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Abstract—Inspired by the great success of information retrieval (IR) style keyword search on the web, keyword search on XML has
emerged recently. The difference between text database and XML database results in three new challenges: (1) Identify the user search
intention, i.e. identify the XML node types that user wants to search for and search via. (2) Resolve keyword ambiguity problems: a
keyword can appear as both a tag name and a text value of some node; a keyword can appear as the text values of different XML node
types and carry different meanings; a keyword can appear as the tag name of different XML node types with different meanings. (3)
As the search results are sub-trees of the XML document, new scoring function is needed to estimate its relevance to a given query.
However, existing methods cannot resolve these challenges, thus return low result quality in term of query relevance.

In this paper, we propose an IR-style approach which basically utilizes the statistics of underlying XML data to address these challenges.
We first propose specific guidelines that a search engine should meet in both search intention identification and relevance oriented
ranking for search results. Then based on these guidelines, we design novel formulae to identify the search for nodes and search via
nodes of a query, and present a novel XML TF*IDF ranking strategy to rank the individual matches of all possible search intentions. To
complement our result ranking framework, we also take the popularity into consideration for the results that have comparable relevance

scores. Lastly, extensive experiments have been conducted to show the effectiveness of our approach.

Index Terms—XML, Keyword Search, Ranking

1 INTRODUCTION

The extreme success of web search engines makes keyword
search the most popular search model for ordinary users. As
XML is becoming a standard in data representation, it is
desirable to support keyword search in XML database. It is
a user friendly way to query XML databases since it allows
users to pose queries without the knowledge of complex query
languages and the database schema.

Effectiveness in term of result relevance is the most crucial
part in keyword search, which can be summarized as the
following three issues in XML field.

Issue 1: It should be able to effectively identify the type of
target node(s) that a keyword query intends to search for. We
call such target node as a search for node.

Issue 2: It should be able to effectively infer the types of
condition nodes that a keyword query intends to search via.
We call such condition nodes as search via nodes.

Issue 3: It should be able to rank each query result in
consideration of the above two issues.

The first two issues address the search intention problem,
while the third one addresses the relevance based ranking
problem w.r.t. the search intention. Regarding to Issue 1 and
Issue 2, XML keyword queries usually have ambiguities in
interpreting the search for node(s) and search via node(s), due
to three reasons below.

o Ambiguity 1: A keyword can appear both as an XML

tag name and as a text value of some other nodes.
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o Ambiguity 2: A keyword can appear as the text values
of different types of XML nodes and carry different
meanings.

o Ambiguity 3: A keyword can appear as an XML tag
name in different contexts and carry different meanings.

For example see the XML document in Figure 1, keywords
customer and interest appear as both an XML tag name and a
text value (e.g. value of the title for book B1); arr appears as
a text value of interest, address and name node; name appears
as the tag name of the name of both customer and publisher.

Regarding to Issue 3, the search intention for a keyword
query is not easy to determine and can be ambiguous, because
the search via condition is not unique; so how to measure the
confidence of each search intention candidate, and rank the
individual matches of all these candidates are challenging.

Although many research efforts have been conducted in
XML keyword search [8], [10], [29], [22], [12], [23], none of
them has addressed and resolved the above three issues yet.
For instance, one widely adopted approach so far is to find
the smallest lowest common ancestor (SLCA) of all keywords
[29]. Each SLCA result of a keyword query contains all
query keywords but has no subtree which also contains all
the keywords.

In particular, regarding to Issue 1 and 2, SLCA may intro-
duce answers that are either irrelevant to user search intention,
or answers that may not be meaningful or informative enough.
E.g. when a query “Jim Gray” that intends to find Jim Gray’s
publications on DBLP [17] is issued, SLCA returns only the
author elements containing both keywords. Besides, SLCA
also returns publications written by two authors where “Jim” is
aterm in 1st author’s name and “Gray” is a term in 2nd author,
and publications with title containing both keywords. It is
reasonable to return such results because search intention may
not be unique; however they should be given a lower rank, as
they are not matches of the major search intention. Regarding



to Issue 3, no existing approach has studied the problem of
relevance oriented result ranking in depth yet. Moreover, they
don’t perform well on pure keyword query when the schema
information of XML data is not available [22]. The actual
reason is, none of them can solve the above keyword ambiguity

problems, as demonstrated by the following example.
Example 1: Consider a keyword query “customer interest

art” issued on the bookstore data in Figure 1, and most likely
it intends to find the customers who are interested in art.

If adopting SLCA, we will get 5 results, which include
the title of book B1 and the customer nodes with IDs from
C1 to C4 (as these four customer nodes contain “customer”,
“interest” and “art” in either the tag names or node values) in
Figure 1. Since SLCA cannot well address the search intention,
all these 5 results are returned without any ranking applied.
However, only C4 is desired which should be put as the top
ranked one, and C2 is less relevant, as his interest is “street
art” rather than “art”, while C1 and C3 are irrelevant. [J

Inspired by the great success of IR approach on web search
(especially its distinguished ranking functionality), we aim to
achieve similar success on XML keyword search, to solve the
above three issues without using any schema knowledge.

The main challenge we are going to solve is how to extend
the keyword search techniques in text databases (IR) to XML
databases, because the two types of databases are different.
First, the basic data units in text databases are flat documents.
For a given query, IR systems compute a numeric score for
each document and rank the document by this score. In XML
databases, however, information is stored in hierarchical tree
structures. The logical unit of answers needed by users is not
limited to individual leaf nodes containing keywords, but a
subtree instead. Second, unlike text database, it is difficult
to identify the (major) user search intention in XML data,
especially when the keywords contain ambiguities mentioned
before. Third, effective ranking is a key factor for the success
of keyword search. There may be dozens of candidate answers
for an ordinary keyword query in a medium-sized database.
E.g. in Example 1, five subtrees can be the query answers,
but they are not equally useful to user. Due to the difference
in basic answer unit between document search and database
search, in XML database we need to assign a single ranking
score for each subtree of certain category with a fitting size,
in order to rank the answers effectively.

Statistics is a mathematical science pertaining to the collec-
tion, analysis, interpretation or explanation of data; it can be
used to objectively model a pattern or draw inferences about
the underlying data being studied. Although keyword search is
a subjective problem that different people may have different
interpretations on the same keyword query, statistics provides
an objective way to distinguish the major search intention(s).

It motivates us to model the search engine as a domain
expert who automatically interprets user’s all possible search
intention(s) through analyzing the statistics knowledge of
underlying data. As a result, we propose a novel IR-style
approach which well captures XML’s hierarchical structure,
and works well on pure keyword query independent of any
schema information of XML data. A search engine prototype
called XReal is implemented to achieve effective identification

of user search intention and relevance oriented ranking for the
search results in the presence of keyword ambiguities.

Example 2: We use the query in Example 1 again to
explain how XReal infers user’s desired result and puts it
as a top-ranked answer. XReal interprets that user desires to
search for customer nodes, because all three keywords have
high frequency of occurrences in customer nodes. Similarly,
since keywords “interest” and “art” have high frequency of
occurrences in subtrees rooted at interest nodes, it is con-
sidered with high confidence that this query wants to search
via interest nodes, and incorporate this confidence into our
ranking formula. Besides, customers interested in “art” should
be ranked before those interested in (say) “street art”. As a
result, C4 is ranked before C2, and further before customers
with address in “art street”(e.g. C1) or named “art” (e.g. C3).0J

To our best knowledge, we are the first that exploit the
statistics of underlying XML database to address search in-
tention identification, result retrieval and relevance oriented
ranking as a single problem for XML keyword search. The
major contributions are summarized as follows:

1) This is the first work that addresses the keyword ambi-
guity problem. We also identify three crucial issues that
an effective XML keyword search engine should meet.

2) We define our own XML TF (term frequency) and XML
DF (document frequency), which are cornerstones of all
formulae proposed later.

3) We propose three important guidelines in identifying the
user desired search for node type, and design a formula
to compute the confidence level of a certain node type
to be a desired search for node based on the guidelines.

4) We design formulae to compute the confidence of each
candidate node type as the desired search via node to
model natural human intuitions, in which we take into
account the pattern of keywords co-occurrence in query.

5) We propose a novel relevance oriented ranking scheme
called XML TF*IDF similarity which can capture the
hierarchical structure of XML and resolve Ambiguity
1-3 in a heuristic way. Besides, the popularity of query
results is designed to distinguish the results with com-
parable relevance scores.

6) We implement the proposed techniques in a keyword
search engine prototype called XReal. Extensive exper-
iments show its effectiveness, efficiency and scalability.

The rest of the paper is organized as follows. We present the

related work in Section 2, and data model in Section 3. Section
4 infers user search intention. Section 5 discusses the ranking
scheme. Section 7 presents the search algorithms. Experiment
is discussed in Section 8 and we conclude in Section 9.

2 RELATED WORK

Extensive research efforts have been conducted in XML
keyword search to find the smallest sub-structures in XML
data that each contains all query keywords in either the tree
data model or the directed graph (i.e. digraph) data model.

In tree data model, LCA (lowest common ancestor) seman-
tics is first proposed and studied in [25], [10] to find XML
nodes, each of which contains all query keywords within its
subtree. Subsequently, SLCA (smallest LCA [21], [29]) is
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proposed to find the smallest LCAs that do not contain other
LCAs in their subtrees. GDMCT (minimum connecting trees)
[12] excludes the subtrees rooted at the LCAs that do not
contain the query keywords. Sun et al. [26] generalize SLCA
to support keyword search involving combinations of AND
and OR boolean operators. XSeek [22] generates the return
nodes which can be explicitly inferred by keyword match
pattern and the concept of entities in XML data. However,
it addresses neither the ranking problem nor the keyword am-
biguity problem. Besides, it relies on the concept of entity (i.e.
object class) and considers a node type ¢ in DTD as an entity
if ¢ is “*”-annotated in DTD. As a result, customer, phone,
interest, book in Figure 1, are identified as object classes
by XSeek. However, it causes the multi-valued attribute to be
mistakenly identified as an entity, causing the inferred return
node not as intuitive as possible. E.g. phone and interest
are not intuitive as entities. In fact, the identification of entity
is highly dependent on the semantics of underlying database
rather than its DTD, so it usually requires the verification
and decision from database administrator. [23] proposes an
axiomatic way to judge the completeness and correctness of a
certain keyword search semantics.

In digraph data model, previous approaches are heuristics-
based, as the reduced tree problem on graph is as hard as
NP-complete. Li et al. [20] show the reduction from minimal
reduced tree problem to the NP-complete Group Steiner Tree
problem on graphs. BANKS [16] uses bidirectional expansion
heuristic algorithms to search as small portion of graph as
possible. BLINKS [11] proposes a bi-level index to prune and
accelerate searching for top-k results in digraphs. Cohen et
al. [7] study the computation complexity of interconnection
semantics. XKeyword [13] provides keyword proximity search
that conforms to an XML schema; however, it needs to com-
pute candidate networks and thus is constrained by schemas.

On the issue of result ranking, XRANK [10] extends
Google’s PageRank to XML element level, to rank among
the LCA results; but no empirical study is done to show the
effectiveness of its ranking function. XSEarch [8] adopts a
variant of LCA, and combines a simple tf*idf IR ranking with
size of the tree and the node relationship to rank results; but it
requires users to know the XML schema information, causing
limited query flexibility. EASE [19] combines IR ranking and
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structural compactness based DB ranking to fulfill keyword
search on heterogenous data. Regarding to ranking methods,
TF*IDF similarity [24] which is originally designed for flat
document retrieval is insufficient for XML keyword search due
to XML’s hierarchical structure and the presence of Ambiguity
1-3. Several proposals for XML information retrieval suggest
to extend the existing XML query languages [9], [4], [27]
or use XML fragments [6] to explicitly specify the search
intention for result retrieval and ranking.

As an extension of [5], we have several major updates:
(1) We complement our ranking framework by adding the
popularity of a query result into consideration in section 6. (2)
Accordingly, an enhanced data model is built in section 3.2,
new index and efficient algorithm are designed to compute
the popularity score in section 7, and more experiments are
conducted. (3) A new Principle 3 (in section 5.1) is proposed to
take into account the proximity of keywords, and accordingly
a new In-Query Distance is designed in Definition 4.1.

3 PRELIMINARIES
3.1 TF*IDF cosine similarity

TF*IDF (Term Frequency * Inverse Document Frequency)
similarity is one of the most widely used approaches to
measure the relevance of keywords and document in keyword
search over flat documents. We first review its basic idea, then
address its limitations for keyword search in XML. The main

idea of TF*IDF is summarized in the following three rules.
o Rule 1: A keyword appearing in many documents should

not be regarded as being more important than a keyword
appearing in a few.

« Rule 2: A document with more occurrences of a query
keyword should not be regarded as being less important
for that keyword than a document that has less.

o Rule 3: A normalization factor is needed to balance be-
tween long and short documents, as Rule 2 discriminates
against short documents which may have less chance to

contain more occurrences of keywords.
To combine the intuitions in the above three rules, the

TF*IDF similarity is designed:

(g.d) = 2 kegnd Wak ¥ Wak W
P W, * Wy
where ¢ represents a query, d represents a flat document and




k is a keyword appearing in both ¢ and d. A larger value of
p(g,d) indicates g and d are more relevant to each other. W
and Wy j, represent the weights of k in query ¢ and document
d respectively; while W, and Wy are the weights of query ¢
and document d. Among several ways to express W, ., Wq 1,
W, and Wy, the followings are the conventional formulae:

Wor =In(N/(fix +1)) )

War=14+1In(for) 3)

Wy= > w2, )
keq

Wa= > W2, (5)
ked

where N is the total number of documents, and document
frequency fr in Formula 2 is the number of documents

containing keyword k. Term frequency fq  in Formula 3 is
the number of occurrences of k£ in document d.

Wy i is monotonically decreasing w.r.t. f;, (Inverse Docu-
ment Frequency) to reflect Rule 1; while W ;, is monotoni-
cally increasing w.r.t. fq . (Term Frequency) to reflect Rule 2.
The logarithm in Formula 2 and 3 are designed to normalize
the raw document frequency fj and raw term frequency fq .
Finally, W, and Wy are increasing w.r.t. the size of ¢ and d,
playing the role of normalization factors to reflect Rule 3.

However, the original TF*IDF is inadequate for XML,
because it is not able to fulfill the job of search intention
identification or resolve keyword ambiguities resulted from
XML’s hierarchical structure, as Example 3 shows.

Example 3: Suppose a keyword query “art” is issued to
search for customers interested in “art” in Figure 1’s XML
data. Ideally, the system should rank customers who do have
“art” in their nested inferest nodes before those who do
not have. Moreover, it should give customer A who is only
interested in art a higher rank than another customer B who
has many interests including art (e.g. C4 in Figure 1).

However, it causes two problems if directly adopting the
original TF*IDF to XML data. (1) If the structure in customer
nodes is not considered, customer A may have a lower rank
than B if A happens to have more keywords in its subtree
(analog to long document in IR) than B. (2) Even worse,
suppose a customer C is not interested in “art” but has address
in “art street”. If C' has less number of keywords than A and
B in the underlying XML data, then C' may have a higher
rank than A and B. [J

T3

3.2 Data model

We model XML document as a rooted, labeled tree plus a
set of directed IDRef edges between XML nodes, such as the
one in Figure 1. In contrast to general directed graph model,
the containment edge and IDRef edge are distinguished in our
model. Our approach exploits the prefix path of a node rather
than its tag name for result retrieval and ranking. Note that
the existing works [22], [18] rely on DTD while our approach
works without any XML schema information.

Definition 3.1: (Node Type) The type of a node n in an
XML document is the prefix path from root to n. Two nodes
are of the same node type if they share the same prefix path.

In Definition 3.1, the reason that two nodes need to share the
same prefix path instead of their tag name is, there may be two
or more nodes of the same tag name but of different semantics
(i.e. in different contexts) in one document. E.g. In Figure 1,
the name of publisher and the name of customer are of differ-
ent node types, which are storeDB/books/book/publisher/name
and storeDB/customers/customer/name respectively. Besides,
when XML database contains multiple XML documents, the
node type should also include the file name.

To facilitate our discussion later, we use the tag name
instead of the prefix path of a node to denote the node type
in all examples throughout this paper. Besides, in order to
separate the content part from leaf node, we distinguish an
XML node into either a data node or a structural node.

Definition 3.2: (Data Node) The text values that are con-
tained in the leaf node of XML data and have no tag name is
defined as a data node.

Definition 3.3: (Structural Node) An XML node labeled
with a tag name is called a structural node. A structural node
that contains other structural nodes as its children is called an
internal node; otherwise, it is called a leaf node.

In this paper, we do not consider the case that an internal
node n contains both data nodes and structural nodes, as we
can easily avoid it by adding a dummy structural node with
a tag name say “value” between n and the data nodes during
node indexing without altering the XML data.

With the above two definitions, the value part and structure
part of the XML data is separated. E.g. within the subtree of
customer C1 in Figure 1, address is an internal node, street is
a leaf node, and “Art Street” is a data node.

Definition 3.4: (Single-valued Type) A structural node ¢ is
of single-valued type if each node of type ¢t has at most one
occurrence within its parent node.

Definition 3.5: (Multi-valued Type) A structural node ¢ is
of multi-valued type if some node of type ¢ has more than one
occurrence within its parent node.

Definition 3.6: (Grouping Type) An internal node ¢ is
defined as a grouping type if each node of type t contains
child nodes of only one multi-valued type.

XML nodes of single-valued type and multi-valued type can
be easily identified when parsing the data. A node of single-
valued (or multi-valued, or grouping) type is called a single-
valued (or multi-valued, or grouping) node. E.g. in Figure 1,
address is a single-valued node, while interest is a multi-
valued node and interests is a grouping node for interest.

In this paper, for ease of presentation later, we assume every
multi-valued node has a grouping node as its parent, as we can
easily introduce a dummy grouping node in indexing without
altering the data. Note a grouping node is also a single-valued
node. Thus, the children of an internal node are either of same
multi-valued type or of different single-valued types.

In our data model, a directed edge is classified into a
containment edge or an IDRef edge. A containment edge u—v
denotes that w is the parent of node v. An IDRef edge from
node u pointing to node v is denoted as u--»v, where u’s
attribute of type IDRef has a value equal to the ID-typed
attribute of node v. E.g. in Figure 1, the directed solid lines
represent containment edges; the dotted line from purchase



(which is an attribute of customer) to book is an IDRef edge
from customer C2 to book B1.

Definition 3.7: (Reference-Connection) Node v has a
reference-connection (RC) from node u, denoted as RC' (u, v),
if there exists a directed path P: u—...—v from u to v, where
each edge in P is an IDRef edge. The distance of a certain
reference-connection path P from w to v is defined as the
number of IDRef edges involved in P.

For example, in Figure 1, the distance from customer C2 to
book B2 is 2, as two IDRef edges are involved.

3.3 XML TF & DF

Inspired by the important role of data statistics in IR
ranking, we try to utilize it to resolve ambiguities for XML
keyword search, as it usually provides an intuitionistic and
convincing way to model and capture human intuitions.

Example 4: When we talk about “art” in the domain of
database like Figure 1, we in the first place consider it as a
value in interest of customer nodes or category (or title) of
book nodes. However, we seldom first consider it as a value
of other node types (e.g. street with value “Art Street”).

The reason for this intuition is, usually there are many nodes
of interest type and category type containing “art” in their
text values, while “art” is infrequent in street nodes. Such
intuition (based on domain knowledge) always can be captured
by statistics of underlying data. Similarly, when we talk about
“interest”, intuitionally we in the first place consider it as a
node type instead of a value of the title of book nodes. Besides
the reason that “interest” matches the XML tag interest, it can
be explained from statistical point of view, i.e. all interest
nodes contain keyword “interest” in their subtrees. [J

The importance of statistics in XML keyword search is

formalized as follows.
Intuition 1: The more XML nodes of a certain type 7' (and

their subtrees) contain a query keyword k in either their text
values or tag names, it is more intuitive that nodes of type T’

are more closely related to the query w.r.t. keyword k.
In this paper, we maintain and exploit two important basic

statistics terms, f, . and f.

Definition 3.8: (XML TF) f, : The number of occurrences
of a keyword k in a given data node a in XML data.

Definition 3.9: (XML DF) fl': The number of T-typed
nodes that contain keyword £ in their subtrees in XML data.

Here, f, 1 and f are defined in an analogous way to term
frequency fq  (in Formula 3) and document frequency fj, (in
Formula 2) used in the original TF*IDF similarity respectively;
except that we use f to distinguish statistics for different
node types, as the granularity on which to measure similarity
in XML is a subtree rather than a document. Therefore, f, i
and fkT can be directly used to measure the similarity between
a data node (with parent node of type 7) and a query based on
the intuitions of original TF*IDF. Besides, f,? is also useful
in resolving ambiguities, as Intuition 1 shows. We will discuss
how these two sets of statistics are used for relevance oriented
ranking for XML keyword search in presence of ambiguities.

4 INFERRING KEYWORD SEARCH INTENTION
In this section, we discuss how to interpret the search
intentions of keyword query according to the statistics in XML

data and the pattern of keyword co-occurrence in a query.
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The desired node type to search for is the first issue that a
search engine needs to address in order to retrieve the relevant
answers, as the search target in a keyword query may not be
specified explicitly like in structured query language. Given a
keyword query g, a node type T is considered as the desired
node to search for only if the following three guidelines hold:
Guideline 1: T is intuitively related to every query keyword
in ¢, i.e. for each keyword k, there should be some (if not
many) T-typed nodes containing k in their subtrees.
Guideline 2: XML nodes of type 7' should be informative
enough to contain enough relevant information.

Guideline 3: XML nodes of type 7" should not be overwhelm-
ing to contain too much irrelevant information.

Guideline 2 prefers an internal node type 7' at a higher
level to be the returned node, while Guideline 3 prefers that
the level of T-typed node should not be very near to the
root node. For instance let’s refer to Figure 1: according to
Guideline 2, leaf nodes of type interest, street etc. are usually
not good candidates for desired returned nodes, as they are
not informative. According to Guideline 3, nodes of type
customers and books are not good candidates as well, as
they are too overwhelming as a single keyword search result.

By incorporating the above guidelines, we define
Cyor(T,q), which is the confidence of a node type T
to be the desired search for node type w.r.t. a given keyword
query q as follows:

Cror(T,q) =log,(1+ [ ] i) » réert™ 6)

keq

where k represents a keyword in query ¢; f{ is the number of
T-typed nodes that contain k as either values or tag names in
their subtrees (as explained in Section 3.3 to reflect Intuition
1); r is a reduction factor with range (0,1] and normally chosen
to be 0.8, and depth(T") represents the depth of T'-typed nodes
in document.

In Formula 6, the first multiplier (i.e. log, (1 + [[;, i)
actually models Intuition 1 to address Guideline I. Mean-
while, it effectively addresses Guideline 3, since the candidate
overwhelming nodes (i.e. the nodes that are near the root)
will be assigned a small value of [J,. q f, resulting in
a small confidence value. The second multiplier rderth(T)
simply reduces the confidence of the node types that are deeply
nested in the XML database to address Guideline 2.

In addition, we use product rather than sum of fg (i.e.
[Tieq f) in the first multiplier to combine statistics of all
query keywords for each node type T'. The reason is, the search
intention of each query usually has a unique desired node type
to search for, so using product ensures that a node type needs
to be intuitively related to all query keywords in order to have a
high confidence as the desired type. Therefore, if a node type T’
cannot contain all keywords of the query, its confidence value
is set to 0. Furthermore, when the schema of XML data is
available, the entity can be inferred (by adopting XSeek [22])
and used to constrain the search for node candidates produced
by Formula 6, as users are usually interested in the real world

Inferring the node type to search for



entities. Similar to all the existing works [10], [29], [22], [12],
in this paper we assume each query keyword has at least one
occurrence in the XML document being queried.

Example 5: Given a query “customer interest art”, node
type customer usually has high confidence as the desired
node type to search for, because the values of three statistics

gustomer ., foustome’and fEUSI9MeT (je. the number of sub-
trees rooted at customer nodes containing “customer”, “inter-
est” and “art” in either nested text values or tags respectively)
are usually greater than 1. In contrast, node type customers

doesn’t have high confidence since fgustomers gustomers
customers

“customer” — J “interest” T

ot = 1. Similarly, node type interest doesn’t have high
confidence since fIeeSt . usually has a small value. E.g. in
Figure 1’s XML data, finterest =0, 0
Finally, with the confidence of each node type being the
desired type, the one with the highest confidence is chosen as
the desired search for node, when the highest confidence is
significantly greater than the second highest. However, when
several node types have comparable confidence values, either
users can be offered a choice to decide the desired one, or the
system will do a search for each convincing candidate node.
Regarding to the threshold for comparableness judgement, we
adopt the results from our empirical study: when the difference
percentage of the scores of these node types is within 10%,
they are viewed as “‘comparable”. Although not always fully
automatic, our inference approach still provides a guidance for
the system-user interaction for ambiguous keyword queries in
absence of syntax. For example, the search engine can provide
a guidance for users to browse and select their desired node
type(s) in case that the keyword queries are ambiguous, before
adopting the ranking strategy to rank the individual matches.

4.2

Similar to inferring the desired search for node, Intuition 1
is also useful to infer the node types to search via. However,
unlike the search for case which requires a node type to be
related to all keywords, it is enough for a node type to have
high confidence as the desired search via node if it is closely
related to some (not necessarily all) keywords, because a query
may intend to search via more than one node type. E.g. we
can search for customer(s) named ”Smith” and interested in
“fashion” with query “name smith interest fashion”. In this
case, the system should be able to infer with high confidence
that name and interest are the node types to search via, even
if keyword “interest” is probably not related to hame nodes.

Therefore, we define C;, (T, q), which is the confidence of
a node type 7' to be a desired type to search via as below:

Cuia(T,q) =log.(1+ > fi) (7)

where variables k, ¢ and 7" have the skaergle meaning as those
in Formula 6. Compared to Formula 6, we use sum of fkT
instead of product, as it is sufficient for a node type to have
high confidence as the search via node if it is related to some
of the keywords. In addition, if all nodes of a certain type T’
do not contain any keyword k in their subtrees, f{ is equal
to 0 for each k£ in q, resulting in a zero confidence value,
which is also consistent with the semantics of SLCA. Then,
the confidence of each possible node type to search via will

Inferring the node types to search via

be incorporated into XML TF*IDF similarity (which will be
discussed in Section 5.2) to provide answers of high quality.

4.3 Capturing keyword co-occurrence

In this section, we discuss the search via confidence for a
data node. Although statistics provide a macro way to compute
the confidence of a structural node type to search via, it alone
is not adequate to infer the likelihood of an individual data
node to search via for a given keyword in the query.

Example 6: Consider a query “customer name Rock interest
Art” searching for customers whose name includes “Rock” and
interest includes “Art”. Based on statistics, we can infer that
name-typed and interest-typed nodes have high confidence to
search via by Formula 7, as the frequency of keywords “name”
and “interest” are high in node types name and interest
respectively. However, statistics is not adequate to help the
system infer that the user wants “Rock” to be a value of name
and “Art” to be a value of interest, which is intuitive with
the help of keyword co-occurrence captured. Thus, if purely
based on statistics, it is difficult for a search engine to differ
customer C4 (with name “Art” and interest "Rock”) from C3
(with name “Rock” and interest "Art”) in Figure 1. O

Motivated from the above example, the pattern of keyword
co-occurrence in a query provides a micro way to measure
the likelihood of an individual data node to search via, as a
compliment of statistics. Therefore, for each query-matching
data node v in XML data, in order to capture the co-occurrence
of keyword k; matching the node types of an ancestor node
of v and keyword k£ matching a value in v (if they do exist
in the query) in both query and XML data respectively, the
following distances are defined.

The design of IQD is motivated by an observation: when
users want to specify both the predicate k; and its value k in a
keyword query, they always put k; and k close to each other,
regardless of the search habits of different users, i.e. no matter
whether k is specified before/after k; for a particular user.

Definition 4.1: (In-Query Distance (IQD)) The In-Query
Distance Disty(q, k¢, k) between keyword k and node type k;
in a query ¢ is defined as the absolute value of the position
distance between k; and k in g; otherwise, Dist,(q, ki, k)=0c.

Note that, the above definition assumes there is no repeated
ky and k in a query ¢, and the position distance of two
keywords ki and ks in a query q is the difference of ki’s
position and ks’s position in the query.

Definition 4.2: (Structural Distance (SD)) The Structural
Distance Dist4(q, v, k¢, k) between k; and k w.r.t. a data node
v is defined as the depth distance between v and the nearest
ki-typed ancestor node of v in XML data.

IQD and SD are designed to capture the closeness of such
node type k; and keyword k in the input user query and
underlying XML data respectively. With intuition thinking, a
data node v is favored when such k; and k associated with it
appear closely to each other in both the query and XML data,
as stated in Intuition 2 and captured in Definition 4.3.

Intuition 2: For a data node v, if the keyword k; matching
its associated node type and keyword k covered by v appear
closely to each other in both the user query and XML data, it
is more intuitive that v has a high confidence to be searched
via. w.r.t keywords k; and k.



Definition 4.3: (Value-Type Distance (VTD)) The Value-
Type Distance Dist(q, v, k;, k) between k; and k w.r.t. a data
node v is defined as

max(Disty(q, ki, k), Dists(q, v, ke, k).

In general, the smaller the value of Dist(q,v, k¢, k) is, it
is more likely that ¢ intends to search via the node v with a
value matching keyword k. Note that, any monotonic function
can be applied in Definition 4.3 to fulfill such intuition, while
max is one of them. Therefore, we define the confidence of
a data node v as the node to search via w.r.t. a keyword k
appearing in both query ¢ and v as follows.

Cvia(qvvv k) = 1 + Z
ki€gnancType(v)
Example 7: Consider the query ¢ in Example 6 again. Let
ns and i3 represent the data nodes under name (i.e. Art Smith)
and interest (i.e. rock music) of customer C3. Similarly, let 14
and 74 be the data nodes under name and interest of customer
C4. Now, the in-query distance between name and Art is 3, i.e.
Dist,(q,name, Art) = 3; Dists(q,n3,name, Art) = 1; as a
result Dist(q, ns,name, Art) = 3 and Cy;4(q, ns, Art) = 4/3.
Similarly, Cy;q(q, i3, Rock) = 1; Cyia(q, na, Rock) = 2; and
Chia(q, 4, Art) = 2. We find, the two predicates of customer
C4 have a larger confidence to be searched via than those of
customer C3. Intuitively, C4 should be more preferred than
C3 as the result of q. We will discuss how to incorporate these
values into our XML TF*IDF similarity in section 5.2.1. OJ

Dist(q,v, ks, k) ®)

5 RELEVANCE ORIENTED RANKING

In this section, we first summarize some unique features
of keyword search in XML, and address the limitations of
traditional TF*IDF similarity for XML. Then we propose a
novel XML TF*IDF similarity, which incorporates the confi-
dence formulae we have designed in Section 4, to resolve the
keyword ambiguity problem in relevance oriented ranking.

5.1 Principles of keyword search in XML

Compared with flat documents, keyword search in XML has
its own features. In order for an IR-style ranking approach to
smoothly apply to it, we present three principles that the search
engine should adopt.

Principle 1: When searching for XML nodes of desired type
D via a single-valued node type V, ideally, only the values
and structures nested in V-typed nodes can affect the relevance
of D-typed nodes as answers, whereas the existence of other
typed nodes nested in D-typed nodes should not. In other
words, the size of the subtree rooted at a D-typed node d
(except the subtree rooted at the search via node) shouldn’t
affect d’s relevance to the query.

Example 8: When searching for customer nodes via street
nodes using a keyword query “Art Street”, a customer node
(e.g. customer C'1 in Figure 1) with the matching keyword
“street” shouldn’t be ranked lower than another customer
node (e.g. customer C3 in Figure 1) without the matching
keyword “street”, regardless of the sizes, values and structures
of other nodes nested in C'1 and C3. Note this is different
from the original TF*IDF similarity that has strong intuition

to normalize the relevance score of each document with respect
to its size (i.e. to normalize against long documents). []
Principle 2: When searching for the desired node type D
via a multi-valued node type V', if there are many V’'-typed
nodes nested in one node d of type D, then the existence of one
query-relevant node of type V' is usually enough to indicate,
d is more relevant to the query than another node d’ also
of type D but with no nested V'-typed nodes containing the
keyword(s). In other words, the relevance of a D-typed node
which contains a query relevant V'-typed node should not be
affected (or normalized) too much by other query-irrelevant
V’-typed nodes.

Example 9: Consider when searching for customers inter-
ested in art using the query “art’, a customer with “art’-
interest along with many other interests (e.g. C'4 in Figure
1) should not be regarded as less relevant to the query than
another customer who doesn’t have “art”-interest but has “art
street” in address (e.g. C'1 in Figure 1). O

Compared to the existing works which blindly exploit the
compactness of the query results in result ranking [10], [8],
[19], a significant difference of the above two principles is:
the internal structure of a query result should be exploited as
a critical factor to reflect the real relevance of the query results.

Principle 3: The proximity of keywords in a query is usually
important to indicate the search intention.

The first two principles look trivial if we know exactly the
search via node. However, when the system doesn’t have exact
information of which node type to search via (as user issues
pure keyword query in most cases), they are important in
designing the formula of XML TF*IDF similarity; we will
utilize them in designing Formula for WZ in section 5.2.2.

5.2 XML TF*IDF similarity

is value n
S W, (a) a is value node
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T node

(recursive case)
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We propose a recursive Formula 9, which captures XML’s
hierarchical structure, to compute XML TF*IDF similarity
between an XML node of the desired type to search for and
a keyword query. It first (base case) computes the similarities
between the leaf nodes [ of XML data and the query, then (re-
cursive case) it recursively computes the similarities between
internal nodes n and the query, based on the similarity value
of each child c of n and the confidence of c as the node type
to search via, until we get the similarities of search for nodes.
In Formula 9, ¢ represents a keyword query; a represents an
XML node; ps(q, a) represents the similarity value between ¢
and a. We first discuss the intuitions behind Formula 9 briefly.
(1) In the base case, we compute the similarity values between
XML leaf nodes and a given query in a similar way to the
original TF*IDF, since leaf nodes contain only keywords with
no further structure.
(2) In the recursive case: on one hand, if an internal node
a has more query relevant child nodes while another internal



node a’ has less, then it is likely that a is more relevant to the
query than a’. This intuition is reflected as the numerator in
Formula 9(b). On the other hand, we should take into account
the fan-out (size) of the internal node as normalization factor,
since the node with large fan-out has a higher chance to
contain more query relevant children. This is reflected as the
denominator of Formula 9(b).

Next, we will illustrate how each factor in Formula 9
contributes to the XML structural similarity in Section 5.2.1
(for base case) and 5.2.2 (for recursive case).

5.2.1 Base case of XML TF*IDF

Since XML leaf nodes contain keywords with no further
structure, we can adopt the intuitions of the original TF*IDF
to compute the similarity between a leaf node and a keyword
query by using statistics terms f and f, 5 which have been
explained in Section 3.3.

However, unlike Rule 1 in the original TF*IDF which as-
signs the same weight to a query keyword w.r.t. all documents
(i.e. Wy i in Formula 2), we model and distinguish the weights
of a keyword w.r.t. different XML leaf node types (i.e. WqT%
in Formula 10), as shown in Example 10.

Example 10: Keyword street may appear quite frequently
in address nodes of Figure 1 while infrequently in other
nodes. Thus it is necessary to distinguish the (low) weight
of street in address from its (high) weight in other nodes.
Similarly, we distinguish the weights of a query w.r.t. different
XML node types (i.e. WqT =), rather than a fixed weight for a
given query for all flat documents. [

Now let’s take a detailed look at Formula 9. In the base case
for XML leaf nodes, each k represents a keyword appearing
in both query ¢ and data node a; T, is the type of a’s parent
node; ij:% represents the weight of keyword k in ¢ w.r.t.
node type T,. W, i represents the weight of k in data node
a; WqT « represents the weight of ¢ w.r.t. node type T,; and
W, represents the weight of a. Following the conventions of
the original TF*IDF, we propose the formulas for wta Wa, ks

q;k’
WqT ¢ and W, in Formula 10, 11, 12 and 13 respectively:

Wi = Cuialg,a, k) ¥log, (1 + N, /(1+ fI*))  (10)
Wa,k =1+ loge (fmk) (11D
wie= Y (w2 (12)
keq
We= [> W2, (13)
ke€a

In Formula 10, Nz, is the total number of nodes of type
T, while fkTa is the number of T,-typed nodes containing
keyword k; Cy0(q,a, k) is the confidence of node a to be a
search via node w.r.t. keyword k (explained in Section 4.3).
In Formula 11, f, j is the number of occurrences of k in data
node a. Similar to Rule 1 and Rule 2 in original TF*IDF,
W;‘T; is monotonically decreasing w.r.t. fkT“, while W, ;. is
monotonically increasing w.r.t. f, . W, is normally increasing
w.r.t. the size of a, so put it as part of denominator to play
a role of normalization factor to balance between leaf nodes
containing many keywords and those with a few keywords.

5.2.2 Recursive case of XML TF*IDF

The recursive case of Formula 9 recursively computes the
similarity value between an internal node a and a keyword
query q in a bottom-up way based on two intuitions below.

Intuition 3: An internal node a is relevant to g, if a has a
child ¢ such that the type of ¢ has a high confidence to be a
search via node w.r.t. ¢ (i.e. large Cy;q (T, q)), and c is highly
relevant to ¢ (i.e. large ps(q, ¢)).

Intuition 4: An internal node a is more relevant to ¢ if a
has more query-relevant children when all others being equal.

In the recursive case of Formula 9, c represents one child
node of a; T, is the node type of ¢; Cyio(Te,q) is the
confidence of 7, to be a search via node type presented in
Formula 7; ps(q, c) represents the similarity between node ¢
and query ¢ which is computed recursively; WZ is the overall
weight of a for the given query q.

Next, we explain the similarity design of an internal node
a in Formula 9: we first get a weighted sum of the similarity
values of all its children, where the weight of each child c is
the confidence of c to be a search via node w.r.t. query q. This
weighted sum is exactly the numerator of formula 9, which
also follows Intuition 3 and 4 mentioned above. Besides, since
Intuition 4 usually favors internal nodes with more children,
we need to normalize the relevance of a to g. That naturally
leads to the use of WJ (Formula 14) as the denominator.

5.2.3 Normalization factor design

Formula 14 presents the design of W, which is used as
a normalization factor in the recursive case of XML TF*IDF
similarity formula. W is designed based on Principle I and
Principle 2 pointed out in section 5.1.

(a) if a is
> (Cuia(Te,q) * B4+ DW(c))? grouping
c€chd(a) node
" (b)
E Chia <T7 Q)2 otherwise
TechdType(T,)
(14)

Grouping Node Case
Formula 14(a) presents the case that internal node «a is a group-
ing node; then for each child ¢ of a (i.e. ¢ € chd(a)), B is
considered as a Boolean flag: B = 1if ps(q,c¢) > 0and B =0
otherwise; DW (c) is a small value as the default weight
of ¢ which we choose DW (c) = 1/log.(e — 1 + |chd(a)|) if
B =0 and DW(c) = 0 if B = 1, where |chd(a)| is the
number of children of a, so that W for grouping node a grows
with the number of query-irrelevant child nodes, but grows
very slowly to reflect Principle 2. Note DW(c) is usually
insignificant as compared to C;q (e, q).

Now let’s explain the reason that we design Formula 14(a).

The intuition for the formula of grouping node a comes
from Principle 2, so we don’t count Ci;a (T, q) in the nor-
malization unless ¢ contains some query-relevant keywords
within its subtree. In this way, the similarity of a to ¢ will not
be significantly normalized (or affected) even if a has many
query-irrelevant child nodes of the same type. At the same
time, with the default weight DWW (c), we still provide a way



to distinguish and favor a grouping node with small number
of children from another grouping node with many children,
in case that the two contain the same set of query-relevant
child nodes. In other words, the result specificity is taken into
account in this case.

Non-Grouping Node Case

When internal node a is a non-grouping node, we compute
W4 based on the type of a rather than each individual node.
In Formula 14(b), chdType(T,) represents the node types of
the children of a, and it computes the same W for all a-typed
nodes even if each individual a-typed node may have different
sets of child nodes (e.g. some customer nodes have nested
address while some do not have).

This design has two advantages. First, it models Principle
I to achieve a normalization that the size of the subtree of
individual node a does not affect the similarity of a to a query.

Example 11: Given a query q “customer Art Street”,
since address has high confidence to be searched via (i.e.
Cyia(address, q)), C1 (with address in “Art Street”) will be
ranked before C'2 (with interest in “street art”’) according to the
normalization in Formula 14(b). However, if we compute the
normalization factor based on the size of each individual node,
then the high confidence for address node doesn’t contribute
to the normalization factor of C'2 (who even doesn’t have
address and street nodes etc.). As a result, C2 has a good
chance to be ranked before C'1 due to its small size which
results in small normalization factor. [

Second, Formula 14(b)’s design has advantage in term of
computation cost. With W for non-grouping node computed
based on node types instead of data nodes, we only need to
compute W for all a-typed nodes once for each query, instead
of repeatedly computing W for each a-typed node in the data.

Note that, the normalization factor in Formula 14(b) poten-
tially favors nodes with more nested node types. However, the
existence of one or a few nodes containing query keywords but
with low-confidence to be searched via is usually insufficient
to outweigh a query-relevant search via node with high confi-
dence. In addition, we do not choose the same normalization
factor for all nodes of the same type, because we have to
prevent the similarity of internal nodes (up to the search for
node) from increasing monotonically from the base case of the
recursive XML TF*IDF formula (i.e. Equation 9(a)), in order
to avoid discriminating against nodes that are nested near the
nodes to be searched for.

Note in the base case, a keyword k is less important in 7-
typed nodes if more T-typed nodes contain k. However, now
we consider 7T-typed nodes are more important for keyword &
(i.e. larger Cy;o (T, k)). These two, which seem contradictory,
are in fact the key to accurate relevance based ranking.

Example 12: Consider when searching for customers with
query “customer art road”, statistics will normally give more
weights to address than other node types because of the
high frequency of keyword “road” in address. But if no
customer node has address in “art road” but some have address
in “art street”, then these customer nodes will be ranked
before customers with address containing “road” without “art”,
because the keyword “road” has a lower weight than art” in
address nodes due to its much higher frequency. [J

5.2.4 Advantages of XML TF*IDF

Compatibility - The XML TF*IDF similarity can work on
both semi-structured and unstructured data, because unstruc-
tured data is a simpler kind of semi-structured data with no
structure, and XML TF*IDF ranking Formula 9(a) for data
node can be easily simplified to the original TF*IDF Formula
1 by ignoring the node type.

Robustness - Unlike existing methods which require a query
result to cover all keywords [22], [29], [12], [10], we adopt a
heuristic-based approach that does not enforce the occurrence
of all keywords in a query result; instead, we rank the results
according to their relevance to the query. In this way, more
relevant results can be found, because a user query may often
be an imperfect description of his real information need [15].
Users never expect an empty result to be returned even though
no result can cover all keywords; fortunately, our approach is
still able to return the most relevant results to users.

6 POPULARITY SCORE BY IDREF

To date, our XML TF*IDF similarity only reflects the
relevance of a search for node instance Ny, in XML data.
However, when two or more instances of the search for node
have comparable relevance scores, is there any way to distin-
guish them? The answer is IDRef, which reflects the popularity
of a query result to a certain extent. From user’s perspective,
when there are many results with comparable relevance scores,
it is desired the most popular result is returned first, thus
saving much user effort in navigating all those results until
finding their desired ones. The relevance and popularity score
of a query result should not be trivially combined, as they are
regarded to be orthogonal essentially. E.g. a highly relevant
query result may have a very low popularity score, probably
resulting in a low overall ranking score which is undesired.

Regarding to the popularity of a search for node instance
Br of type T' (i.e. a subtree rooted at the desired search for
node of type T'), the following guidelines are proposed.
Guideline 4 The more relevant the subtree rooted at the node
that has a reference-connection to Ny (or its descendants) is,
the more popular N should be.

Guideline 5 The more the number of reference-connections
to Nr is, the more popular N7 should be.

Guideline 6 The closer the reference-connection to Ny is,
the more popular Nt should be.

Intuitively speaking, guideline 4 favors the query result
which is also referred by another highly relevant subtree. It
also explains why Definition 3.7 restricts only the (direct or
indirect) incoming references of v as its reference-connection,
while its outgoing references are omitted. guideline 5 favors
the query result which is referred by as many referring nodes
as possible; guideline 6 favors a direct reference-connection.

Example 13: Consider a query ) = “XML keyword search”
issued on StoreDB in Figure 1. Suppose n books Bi, ..., B,
have comparable relevance scores. A book B; is said to be
popular if B; is cited by as many other books as possible
(guideline 5), and those books citing B; are also highly
relevant to () (guideline 4); lastly, direct citation is expected
(guideline 6), as it reflects a closer relationship between the
book cited and citing. [J



By incorporating the above three guidelines, the popularity
p(g,a) of a search for node instance a (which is of node type
T) w.rt a keyword query ¢ is defined in Formula 15.

Z pS((LTu)

u€idref(a) du * h(a’ U)
where idref(a) returns a set of nodes u , each of which has
a reference-connection to v, where v is either a or its de-
scendant; d,, denotes the distance of this reference-connection
by Definition 3.7; h(a,v) denotes the height distance between
node a and v. The numerator part p,(q, Ty, ) collects the XML
TF*IDF similarity of (the subtree rooted at) node 7, w.r.t
query ¢, to address guideline 4. Here, T, is the parent node
of u. As a decay factor, the denominator d, reduces the
contribution to the popularity of node a from node 7, via an
indirect IDRef relationship, h(a,v) deduces the contribution
from the descendant of a, both of which effectively address
guideline 6. The monotonic feature of the summation function
Zue? dref(a) is used to ac}dress guideline 5, while logarithm
function is used to normalize the effect of raw relevance score
from each such participant u.

p(q,a) = log, (15)

7 ALGORITHMS

7.1 Data processing and index construction

We parse the input XML document, during which we collect
the following information for each node n visited: (1) assign
a Dewey label DeweylI D [28] to n; (2) store the prefix path
prefixPath of n as its node type in a global hash table, so
that any two nodes sharing the same prefizPath have the
same node type; (3) in case n is a leaf node, we create a data
node a (mentioned in section 3.2) as its child and summarize
two basic statistics data f, ; (in Definition 3.8) and W, (in
Formula 13) at the same time. Besides, we also build two
indices in order to speedup the keyword query processing.

The first index built is called keyword inverted list, which
retrieves a list of data nodes in document order whose values
contain the input keyword; moreover, an index (e.g. B+-Tree)
is built on top of each inverted list for probing purpose. In
particular, we have designed and evaluated three candidates for
the inverted list: (1) Dup, the most basic index which stores
only the dewey id and XML TF f, ;; (2) DupType, which
stores an extra node type (i.e. its prefix path) compared to
Dup; (3) DupTypeNorm, which stores an extra normalization
factor W, (in Formula 13) associated with this data node
compared to DupType. DupTypeNorm provides the most
efficient computation of XML TF*IDF, as it costs the least
index lookup time; in contrast Dup and DupType need extra
index lookup to gather the value of W, ;. (see formula 11) to
compute W, online.

Given a keyword k, the inverted list returns a set of nodes a
in document order, each of which contains the input keyword
and is in form of a tuple <DeweylD, prefizPath, fok,
W,>. BEach term here has been explained as above. In order
to facilitate the explanations of the algorithm, we name such
tuple as a “Node”. It supports the following operations:

o getDeweylID(a,k) returns the Dewey id of data node a.

o getPrefix(a,k) returns the prefix path of a in XML data.

o getFrequency(a,k) returns XML TF f, ; of data node a.

The second index built is called frequency table, which
stores the frequency fkT for each combination of keyword
k and node type T in XML document. Its worst case the
space complexity is O(K*N), where K is the number of
distinct keywords and N is the number of node types in
XML database. Since the number of node types in a well
designed XML database is usually small (e.g. 100+ in DBLP
370MB and 500+ in XMark 115MB), the frequency table
size is comparable to inverted list. It is indexed by keywords
using Berkeley DB B+-Tree [1], so the index lookup cost is
O(log(K)). It supports getFrequency(7',k) which returns the
value of fkT . The values returned by these operations are
important to compute the result of formulae in Section 5.

Lastly, a connection table C'T is built to record the direct
reference-connection between nodes in XML data in data pars-
ing. Each entry in CT is in form of <Dewey(v),cList(v)>,
where cList(v) stores a list of dewey labels of nodes n in
document order, where RC'(n,v) holds with distance d=1 by
Definition 3.7. C'T supports the operation getCList(v) which
is to retrieve cList(v). A B+-Tree index (with Dewey(v) as
its key) is built on top of CT for fast retrieval of cList(v).

7.2 Keyword search & ranking

Algorithm 1 presents a flowchart of keyword search and
result ranking. The input parameter ()[m] is a keyword query
containing m keywords. Based on the inverted lists built after
pre-processing the XML document, we extract the correspond-
ing inverted lists IL[1], ..., IL[m] for each keyword in the
query. Each inverted list /L contains a set of tuples in form of
<Deweyl D, prefizPath, f&, W,>. F is the frequency table
mentioned in section 7.1. In particular, Algorithm 1 executes
in three steps.

First, it identifies the search intention of the user, i.e. to
identify the most desired search for node type (line 1-6).
In particular, it first collects all distinct node types in XML
document (line 2). Then for each node type, we compute its
confidence to be a search for node through Formula 6, and
choose the one with the maximum confidence as the desired
search for node type T, (line 3-6).

Second, for each search for node candidate Ny, it com-
putes the XML TF*IDF similarity between n and the given
keyword query (line 7-18). We maintain a rankedList to
contain the similarity of each search for node candidate (line
7). Ny, is initially set to the first node of type Ty, in
document order (line 8). The computation of XML TF*IDF
similarity between an XML node and the given query is
computed recursively in a bottom-up way (line 9-18): for each
Nitor, we first extract node a which occurs first in document
order (line 10), then compute the similarity of all leaf nodes
a by calling Function getSimilarity(), then go one level up
to compute the similarity of the lowest internal node (line 15-
18), until it reaches up to Ny, which is actually the root of
all nodes computed before. Then it computes the similarity
between current Ny, and the query (line 12), inserts a pair
(Nfor, p) into rankedList (line 13), and moves the cursor to
next Ny, by calling function getNext() and calculates the
similarity of next Ny, in the same way (line 14). Function
isAncestor(Ny, No) returns true if Ny is an ancestor of Ns.



Third, it collects the results in rankedList, where their
relevance difference is less than a specified threshold (line
19-20), and computes their popularities by calling Function 3,
and adjust their ranking positions in rankedList (line 21-23).

Algorithm 1: KWSearch(Q[m], IL[m|, F[m])

1 Let max = 0; Tfo, = null

2 List Ly, = getAllNodeTypes()

3 foreach T, €Ly, do

4 Ctor(Tn, Q) = getSearchForConfidence(T.,Q)
5 if (Cyop(Tn) > max) then
6
7
8

max = Cfo'r'(Tn); Tfo7' =T,
LinkedList rankedList
Nyor = getNext(T'yor)

9 while (‘end(IL[1]) || ... || (fend(IL[m]))) do

10 Node a = getMin(IL[1],IL[2],...,IL[m])

11 if (lisAncestor(N oy, a)) then

12 pS(QﬁNfor) = getSimﬂaIity(NforaQ)
13 rankedList.insert(N 7o, ps(Q,Nyor))
14 Nyor = getNext(T'y o)

15 if (isAncestor(Ny o, a)) then

16 ps(Q,a) = getSimilarity(a,Q)

17 else

18 pS(Qa a‘) =0

19 foreach rwo neighboring ordered results r1 and ro in rankedList do
20 if ((pS (rva)_pS (TQ’ Q))/ps (7"2, Q) <o) then

21 foreach such r; do
22 p(Q, r;) = getPopularity(r;, Q, CT, L)
23 re-rank those r; in rankedList according to their p(Q, 7;)

24 return rankedList;

Function getSimilarity (Node a, g[n])

1 if (isLeafNode(a)) then

2 foreach k € ¢ () a do

3 Cria(q, a, k) = getKWCo-occur(q,a,k);
4 W;‘,; = getQueryWeight(q.k,a);

5 Wq’% = C'uia(qv a, k) * W;?%;
6

7

8

Wa,k = 1+10g€(fa,k);
sum += ij:‘,; * Wa ks
ps(q,a) = sum/(WqT“ *getWeight(a));
9 if (isInternalNode(a)) then
10 W = getQWeight(a,q);

11 foreach c€child(a) do

12 Te = getNodeType(c);

13 Cyia(Te,q) = getSearchViaConfidence();

14 sum += getSimilarity(c, q) * Cyia(Te.q);

15 ps(gq,a) = sum/W;
16 return ps(q,a);

Function getSimilarity() presents the procedure of com-
puting XML TF*IDF similarity between a document node a
and a given query g of size n. There are two cases to consider.
Case 1: a is a leaf node (line 1-8). For each keyword k
in both a and ¢, we first capture whether k£ co-occurs with
keyword k; matching some node type. Line 3-8 present the
calculation details of p; (g, a) in Formula 9(a). The statistics in
line 3,5,6 are illustrated in Formula 8, 10 and 11 respectively.
Case 2: a is an internal node (line 9-15). We compute a’s
similarity ps(g, a) w.r.t. query ¢ by exactly following Formula
9(b). ps(q,a) is computed by a sum of the product of the
similarity of each of its child c and the confidence value of c as
a search via node (line 11-14). Finally, p; (g, a) is normalized
by a factor W (line 15), which is the weight of internal node
a w.r.t. q. Lastly, we return the similarity value (line 16).

Function get Popularity() computes the popularity of node
a w.r.t query ¢ in two steps. First, it calls Function get RC List
to retrieve a list of nodes u that a or its descendants have
reference-connection RC' with (line 1-3), which are kept in

nodeList. get RC' List finds those u by a depth-limited search
on CT in a recursive way. Here, L is an upper limit for the
distance of RC, and all variables in the above two functions
have the same meaning as described in Formula 15. Second,
it computes a’s popularity by Formula 15 (line 4-6). The
similarity of node n, can be computed by getSimilarity()
with slight adaptation. The detail is omitted due to space limit.

Function getPopularity (Node a, q, CT, L)

1 Let d=1; Let p=0; Let nodeList be an empty list of node labels;
2 foreach veself-or-descendant(a) do

3 getRCList(v, C'T, d, L, nodeList);

4 foreach ucnodeList do

5 p += getSimilarity(n.,q)/(dv*h(a, u));

6 return logep;

Function getRCList (Node v, CT, d, L, nodeList)
1 if (d < L) then

2 Let tempList = <CT.getCList(), d>;

3 nodeList.merge(tempList); d++;

4 foreach Node ne€tempList do
5

6

getRCList(n, C'T, d, L, nodeList);
return;

In order to locate the descendants of a efficiently (see line
2 of getPopularity), we build a trie data structure to store
the keys of connection table C'T, i.e. the dewey labels of the
nodes that have direct incoming IDRef edges; thus it costs
only O(m) time to find the descendant of a node a, where m
is the depth of XML data in worst case.

The above search methods can be gracefully adapted to
handle unstructured data, which provide an easy way to
incorporate our ranking techniques in a standard text indexing
system to handle both unstructured and semi-structured data.

TABLE 1

Data and Index Sizes
Data Data Size Dup DupType | DupTypeNorm CT Index Time
DBLP 370MB 1.96GB 2.05GB 2.23GB 2MB 2.3 hours
XMark 115MB 1.26GB 1.3GB 1.32GB I3MB | 58 minutes
WSU 15.6MB 13.1IMB 13.4MB 14.IMB 0 91 seconds
eBay 350KB 718KB 732KB 803KB 0 10 seconds

8 EXPERIMENTS

We have performed comprehensive experiments to compare
the effectiveness, efficiency and scalability of XReal with
SLCA and XSeek, all implemented in Java and run on a
3.6GHz Pentium 4 machine with IGB RAM running Windows
XP. We tested both synthetic and real datasets. XMark [3] is
used as synthetic dataset; WSU, eBay from [2] and DBLP are
used as real datasets. The size of the data, the three indices
and the the connection table CT" (proposed in section 7.1),
and the total indexing time are reported in Table 1. Berkeley
DB Java Edition [1] is used to store the keyword inverted lists,
frequency table and connection table CT.

The effectiveness test contains two parts: (1) the quality of
inferring the desired search for node; (2) the quality of our
ranking approach.

8.1 Search effectiveness
8.1.1 Infer the search for node

To test XReal’s accuracy in inferring the desired search for
node, we make a survey of 20 keyword queries, most of which
do not contain an explicit search for node. To get a fairly
objective view of user search intentions in real world, we post




this survey online and ask for 46 people to write down their
desired search for and search via nodes. We summarize their
answers and choose the queries that more than 80 percentage
of users agree on a same search intention. The final queries
are shown in Figure 2, and some queries contain ambiguities:
e.g. @Dy and QD3 have both Ambiguity 1 and Ambiguity
2; QD2, QDg and QW7 have Ambiguity 2. The 4th column
contains the search for node inferred by XReal while the 5th
column contains the majority node types returned by SLCA
and XSeek, as the semantics of SLCA cannot guarantee all
results are of the same node type.

‘ Query ‘ Intention ‘ XReal ‘ SLCA [ XSeek
DBLP (370MB)
QD; | Java, book book book book; title / book;

article
QD, | author, Chen, Lei | inproceedings | inproceedings | author
QD; | Jim, Gray, article | article article article
QD; | xml, twig inproceedings | inproceedings | title / inproceedings
QDs | Ling, tok, wang, inproceedings | inproceedings | inproceedings
twig

QD¢ | vidb, 2000 inproceedings | inproceedings | inproceedings
WSU (16.5MB)
Qw; | 230 place course; place | room; crs / course
QWw, | CAC, 101 course course course
QWS; | ECON course course prefix / course
QW, | Biology course course title / course
QW;s | place, TODD course course place / course
QW; | days, TU, TH course course days / course
eBay (0.36MB)
QE; | 2,days auction_info listing time_left / listing
QE, | cpu, 933 listing listing cpu / listing
QE; | Hard, drive, CA listing listing description / listing

Fig. 2. Test on inferring the search for node

We find XReal is able to infer a desired search for node
in most queries, especially when the search for node is not
given explicitly in the query (e.g. @D2, QD4, QWs, QF1),
or its choice is not unique (e.g. @D1, QDs3), or both cases
such as QW;. XSeek infers the return nodes of individual
keyword matches case by case, rather than addressing the
major search intention(s), whereas XReal does so before it
goes to find individual matches. In addition, if more than one
candidate have comparable confidence to be a search for node,
XReal returns all possible candidates (for user to decide), or
returns a ranked result list for each such candidate in parallel
if user interaction is not preferred. E.g. in QW7, both place
and course can be the return node, as the frequency of “230”
in subtrees of course and place are comparable.

8.1.2 Precision, Recall & F-measure

To measure the search quality, we evaluate all queries
in Figure 2, and summarize two metrics borrowed from IR
field: precision and recall. Precision measures the percentage
of the output subtrees that are desired; recall measures the
percentage of the desired subtrees that are output. We obtain
the correct answers by running the schema-aware XQuery with
an additional manual verification. As most queries on DBLP
have more than 100 results, we compute XReal’s top-100
precision and top-100 recall besides the overall ones; since
SLCA and XSeek do not provide any ranking function, we
only compute their overall precision and recall. Besides, as

there are less than 100 results for each query issued on WSU
and eBay, we do not show the top-100 precision and recall in
Figure 3(b)-3(c) and Figure 4(b)-4(c).

To evaluate XReal’s performance on large real datasets, we
include four more queries for DBLP: () D7 “Philip Bernstein”;
QDsg “WISE”; QDg “ER 2005”; QD19 “LATIN 2006”. Each
of these queries has Ambiguity 2 problem, e.g. "WISE” can
be the booktitle, title of inproceedings, or a value of author.
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From Figure 3 and 4, we have four main observations.

(1) XReal achieves higher precision than SLCA and XSeek
for the queries that contain ambiguities (e.g. QD1-Q Dy,
QDgs-QD1g, QW7). E.g. in QD3 which intends to find the
articles written by author “Jim Gray”, since “article” can be
either a tag name or a value of title node, and “Jim” and
“Gray” can appear in one author or two different authors,
SLCA and XSeek generate some false positive results and
lead to low accuracy, while XReal addresses these ambiguities
well. As another example in (QDg which intends to find the
inproceedings of ER conference in year 2005, since “ER”
appears in both booktitle and title, and ‘2005 appears in both
title and year, XSeek returns not only the intended results, but
also other inproceedings whose titles contain both keywords;
but XReal correctly interprets the search intention.

(2) SLCA suffers a zero precision and recall from the pure
keyword value query, e.g. @Dy, QD7, QDg, QW1, QFE;-
QFEs3, as the SLCA results contain nothing relevant except the
SLCA node. E.g. for QDg SLCA returns the booktitle or title
nodes containing “WISE”, while user wants the inproceedings
of “WISE” conference. In contrast, XReal correctly captures
the search intention. XSeek suffers a zero precision in QDo
and D7, mainly because it mistakenly decides “author” as
an entity, while the query intends to find the publications.

(3) XReal Performs as well as XSeek (in both recall and
precision) when queries have no ambiguity in XML data (e.g.
QDs5, QW4-QWs, QE1-QFEs3). XReal has a low precision on
@D, as there are more than one person called Lei Chen in
DBLP, while the users are only interested in one of them.



(4) For queries that have more than 100 results on DBLP
such as QDs, QDg-Q Dy, XReal Top-100 has a higher preci-
sion (and lower recall) than overall XReal, which indirectly
proves our ranking strategy works well on large datasets.

TABLE 2
F-Measure Comparison
F-measure | SLCA XSeek | XReal | XReal top-100
DBLP 0.272 | 0.3461 | 0.4748 0.4799
WSU 0.0083 | 0.4162 | 0.4967 0.4967
EBAY 0 0.4002 | 0.4002 0.4002

Furthermore, we adopt F-measure used in IR as the
weighted harmonic mean of precision and recall. We compute
the average precision and recall of all queries in Figure 2
for each dataset (plus QD7-QD1p), adopting formula F' =
precision x recall /(precision + recall) to get F-measure in
Table 2. We find XReal beats SLCA and XSeek on all datasets,

and achieves almost a perfect value of F which is 0.5 on WSU.
TABLE 3
Ranking Performance of XReal

Dataset | Top-1 Number/Total Number | R-Rank | MAP
DBLP 27/30 0.946 0.925
WSU 8/10 0.85 0.803
eBay 9/10 0.9 0.867
XMark 7/10 0.791 0.713

8.2 Ranking effectiveness

To evaluate the effectiveness of XML TF*IDF alone, we use
three measures widely adopted in IR field. (1) Number of top-
1 answers that are relevant. (2) Reciprocal rank (R-rank).
For a given query, the reciprocal rank is 1 divided by the rank
at which the first correct answer is returned, or O if no correct
answer is returned. (3) Mean Average Precision (MAP). A
precision is computed after each relevant answer is retrieved,
and MAP is the average value of such precisions. The first two
measure how good the system returns one relevant answer,
while the third one measures the overall effectiveness for top-
k answers returned, k=40 for DBLP (as DBLP data has very
large size) and k=20 for others (if they do exist).

We evaluate a set of 30 randomly generated queries on
DBLP, and 10 queries on WSU, eBay and XMark, with an
average of 3 keywords. The average values of these metrics
are recorded in Table 3. We find XReal has an average R-rank
greater than 0.8 and even over 0.9 on DBLP. Besides, XReal
returns the relevant result in its top-1 answer in most queries,
which shows high effectiveness of our ranking strategy.

Effects of Popularity score. Here, we test the effects
of popularity score P in distinguishing the order of the
results that have comparable relevance scores. According to
our empirical study, a threshold 0=2% is a good choice, as
usually there are more than 10 results whose ratio of relevance
score difference is within 2%. The upper limit for the reference
connection distance d,, in Formula 15 is set to 2.

As P does not affect the overall precision of Top-K results,
R-Rank and MAP which adopt a binary judgement (i.e.
relevant or irrelevant) cannot be used to test the effects of
P. Therefore, we adopt a comprehensive evaluation method
Cumulated Gain-based evaluation (CG) [14], which is aware
of the fact that the results are not of equal relevance to
users, and allows user to specify the degree of relevance
of results at a four-point scale: (1)irrelevant, (2)marginally

Time (s)

relevant, (3)fairly relevant, (4)highly relevant. In this way,
users can specify the degree of relevance in a more precise
way. In particular, given a ranked result list retrieved by search
engine, [14] turns the list to a gained value vector G, where
GIi] denotes the relevance score of the ith result given by a
user; then a cumulated gain vector is defined recursively as
below: CGJi] = CGJi-1] + GJi] for i>1, and CG[1] = G[1].
As a result, CG[K] in fact reflects the accumulated relevance
of the top-k results retrieved. Note that in this experiment,
we use moderate relevance scores (i.e. 0-1-2-3) for the above
four-point scale, as our users are assumed to be patient to dig
down the low-ranked results.

DBLP and XMark are chosen as the dataset (DBLP stores
citations in the cite sub-elements of each paper), and the
queries are the same as the above experiment, top-30 and top-
20 results are extracted for DBLP and XMark respectively.
Seven people are asked for result relevance judgement. Table
4 shows the average CG values by these 7 users for Top-
K results generated by our ranking method before and after
applying the popularity scoring function, where K=5,10,15,20.

TABLE 4
Average CG for Top-20 query results
DataSet | Variants | CG[5] | CG[10] | CG[15] | CG[20]
DBLP | Before | 1347 23.56 33.32 41.05
After 13.68 2374 33.51 41.16
XMark | Before | 12.75 23.40 31.58 38.54
After 13.02 23.35 31.60 38.54

As evident from CG[5]’s value in Table 4, after taking the
result popularity into account, the overall degrees of relevance
of Top-5 results improve than before, for both XMark and
DBLP. Similar observations for Top-10, 15 and 20 results.
Moreover, by comparing the difference between CG[10] and
CG[5] for DBLP, we find the results among top 10-15 ranks,
which are even more relevant to user’s search intention, is
ranked within the top-10 results via the adjustment based on
popularity score. Similar effects are reflected on XMark.
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Fig. 5. Response time on individual queries
8.3 Efficiency

We compare the query response time of XReal adopting
three indices for keyword inverted list mentioned in section
7.1, i.e. Dup, DupType and DupTypeNorm, measured by the
timestamp difference between a query is issued and result
is returned. Throughout section 8, XReal refers to the one
adopting DupTypeNorm. Figure 5 shows the time on hot cache
for queries listed in Figure 2. DupTypeNorm outperforms the
other two on all three real datasets, about 2 and 4 times faster
than DupType and Dup respectively. Because DupTypeNorm
stores the dewey id, node type and normalization factor (for
data nodes) together, thus it needs less number of index
lookups to fulfill the similarity computation in Formula 9. Such
advantage is significant when the number of keywords is large
or query result size is large, e.g. QD5 and @ Dg in Figure 5(a).



8.4 Scalability

Among the existing keyword search methods [29], [12], [8],
SLCA is recognized as the most efficient one so far, so we
compare XReal with SLCA on DBLP and XMark. We also test
the one that incorporates results’ popularity computation into
DupTypeNorm, denoted as DTN+Pop. For each dataset, we
test a set of 50 randomly generated queries, each guarantees
to have at least one SLCA result and contains |K| number
of keywords, where |K| = 2 to 8 for DBLP and |K| = 2 to
5 for XMark. The response time is the average time of the
corresponding 50 queries in four executions on hot cache, as
shown in Figure 6.
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Fig. 6. Response time on different number of keywords |K|
From Figure 6(a) and 6(b), we find XReal is nearly 20%
slower than SLCA on both datasets which is acceptable, be-
cause XReal does extra search intention identification, precise
result retrieval and ranking; and XReal finds extra results;
so this overhead is worthwhile. We also find, the response
time of each proposed index increases as |K| increases.
In particular, the one with DupTypeNorm index costs less
time than DupType, in turn less than Dup. XReal adopting
DupTypeNorm index scales as well as SLCA, especially when
| K| varies from 5 to 8 for DBLP (Figure 6(b)). DT'N + Pop
costs about 2.2 and 3 times longer than DupTimeN orm for
DBLP and XMark; because XMark contains a lot of IDRef
edges which need more time to compute the similarity of the
nodes having reference-connection with a certain query result,
while the citation in DBLP is few and incomplete.
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Fig. 7. Response time w.r.t. result/document size

Besides, we evaluate the scalability of those indices by
drawing the relationship between the response time and query
result size (in term of number of nodes returned). A range of
15 queries with various result sizes run over DBLP, and the
result is shown in Figure 7(a). We can see DupTypeNorm again
outperforms the other two, and scales linearly w.r.t. the query
result size. Similarly, we test the response time of a query
“location united states item” on XMark data of size SMB up
to 40MB. As shown in Figure 7(b), both DupTypeNorm and
DupType’s response time increase linearly w.r.t. the data size.

9 CONCLUSION

In this paper, we study the problem of effective XML
keyword search which includes the identification of user
search intention and result ranking in the presence of keyword
ambiguities. We utilize statistics to infer user search intention
and rank the query results. In particular, we define XML TF
and XML DF, based on which we design formulae to compute
the confidence level of each candidate node type to be a search
for/search via node, and further propose a novel XML TF*IDF
similarity ranking scheme to capture the hierarchical structure
of XML data. Lastly, the popularity of a query result (captured
by IDRef relationships) is considered to handle the case that
multiple results have comparable relevance scores. In future,
we would like to extend our approach to handle the XML
document conforming to a highly recursive schema as well.
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