
ORA-Semantics based Keyword Search in XML and
Relational Databases

Tok Wang Ling, Zhong Zeng, Thuy Ngoc Le, and Mong Li Lee
School of Computing

National University of Singapore
{lingtw, zengzh, ltngoc, leeml}@comp.nus.edu.sg

Abstract—Keyword search in XML and relational databases
(RDB) has gained popularity as it provides a user-friendly way to
explore structured data. Existing works on XML and RDB key-
word search only rely on the structures of XML/RDB data and/or
schemas, and this causes serious problems of returning incomplete
answers, meaningless answers and overwhelming answers. In
this paper, we identify the problems of existing keyword search
methods and point out that the main reason of these problems
is due to the unawareness of the Object-Relationship-Attribute
(ORA) semantics in XML/RDB. We exploit the ORA semantics
in XML and RDB, and capture these semantics by constructing
the Object tree for XML, and the Object-Relationship-Mixed
(ORM) data graph for RDB, respectively. Based on the Object
tree and the ORM data graph, we propose an ORA-Semantics
based keyword search in XML and RDB. Our semantic approach
can avoid the problems of existing methods and improves the
completeness and correctness of keyword search. In addition, we
extend the keyword query language to include keywords that
match the metadata, i.e., the names of tags in XML and the
names of relations and attributes in RDB. These keywords reduce
the ambiguities of queries and enable us to infer user’ search
intention more precisely. Finally, we incorporate aggregate func-
tions and GROUPBY into keyword queries to retrieve statistical
information from XML and RDB.

I. INTRODUCTION

The success of web search engines has made keyword
search the most popular search paradigm for ordinary users.
As increasing amounts of data over the Internet are stored in
XML and relational databases (RDB), the ability to support
keyword search in XML and RDB has become important.
In contrast to traditional structured queries such as XQuery
and SQL, keyword queries enable users to query databases
by simple keywords without knowing the database schemas or
having to write complicated queries.

Keyword search in XML and RDB has been widely stud-
ied. Existing works in XML keyword search typically consider
an XML document without ID references and model it as a
tree [1], [2]. An answer to a keyword query is defined as
an LCA (Least Common Ancestor) of keyword match nodes,
or its variants such as SLCA [1] and ELCA [2]. Since these
LCA-based approaches only rely the hierachical structure of
the XML tree and ignore the semantics of objects, relationships
and their attributes in the data, they suffer from serious
problems such as meaningless answers, duplicated answers,
missing answers, and so on.

Existing works in RDB keyword search can be classified
into data graph approach [3], [4] and schema graph ap-
proach [5], [6]. In data graph approach, an RDB is represented

as a graph where each node represents a tuple and each
edge represents a foreign key-key reference. An answer to a
keyword query is typically defined as a minimal connected
subgraph (Steiner tree) which contains all the keywords. On
the other hand, schema graph approach considers an RDB as
a schema graph where each node represents a relation and
each edge represents a foreign key-key constraint. Based on
the schema graph, it translates a keyword query into a set of
SQL statements, and leverages on RDBMSs to evaluate the
statements and retrieve answers. Similarly, both data graph
approach and schema graph approach rely on foreign key-key
references of the RDB and do not consider the semantics of
objects and relationships as well as their attributes in the data.
As a result, they suffer from problems of returning incomplete
answers, meaningless answers and overwhelming answers.

In this paper, we investigate existing works on XML and
RDB keyword search and identify their serious problems
of returning incomplete answers, meaningless answers and
overwhelming answers. The main reason of these problems is
due to the unawareness of the Object-Relationship-Attribute
(ORA) semantics in XML/RDB data. To capture the ORA
semantics, we construct the Object tree for XML and the
Object-Relationship-Mixed (ORM) data graph for RDB. Key-
word queries are processed via the Object tree and the ORM
data graph to avoid the problems of existing works.

In addition, we extend the keyword query language to
include keywords that match the metadata, that is, the names of
tags in XML and the names of relations and attributes in RDB.
These keywords provide the context of subsequent keywords
and explicitly indicate the search target of the queries. Thus,
the ambiguities of keyword queries are significantly reduced.

Finally, we incorporate aggregate functions and
GROUPBY into keyword queries to retrieve statistical
information from XML and RDB. Given a query with
aggregates and GROUPBY, we utilize the ORA semantics
to obtain the various query interpretations. Further, we
distinguish objects with the same attribute value and detect
duplications of objects and relationships to compute the
aggregate functions correctly.

II. PROBLEMS OF CURRENT APPROACHES

A. Problems of current XML keyword search

We choose the LCA-based approach as a representative and
use the XML data in Fig. 1 to illustrate the problems of current
XML keyword search. More details can be found in [7].

978-1-5090-2109-3/16/$31.00 © 2016 IEEE ICDE 2016 Workshops157

Title
(15)

Lecturer
(7)

Course
(12)

DB
(16)

Grade
(22)

A
(23)

Department
(0)

Name
(10)

LID
(8)

L1
(9)

Code
(13)

CS521
(14)

Smith
(11)

Student
(17)

SID
(18)

Name
(20)

S1
(19)

Bill
(21)

Grade
(29)

A
(30)

Student
(24)

SID
(25)

Name
(27)

S2
(26)

John
(28)

Title
(34)

Course
(31)

Java
(35)

Grade
(41)

B
(42)

Code
(32)

CS203
(33)

Student
(36)

SID
(37)

Name
(39)

S2
(38)

John
(40)

Grade
(48)

A
(49)

Student
(43)

SID
(44)

Name
(46)

S3
(45)

Mary
(47)

……DID
(1)

Name
(3)

D1
(2)

Computing
(4)

Address
(5)

Smith Street
(6)

Fig. 1: University.xml

Meaningless answer. Consider query {Bill}. The LCA-
based approach returns node Bill_(21). However, this is
not useful since it does not provide any relevant information
about Bill. This happens when a returned node is a non-
object node, e.g., an attribute or a value. The reason is that
the LCA-based approach cannot differentiate object and non-
object nodes. Returning object node is meaningful whereas
returning non-object node is not. The expected answer should
be Student_(17), the object w.r.t. to Bill_(21) since it
contain relevant information about Bill.

Missing answer. Consider query {DB Java}. The LCA-
based approach only returns node Lecturer_(7). How-
ever, it can never recognize that, Student_(24) and
Student_(36) refer to the same object Student S2. This
is the common student taking the DB and Java courses. The
LCA-based approach should also return the common student
taking these two courses, namely, Student S2 appearing as
Student_(24) or Student_(36) as an answer.

Duplicated answer. Consider query {S2 John}. Two an-
swers Student_(24) and Student_(36) of this query
are duplicated because the two nodes refer to the same object
Student S2. This problem is caused by the unawareness
of duplication of object having multiple occurrences. Users
expect that either of Student_(24) or Student_(36)
should be returned, but not both since they are different
occurrences of the same object Student S2.

Problems related to relationships. Consider query {Bill
A}. The LCA-based approach returns node Student_(17).
This answer is incomplete because A grade is not an attribute
of a student, but it is grade of a student taking a course instead.
In other words, Grade is a relationship attribute between
Student and Course, not an object attribute. The LCA-
based approach cannot distinguish between an object attribute
and a relationship attribute under an object node. The proper
answer should be the student Bill taking the Course_(12)
and obtaining an A grade. To do that, the answer should
be moved up to contain other objects (i.e., Course_(12))
participating in the relationship that A grade belongs to.

Inconsistent types of answers. Consider query {S1 S2}
and query {S1 S3}. Both queries comprise of two stu-
dent ids. However, the LCA-based approach returns an-
swer {Course_(12)} for the first query and answer

{Lecturer_(7)} for the second query. These two answers
refer to objects of different classes and users may get confused
as the queries are similar. The reason is that the LCA-based
approach does not interpret users’ search intention and blindly
returns the LCAs of keyword match nodes.

Schema dependence. There may be several designs for the
same data source. The XML data in Fig. 1 can be represented
by another design where Student objects become the parents
of Course objects. Since the LCA-based approach replies
on the hierarchical structure of the XML data, it may return
different answers for different designs even though these
designs refer to exactly the same information and we are
dealing with the same query.

B. Problems of current RDB keyword search

We choose data graph approach as a representative to
illustrate the problems of current RDB keyword search. More
details can be found in [8]. Note that schema graph approach
suffers from similar problems. Let us consider the sample RDB
in Fig. 2 and the corresponding data graph in Fig. 3.

Student
SID Name

S1 Bill

S2 John

S3 Mary

Course
Code Title LID

CS301 IR L2

CS521 DB L1

CS203 Java L1

Enroll
SID Code Grade

E1 S1 CS521 A

E2 S2 CS203 B

E3 S2 CS521 A

E4 S3 CS203 A

E5 S3 CS301 B

Qualification
DID Degree Major University

Q1 L1 PhD CS NUS

Q2 L3 PhD CS SMU

Q3 L3 Master EE NTU

Lecturer
LID Name DID

L1 Smith D1

L2 Smith D2

L3 Steven D1

Department
DID Name Address

D1 Computing Smith Street

D2 Business Queen Street

Fig. 2: University database

Incomplete object answer. Suppose a user issues the keyword
query {Steven} to retrieve all the information about him.
Existing works only return his id and name, that is, the tuple
L3 in the Lecturer relation. However, information about the
degrees, majors and universities of Steven, which are stored
in the Qualification relation, are not retrieved.

Incomplete relationship answer. Suppose a user wants to
know the information of the course where a student Bill

158

S3

S2

S1

CS521

E4E5

E2

E3 E1

CS203CS301 L3 Q2

Q3L1Q1L2

D1

D2

Fig. 3: The data graph for the RDB in Fig. 2

obtains grade A, and issues the keyword query {Bill A}.
Existing works retrieve a Steiner tree which contains the tuples
S1 and E1, as the two query keywords occur in these tuples
respectively and there exists a foreign key reference between
them. This answer is not informative as details such as the
course id and title are not retrieved.

Meaningless answer. Suppose a user issues the keyword query
{S1 S3}. Existing works returns two answers: (a) S1−E1−
CS521−L1−CS203−E4−S3 and (b) S1−E1−CS521−
E3−S2−E2−CS203−E4−S3. The first answer indicates
that student S1 is enrolled in the course CS521 and student S3
is enrolled in the course CS203. Both the courses are taught
by the same lecturer L1. The second answer means that student
S2 is enrolled in the same course CS521 as S1; S2 is also
enrolled in the same course CS203 as S3. We observe that
the second answer is most likely meaningless to the user.

Difficult to understand the meanings of answers. Given a
query answer which is a Steiner tree, e.g., S1−E1−CS521−
L1−CS203−E4−S3 for query {S1 S3}, the user may feel
difficult to understand. This is because the answer may consists
of many nodes that are connected in a complex structure.

Inconsistent types of answers. Similar to XML keyword
search, existing RDB keyword search methods return inconsis-
tent types of answers for similar queries. For example, existing
works retrieve answer S1−E1−CS521−E3−S2 for query
{S1 S2} and answer S1 − E1 − CS521 − L1 − CS203 −
E4−S3 for query {S1 S3}. Clearly, the second answer is far
more complex than the first one and the user may get confused
for the difference between answers to the two similar queries.

Schema dependence. Given the same data source, the relations
in RDB are often denormalized to improve runtime perfor-
mance. This denormalization leads to data duplication and
affects the database schema. Existing works do not consider
unnormalized relations in RDB, and thus may suffer from the
problems of duplicated answers and missing answers.

For example, suppose we join the Student, Enrol
and Course relations in Fig. 2 and obtain an unnormal-
ized relation Enrolment(SID, Name, Code, Title,
LID, Grade) to store information of students, courses and
the many-to-many relationships between students and courses.
Given the keyword query {Bill}, the existing works will
retrieve duplicated answers as information of student Bill are
duplicated in the Enrolment relation. On the other hand, the
data graph of this relation has no edges because of no foreign
key reference. The existing works will retrieve no answers for
query {S1 S3}.

Summary. Existing approaches on XML and RDB keyword
search highly depend on the database and their schemas, i.e.,
the hierarchical structure of XML and the foreign key-key
references of RDB, and do not consider the ORA semantics
in the data. As a result, they cannot interpret keyword queries
and fail to retrieve answers that satisfy users’ search intention.

III. OUR ORA-SEMANTICS BASED APPROACH

In this section, we exploit the ORA semantics and utilize
it to solve the problems of current XML and RDB keyword
search in Sec.II. The concept of ORA semantics includes
the identification of objects, relationships and attribute values
in XML document and RDB, and includes the identification
of object classes, relationship types and object/relationship
attributes in XML schema and RDB schema.

A. ORA semantics in XML

The ORA semantics in XML are discovered in our work
[9]. Based on the ORA semantics, we construct an Object
tree for the XML data by keeping only object nodes and
associating all non-object nodes to the corresponding object
nodes. Compared to the original XML, the Object tree contains
a much smaller number of nodes and every node represents an
object. Fig. 4 shows the Object tree for the XML in Fig. 1.

Department
D1
(0)

Lecturer
L1
(7)

Course
CS521

(12)

Course
CS203

(31)

Student
S1

(17)

Student
S2

(24)

Student
S2

(36)

Student
S3

(43)

……

Fig. 4: The Object tree for the XML in Fig. 1

Given a keyword query, we search for LCOAs (lowest
common object ancestor) over the Object tree. Since each
LCOA contains all the information of an object, we can avoid
returning meaningless answers. We also search for HCODs
(highest common object descendant) to find answers that are
missed by LCOAs and propose algorithms to filter duplicated
answers on the fly. Finally, we propose CRs (common relative)
to perform a schema independent keyword search. More details
are given in [10], [11].

B. ORA semantics in RDB

Our work [8] captures the ORA semantics in RDB by
classifying relations into object relations, relationship rela-
tions, mixed relations and component relations. An object
(relationship resp.) relation captures the information of objects
(relationships resp.). The multivalued attributes of an object
class (relationship type) are captured in component relations.
A mixed relation contains information of both objects and
relationships, which occurs when we have a many-to-one
relationship. Then we construct an Object-Relationship-Mixed
(ORM) data graph that consists of object, relationship and
mixed nodes. Each node includes some tuple in the correspond-
ing relation. Tuples in component relations are attached to their

159

corresponding object (relationship or mixed) type nodes. Two
nodes are connected via an edge if there exists a foreign key-
key reference between tuples in the nodes. Fig. 5 shows the
ORM data graph for the RDB in Fig. 2.

D2

CS301 E5

E2

S2

E4

S3

E3

CS203 D1

CS521 E1

S1L1

Legend

L3

L2

Mixed NodeRelationship NodeObject Node

Fig. 5: The ORM data graph for the RDB in Fig. 2

We search over the ORM data graph and process keyword
queries based on the types of keyword match nodes. The
information of objects and relationships in the ORM data graph
enable us to retrieve more complete and informative answers.

IV. EXTENDED KEYWORD QUERY LANGUAGE

A keyword query may have multiple interpretations due to
its inherent ambiguity. As existing works do not consider the
interpretations of the query, they often retrieve overwhelming
answers with various interpretations mixed together.

We observe that when a user issues a query, s/he must
have some particular search intention in mind. This motivates
us to extend the keyword query language so that users can
explicitly indicate his/her search intention whenever possible.
In particular, we include keywords that match the metadata,
that is, the names of tags in XML and the names of relations
and attributes in RDB. These keywords provide the context of
subsequent query keywords and reduce the query ambiguities.

Consider query {Lecturer Smith} on the XML data
in Fig.1. The keyword Smith refers to a lecturer name or a
department address. However, since the keyword Lecturer
matches a tag name that specifies a lecturer object, we deduce
that the user is more likely to be interested in a lecturer called
Smith than the address of a department.

To process an extended keyword query, we utilize the ORA
semantics to determine the objects/relationships referred to by
the keywords and discover the various ways these objects
interact with each other via relationships. We infer users’
possible search intentions and rank them. The top-k ranked
search intentions are used to retrieve the answers from the
database. Answers are grouped by query interpretations with
English descriptions. More details are described in [12].

Our second extension to keyword queries is to incorporate
the aggregate functions and GROUPBY. We call these aggre-
gate queries. Aggregate queries provide a powerful mechanism
to retrieve statistical information from XML and RDB. For
instance, suppose we want to know the number of courses
taught by the lecturer Smith in Fig. 2, we can issue the
aggregate query {Smith COUNT Course}.

The work in [13] supports aggregate queries on RDB.
However, it does not have concepts of objects and cannot

distinguish objects with the same attribute value, e.g., two
lecturers called Smith. Thus, it may return incorrect answers.

Given an aggregate query, we classify the query keywords
into simple keywords and aggregates/GROUPBY. We use the
simple keywords to interpret the various query interpretations
based on the ORA semantics, and then apply the aggregates
and GROUPBY on appropriate object/relationship attributes.
For each query interpretation, we further utilize the ORA
semantics to distinguish objects with the same attribute value
and detect duplications of objects and relationships in order to
compute the aggregate functions correctly. We show that with-
out the ORA semantics, it is impossible to process aggregate
queries correctly. More details are described in [14], [15].

V. CONCLUSION

We have investigated existing works on XML/RDB key-
word search and identified their serious problems of returning
incomplete answers, meaningless answers and overwhelming
answers. The main reason of these problems is due to unaware-
ness of the ORA semantics. We exploit the ORA semantics in
XML/RDB and capture these semantics using the Object tree
for XML and ORM data graph for RDB respectively. Keyword
queries are processed via the semantic tree/graph to avoid the
problems of existing works. In addition, we extend keyword
queries to include keywords that match the metadata, i.e., the
names of tags in XML and the names of relations and attributes
in RDB to reduce query ambiguities. Finally, we incorporate
aggregate functions and GROUPBY into keyword queries to
retrieve statistical information from XML and RDB.

REFERENCES

[1] Y. Xu and Y. Papakonstantinou, “Efficient keyword search for smallest
LCAs in XML databases,” in SIGMOD, 2005.

[2] R. Zhou, C. Liu, and J. Li, “Fast ELCA computation for keyword
queries on XML data,” in EDBT, 2010.

[3] A. Hulgeri and C. Nakhe, “Keyword searching and browsing in
databases using BANKS,” in ICDE, 2002.

[4] B. Ding, J. X. Yu, S. Wang, L. Qin, X. Zhang, and X. Lin, “Finding
top-k min-cost connected trees in databases,” in ICDE, 2007.

[5] V. Hristidis and Y. Papakonstantinou, “Discover: keyword search in
relational databases,” in VLDB, 2002.

[6] Y. Luo, X. Lin, W. Wang, and X. Zhou, “SPARK: top-k keyword query
in relational databases,” in SIGMOD, 2007.

[7] T. N. Le, H. Wu, T. W. Ling, L. Li, and J. Lu, “From structure-based
to semantics-based: Effective XML keyword search,” in ER, 2013.

[8] Z. Zeng, Z. Bao, M. L. Lee, and T. W. Ling, “A semantic approach to
keyword search over relational databases,” in ER, 2013.

[9] L. Li, T. N. Le, H. Wu, T. W. Ling, and S. Bressan, “Discovering
semantics from data-centric XML,” in DEXA, 2013.

[10] T. N. Le, W. T. Ling, H. V. Jagadish, and J. Lu, “Object semantics for
xml keyword search,” in DASFAA, 2014.

[11] T. N. Le, Z. Bao, and W. T. Ling, “Schema-independence in xml
keyword search,” in ER, 2014.

[12] Z. Zeng, Z. Bao, T. N. Le, M. L. Lee, and W. T. Ling, “ExpressQ:
Identifying keyword context and search target in relational keyword
queries,” in CIKM, 2014.

[13] S. Tata and G. M. Lohman, “SQAK: Doing more with keywords,” in
SIGMOD, 2008.

[14] Z. Zeng, M. L. Lee, and W. T. Ling, “Answering keyword queries
involving aggregates and groupby on relational databases,” in EDBT,
2016.

[15] T. N. Le, Z. Bao, W. T. Ling, and G. Dobbie, “Group-by and aggregate
functions in xml keyword search,” in DEXA, 2014.

160

	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Next Manuscript
	Preceding Manuscript

	Previous View

	Search

	No Other Manuscripts by the Authors
