is
different from existing ranking metrics such as PageRank
[5], HITS [14] and ObjectRank [3] which also exploits con-
nections between objects. We will explain the differences in
Section 6. Notice that We consider IRA as logical results to
discover more relevant interest objects, but we choose not to
directly display IRA results to users. For clarity, the output
is a list of ranked interested objects. However, a user can
click on the objects to see its connections with other objects
if s/he is interested in the connections.

The contributions of this paper are summarized as follows:

• We introduce the interconnected object trees data model
to fully exploit XML property and schema information
for ranked keyword search in XML databases. Based
on this model, we propose ICA and novel IRA seman-
tics to find relevant interested objects (with concep-
tual connections for IRA) which contain all or some
query keywords. Then, we propose novel RelevanceR-
ank to rank results based on their relevance to the
keyword query according to the conceptual connec-
tions in IRA results. Also, a framework of ranking
is discussed which combines RelevanceRank and other
existing ranking metrics.

• We design and analyze an efficient algorithm to com-
pute the ranked results according to our ICA and IRA
semantics in one phase without keeping or materializ-
ing the connections in logical IRA pair results.

• We conduct extensive experiments to study our key-
word search approach. Results show our approach con-
siderably outperforms existing systems in terms of re-
sult quality and/or query response. A prototype of
our system, named ICRA (ICRA = ICA + IRA), over
updated 321M DBLP data is available at
http://xmldb.ddns.comp.nus.edu.sg/.

In the rest of this paper, we first introduce our data model
in Section 2. Then, we discuss ICA/IRA semantics and
RelevanceRank to find and rank results of keyword queries
based on our data model in Section 3. Section 4 presents
the data structure and algorithms for our keyword search.
Experimental results are given in Section 5. We also re-
view related works in Section 6 before we finally conclude in
Section 7.

2. DATA MODEL AND SEMANTICS
In this paper, we model an XML database D as intercon-

nected object trees, D=(RD, T, C), to exploit XML property
and schema semantics. In the model, RD is the root of D;
T is a set of physical or conceptual rooted object trees in
D; and C is a set of conceptual connections between two
object trees. Each rooted object tree o ∈ T belongs to a
certain interested object class which is defined according to
the schema semantics by database administrators or domain
experts. An object tree contains all necessary information
for the object in tree pattern. In the following, we will use
object and object tree interchangeably to refer to objects
modeled as subtrees in XML database D. Object trees can
be either physical subtrees of D or conceptual subtrees de-
fined according to the schema semantics. We discuss pos-
sible specifications of interested objects as object trees in
Section 2.1. Each conceptual connection ci ∈ C is a pair of
object trees (o, o′), representing the conceptual relevance be-
tween o and o′. An overview of conceptual connections and
how they can be defined and mined from XML database D
is covered in Section 2.2.

2.1 Interested Object Tree
Each XML database may have multiple types of interested

objects. For example, the types of interested objects may
be (but not restricted to) publication and author in bibliog-
raphy database; whereas in auction database, there may be
three types of interested objects, person, item and auction.
We model these interested objects as object trees which can
be either physical or conceptual subtrees of XML database
D. It is not a difficult task for administrators to specify of
all types of interested objects according to the schema se-
mantics. However, specification of the contents of each class
of interested objects as object trees is a bit involved as it is
equivalent to defining views in XML databases. In the fol-
lowing, we illustrate three cases of object tree specification
for an interested object to give some insights of how this
task can be performed. However, these illustrations are not
meant to cover all cases of application requirements.

• Object tree as physical subtree of D

The object tree of interested objects can simply be physi-
cal subtrees or partial subtrees rooted at elements of certain
tags. For example, given the schema graph of bibliography

dblp

inproceeding

author

title

year

conferencemdate
cite

*
*

Tree edge

Reference

edge
* inproceeding

author

title

year

conference

cite

* *

inproceeding

author

title

year

conference

cite

* *

author

*
GROUP-BY

(author)

(a) Bibliography schema graph (b) Object contents including subtrees (c) Object contents with group-by

Figure 2: Bibliography schema graph and object content specification examples

XML database in Figure 2(a), the object trees of publica-
tion objects are simply subtrees rooted at “inproceeding”2

elements (shown in Figure 2(b)), where the root of the ob-
ject tree is underlined. However, it is not necessary that
all descendants of the “inproceeding” subtree are included
in the object. For example, the “mdate” which is a system
attribute indicating the last modified date is not considered
as publication object’s information. By default, we assume
an element’s descendants in database D must be explicitly
included in the object tree. However, we can also use solid
rectangles to indicate the whole subtree rooted at an element
is indeed included in the object tree, e.g. “author” in Fig-
ure 2(b). Similarly, not all information of an object tree is
considered equal for output. For example, we may not want
to display all citations of each publication object to mess
up the output. Thus, as shown in Figure 2(b), we can use
dashed rectangle to indicate the information of “cite” is only
displayed at users’ request (e.g. by clicking the citations in
result display).

• Object tree including ancestors of certain tags

Object trees of interested objects can also include the an-
cestors of certain tags in XML database D as object infor-
mation. For example, consider Figure 3(a), where “item”s
are grouped according to “region”s and names of “region”s
(e.g. Asia, Europe, etc.) are designed to be element tags. In
this case, when we specify the contents of item object tree,
we can also include the ancestor information of “item” into
the object tree as shown in Figure 3(b), where “ anscestor ”
indicates we do not care the tag name of the ancestor.

• Object tree with group-by information

We can also compute group-by information for object trees
whose information is not properly nested as their descen-
dants in the schema graph. For example, in DBLP XML
database, each “author” element contains only the informa-
tion of author name, which is usually not enough for author
object tree. Thus as shown in Figure 2(c), we can group
publication information for each author so that when users
select author as the interested object and issue a query of
an author’s name, they can not only see the author’s name,
but also they can click to see all the author’s publications.
Note that DBLP database currently does not have ID for
authors and two authors may have the same name. This

2We use italics for object names (e.g. publication); whereas
element tags in XML are indicated by quotations (e.g. “in-
proceeding”)

auctionDB

auction

date

item

seller

buyer

bidder

person

name

interest

...

region

Asia
Europe ...

item

descriptionname category

* * *

* *

*

Tree edge

Reference

edge

(a) Auction DB schema graph

item

descriptionname category _anscestor_

(b) Object contents including subtrees and ancestors

Figure 3: Auction DB schema graph and object con-
tents specification examples

raises the difficulty of grouping by author (grouping by the
person rather than the name), but how to solve this problem
is beyond the scope of this work.

Finally, we address that we model interested objects as
subtree trees in order to benefit from the simplicity and
efficiency of LCA semantics of tree model for keyword prox-
imity search. However, object trees are not restricted to
physical subtrees in XML databases. For example, the last
two cases of object trees discussed above are actually con-
ceptual subtrees in XML databases. With the notion of con-
ceptual object trees, our model offers much more flexibility
and generality than original physical tree model.

2.2 Conceptual Connection
Conceptual connections in XML databases indicate the

conceptual relevance between objects. Remind our model
D=(RD, T, C). Each conceptual connection ci ∈ C is a pair
of object trees (or objects) (o, o′). Depending on the appli-
cation semantics, connection can be directed, e.g. citations
in bibliography, or undirected, e.g. common interest between
two persons in auction DB. Conceptual connections can also
be defined between two different types of objects. However,
we only consider conceptual connections between objects of
the same type in this paper and leave conceptual connec-

tions between objects of different types as a future work.
Similar to interested objects, the specification of conceptual
connections is application and schema dependent. In the
following, we show some cases of conceptual connections de-
fined or mined from physical database D, which is not meant
to cover all cases.

• ID references

ID references in XML databases is a natural way to specify
conceptual connections in most applications. For example,
the citation relationship between two publication objects is
usually represented by ID reference as in Figure 2(a).

• Common ancestor or descendant

In some cases, two objects may have a conceptual con-
nection if they share the same ancestor or descendant in
physical XML database D. For example, two author ob-
jects can be considered related (co-author) if they share the
same “inproceeding” (publication) ancestor in D. Similarly,
two publication objects may be related if they have the same
“author” descendant; or in auction DB, two persons can be
business-related if they have matching “business” descen-
dants. Notice that it is not easy to capture connections
through common descendants without schema semantics.

• Conceptual connection by intermediate object

Two objects may also be conceptually connected through
intermediate objects. For example, two persons may share
common interest if they attended the same auction; two
papers may be related if they cite or are cited by the same
paper. There may be even a chain of intermediate objects
where the administrator can set the length of the chain to
a meaningful limit. Notice that administrators can also set
a threshold of the minimal number of intermediate objects
required for conceptual connections. For example, we may
specify that two persons share common interests only if they
attended at least three auctions together.

Similar to object trees, conceptual connections provides
more flexibility and generality from administrator’s defini-
tion according to the schema, in contrast to most existing
works only based on physical connections. Moreover, we
clearly distinguish tree edges within an object and concep-
tual connections between objects. In this way, we effectively
reduce the search space as compared to keyword proxim-
ity search in general graph model since keyword proximity
search based on tree model (object tree edges) is usually
simple and efficient; meanwhile we captures the connections
between objects that tree model cannot capture. We will
discuss how the objects and conceptual connections can be
used for keyword search in next Section.

3. ICA/IRA SEMANTICS AND RANKING
In this section, we first define the result semantics of a

keyword query based on interconnected object trees model.
Then, we present the novel RelevanceRank and how it can
be incorporated in a general ranking model.

3.1 ICA/IRA Semantics
Given the notion of interested object in our model, the

most intuitive result of a keyword query is a list of interested

object trees that each contains all query keywords (conjunc-
tion of keywords). We call these interested objects as ICAs
(Interested Common Ancestors) in contrast to well-known
LCA (Lowest Common Ancestor) semantics in tree model.
Notice we use “Ancestor” instead of “Object” in ICA to
emphasize the fact that interested objects are modeled as
(physical or conceptual) trees in XML databases to benefit
from simplicity and efficiency of tree model.

Definition 3.1. (ICA) Given a query Q of a list of key-
words, the Interested Common Ancestors (ICAs) of Q, de-
noted as ICA(Q), is a list L of interested objects such that
each oi ∈ L contains all query keywords.

ICA semantics can be viewed as an extension from LCA
semantics. However, as discussed, ICA offers more flexibility
based on the interested object concept whose conceptual
subtree may include ancestors or group-by information in
the physical XML databases.

One obvious limitation of ICA semantics is it is too re-
strictive. An object which does not contain all query key-
words can also be related to the concept of the keyword
query. However, those objects are excluded from ICA re-
sults. For example, given a keyword query “XML query
processing”, a paper with title “XML query evaluation” is
usually highly related to the query, but ICA semantics does
not consider it as a result. A first and natural attempt to
eliminate the limitation is to include interested objects con-
taining some keywords (disjunction of keywords) and use
traditional TF*IDF cosine similarity to rank this objects.
However, keyword disjunction with TF*IDF cosine similar-
ity sometimes cannot enforce the precise concept expressed
as the conjunction of keywords. For example, there are many
relational query processing papers that are not really related
to “XML query processing”. However, TF*IDF cosine sim-
ilarity has a good chance to give high ranks to those rela-
tional “query processing” papers given the fact “XML” is
also a very frequent word. Therefore, we propose novel IRA
(Interested Related Ancestors) to include interested objects
containing some keywords, and meanwhile enforce the pre-
cise concept of keyword conjunction in conceptually related
objects.

Definition 3.2. (IRA) Given a query Q of a list of key-
words, the Interested Related Ancestors (IRA) of Q, denoted
as IRA(Q), is a list L of conceptually related interested ob-
ject pairs such that each object of a pair contains some query
keywords and the pair together contain all query keywords.

We also say that an interested object is in IRA results or
is an IRA object for Q if it is a member of some IRA pair
and it is not in ICA results for Q.

Note that an ICA object o can also form an IRA pair with
an object o′ containing some query keywords to include o′

as an IRA object. However, the ICA result o is not double
counted as IRA object.

Let us see the intuition of IRA semantics with examples.
Consider in auction database, a user looks for persons who
are interested in paintings and sculptures by setting the in-
terested object as person and issuing query “painting sculp-
ture” (the user can enforce the query as “interest painting
sculpture” if the tag name “interest” is also indexed in the
system). Suppose there is a person, Alice, who only indi-
cated one of her interest as “painting” during registration for

some reason (e.g. to save registration time or to protect pri-
vacy). However, if Alice has interest-connection (indicated
by attending the same auction) to persons whose interests
include “sculpture” but not “painting”, it is reasonable to
consider Alice as a candidate result by IRA semantics. At
least, the IRA result, Alice, is a better result than other
persons whose interests include only “painting” and are not
interest-connected to persons whose interests include “sculp-
ture”. Similarly, for query “XML query processing” in bib-
liography database, a paper that has “query processing” in
the title and cites or is cited by “XML” papers is considered
related to the query by IRA semantics. Note in the fol-
lowing discussions, we do not consider objects that contain
some keywords but are not IRA objects in our search re-
sult although those objects can also be included and ranked
lower than IRA objects.

Note that we currently restrict our discussions to concep-
tually connected object pairs in IRA semantics instead of
the more general object groups for three reasons. First, a
large portion of keyword queries consist of only a few key-
words. Thus, a pair of objects are usually enough to contain
all keywords. For example, we do not need three objects to
together contain only two keywords. Second, in cases of
queries with many keywords, the benefit of extending IRA
pair to IRA group is not certain in terms of result quality.
According to the general assumption in keyword proximity
search that a smaller structure is usually a better and more
precise result, we think the less the number of related ob-
jects that together contain all query keywords is, the more
likely each object is still relevant to the precise concept of
the query. In other words, if only a large number of con-
ceptually connected objects can contain all query keywords,
then it is doubtful that each object is still concisely relevant
to the query. Third, unlike the simple pattern of conceptual
connection in a pair, the pattern of connection in a group of
objects can be very complicated, which can result in poor
performance in terms of query processing time. Therefore,
we leave the general IRA group semantics with possible long
query response yet doubtful gain in result quality as a future
work when there are suitable applications.

Also note that IRA semantics may not be meaningful in
some cases. For example, given a query of a particular per-
son’s name, e.g. “Alice Bush”, the possible IRA pair of two
persons Alice and Bush that have common interests are not
relevant to the query at all. However, this is generally not
avoidable for systems that handles keyword disjunction and
include objects containing only some keywords. We will ex-
plain shortly that, in our model, persons with name “Alice”
or “Bush” (but not “Alice Bush”) of the IRA pair will not
be ranked higher than persons with name “Alice Bush”.

3.2 Relevance Rank
IRA semantics is useful to find more interested objects

that contain some of query keywords. However, each IRA re-
sult in the origin is a pair of conceptually connected objects,
which may not be a good choice for direct result display due
to two reasons. First, most of the time, users are interested
in the objects rather than the relationships between objects.
Second and more importantly, IRA pairs can have many du-
plicated objects. For example, if a “query processing” paper
P is cited by many “XML” papers, then P will appear in
many IRA pairs for query “XML query processing”. Such
duplication may frustrate the users. Thus, we present our

ranking metric RelevanceRank to rank objects in IRA pairs
according to their relevance to the query so that the output
is a list of objects instead of object pairs. However, upon
users’ request, the system can provide the information of all
IRA pairs for each object that does not contain all keywords.
This information can serve as a reason of why and how the
object is included and ranked in the results.

In IR (Information Retrieval) community, the traditional
TF*IDF cosine similarity is good way to measure the simi-
larity (or relevance) of a document to a keyword query. The
formula of the cosine similarity measure can be expressed as
the following:

ρ(q, d) =

P
t∈q∩d Wq,t ∗Wd,t

Wq ∗Wd

where t is a term or keyword; Wq,t and Wd,t represent the
weights of t in query q and document d respectively; while
Wq and Wd are the weights of query q and document d which
are usually proportional to the length of q and d respectively.
Wq,t is normally inverse proportional to the number of doc-
uments containing t (Inverse Document Frequency or IDF)
or Wq,t can also be defined in user queries; whereas Wd,t is
normally proportional to the number of occurrences of t in d
(Term Frequency or TF). This cosine similarity models both
d and q as vectors in n-dimension space where each term rep-
resents one dimension; and ρ(q, d) is the cosine value of the
angle between the vectors of d and q. Thus, a larger cosine
value ρ(q, d) indicates the vectors of d and q have similar
orientation, and consequentially, d and q are more relevant.
There is also existing work to refine the original TF*IDF
to explore the structure of XML for XML specific cosine
similarity (e.g. [6]). However, we use the original TF*IDF
cosine similarity in the following discussion for simplicity
since [6] is orthogonal to our ranking based on conceptual
connections and can be easily incorporated in our approach.

The TF*IDF cosine similarity or its XML specific varia-
tion [6] does not consider the conceptual connections in IRA
semantics. Generally speaking, we can consider the concep-
tual connections in IRA semantics as additional bonus to an
object’s relevance to a given query besides the TF*IDF co-
sine similarity. We call this bonus as IRA bonus. Therefore,
the relevance of an IRA object o to query q can be viewed
as the following formula:

RelevanceRank(q, o) = ρ(q, o) + Bonus(q, o)

where ρ(q, o) is the cosine similarity of o to q and Bonus(q, o)
is the IRA bonus of o from all its IRA pairs for q.

Therefore, our task is to find the IRA bonus Bonus(q, o)
of o from all o’s IRA pairs for q. Logically, given an IRA
object o containing only some keywords, the maximum pos-
sible IRA bonus o can receive from all its IRA pairs is the
additional value to make o as relevant as if o contains all
query keywords3. Thus we can model Bonus(q, o) as a frac-
tion of the maximum possible IRA bonus that o can receive.
Note that our interest is in the relative relevance of an IRA
object to a query as compared to other IRA objects (espe-
cially when they have similar cosine similarity) rather than
the absolute IRA bonus value.

3In this paper, we enforce the policy that an object with only
some query keywords should not be ranked higher than an
object containing all query keywords. However, this policy
can be relaxed by adjusting the upper bound of IRA bonus
according to application semantics.

To get the maximum possible IRA bonus of object o to
query q, imagine there is an object o′ such that o′ is the
same as o except that o′ also contains all the keywords that
o does not contain for q. Then the difference between the
cosine similarity of o′ to q and o to q can be viewed as the
maximum possible IRA bonus that o can receive from all
its IRA pairs. Thus, we present the maximum possible IRA
bonus of o given q as the following formula:

MaxB(q, o) = ρ(q, o ∪ q)− ρ(q, o)

where o ∪ q can be viewed as the object o′ discussed above.
With the upper bound MaxB(q, o), we can avoid the situ-
ation where two persons “Alice” and “Bush” with common
interests is ranked higher than the person “Alice Bush” for
query “Alice Bush” in general.

With the maximum possible IRA bonus of IRA object
o to q, MaxB(q, o), we now need to model the fraction of
MaxB(q, o) for o’s IRA bonus, Bonus(q, o), from all its IRA
pairs. Intuitively, the more IRA pairs an object participates
in, the more likely the object is relevant to the overall con-
cept of the keyword query. We call the number of IRA pairs
that an object o participates in for a query q as the IRA par-
ticipation count of o for q. For example, Consider keyword
query “interest painting sculpture” in auction DB. Given
two persons, Alice and Bob, who have interest in “paint-
ing”. Suppose Alice has conceptual connections (indicated
by attending the same auction) to many persons who are
interested in “sculpture” but not “painting”; while Bob has
connections to only a few such persons. It is reasonable to
guess Alice is more likely to be interested in “sculpture” thus
more relevant to the query than Bob. Similarly, for keyword
query “XML query processing” in bibliography, if a “query
processing” paper cites or is cited by many “XML” papers,
it is likely this paper is more relevant to the keyword query
as compared to another “query processing” paper citing or
cited by only one or two “XML” papers. Therefore, we can
use the IRA participation count of o for q normalized by
the total number of IRA pairs of q as possible fraction of
MaxB(q, o) for Bonus(q, o).

However, the IRA participation count does not distin-
guish the bonus from different conceptually related objects.
For example, for keyword query “XML query processing” in
bibliography, the IRA bonus to a “query processing” paper
from a conceptually related “XML” paper may be different
from the bonus from a conceptually related “XML query
processing” paper which is more relevant to the query. In
other words, a “query processing” paper citing or cited by
an “XML query processing” paper may be more relevant
to the query “XML query processing” than another “query
processing” paper citing or cited by an “XML” paper. Simi-
larly, for query “interest painting sculpture” in auction data-
base, if both Alice and David are interested in “painting”,
but Alice attended same auctions with people who are in-
terested in “sculpture” but not “painting” whereas David
attended same auctions with people who are interested in
both “sculpture” and “painting”, then it is likely that Al-
ice is more relevant to query than David. So, we present
the following IRA bonus formula to to distinguish the IRA
bonus for an object from its different IRA pairs:

Bonus(q, o) =

P
∀o′|(o,o′)∈IRA(q) BF (q, o, o′)

NFactor
∗MaxB(q, o)

where Bonus(q, o) is the IRA bonus of o from all its IRA

pairs of q; BF (q, o, o′) is an application specific bonus func-
tion for the IRA bonus of o from a particular IRA pair o′;
and NFactor is the normalization factor which can be the
total number of IRA pairs of q. In bibliography, the func-
tion BF (q, o, o′) can be direct proportional to ρ(q, o′) based
on the intuition that if paper P1 cites (or is cited by) pa-
per P ′1 such that P ′1 is closely related to a given query q
whereas another paper P2 cites (or is cited by) paper P ′2 such
that P ′2 is not as closely related to query q as P ′1, then it is
likedly P1 is more related to q than P2. However, in auction
database with keyword queries matching person’s interest,
BF (q, o, o′) may not always be proportional to ρ(q, o′) as
discussed for the previous case that Alice is likely more rel-
evant to the query than David although David’s IRA pair
is closely related to the query. Instead, BF (q, o, o′) should
return zero or a very low value if o and o′ have overlaps in
their “interest” elements. So, BF (q, o, o′) should be care-
fully designed according to application semantics.

Note that using the number of IRA pair of q as the nor-
malization factor may be biased to objects which have many
conceptual connected objects. For example, in bibliography,
an old famous paper can be cited by many query relevant
papers even the old paper may not be very relevant to the
query. An alternative is to use the number of conceptually
connected objects of object o as the normalization factor for
Bonus(q, o). However, this choice may discriminate against
objects that have many conceptually related objects. For
example, if object o1 has only one conceptual related object
and this pair is an IRA of q whereas another object o2 has
100 related objects and 99 out of them form IRA pairs with
o2 for q, then o2 is still likely to be ranked lower than o1.
Other choices are also possible, but it is difficult to judge
which one is superior in all cases. In this paper, we simply
adopt the first choice for DBLP data to favor highly cited
papers and the experiments show it is a reasonably good
choice for DBLP data.

All the above discussions focus on the IRA bonus of only
one type of conceptual connection. However, there may be
several different conceptual connections between the same
objects. For example, in bibliography, besides direct refer-
ence and citation, two papers can also be considered relevant
if they are cited or they cite the same paper. Similarly, per-
sons in auction database may also be conceptual related if
their addresses are near to each other (geographical connec-
tions may be useful when someone wants to find all persons
that are interested in painting and stay in or nearby the
city of an upcoming painting auction so that those persons
may be potential bidders). In general, when we consider
several conceptual connections, the IRA bonus of different
connections may be given different weights. Therefore, we
now take the final step to introduce our RelevanceRank for-
mula which incorporates TF*IDF cosine similarity and IRA
bonus of multiple conceptual connection for an object o and
a given query q as following:

RelevanceRank(q, o) = ρ(q, o) +

Pk
i=1 wi ∗Bonusi(q, o)Pk

i=1 wi

where k is the number of different conceptual connections,
Bonusi(q, o) is the IRA bonus for the ith connection and wi

is the weight given to the ith connection. Notice that wi can
be set by the administrator or dynamically adjusted by the
system or chosen by experienced users at run time. For ex-
ample, in bibliography database, the administrator may set

the weight of IRA bonus for direct citations/references as 1
and the weight of IRA bonus for indirect citations (through
a hub) as (say) 0.5; whereas in auction database, the sys-
tem can dynamically give more weight to IRA bonus based
on geographical connections if most query keywords match
text values in “address” rather than “interest” element of
person object and vice versa. Note in some cases, system
can even automatically choose not to use IRA bonus based
on a particular conceptual connection for RelevanceRank
if that conceptual connection does not apply for a given
query. For example, given query “Alice Bush” which does
not match text values in “interest” elements, then the sys-
tem can choose not to use interest-related connections for
RelevanceRank.

3.3 Overall Ranking Framework
RelevanceRank ranks an object based on its relevance to a

given query according to the traditional TF*IDF cosine sim-
ilarity or its XML specific variant and additional relevance
(IRA bonus) discovered from all its IRA pairs. In this part,
we briefly list some other existing possible ranking metrics
for keyword search in XML databases and discuss how our
RelevanceRank can be incorporated with these metrics to
compute an overall ranking for each objects according to
both XML properties and application semantics.

3.3.1 Keyword Proximity Rank:ProxRank(q, o)

The general assumption of keyword proximity search in
XML tree or digraph model that prefers smaller substruc-
tures can also be addressed in our interconnected object
tree model to rank objects with closer co-occurrence of key-
words higher. Since we model interested objects as trees,
most tree model based existing keyword proximity ranking
methods (e.g. XRANK [9]) can be directly used except spe-
cial considerations may be needed for IRA objects. In this
work, we adopt an easy way to estimate the keyword prox-
imity by counting the minimum number of elements4 inside
an object tree that directly contain query keywords in their
text values. Smaller number of elements indicates closer co-
occurrence of keywords, thus a better result. For example,
an publication object with one author element containing
two query keywords (names of a single author) is more pre-
cise (better) than an publication with two authors containing
the two keywords (co-author). For IRA results, where not
all objects contain the same number of query keywords, we
can simply estimate the proximity by per keyword minimum
number of elements that contain all keywords in the object.

3.3.2 Application Specific Rank:ApRank(o)

We can also incorporate application specific ranking met-
rics in the overall rank framework to reflect the importance
of an object in the application. For example, in bibliography
database, a recent paper may be considered “important” to
reflect the general fact that most publications get out-of-
date quickly and most researcher are interested in new in-
formation. The PageRank like metrics can also be a candi-
date in bibliography to favor highly cited papers. However,
PageRank may not be useful to rank person objects in auc-
tion database. In this case, other application specific metrics
may be used, e.g. salary or wealth, etc. Notice that we cur-

4We focus on keyword proximity at XML element level;
while the keyword proximity within an element can be solved
with traditional document keyword proximity techniques.

rent model application specific rank as a query independent
metric. However, it can be extended to query-dependent
metrics according to application requirements.

In summary, we show an overall ranking framework, R(q, o),
for keyword search in interconnect object trees model to in-
corporate keyword proximity, application dependent metrics
and novel RelevanceRank as the following formula.

R(q, o) = RelevanceRank(q, o)∗ProxRank(q, o)∗ApRank(o)

4. DATA STRUCTURE AND ALGORITHM

4.1 Data Structure

4.1.1 Inverted Lists
Similar to most keyword search systems, the inverted list

is the fundamental structure in our system. Since there may
be several interested object classes, each keyword can also
has several inverted lists, one for each object class. An ob-
ject is in the corresponding inverted list of a keyword if the
conceptual object tree contains the keyword in the subtree.
Without loss of generality, we assume there is only one ob-
ject class and one inverted list for each keyword in the fol-
lowing since keyword query processing of multiple interested
object class can be performed independently.

Each element in the inverted list is a triplet (Oid, DL, Imp),
where Oid is the ID of the object containing the keyword;
DL is a list of Dewey numbers of the exact locations of the
keyword in the object for keyword proximity and Imp is the
application dependent “importance” of the object. Objects
in inverted lists can be ordered according to Imp so that
the query processing can start from those “important” ob-
jects and scan only prefixes of the inverted lists for the top
few results. Finally, a B+ tree index is built on top of each
inverted list to facilitate fast probing of an object in the list.

4.1.2 Conceptual Connection Tables
Conceptual connection tables are used to store the con-

ceptual relationships between objects. Since there may be
different conceptual connections for the same object class,
there may be also several conceptual connection tables for
the same object class. Each conceptual table can be mod-
eled as an adjacency list representation of the conceptual
connection graph. In other words, for each object, the con-
nection table maintain a list of its conceptually connected
objects.

In the worst case, the size of each connection table for
object class c can be |c|2, where |c| is the number of objects
of class c. However, we argue that in most practical situ-
ations, the size is significantly smaller than the worst case
upper bound. For example, in bibliography, each paper usu-
ally cites only a few papers (in the order of tens), which is
almost a negligible portion to the total number of papers (in
the order of millions). For connections through intermedi-
ate nodes, such as common interests indicated by attending
the same auction, there is a potential for the connection ta-
ble to grow huge. Even in such cases, the administrator can
effectively reduce the table size by setting thresholds of min-
imum number of intermediate nodes as discussed in Section
2.2. Or when storage is not expensive, the system can store
the huge table in the way such that each connection list is in
the same order as inverted lists. Then during query process-

ing, the system can scan only a prefix of the connection list
of each object for fast retrieval of top results

4.2 Algorithm
In this part, we design and analyze an efficient algorithm

for keyword search for ICA and IRA results based on inter-
connected object trees model.

There are many existing algorithms in the literature to
efficiently compute LCAs or Smallest LCAs results based
on inverted lists with Dewey numbers, such as Stack algo-
rithm [16], Indexed Lookup and Scan Eager algorithms [21].
These algorithms can be directly modified to compute our
ICA results. Since [21] analyzes and reports Indexed Lookup
is superior when one keyword inverted list is much shorter
than others and Indexed Lookup is comparable to other algo-
rithms in general, we adopt an modified version of Indexed
Lookup algorithm for ICA. Indeed, we will discuss shortly
that we also modify Indexed Lookup for our IRA semantics
since objects’ conceptual connected object lists are usually
much shorter than keyword inverted lists. Notice that in
LCA problem, the algorithms have to check the longest com-
mon prefix of the Dewey numbers in each keyword inverted
list. However, for ICA results, we only need to check the ob-
ject ID’s to see if there exists an interested object to contain
all keywords; and we only need to use Dewey numbers inside
an object o for keyword proximity rank when o is indeed an
ICA result. In this way, ICA computation can effectively
save expensive Dewey number comparisons by using integer
(object ID) comparisons.

Next, we discuss an efficient algorithm to compute and
rank results based on IRA semantics and RelevanceRank.
A brute force approach would first compute all IRA pairs.
Then, it ranks each object o based on RelevanceRank by
inspiring the keywords contained in o and all IRA pairs of
o. However, this approach may generate large intermediate
results since each object can be duplicated in many IRA
pairs. Also, it requires a second phase to compute the Rel-
evanceRank after IRA pairs are computed. With the fol-
lowing observations of the properties of IRA semantics and
RelevanceRank, a better algorithm is possible.

Observation 1. Given a keyword query q of n keywords
(k1, ..., kn), for any query keyword ki, an conceptually con-
nected object pair (o, o′) is one IRA pair of q if at least one
of o or o′ is in the inverted list of ki (contains ki).

Proof Sketch: (Proof by contradication) If both o and
o′ are not in the inversted list of one query keyword ki, then
o and o′ cannot together contain all query keywords, which
implies o and o′ cannot be an IRA pair. Thus if o and o′

form an IRA pair at least one of o or o′ is in the inverted
list of ki (contains ki).

Observation 2. Given an IRA pair (o, o′) of IRA object
o, the IRA bonus (Section 3.2) from o′ to o is independent
from other IRA pairs of o in current RelevanceRank metric.

Proof Sketch: From the formula of RelevanceRank, it
is clear that we do not need other IRA pairs of o to com-
pute the IRA bonus of o for a particular IRA pair o′. Note
that the normalization factor may depend on the number of
IRA pairs that o participates in. However, we can increase
both o’s participation count and IRA bonus without normal-
ization independent of each particular IRA pair of o; then
normalize IRA bonus of o after we find all IRA pairs of a

Input: Keywords: Kq ; Indexed inverted lists for Kq : Lq ;
Conceptual connection tables: CTs;

Output: Ranked result object list: RL
1 let ICAResult = {} and IRAResult = {} ;
2 let H be a hash table from objects to their ranks;
3 let Ls be the shortest inverted list in Lq ;
4 for each object ID o ∈ Ls do
5 let Ko = probeLists (Lq , o) ;
6 if (Ko == Kq) /* o is in ICA */
7 initializeRelevanceRank(o,Ko,Kq ,H);
8 ICAResult = ICAResult ∪ {o} ;
9 for each connection table ti ∈ CTs do

10 let c be the connected object list of o in ti ;
11 for each object ID o′ ∈ c do
12 let Ko′ = probeLists (Lq , o′) ;
13 if (Ko′ == Kq) /* o′ is in ICA */
14 initializeRelevanceRank(o′,Ko,Kq ,H);
15 ICAResult = ICAResult ∪ {o′} ;
16 else if (Ko′ 6= ∅ AND Ko′ ∪Ko == Kq)

/* o′ is in IRA */
17 initializeRelevanceRank(o′,Ko,Kq ,H);
18 IRAresult = IRAresult ∪ o′;
19 updateRelevanceRank(o′, o, ti, H);
20 if (Ko 6= Kq AND Ko′ ∪Ko == Kq)

/* o is in IRA */
21 initializeRelevanceRank(o,Ko,Kq ,H);
22 IRAresult = IRAresult ∪ o ;
23 updateRelevanceRank(o, o′, ti, H);

end

end

end
27 let RL = ICAresult ∪ IRAresult ;
28 compute the overall rank for each object in RL and sort

RL based on ranks for output ;

Function probeLists (Lq , o)
/* returns all query keywords contained in o */
1 let KS = {} ;
2 for each Li ∈ Lq do
3 put Li’s corresponding keyword in KS if o ∈ Li ;
4 return KS ;

Function initializeRelevanceRank (o, Ko, Kq , H)
1 if (o is not in H)
2 initialize the RelevanceRank of o as cosine

similarity and put (o, RelevanceRank) into H ;

Function updateRelevanceRank (o, o′, ti, H)
1 update the RelevanceRank of o based on keyword

similarity of o′ and the connection type of ti ;
2 put the updated (o, RelevanceRank) into H ;

Algorithm 1: Indexed-Probing

given query or right before the algorithm (discussed shortly)
decides to terminate.

Based on Observation 1, it is sufficient to scan all object
ID o in one keyword’s inverted list and probe the other key-
word’s inverted lists with o and o’ conceptually connected
objects to find all IRA pairs. With Observation 2, when we
find an IRA pair (o, o′), we only need to keep each IRA ob-
ject o, o′ and their IRA bonus independently. Then when we
find another IRA pair for o (or o′), we can simply incremen-
tal update the IRA bonus for o (or o′) accordingly. There-
fore, we propose a one phase algorithm, Indexed-Probing, to
compute all IRA objects and their RelevanceRanks without
keeping intermediate IRA pairs. Notice an additional phase
of sorting results by their ranks is still required. But this
sorting is common in almost all ranking algorithms.

The pseudo-code of the Indexed-Probing algorithm is shown
in Algorithm 1. The input to the algorithm includes a set
of query keywords Kq, the B+-Tree indexed inverted lists
Lq of Kq and a set of conceptual connection tables CTs for
the interested object. The output is a list of ranked object
IDs including both ICA and IRA results. The main idea of
the algorithm is to scan the shortest inverted list of query
keywords and check the objects in the list and their concep-
tually connected objects for ICA and IRA results. Notice
that for the minimum cost purpose, we should scan the in-
verted list L such that the sum of number of objects o in
L and number of all conceptually connected objects of o is
minimum. However, when such information is not available,
we can scan the shortest inverted list as a reasonable esti-
mate.

The details of the algorithm are the followings. For each
object ID o in the shortest inverted list, it probes all the
other inverted lists to get the set of query keywords con-
tained in o (line 5). With this information, we can decide
whether o belongs to ICA results and initialize the Rele-
vanceRank of o as consine similarity if it is not already ini-
tialized (lines 6-8). Then for each conceptually connected
objects o′ of o, the algorithm probes all inverted lists with
o′ to see if o′ alone and/or o and o′ together contain all query
keywords to check for the following cases: 1) o′ belongs to
ICA results (lines 13-15); 2) o′ belongs to IRA results (lines
16-19); 3) o belongs to IRA results (lines 20-23). In any
case, the algorithm initializes and/or updates the the Rel-
evanceRank of o′ or o. Finally, after scanning the shorted
inverted list, the algorithm combines the ICA and IRA re-
sults and sorts them for output (lines 28-29). The Func-
tion probeLists(Lq, o) probes all inverted lists in Lq with o
to find the query keywords contained in o. Since each in-
verted list is indexed by a B+-tree, this process usually does
not cost much especially when the indexed inverted lists of
query keywords fit into memory. The Functions initializ-
eRelevanceRank and updateRelevanceRank initialize or up-
date the RelevanceRank of an object according to Section
3.2. Notice initializeRelevanceRank simply does nothing if
the input object’s rank is already initialized.

The CPU complexity of Indexed-Probing algorithm with-

out sorting results for output is O(
P

o∈Ls

P|CTs|
i=1 |ti(o)| ∗Pk

j=1 log |Lj |), where Ls, o, |CTs|, |ti(o)|, k and |Lj | rep-
resent the shortest inverted list of the query keywords, an
object ID in Ls, the number of different conceptual connec-
tion for the interested object, the length of the conceptual
connection list for object o in its i’s connection table, the
number of query keywords and the length of the j’s query
keyword inverted list. For an intuition of the complexity, the

first part,
P

o∈Ls

P|CTs|
i=1 |ti(o)|, represents the total number

of objects in Ls and all their conceptually connected objects
in Big-O notation; whereas the second part,

Pk
j=1 log |Lj |

represents the cost of inverted list probing for each object
in the first part. However, we can add the complexity in
proximity ranking and sorting results for output which is
O(kd|RS|+ |RS|2), to above formula if reader is interested
in the overall complexity, where d is the length of dewey
numbers for the interested object and |RS| is the result size.

For the number of disk accesses, if the inverted lists of
query keywords fit into memory, the worst-case is to load all
these lists into memory. However, when the inverted lists
of query keywords do not fit in memory for very huge XML
databases, list probing for objects in the connection tables

may incur slow random disk accesses. In such case, the al-
gorithm can be easily modified to probe only the prefixes
of inverted lists that fit in memory for top results. Given
tens or hundreds of MBs of object IDs in the prefixes of in-
verted lists in memory, we believe the number of top results
are usually large enough for interactive users to consume.
Moreover, in case the computation of IRA is slow, the algo-
rithm can also be modified to compute all ICA results first
for fast response of top ranked results.

In the following, we state the correctness of Indexed-Probing
algorithm with Theorem 1.

Theorem 1. The Indexed-Probing algorithm correctly finds
and ranks all query answers based on ICA/IRA semantics
and RelevanceRank.

Proof Sketch: With Observation 1, the algorithm cor-
rectly finds all ICA and IRA results by probing all query
keyword inverted lists with all objects o in the shortest in-
verted lists and the conceptual connected objects o′ of o.
With Observation 2, the algorithm correctly initializes and
updates the RelevanceRanks for each ICA and IRA results
(independent of other IRA pairs).

5. EXPERIMENTAL EVALUATION

5.1 Experimental Settings

5.1.1 Hardware and implementation
We use a normal PC with Pentium 2.6GHz CPU and 1GB

memory for our experiment.
We choose DBLP datasets for our experiment, which has

been widely studied for XML keyword search (e.g. [12, 21,
3]). The reality of DBLP data makes it possible to study
the quality of search results besides search efficiency. Cur-
rently, we only implemented one object class, publication.
We define two types of conceptual connections between two
publication objects in DBLP, which are strong connection
(direct reference/citation) and weak connection (e.g. cited
by or citing the same publication object). The size of strong
and weak connection tables are 3.9M and 19.1M respectively.
They are stored in Disk with B+-trees and their entries are
cached in memory only after the corresponding entries are
used in searching.

All implementations are written in java. An online demo,
which enables keyword search in the same DBLP data, is
provided at http://xmldb.ddns.comp.nus.edu.sg. The pro-
totype runs as a Java Servlet using Jakarta Tomcat server.

5.1.2 Queries and performance measures
We use both random and sample queries in our experi-

ments. We generate sample queries of 2 to 5 keywords long,
which are categorized into four sets such that there are 100
queries of same length in each set. Query keywords are
random selected from all indexed keywords in the data, ex-
cept that selected queries must have at least one ICA result.
This is to ensure the random queries are not too “random”
from reality since most users expect some results by issuing
meaningful queries instead of random sequence of keywords.
We use these random queries to measure the effectiveness of
ICA/IRA in terms of result size and execution time tradeoff
as compared to ICA alone.

 1

 10

 100

 1000

5432

A
ve

ra
ge

 r
es

ul
t s

iz
e

Number of Query Keywords

ICA
ICA/IRA

 1

 10

 100

 1000

5432

A
ve

ra
ge

 e
xe

cu
tio

n
tim

e
(m

s)

Number of Query Keywords

ICA
ICA/IRA

 1

 10

 100

 1000

 10000

5432

R
es

ul
ts

 s
iz

e
to

 ti
m

e
(s

ec
)

ra
tio

Number of Query Keywords

ICA
ICA/IRA

(a) Result size (b) Execution time (c) Size to time ratio

Figure 4: Result size and execution time tradeoff of ICA v.s. ICA/IRA (log scale) for random queries

Table 1: Tested queries
ID Query Meaning
Q1 Giora Fernández Co-author

Q2 Jim Gray transaction Topic by author

Q3 Dan Suciu semistructured Topic by author

Q4 Conceptual design Topic
relational database

Q5 Join optimization parallel Topic
distributed environment

We also use sample queries of length 2-5 with wide range
of meanings (as shown in Table 1) to measure the effec-
tiveness of our ICA/IRA semantics and RelevanceRank in
term of result quality. Note that we use both “Fernández”
and “Fernandez” in other systems to try to get rid of the
character encoding problem for Q1. Besides comparing ICA
and ICA/IRA combined with RelvanceRank, we also report
the comparisons of our system with other five existing sys-
tems, including three academic systems and two commercial
systems. Our metric for result quality is the number of rel-
evant answers among top-10, 20 and 30 results (precision of
top-k results). Answer relevance of the queries are judged
manually by reading the title, abstract, introduction and/or
conclusion of the results (it is beyond our resource to read
whole papers of all results for perfect judgement).

5.2 Results of Random Queries
We show result size, execution time and ratio of result

size per unit time of ICA alone and ICA/IRA in Figure 4.
As expected, the result size decreases and execution time
increases as the number of keywords increases. Also, it is
clear that ICA/IRA (IRA on top of ICA) semantics can
find much more results (up to 30 times more results for
queries of 3 keywords in Figure 4(a)) than ICA alone at the
cost of additional execution time (2-3 times more in Figure
4(b)). Moreover, in Figure 4(c), we can see that ICA/IRA
is more efficient than ICA alone in terms of the ratio of
result size to execution time (up to 10 times more results
per unit time). This is because both ICA and ICA/IRA
need to load an inverted list block when they probe that
block for the first time (the block is then cached in mem-
ory) and the total amount of loading is similar in two cases.
Note that the computation of IRA needs to load the concep-
tually connected objects from conceptual connection tables
for each object in the shortest inverted list. But there is a

 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22
 24
 26
 28
 30
 32
 34
 36
 38

Q5Q4Q3Q2Q1

N
o.

 o
f r

el
ev

an
t r

es
ul

ts
 a

m
on

g
to

p
30

Query

ICA
Cosine similarity

ICA/IRA with RelevanceRank

Figure 5: Result Quality of ICA v.s. ICA/IRA

 1

 10

 100

 1000

 10000

 100000

Q5Q4Q3Q2Q1

E
xe

cu
tio

n
tim

e
(m

s)

Query

BANKS top-10
BANKS top-20
BANKS top-30

XKSearch
LCRA

Figure 6: Performance of three systems

better chance for those entries to be cached since in both
real search engines and our experiment, several consecutive
queries may have completely different keywords (especially
from different users for real cases) while the inverted lists of
those keywords may have large overlaps.

5.3 Results of Sample Queries

5.3.1 Result quality of ICA/IRA with RelevanceRank
We have shown that ICA/IRA can identify more results

than ICA with reasonable more time for random queries.
Now, in Figure 5, we show with sample queries that most
of the top-30 ranked results of ICA/IRA semantics are in-
deed relevant to the queries with our ranking (RelevanceR-
ank) methods. We omit the execution time for these sample
queries to save space since it is similar to random queries. It
is clear ICA/IRA with RelevanceRank is able to find more
relevant results than ICA alone and ranks them in most of

 0

 5

 10

 15

 20

Q5Q4Q3Q2Q1

N
um

be
r

of
 r

el
ev

an
t r

es
ul

ts

Query

BANKS
ICRA for BANKS data

XKSearch
ICRA for XKSearch data

ObjectRank
ICRA for ObjectRank data

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

Q5Q4Q3Q2Q1

N
um

be
r

of
 r

el
ev

an
t r

es
ul

ts

Query

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22
 24
 26
 28
 30
 32

Q5Q4Q3Q2Q1

N
um

be
r

of
 r

el
ev

an
t r

es
ul

ts

Query

(a) top-10 answer (b) top-20 answer (c) top-30 answer

Figure 7: Comparisons of answer quality with other academic systems

 0

 5

 10

 15

Q5Q4Q3Q2Q1

N
um

be
r

of
 r

el
ev

an
t r

es
ul

ts

Query

Microsoft Libra
Google Scholar

ICRA for updated data

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

Q5Q4Q3Q2Q1

N
um

be
r

of
 r

el
ev

an
t r

es
ul

ts

Query

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22
 24
 26
 28
 30
 32

Q5Q4Q3Q2Q1

N
um

be
r

of
 r

el
ev

an
t r

es
ul

ts

Query

(a) top-10 answer (b) top-20 answer (c) top-30 answer

Figure 8: Comparisons of answer quality with commercial systems

the top 30 results for Q2-Q5 where the IRA semantics ap-
plies. Note there is no ICA results for Q5, but there are 28
relevant results due to IRA and RelevanceRank. ICA/IRA
with RelevanceRank is also better than Keyword disjunc-
tion with cosine similarity in general. Note that the preci-
sion of Q4 & Q5 based on cosine similarity is comparable
to ICA/IRA with RelevanceRank for top 30 results. How-
ever, for top 40 results of Q5, ICA/IRA with RelevanceRank
shows its advantage over cosine similarity as it identifies 37
relevant results compared to 29 by cosine similarity. It is
also interesting to find out that RelevanceRank is slightly
worse than cosine similarity for top 40 results of Q4 (34:35).
The reason is there are many paper containing “conceptual
database design” which is a disjunction of Q4, but most
of these papers are indeed about relational databases. So,
when keyword disjunction still carries the meaning as con-
junction, RelevanceRank and cosine similarity are compara-
ble. However, when keyword disjunctions breaks the concise
meaning as conjunction (e.g. Q2 & Q3), RelevanceRank is
much better than cosine similarity. In case that IRA seman-
tics does not apply (Q1), ICA/IRA does not lose in terms of
result quality. ICA/IRA also does not lose in terms of execu-
tion time for Q1 if the system chooses to compute ICA first
for fast response of top results as discussed in Section 4.2.

5.3.2 ICA/IRA v.s. other academic demos
Now, we report the comparison among other academic

demo systems for keyword search in DBLP (BANKS [4, 12],
XKSearch [21], ObjectRank [3]) and our ICA/IRA incorpo-
rated with RelevanceRank. We choose these three systems
for comparison since other known related systems were not
available at the time of our experiments.

Figure 6 compares the query execution time of BANKS,
XKSearch and our ICA/IRA system. We get the execution
time directly from BANKS and XKSearch online demo, thus
the network delay does not affect the comparison. We can-
not provide the execution time of ObjectRank since it is not
shown in their demo. It is clear BANKS is much slower than
XKSearch and our system since it is a heuristic of NP-hard
problem. For example, BANKS’s computations for only top
10 results of all sample queries are still slower than XK-
Search and our system to compute all results. It is also inter-
esting to see that our system is faster than XKSearch for all
queries. One possible reason is the Dewey number compar-
ison in LCA semantics of XKSearch is slower than our inte-
ger comparison for Object IDs. Another reason is XKSearch
also includes results that contain only some query keywords
(keyword disjunction) besides Smallest LCAs. This process
may also slow down their execution.

The comparisons for result quality are shown in Figure
7. Since four systems use different datasets, for fair com-
parison, we show the results of ICA/IRA with RelevanceR-
ank based on other systems’ data. For example, “ICRA for
BANKS data” in Figure 7 means that we run our system on
data used by BANKS. Note that BANKS outputs results
in the format of reduced trees (containing publication IDs)
instead of lists of publications; we assume there is a middle-
ware to transfer BANKS results to publication lists. From
Figure 7, we can see the result quality of our system is su-
perior than existing academic demo in general. ObjectRank
is good at ranking results for single keywords. However, its
result quality drops significantly as the number of keywords
goes beyond three (e.g. Q4 & Q5). ObjectRank cannot
handle Q1-3 possibly because it does not well maintain in-

formation for author names. The same as ICA, the LCA
semantics in XKSearch is too restrictive when it limits the
results to publications; and its results for keyword disjunc-
tion is not very useful without ranking. Despite the slow
response of BANKS, our results are considerably better due
to RelevanceRank. For Q4, BANKS results are comparable
to ours since they also captures ID references in XML.

5.3.3 ICA/IRA v.s. commercial systems
Finally, we show the comparisons of our system with ex-

cising commercial systems, Microsoft Libra [1] and Google
Scholar [2]. We consider them as commercial systems since
they are products of commercial companies. However, read-
ers may regard them as non-commercial system at their
choice. The possible significant difference in machine power
among Libra, Scholar and ours makes it unfair to compare
execution time. Also, our limited resource prohibits us from
comparing the overall usefulness such as their wonderful in-
terfaces, the ability to get pdf files etc. Thus we focus on
comparison of the relevance of top-k results. Figure 8 shows
our system is comparable to (if not better than) Libra and
Scholar for all sample queries even they are able to search
in significantly more web data as compared to our DBLP
data. Our result is much better for for Q1 than Libra and
Scholar. Libra outputs only three results for Q1 possibly
due to the encoding problem; whereas Scholar’s results in-
clude papers where the two authors do not appear as co-
authors. For Q5 our result is comparable to Scholar’s and
much better than Libra’s. Libra cannot find any results for
Q5 possibly since they only consider results containing all
keywords, whereas cosine similarity possibly helps Scholar
to find relevant results in large amount of web data. Note
that the large amount of web data is positive for Scholar for
Q5, but negative for Q1 as noises. However, from the anec-
dotal evidence of sample queries, our system, especially IRA
and RelevanceRank, is able to achieve the positive facts of
large amount of web data with only 321M DBLP data; and
meanwhile our system is not affected by the noises.

5.4 Experiment Summary
From the experimental results, we conclude that IRA se-

mantics on top of ICA can identify significantly more results
than ICA alone; and ICA/IRA semantics is also efficient to
evaluate. Based on the results of sample queries, ICA/IRA
with RelevanceRank is able to place most relevant results in
top-k of all ICA/IRA results. Moreover, Our system based
on ICA/IRA and RelevanceRank is superior to most exist-
ing academic demos in terms of both execution time and,
more importantly, result quality. When compared to com-
mercial systems, our system also demonstrates superior or
comparable power in finding relevant results with limited
321M DBLP data.

6. RELATED WORK
Extensive research efforts have been conducted on effi-

cient and effective processing of keyword search, especially
keyword proximity search in XML databases. Based on the
assumption that a smaller sub-structure is more precise to
the query, keyword proximity search in XML is usually re-
duced to the problem of finding the smallest sub-structures
containing all query keywords. There are two main data
models for XML keyword proximity search, tree and digraph
data model.

In tree data model ([18, 9, 16, 21, 10, 20]), LCA is the
natural semantics for keyword proximity search, which looks
for the lowest common ancestor containing all the keyword
in the subtrees. Schmidt et al. [18] introduce the “meet”
operator to compute LCAs based on relational-style joins
and indices. XRANK [9] presents a ranking method to rank
among subtrees rooted at LCAs. The rank is a combination
of keyword proximity (distance among query keywords) in-
side the subtree and refined PageRank [5] of the subtree
root element. Li et al. [16] and XKSearch [21] further de-
fine Smallest LCAs (or called Meaningful LCAs in [16]) to
be LCAs that do not contain other LCAs. Li et al. [16] in-
corporate Meaningful LCA search in XQuery; whereas XK-
Search [21] focuses on studying efficient algorithms to com-
pute Smallest LCA and All LCAs. Sun et al. [19] study a
multiway approach to further optimize the computation of
Smallest LCAs. Hristidis et al. [10] introduce MCTs (mini-
mum connecting trees) to exclude the subtrees rooted at the
LCAs that do not contain query keywords. Large XML doc-
ument are partitioned into XML fragments in [20] to avoid
returning meaningless subtrees. XML keyword proximity
search techniques based on tree model are generally efficient
with Dewey labels. However, they cannot capture ID ref-
erences and other conceptual connections between elements
and they may return many irrelevant results as explained in
Section 1. Note that ranking method proposed in XRANK
[9] only computes ranks among LCAs, thus it is not adequate
when a single LCA is overwhelmingly large.

Most previous algorithms on XML digraph (or graph)
model are intrinsically expensive, heuristics-based, because
the reduced tree problem on graph may be as hard as NP-
hard. Li et al [15] show the reduction from minimal reduced
tree problem to the NP-hard Group Steiner Tree problem on
graphs. Cohen et al [8] study the computing complexity of
interconnection semantics when the the semantical relation
among elements can be explicitly specified in XML docu-
ments. BANKS [12] uses Bidirectional expansion heuristic
algorithms to search as small portion of graph as possible
and ranks result reduced-trees in approximate order of result
generation during the expansion. Given a good estimation
of “important” nodes and edges where the expansion starts
with, BANKS seems to work well for a small number of re-
sults. However, the heuristics for NP-hard problem still has
the inherited limitation of slow query response when a large
number of results are required. XKeyword [11] is similar to
our approach in that both use schema information to reduce
search space and present results. However, our approach,
based on interconnected objects trees model, clearly dis-
tinguishes tree edges (parent-child edges) from conceptual
connections to further reduce search space. Also, we discuss
a ranking framework on top our searching model which is
missing in XKeyword.

Existing ranking methods in IR community are also rele-
vant to our ranking framework. The well-studied TF*IDF
cosine similarity [17] or its XML specific variation [6], which
takes structural information in XML into consideration for
ranking, can be directed incorporated into our ranking frame-
work to indicate the relevance of an object to a keyword
query. When the connections among objects are considered
for ranking, static PageRank [5] can also be used to compute
the importance of an objects according to the application se-
mantics. Notice our novel RelevanceRank is different from
PageRank since RelevanceRank is computed dynamically at

query processing phase and RelevanceRank emphasizes on
relevance of a object to the query rather than the impor-
tance of the objects. RelevanceRank is also different from
existing dynamic ranking metrics that exploits connection
at query processing, such as HITS [14] and ObjectRank [3].
The reason is RelevanceRank can enforce the co-occurrence
of all query keywords in a single logical IRA result while
HITS and ObjectRank cannot. As a result, the relevance
ranks computed by HITS and ObjectRank may be biased
to keywords which are frequent among objects, especially
when there are three or more keywords. For example, for
query “XML query processing” in ObjectRank, there are
only five XML related papers in the top twenty results and
the top ranked XML related paper is only the tenth. How-
ever, ObjectRank is effective to find objects that are relevant
to a single keyword without containing the keyword, which
can be incorporated in our model to include objects into the
keyword inverted list even they do not contain the keyword.

7. CONCLUSION AND FUTURE WORK
We propose interconnected object trees model for keyword

search in XML to achieve the efficiency of tree model and
meanwhile to capture the connections such as ID references
by fully exploiting the property and schema information of
XML databases. Based our model, we propose ICA and IRA
semantics to identify result objects for keyword queries. We
further propose novel RelevanceRank and a ranking frame-
work to incorporate RelevanceRank and other ranking met-
rics to rank ICA and IRA objects according to their rele-
vance to the query and other application specific require-
ments. With the conceptual object trees and connections
defined bases on schema information, our model offers more
flexibility and generality as compared to most existing ap-
proaches that focus on only physical sub-structure and con-
nection without schema information. Experimental evalua-
tion show that our approach and algorithm is efficient and
outperforms most existing work in terms of result quality.

As a part of future work, we would like to relax the as-
sumption on predefined interested objects and study how
our approach, especially RelevanceRank, can be extended
to the general situation where experienced users can iden-
tify interested objects with path expressions at query time.

8. REFERENCES
[1] Microsoft Libra: http://libra.msra.cn/.

[2] Google Scholar: http://scholar.google.com/.

[3] A. Balmin, V. Hristidis, and Y. Papakonstantinou.
Objectrank: Authority-based keyword search in
databases. In VLDB, pages 564–575, 2004.

[4] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti,
and S. Sudarshan. Keyword searching and browsing in
databases using banks. In Proc. of ICDE Conference,
pages 431–440, 2002.

[5] S. Brin and L. Page. The anatomy of a large-scale
hypertextual web search engine. Computer Networks,
30(1-7):107–117, 1998.

[6] D. Carmel, Y. S. Maarek, M. Mandelbrod, Y. Mass,
and A. Soffer. Searching xml documents via xml
fragments. In SIGIR, pages 151–158, 2003.

[7] M. Charikar, C. Chekuri, T.-Y. Cheung, Z. Dai,
A. Goel, S. Guha, and M. Li. Approximation

algorithms for directed steiner problems. In SODA
Conference, pages 192–200, 1998.

[8] S. Cohen, Y. Kanza, B. Kimelfeld, and Y. Sagiv.
Interconnection semantics for keyword search in xml.
In Proc. of CIKM Conference, pages 389–396, 2005.

[9] L. Guo, F. Shao, C. Botev, and
J. Shanmugasundaram. XRANK: Ranked keyword
search over XML documents. In SIGMOD, pages
16–27, 2003.

[10] V. Hristidis, N. Koudas, Y. Papakonstantinou, and
D. Srivastava. Keyword proximity search in XML
trees. In TKDE Journal, pages 525–539, 2006.

[11] V. Hristidis, Y. Papakonstantinou, and A. Balmin.
Keyword proximity search on XML graphs. In Proc. of
ICDE Conference, pages 367–378, 2003.

[12] V. Kacholia, S. Pandit, S. Chakrabarti, S. Sudarshan,
R. Desai, and H. Karambelkar. Bidirectional
expansion for keyword search on graph databases. In
Proc. of VLDB Conference, pages 505–516, 2005.

[13] B. Kimelfeld and Y. Sagiv. Efficiently enumerating
results of keyword search. In Proc. of DBPL
Conference, pages 58–73, 2005.

[14] J. M. Kleinberg. Authoritative sources in a
hyperlinked environment. J. ACM, 46(5):604–632,
1999.

[15] W. S. Li, K. S. Candan, Q. Vu, and D. Agrawal.
Retrieving and organizing web pages by information
unit. In Proc. of WWW Conference, pages 230–244,
2001.

[16] Y. Li, C. Yu, and H. V. Jagadish. Schema-free
XQuery. In VLDB, pages 72–83, 2004.

[17] G. Salton and M. J. McGill. Introduction to Modern
Information Retrieval. McGraw-Hill, Inc., New York,
NY, USA, 1986.

[18] A. Schmidt, M. L. Kersten, and M. Windhouwer.
Querying xml documents made easy: Nearest concept
queries. In ICDE, pages 321–329, 2001.

[19] C. Sun, C.-Y. Chan, and A. K. Goenka. Multiway
slca-based keyword search in xml data. In WWW
conference, 2007.

[20] J. Xu, J. Lu, W. Wang, and B. Shi. Effective keyword
search in XML documents based on MIU. In Proc. of
DASFAA Conference, pages 702–716, 2006.

[21] Y. Xu and Y. Papakonstantinou. Efficient keyword
search for smallest LCAs in XML databases. In Proc.
of SIGMOD Conference, pages 537–538, 2005.

