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Abstract—Dynamic XML labeling schemes have important applications in XML Database Management Systems. In this paper, we
explore dynamic XML labeling schemes from a novel order-centric perspective. We compare the various labeling schemes proposed
in the literature with a special focus on their orders of labels. We show that the order of labels fundamentally impacts the update
performance of a labeling scheme and develop an order-based framework to classify and characterize XML labeling schemes.
Although there are dynamic XML labeling schemes that can completely avoid re-labeling, the gain in update performance all come
with considerable costs such as larger label size and lower query performance, even if the XML documents are hardly updated. We
introduce vector order which is the foundation of the dynamic labeling schemes we propose. Compared with previous solutions that
are based on natural order or lexicographical order, vector order is a simple, yet most effective solution to process updates in XML
DBMS. We show that vector order can be gracefully applied to both range-based and prefix-based labeling schemes with little overhead
introduced. Moreover, vector order-based labeling schemes are not only efficient to process, but also resilient to skewed insertions.
Qualitative and experimental evaluations confirm the benefits of our approach compared to previous solutions.
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1 INTRODUCTION

The increasing importance of XML data management
has led to extensive research on native XML storage
and query support. The challenge of managing XML
data comes from its ordered tree-structured model which
provides rich semantic content and is essential for query-
ing XML data at a fine level of granularity. Labeling
schemes encode both order and structural information
(E.g. Parent/Child, Ancestor/Descendant) of the XML
tree into extremely compact labels, which is a widely
adopted approach for XML query processing and has
received a lot of research attention.

Existing XML labeling schemes are usually classified
into two categories: range-based[13], [18], [14], [1] and
prefix-based[7], [2], [15], [12], [10]. Both range-based
and prefix-based labeling schemes provide fine-grained
labeling of XML data and are adopted by an array of ap-
plications. We consider the following criteria important
for the comparison of labeling schemes:

• Order and structural information. Documents obey-
ing XML standard are intrinsically ordered and typ-
ically modeled as a tree. Labeling schemes encode
both document order and structural information
so that queries can exploit them. While document
order is essential to be encoded, the amount of struc-
tural information contained in the labels may vary.
For example, sibling relationship can be derived
from prefix-based labeling schemes, but in general
not from range-based labeling schemes.

• Query efficiency. Deriving structural information
from labels should be as efficient as possible.

• Update efficiency. It is desirable to have a persis-
tent labeling scheme, i.e. updating XML documents
should not require existing labels to be re-labeled.
This is crucial for low update costs and for the users
to be able to query the changes of the XML data over
time[2].

• Size. Size is an important factor that contributes to
query and update performance.

However, designing labeling schemes that fulfill all
these criteria turns out to be a challenging problem. Most
early works[13], [18], [14], [1], [7], [2], [15] on labeling
schemes cannot satisfy the third criteria and requires
re-labeling when updating the XML documents. More
dynamic solutions[5], [4], [6], [12] have been proposed,
however at the cost of lower query performance and
less compact size even for XML documents that are
seldom updated. In this paper, we tackle this problem
from a novel order-centric perspective. We argue that the
order of labels is the key to process updates in dynamic
XML documents. We establish a order-based framework
to categorize existing labeling schemes, which provides
insight into their update processing. Based on the frame-
work, we introduce a novel order concept, vector order,
with its application to both range-based and prefix-based
labeling schemes. The resulting labeling schemes includ-
ing V-Containment, V-Pre/post and Dynamic DEwey
(DDE) are not only tailored for static documents, but
also can completely avoid re-labeling for updates. Both
qualitative and experimental comparisons demonstrate
the advantages of our labeling schemes over the previ-
ous approaches.
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(a) Containment labeling scheme (b) Pre/post labeling scheme
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Fig. 1. Range-based labeling schemes

1.1 Road map

In Section 2, we describe the various labeling schemes
that have been proposed in the literature. We com-
pare and contrast the orders adopted by these labeling
schemes which play an important part in their behaviors
for both update and query processing. We show the
limitations of these labeling schemes which motivate the
introduction of our vector order in Section 3. We present
range-based and prefix-based labeling schemes based
on vector order in Section 4 and Section 5. Qualitative
comparisons are presented in Section 6 which charac-
terize our labeling schemes and existing ones under a
unified framework. Experimental results in Section 7
demonstrate the benefits of our labeling scheme and
therefore justify the use of vector order. We conclude
the paper in Section 8.

2 PRELIMINARY

2.1 Labeling tree-structured data

2.1.1 Range-based labeling schemes

In Figure 1, we present examples of containment[18]
and pre/post[13] labeling schemes which both belong
to range-based labeling schemes.

In containment labeling scheme, each element node is
assigned a label of the form start, end, level where start
and end define a range that contains all its descendant’s
ranges. Each label in pre/post labeling scheme is of
the form pre, post, level where pre and post are the
ordinal numbers of the element node in preorder and
postorder traversal sequences respectively. For both la-
beling schemes, level represents the level of the element
node in the XML tree.

Given two containment labels A(s1, e1, l1) and B(s2, e2,
l2), the following structural information can be derived:
P1 Ancestor/Descendant(AD). A is an ancestor of B

if and only if s1 < s2 < e2 < e1, which can be
simplified as s1 < s2 < e1. The simplification is
based on the observation that it is impossible to
have s1 < s2 < e1 < e2 which implies the elements
are not properly nested.

P2 Parent/Child(PC). A is the parent of B if and only
if A is an ancestor of B and l1 = l2 − 1.

1
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1.2.1

1.2.2.1 1.2.2.2

1.2.2 1.2.3

1.2

Fig. 2. Dewey labeling scheme

Both AD and PC relationships can be derived from
pre/post labels as well. Here we highlight the following
difference:
• Given two pre/post labels A(pre1, post1, l1) and

B(pre2, post2, l2), A is an ancestor of B if and only
if pre1 < pre2 and post2 < post1. This condition is
different from that of containment labeling scheme
and cannot be similarly simplified.

Example 2.1: In Figure 1 (a), (4,15,2) is an ancestor of
(8,9,4) because 4 < 8 < 15. (7,12,3) is the parent of (8,9,4)
because 7 < 8 < 12 and 3=4-1. In Figure 1 (b), 3, 7, 2 is
an ancestor of 6, 3, 4 because 3 < 6 and 3 < 7.

In order/size labeling scheme[14], each label con-
sists of a triplet order, size, level. order/size labeling
scheme can be seen as a variation of containment la-
beling scheme where a range is defined by order and
(order + size).

2.1.2 Prefix-based labeling schemes
An example of Dewey labeling scheme[7], which is
the representative of prefix-based labeling schemes, is
shown in Figure 2. The order that Dewey labeling
scheme makes heavy use of is the order among siblings,
which we refer to as local order. By concatenating the
label of its parent (parent label) with its own local order,
a Dewey label uniquely identifies a path from the root
to an element.

Given two Dewey labels A : a1.a2 . . . am and B :
b1.b2 . . . bn, the following rules can be used to derive
structural information from them:
P1 Ancestor/Descendant(AD). A is an ancestor of B if

and only if m < n and a1 = b1, a2 = b2, . . . , am = bm.
P2 Parent/Child(PC). A is the parent of B if and only

if and only if A is an ancestor of B and m = n− 1
P3 Sibling. A is the sibling of B if and only if m =

n and a1 = b1, a2 = b2, . . . , am−1 = bm−1, i.e. A’s
parent label matches B’s parent label.

Example 2.2: In Figure 2, 1.2 is an ancestor of 1.2.2.1
because 1.2 is a prefix of 1.2.2.1. 1.2.2 is the parent of
1.2.2.1 because 1.2.2 matches the parent label of 1.2.2.1.

2.1.3 Prime labeling scheme
Prime labeling scheme[8] represents a unique approach
to encode the tree structure of XML data. In prime label-
ing scheme, each node is associated with a unique prime
number (self label). The label of a node is a number
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which is the product of its self label and the label
of its parent node (parent label). Since all self labels
are distinct prime numbers, the factorization of a label
can be used to identify a unique path in an XML tree.
Given two nodes n and m, n is an ancestor of m if
and only if label(m) mod label(n) = 0. n is the parent
of m if and only if label(n) = label(m)/self label(m).
Although both AD and PC relationships can be encoded
elegantly in this way, deciding document order remains
a hard problem. We describe how Prime labeling scheme
encodes document order in Section 2.2.1.

2.2 Order encoding and update processing
Compared to unordered relational data, a key difference
we face when processing ordered XML data is how to
encode the order information[7]. Important order in-
formation defined in XML documents include document
order and local order.

Definition 2.1 (Document order): Document order is the
order in which the start tags of the element nodes are
encountered when the document that contains them
is parsed. Note that document order is equivalent to
preorder defined on the element nodes if we think of
XML documents as linearizations of tree structure.
Local order is the document order among siblings which
is trivially consistent with document order.

Given the one-to-one correspondence between labels
and element nodes, we can derive document order from
a set of labels if they and their associated element nodes
have the same ordering. When XML documents are
subject to updates, i.e. element nodes are be inserted or
deleted at arbitrary positions in the documents, labels
have to be inserted or deleted accordingly while pre-
serving the correct order information. This turns out to
be a challenging problem especially if no existing labels
should be modified. We further elaborate the problem
by summarizing the orders used by different labeling
schemes.

2.2.1 Range-based labeling schemes and natural order
Since document order is equivalent to preorder on the
element nodes, pre/post labeling scheme naturally en-
codes document order by incorporating the preorder
traversal ordinal numbers into the labels. Given two
pre/post labels A(pre1, post1, l1) and B(pre2, post2,
l2), A precedes B in document order if and only if
pre1 < pre2. Similarly, the start values in containment
labels are strictly increasing if they are ordered according
to document order. Thus, document order can be derived
from containment labels from their start values.

The ordering of pre/post and containment labels fol-
lows from the natural order (<) on integers, i.e. pre or
start. As we know, insertion between two integers re-
quires the use of some new integers which falls between
them in natural order. This is not possible if the existing
two integers are consecutive, in which case re-labeling
is necessary. The re-labeling may have global effect, that

is, the whole document has to be re-labeled in the worst
case. Leaving gaps[14] in labels only delays re-labeling
until some gap is filled. Using floating point number[1]
instead of integer does not solve the problem because
(a)In standard floating point format, the mantissa is
represented by a fixed number of bits, implying that
floating point numbers are of limited accuracy; (b)The
mantissa can be consumed by as many as 2 bits per
insertion, which can lead to overflow quickly and (c)
Floating point numbers are inherently less efficient to
process than integers.

Prime labeling scheme uses a list of SC(Simultaneous
Congruence) values to derive the mapping from
self labels to global orders, which are basically ordered
by natural order. Whenever a node is inserted or deleted,
the global orders are re-ordered. As a result, on average
half of the SC values have to be re-calculated based on
Euler’s quotient function, which has been shown to be
very time consuming[6].

2.2.2 Prefix-based labeling schemes and lexicographi-
cal order
Document order can be derived from Dewey labels
based on lexicographical order (denoted as ≺l) which
is defined as follows:

Definition 2.2 (Lexicographical order): Given two
Dewey labels A : a1.a2 . . . am and B : b1.b2 . . . bn,
A ≺l B if and only if one of the following two
conditions holds:
C1. m < n and a1 = b1, a2 = b2, . . . , am = bm.
C2. ∃k ∈ [0,min(m,n)], such that a1 = b1, a2 =

b2, . . . , ak−1 = bk−1 and ak < bk.
Consider the Dewey labels of two consecutive sibling

element nodes, they have the parent label and consecu-
tive local orders. From C2 in lexicographical order, the
comparison of two labels eventually lead to comparison
of local orders in natural order. As a result, re-labeling
is unavoidable for insertion between two consecutive
siblings, regardless of whether integer or floating point
number is used. However, the scope of re-labeling for
Dewey labeling scheme is restricted to the subtree in
which the new element node is inserted. In this sense,
lexicographical order already appears to be more robust
than natural order against updates.

2.2.3 Transforming natural order to lexicographical order
After showing that natural order is rigid and inevitably
leads to re-labeling, it becomes clear that a different
order is necessary to solve the problem of updates.
QED encoding scheme has been proposed to transform
integers to quaternary strings, which, if we see from the
order perspective, is from natural order to lexicograph-
ical order.

Definition 2.3 (Quaternary string): Given a set of num-
bers A = {1, 2, 3} where each number is stored with 2
bits, a quaternary string is a sequence of elements in A.
Note that number 0 does not appear in quaternary string
because it is used as the separator of the quaternary
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strings for physical encoding. A QED code is a quaternary
string that ends with 2 or 3. As the following example
illustrates, QED codes are robust enough to allow inser-
tions without re-labeling.

Example 2.3: Let 22, 23 be two QED codes satisfying
22 ≺l 23, we can insert 222 which is another QED code
between them and we have 22 ≺l 222 ≺l 23. To continue
to insert between 22 and 222, for example, we can use
2212, satisfying 22 ≺l 2212 ≺l 222.

QED encoding scheme can be applied to both range-
based and prefix-based labeling scheme. Application of
QED encoding scheme to containment labeling scheme
transforms start and end into QED codes and we call
the resulting labeling scheme QED-Containment label-
ing scheme. QED-Dewey labeling scheme is similarly
derived by applying QED encoding scheme to Dewey
labeling scheme. However, the lengths can QED codes
can increase quite fast for ordered insertions (2 bits per
insertion as in Example 2.3).

Variable Length Endless Insertable code(VLEI)[3] has
been proposed to reduce the cost of insertions. An VLEI
code is a bit sequence v = {0|1}∗ which are ordered
by lexicographical order. An insertion algorithm can be
applied to two VLEI codes to produce a new VLEI
code between them. VLEI-Dewey labeling scheme is the
result of applying VLEI codes to Dewey labeling scheme,
where ”9” is used as delimiter between components.
The application of VLEI codes has achieved reduction
in update time with respect to the use of floating point
numbers[1].

ORDPATH [12] is based on dewey and uses only
odd numbers at the initial labeling. Even numbers are
reserved for insertions and only used as ‘caret’s. To insert
between two ORDPATH labels whose last components
are consecutive odd numbers, the new label is generated
using an additional even number which falls between
the two odd numbers. We refer to this as the ‘careting
in’ technique. For example, to insert between two OR-
DPATH labels 1.3 and 1.5, we use 4 which is the even
number between 3 and 5 as the ‘caret’. The new label is
1.4.1 where 4, the caret, is not counted as a component
that increases the level of a node.

Based on the ‘careting in’ technique, each level in an
ORDPATH label is possibly represented by a variable
number of even numbers followed by an odd number.
This property complicates the processing of ORDPATH
labels and therefore negatively affects the query perfor-
mance. For example, computing the LCA of dewey labels
is equivalent to finding the longest common prefix of
them. For ORDPATH labels, however, extra care has be
to taken to make sure the LCA is a valid ORDPATH
label. As an example, the longest common prefix of two
ORDPATH labels 1.6.2.1 and 1.6.2.3.5 is 1.6.2 whereas
their LCA should be 1. The complexity introduced by
the ‘careting in’ technique fundamentally affects the query
processing with ORDPATH labels even if no update
actually takes place.

QED-Dewey, VLEI-Dewey and ORDPATH labeling
schemes are similarly ordered, which can be captured
by the generalized lexicographical order we introduce.

2.2.4 Generalized lexicographical order
We begin by generalizing the notion of Dewey label.

Definition 2.4 (Generalized Dewey label): A generalized
Dewey label is a sequence of components separated
by dots, which we denote as [a1].[a2] . . . [am]. There is
no restriction on the content of each component, which
can be an integer, a string, a sequence of integers, etc.
Nevertheless, the components should be encoded in such
a way that allows them to be separable from each other.

For example, QED-Dewey labels fit into the definition
of generalized Dewey label because it is a sequence of
QED codes separated by delimiter 0. VLEI-Dewey labels
are sequences of VLEI codes with ”9” as delimiters. In
ORDPATH labeling scheme, a label can be thought of as
a generalized Dewey label where each component is a
variable of even numbers followed by an odd number.

Generalized Dewey labels are compared based on
generalized lexicographical order.

Definition 2.5 (Generalized lexicographical order): Given
two generalized Dewey labels A : [a1].[a2] . . . [am]
and B : [b1].[b2] . . . [bn], A precedes B in generalized
lexicographical order if and only if one of the two
conditions holds:
C1. m < n and a1 ≡ b1, a2 ≡ b2, . . . , am ≡ bm.
C2. ∃k ∈ [0,min(m,n)], such that a1 ≡ b1, a2 ≡

b2, . . . , ak−1 ≡ bk−1 and ak ≺ bk.
≡ and ≺ denote generalized equivalence and generalized
less than relation respectively. For generalized lexico-
graphical order to correctly reflect document order, it has
to be (a) total on the set of labels, i.e. any two generalized
Dewey labels from the set of labels are comparable
with respect to generalized lexicographical order and (b)
transitive because document order itself is transitive.

3 VECTOR ORDER

In this section, we introduce vector order which formal-
izes our idea in [9]. It is also a generalization of our
previous work which restricted vector codes to have
both positive x and y components.

3.1 Vector code ordering
Definition 3.1 (Vector code): A vector code is a binary

tuple of the form (x, y) with x > 0.
A vector code (x, y) can be graphically interpreted as
an arrow from the origin to the point (x, y) in a two
dimensional plane. The arrow only falls into the first
or the forth quadrant because we require x > 0. Three
vector codes (2,3), (3,2) and (1,-2) are shown in Figure
3. We use the term vector to refer to the graphical
representation of a vector code. Given the one-to-one
correspondence between vector and vector codes, we
will use the two terms interchangeably in the rest of the
paper.
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Fig. 3. Graphical representation of vector codes

Before formally defining vector order, we elaborate on
the intuitive meaning behind it.

Intuitively, vector codes are ordered by tan(Θ) where
Θ is the angle a vector makes with X axis. If we “rotate”
a vector from the negative Y axis to the positive Y axis, Θ
goes from −90◦ (excluding −90◦ itself) to 90◦ (excluding
90◦ itself) and tan(Θ) increases monotonously from −∞
to ∞. In Figure 3, we have tan(Θ3) < tan(Θ2) < tan(Θ1)
and the three vector codes are ordered accordingly. Note
that the condition x > 0 restricts vector codes to be in
the first and forth quadrant where vector order is a total
order.

Given two vector codes A : (x1, y1) and B : (x2, y2),
vector preorder is defined as:

Definition 3.2 (Vector preorder): A precedes B in vector
preorder (denoted as A¹vB) if and only if y1

x1
≤ y2

x2
.

Vector equivalence is defined based on preorder.
Definition 3.3 (Vector equivalence): A is equivalent to B

(denoted as A ≡v B) if and only if A ≤ B and B ≤ A,
or equivalently y1

x1
= y2

x2
.

Equivalence relation is both symmetric and transitive.
Lemma 3.1 (Symmetry of vector equivalence): If A ≡v B,

then B ≡v A.
Lemma 3.2 (Transitivity of vector equivalence): Suppose

A ≡v B and B ≡v C, then A ≡v C.
Graphically speaking, if two vector codes are equiva-

lent, then they have the same direction. As the following
lemma implies, equivalence relation can be reduced to
natural equality if two vector codes have the same X
component.

Lemma 3.3: Suppose A ≡v B and x1 = x2, then y1 =
y2.

We refer to this special form of vector equivalence as
equality.

Definition 3.4 (Vector equality): A is equal to B (de-
noted as A=B) if and only if x1 = x2 and y1 = y2.

Given vector preorder and equivalence, vector order
can be defined as follows:

Definition 3.5 (Vector order): A≺vB if and only if
A¹vB and A6≡vB ( 6≡v is the negation of ≡v), equiva-
lently, y1

x1
< y2

x2
or y1 × x2 < x1 × y2.

Two vector codes are comparable under vector order if
and only if they are not equivalent to each other. We say

Y

X

B

A

2·A

2·B

2·A+B

A+2·B

A+B

Fig. 4. Vector code addition and multiplication

a set of vector codes is inequivalent if it does not contain
two vector codes that are equivalent to each other.

The following lemma addresses a special case where
vector order can be reduced to natural less than relation.

Lemma 3.4: Suppose A ≺v B and x1 = x2, then y1 <
y2.
Under the constraint that x > 0, this lemma follows
immediately from Definition 3.5.

Same as equivalence relation, vector order is transitive.
Lemma 3.5 (Transitivity of vector order): If A ≺v B and

B ≺v C, then A ≺v C.
The following lemma establishes the connection be-

tween vector equivalence and vector order.
Lemma 3.6: If A ≡v B and B ≺v C, then A ≺v C; If A

≺v B and B ≡v C, then A ≺v C.

3.2 Vector code functions
We start by introducing two primitive functions to deter-
mine a new vector code that precedes or follows a given
vector code A : (x, y) in vector order.
• BEF (A): return (x,y-1).

//returns a vector code before A
• AFT (A): return (x,y+1).

//returns a vector code after A
It is readily verifiable from Lemma 3.4 that BEF (A) ≺v

A ≺v AFT (A).
To determine a new vector code that falls between

two given vector codes in vector order, we introduce the
following addition function.

Definition 3.6 (Vector code addition): Addition of two
vector codes A : (x1, y1) and B : (x2, y2) is defined as:

A + B = (x1 + x2, y1 + y2) (1)

Multiplication function computes a vector code that is
equivalent to the given vector code.

Definition 3.7 (Vector code and scalar multiplication):
Multiplication of an integer r and a vector code A : (x, y)
is defined as:

r ·A = (r × x, r × y) (2)

Addition and multiplication of vector codes are illus-
trated in Figure 4. Intuitively, a vector code and its mul-
tiples are equivalent to each other and can be represented
as vectors of the same direction. That is, they make the



6

same angle with X axis and are equivalent with respect
to vector order. Given two vector codes that are not
equivalent, e.g. A and B, the addition of them should
produce a vector code that falls between them in vector
order. Because the angle that the resulting vector makes
with the X axis is between those that A and B make. We
formalize our observations with the following results.

Let A : (x1, y1) and B : (x2, y2) be two vector codes,
Lemma 3.7: Suppose A¹vB, then A¹v (A + B)¹vB.

Proof: From A¹vB, we have y1 × x2 ≤ y2 × x1.
Therefore, y1 × (x1 + x2) = y1 × x1 + y1 × x2 ≤ y1 × x1

+ y2 × x1 = x1 × (y1 + y2). It follows that A¹v (A + B).
Proof of the other half the lemma is similar, so we ignore
it here.

Theorem 3.1: Suppose A≡vB, then A≡v (A + B)≡vB.
Proof: A≡vB implies both A ¹v B and B ¹v A. It

then follows from Lemma 3.7 that A ¹v (A + B) ¹v B
and B ¹v (A + B) ¹v A. Thus, A ≡v (A + B) ≡v B.

Theorem 3.2: Suppose A≺vB, then A≺v (A + B)≺vB.
Proof: It follows from A ≺v B that A ¹v B and A

6≡v B. Therefore, A ¹v (A + B) ¹v B (1). Assume A ≡v

(A + B), we have y1 × (x1 + x2) = x1 × (y1 + y2) which
can be simplified as y1×x2 = x1×y2, and thus, A ≡v B.
It is a contradiction to our assumption, therefore A 6≡v

(A + B) (2). In the same way, we can prove (A + B) 6≡v

B (3). Combining (1), (2) and (3), the theorem follows.

The following corollary generalizes Theorem 3.2.
Corollary 3.1: Given two vector codes A and B such

that A≺vB, it follows that A ≺v . . . ≺v (3 · A + B) ≺v

(2 ·A + B) ≺v (A + B) ≺v (A + 2 ·B) ≺v (A + 3 ·B) ≺v

. . . ≺v B.

4 APPLY VECTOR ORDER TO RANGE-BASED
LABELING SCHEMES

Application of vector order is through the process of
order-preserving transformation.

4.1 Order-preserving transformation
The ranges in a set of containment labels come from
a sequence of integers from 1 to 2n for an XML tree
with n elements. For pre/post labeling scheme, there
are two identical sequences of integers from 1 to n. Let
Z denote the set of integers and V denote the set of
vector codes, a transformation f : Z → V is order-
preserving if the following condition holds: f(i) ≺ f(j)
if and only if i < j for i, j ∈ Z. In [9], we proposed
recursive transformation which is order preserving. In
this paper, we introduce a more efficient transformation
method: linear transformation.

4.1.1 Linear transformation
Linear transformation f : Z → V is defined as follows,

f(i) = (1, i) for i ∈ Z (3)

It is an order-preserving transformation because, given
any i, j ∈ Z such that i < j, it follows from Lemma

3.4 that (1, i) ≺v (1, j). We use linear transformation to
illustrate the application of vector order in this paper.

4.2 V-Containment labeling scheme

We apply linear transformation to containment labels
and refer to the resulting labels as V-Containment labels.
We have described in Theorem 3.2 how to insert a new
vector code between two consecutive ones in vector
order. Insertion processing with V-Containment labeling
schemes is slightly different, as two vector codes have to
be inserted at one time which form the range of the new
element node. We introduce the concept of granularity
sum to guide such insertions.

Definition 4.1 (Granularity sum): The granularity sum
of a vector code A : (x, y) (denoted by GS(A)) is defined
as x + y.
The insertion algorithm is presented in Algorithm 1
which tries to minimize the granularity sums of new
labels.

Algorithm 1: InsertTwoVectorCodes(A, B)
Data: A and B which are two vector codes

satisfying A ≺v B
Result: C and D such that A ≺v C ≺v D ≺v B
if GS(A) > GS(B) then1

return (A+B) and (A+2·B);2

else3

return (2·A+B) and (A+B);4

end5

To study how insertion of a new node A can be
processed with V-Containment labeling scheme, it is
sufficient to consider the following three principles: (a)
The range of A should be inside the range of A’s parent;
(b) The start of A should be be less than the end of
its closest preceding sibling (if it exists) and (c) The end
of A should be be greater than the start of its closest
following sibling (if it exists). Based on containment
property, (a) obviously holds. If (b) or (c) is violated, it
means there is some range that A and its sibling(s) have
in common. If some new node is inserted as a descendant
of A or one of A’s siblings and assigned a range that is
inside the common range, it would be a violation of the
tree structure. Moreover, (b) and (c) guarantee that A has
the correct document order. In all cases, the level of A
equals to the level of A’s parent plus 1.

Example 4.1: In Figure 5, the solid circles represent
the elements nodes that are initially in the XML tree.
Their labels are transformed from containment labeling
scheme through linear transformation. Consider insert-
ing element node A before the first child of the root.
The start and end of A should fall between the start
of A’s parent and start of A’s following sibling, that
is, (1,1) and (1,2). Since GS(1, 1) = 2 < 3 = GS(1, 2),
it follows from Algorithm 1 the start and end of A
should be (3, 4) (= (2 × 1 + 1, 2 × 1 + 2)) and (2, 3)
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Fig. 5. Process Updates with V-Containment labeling
scheme
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(1,6),(1,3),4 (1,7),(1,4),4

(2,13),(2,7),4
(3,20),(3,11),4

(4,27),(5,18),5

Fig. 6. Process Updates with V-Pre/post labeling scheme

(= (1 + 1, 1 + 2)). B is inserted after the last child of
a node, its start and end should be bounded by the
end of its preceding sibling and the end of its parent:
(1,14) and (1,15). Applying Algorithm 1, the start and
end of B should be (3, 43) (= (2×1+1, 2×14+15)) and
(2, 29) (= (1 + 1, 14 + 15)). C is inserted between two
consecutive element nodes. Its start and end should be
between the end of its preceding sibling and the start of
its following siblings. From Algorithm 1, the start and
end of C should be (3, 28) (= (2 × 1 + 1, 2 × 9 + 10))
and (2, 19) (= (1 + 1, 9 + 10)). Similarly, the start and
end of C should be (3, 29) (= (2× 1 + 1, 2× 9 + 10)) and
(4, 39) (= (1+1, 9+10)). The range of D is confined by its
parent’s range. The start and end of C should be (10, 97)
(= (2× 3+4, 2× 29+39)) and (7, 68) (= (3+4, 29+39)).

4.3 V-Pre/post labeling scheme
In V-Pre/post labeling scheme, insertion of a new node
A can be processed based on two principles: (a)the pre of
A should be between the pres of two nodes that imme-
diately precede and follow A during preorder traversal
(if they exist) and (b)the post of A should be between the
posts of two nodes that immediately precede and follow
A during postorder traversal (if they exist).

Example 4.2: First we consider the insertion of A
which is a leftmost insertion under the root. To maintain

correct document order, the pre of A should be between
the pre of A’s parent and A’s following sibling. That
gives us (2,3) which is the sum of (1,1) and (1,2). In
addition, to keep AD and PC relationships, the post of A
should be less than the post of A’s following sibling, that
is (1,1). We therefore assign BEF (1, 1) = (1, 0) to the post
of A. Since there is no element nodes that follow B dur-
ing preorder traversal, we assign AFT (1, 8) = (1, 9) to
the B.pre. In addition, B.post = (2, 13) = (1, 6)+(1, 7). In-
sertions between two consecutive siblings (C and D) are
processed in a similar manner. Insertion of a leaf node
is more complicated with V-Pre/post labeling scheme
than with V-Containment labeling scheme. Recall that in
V-Containment labeling scheme, the label of the parent
alone is sufficient to determine the label of the new leaf
node. However, if we consider the insertion of D in
Figure 6, its pre should fall between the pre of its parent
and the pre of its parent’s following sibling. In addition,
the post of D is confined by the post of its parent and
the post of its parent’s preceding sibling. Thus, the label
of D is determined by three labels.

5 APPLY VECTOR ORDER TO PREFIX-BASED
LABELING SCHEMES

In this section, we present two prefix-based labeling
schemes that are based on vector order.

5.1 V-Prefix labeling scheme
We provide a brief introduction of V-Prefix labeling
scheme which is the most straight forward application
of vector order to Dewey labeling scheme. It is derived
from Dewey labeling scheme by transforming every
dewey label into a sequence of vector codes through
linear transformation.

The initial labeling of V-Prefix labeling scheme is
shown in Figure 7, with solid circles representing the
element nodes initially in the XML tree. All vector codes
are enclosed by brackets for easy reference.

Given a V-Prefix label of the form (x1, y1).(x2, y2)
. . . (xm, ym), we denote it as: v1.v2 . . . vm where v1 =
(x1, y1), v2 = (x2, y2) . . . vm = (xm, ym). Thus, V-Prefix
label can be seen as a generalized Dewey label where
every component is a vector code.

V-Prefix labels are ordered by V-Prefix order.
Definition 5.1 (V-Prefix order): Given two V-Prefix la-

bels A : v1.v2 . . . vm and B : w1.w2 . . . wn, A precedes
B in V-Prefix order (denoted as A ≺vp B) if and only if
one of the following two conditions holds:
C1. m < n and v1 = w1, v2 = w2, . . ., vm = wm.
C2. ∃k ∈ [0,min(m,n)], such that v1 = w1, v2 = w2, . . .,

vk−1 = wk−1 and vk ≺v wk.
We illustrate how to process updates with V-Prefix

labels with the following example.
Example 5.1: First we consider the leftmost insertion

of element node A in Figure 7. A should have the same
parent label as its parent’s label and a local order less
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Fig. 7. Process Updates with V-Prefix labeling scheme

than (1,1). Thus, we get the new label of A by concatenat-
ing its parent’s label (1.1) to BEF (1, 1) = (1, 0). Since B
is inserted at the rightmost position after (1.1).(1.2).(1.3),
we derive its local order to be AFT (1, 3) = (1, 4). C is in-
serted between two consecutive siblings. Its parent label
is the same as its parent’s label whereas its local order
should fall between the local orders of its two siblings.
That is, (2,3)=(1,1)+(1,2). The local order of D is similarly
computed: (3,5)=(2,3)+(1,2). We process the insertion of
a leaf node (E) by concatenating its parent label with an
additional component, say, (1, 1).

5.2 DDE labeling scheme
We presented Dynamic DEwey (DDE) labeling scheme
in [10]. Here we characterize DDE in terms of the order
framework we have developed in this paper. DDE gen-
eralizes the idea of vector order and vector equivalence.

5.2.1 motivation
While V-Prefix labeling scheme appears to be the straight
forward application of vector order to Dewey labeling
scheme, its drawbacks are also obvious. Transforming
from integer to vector codes doubles the number of
components of the labels and increases the overall label
size.

If different labeling schemes were to be used for
static and dynamic XML documents, different storage
and query mechanisms need to be enforced, making
updating and querying complicated. To make matters
worse, the system administrator bears the burden of
deciding which of the documents are dynamic or static.
This in general is a difficult, if not impossible task as the
updating frequency of a document can vary according
to time: a document can, for example, be frequently
updated for a period of time and remain unchanged after
that. Here we introduce DDE labeling scheme which is
dynamic enough to completely avoid re-labeling, while
introducing minimum additional complexity to static
documents.

5.2.2 initial labeling
Every DDE label is a sequence of integers separated
by dots. The initial labeling of DDE labeling scheme is

the same as Dewey (Figure 2). However, the semantic
meanings of DDE and Dewey are very different. A
Dewey label can be seen as a concatenation of local
orders from the root to an element node whereas we
interpret a DDE label as a sequence of vector codes that
share a common X component. We will show that the
directions of these vectors together with the ordering of
them can uniquely determine a path from the root to an
element node.

A more intuitive representation of DDE labels is de-
fined in terms of vector codes.

Definition 5.2 (Vector representation of DDE label):
Given a DDE label of the form x.y1.y2 . . . ym, its
vector representation is v1.v2 . . . vm where v1 = (x, y1),
v2 = (x, y2) . . . vm = (x, ym).
We can see that the first component of a DDE label
is shared by the sequence of vector codes as the X
component. Note that the root element 1 does not fit
into this interpretation and has to be specially dealt with.
We consider a DDE label as a generalized Dewey label
where each component is a vector code (all of which
share a common X component).

5.2.3 DDE label ordering
DDE labels are ordered by DDE order which can be
defined as follows:

Definition 5.3 (DDE order): Given two DDE labels A :
v1.v2 . . . vm and B : w1.w2 . . . wn, A precedes B in DDE
order (denoted as A ≺dde B) if and only if one of the
following two conditions holds:
C1. m < n and v1 ≡v w1, v2 ≡v w2, . . ., vm ≡v wm.
C2. ∃k ≤ min(m,n), such that v1 ≡v w1, v2 ≡v w2, . . .,

vk−1 ≡v wk−1 and vk ≺v wk.
The label of the root is minimum with respect to DDE

order, i.e. it precedes all other labels. DDE order can be
seen as generalized lexicographical order where compo-
nent wise comparison is based on vector equivalence and
vector order.

DDE order is transitive.
Lemma 5.1 (Transitivity of DDE order): Given three

DDE labels A, B and C such that A ≺dde B and
B ≺dde C, it follows that A ≺dde C.

Proof: From Definition 5.3,≺dde can imply one of two
conditions. Therefore there are four cases to consider,
which can be proved based on Lemma 3.5, Lemma 3.2
and Lemma 3.6. We ignore the details here.

The equivalence relation on DDE labels can be defined
as:

Definition 5.4 (DDE equivalence): Two DDE labels A :
v1.v2 . . . vm and B : w1.w2 . . . wn are equivalent (denoted
as A ≡dde B) if and only if m = n and v1 ≡v w1, v2 ≡v

w2, . . ., vm ≡v wm.
Two DDE labels are comparable with respect to DDE

order if and only if they are not equivalent. We say that
a set of DDE labels is inequivalent if there does not exist
two DDE labels in the set with equivalence relation. Let
A and B be two distinct DDE labels from an inequivalent
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set of DDE labels, we have either A ≺dde B or B ≺dde A
(not both).

Lemma 5.2 (Transitivity of DDE equivalence): Given
three DDE labels A, B and C, if A ≡dde B and
B ≡dde C, then A ≡dde C.
This lemma easily follows from the transitivity of vector
equivalence.

5.2.4 DDE label properties
A DDE label implicitly stores the level information as
the number of components in that label. This property
will remain true after arbitrary insertions and deletions.

Given two DDE labels A : v1.v2 . . . vm and B : w1.w2

. . . wn, we summarize the properties of DDE labels as
follows:
P1 (AD Relationship). A is an ancestor of B if and only

if m < n and v1 ≡v w1, v2 ≡v w2, . . ., vm ≡v wm.
(The case where A is the root always returns true.)

P2 (PC Relationship). A is the parent of B if and only
if A is an ancestor of B and m = n− 1.

P3 (Document Order). A precedes B in document order
if and only if A ≺dde B.

P4 (Sibling Relationship). A is a sibling of B if and only
if m = n and v1 ≡v w1, v2 ≡v w2, . . ., vm−1 ≡v wm−1.

P5 (LCA). The LCA of A and B is C, such that C is
an ancestor of both A and B, and either (1) |C| =
min(m,n), or (2) v|C|+1 6≡v w|C|+1.

From Lemma 3.3 and Lemma 3.4, ≡v and ≺dde can
be reduced to = and < respectively if two vector codes
have the same X component. Such reductions can be
applied to all the initial DDE labels because they all have
1 as their first component and, as we know, the first
component serves as the X component for the sequence
of vector codes in every DDE label. For example, AD
relationship can be simplified for initial DDE labels as
follows.
P1 (AD Relationship (for initial DDE labels)). A is an

ancestor of B if and only if m < n and v1 = w1,
v2 = w2, . . ., vm = wm.

It follows from the reduction that the initial DDE labels
can be treated as Dewey labels which we consider to be
tailored for static XML documents.

5.2.5 Correctness of initial labeling
Lemma 5.3: Based on DDE labeling scheme, the set of

initial DDE labels is inequivalent.
Proof: We establish the proof by contradiction. Sup-

pose the set of initial DDE labels is not inequivalent,
there exist two DDE labels A : v1.v2 . . . vm and B : w1.w2

. . . wm, such that v1 ≡v w1, v2 ≡v w2, . . ., vm ≡v wm.
However, since all the initial DDE labels start with 1,
it follows that v1 = w1, v2 = w2, . . ., vm = wm, which
means A and B are the same. We have a contradiction
here because all DDE labels are different in initial label-
ing.
Since the set of initial DDE labels is inequivalent, it fol-
lows that any two of them are comparable with respect

1

1.1 1.2

1.2.2

1.2.3

AB

1.01.-1
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E G F2.4.4.3 3.6.6.5

5.10.10.8

1.2.4 1.2.5

3.6.6.5.1

1.2.1

Fig. 8. Processing insertions with DDE labels

to DDE order. In addition, DDE order can be reduced
to Dewey order for the initial DDE labels because all of
them start with 1. The fact that our initial label assign-
ment is the same as Dewey implies that document order
is correct with respect to Dewey order and therefore
DDE order. The same reasoning applies to all the other
properties of DDE labels.

5.2.6 DDE label addition

To process dynamic insertions between DDE labels while
preserving their relative order, we introduce addition op-
eration on DDE labels. The addition operation is defined
on DDE labels with the same number of components.

Definition 5.5 (DDE label addition): Given two DDE la-
bels with the same number of components A : v1.v2 . . .
vm and B : w1.w2 . . . wm, A + B is defined as:

A + B = (v1 + w1).(v2 + w2) . . . (vm + wm) (4)

Note that the first integer in a DDE label, which is the
common X component, only needs to be added once.

The following theorems formalizes important proper-
ties of the addition operation.

Theorem 5.1: Given two DDE labels A : v1.v2 . . . vm

and B : w1.w2 . . . wm such that A is a sibling of B and
A ≺dde B, then A ≺dde (A + B) ≺dde B.

Proof: Since A and B are siblings, we have v1 ≡v

w1, v2 ≡v w2, . . ., vm−1 ≡v wm−1. From Theorem 3.1,
v1 ≡v (v1 + w1) ≡v w1, v2 ≡v (v2 + w2) ≡v w2, . . .,
vm−1 ≡v (vm−1 +wm−1) ≡v wm−1. In addition, A ≺dde B
implies that vm ≺v wm. It then follows from Theorem
3.2 that vm ≺v (vm + wm) ≺v wm. As a result, A ≺dde

(A + B) ≺dde B.
Theorem 5.2: Given two DDE labels A : v1.v2 . . . vm

and B : w1.w2 . . . wm such that A ≡dde B, then A ≡dde

(A + B) ≡dde B.
Proof: From A ≡dde B, we have v1 ≡v w1, v2 ≡v w2,

. . ., vm ≡v wm. Applying Lemma 3.2, we have v1 ≡v

(v1 + w1) ≡v w1, v2 ≡v (v2 + w2) ≡v w2, . . ., vm ≡v

(vm +wm) ≡v wm, and therefore A ≡dde (A+B) ≡dde B.

We use the following example to illustrate the prop-
erties of DDE labels that have been introduced so far.
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Example 5.2: Consider the XML tree in Figure 8, the
dotted circles represent the new nodes inserted into the
XML tree. We ignore for now how their labels are gener-
ated. Node 1.2 is an ancestor of node E as (1, 2) ≡v (2, 4)
and |1.2| < |E| (|E| denotes the number of components
in E). Node 1.2.2 is the parent of G as (1, 2) ≡v (5, 10)
and |1.2.2| = |G| − 1. A ≺dde E as (1, 0) ≺v (2, 4), so H
precedes E in document order. E is a sibling of F because
|E| = |F | and (2, 4) ≡v (3, 6). In addition, E ≺dde F as
(2, 4) ≡v (3, 6) and (2, 3) ≺v (3, 5). Note that G=E+F as
5.10.8 = 2.4.3+3.6.5, since E is a sibling of F and E ≺dde

F, we have E ≺dde G ≺dde F based on Theorem 5.1. To
verify, E ≺dde G as (2, 4) ≡v (5, 10) and (2, 3) ≺v (5, 8),
G ≺dde F as (5, 10) ≡v (3, 6) and (5, 8) ≺v (3, 5).

5.2.7 Processing updates
Similar to Dewey labels, it is clear that the deletion of
DDE labels does not affect the order of the other labels.
The challenging part is how to handle insertions without
re-labeling. Note that, like ORDPATH, we extend the
domain of component values of DDE labels to positive
number, negative number and 0. However, since ORD-
PATH only uses odd numbers at initial labeling, its labels
are not as compact as DDE and Dewey.

First we introduce how DDE labeling scheme pro-
cesses insertions with an example.

Example 5.3: In Figure 8, node A is inserted before the
first child of the root, we get its label 1.0 by decreasing
the local order of 1.1 by 1. Node B is then inserted before
A and its label is therefore 1.-1. Node C is inserted
after the node with label 1.2.3, we get its label 1.2.4
by adding 1 to the local order of 1.2.3. Similarly, the
label of node D is 1.2.5. Node E is inserted between two
nodes with labels 1.2.2.1 and 1.2.2.2 and its label is 2.4.4.3
which equals to 1.2.2.1+1.2.2.2. Likewise, the labels of
node F and G are 3.6.6.5 (2.4.4.3+1.2.2.2) and 5.10.10.8
(2.4.4.3+3.6.6.5) respectively. Node H is inserted as the
child of leaf node 3.6.6.5, its label is the concatenation of
its parent’s label and 1.

Among the insertions shown Figure 8, we consider
the correctness of the following special cases obvious
because the resulting labels are almost the same as the
initial labeling, so proofs are ignored here.
• Leftmost insertion. When a new node is inserted

before node A : v1.v2 . . . vm where A is the first
child of a node, we assign label v1.v2 . . . BEF (vm)
to this node.

• Rightmost insertion. When a new node is inserted
after node A : v1.v2 . . . vm where A is the last child
of a node, we assign label A : v1.v2 . . . AFT (vm) to
this node.

• Insertion below a leaf node. When a new node is
inserted below a leaf node A : v1.v2 . . . vm, we assign
label A : v1.v2 . . . vm.1 to this node.

In general, insertions can be made between any two
consecutive siblings.
• Insertion between two consecutive siblings. When

a new node is inserted between two consecutive

siblings with labels A and B, we assign label A+B
to this node.

We prove the correctness of this case in Section 5.2.8.

5.2.8 Correctness
By definition, two DDE labels A and B have sibling
relationship if and only if their parent labels are equiv-
alent. Given Theorem 5.2, the parent label of A + B is
equivalent to both A and B, which from transitivity of
DDE equivalence (Lemma 5.2), implies that A + B is
a sibling of A, B and all siblings of A and B. Sibling
relationship is therefore correctly maintained.

A DDE label C is an ancestor of another DDE label A
if and only if C is equivalent to a proper prefix of A. We
have shown that, the parent label of A+B is equivalent
to the parent labels of A and B if A and B are siblings.
As a result, transitivity of DDE equivalence (Lemma 5.2)
indicates that, any ancestor of A and B is equivalent to
a proper prefix of A + B and is therefore an ancestor
of A + B. The insertion is also correct with respect
to PC relationship because the number of components
of a DDE label is kept the same as the level of the
corresponding element node.

The correctness of DDE insertion with respect to doc-
ument order follows from Theorem 5.1, Lemma 5.1 and
the following lemma.

Lemma 5.4: Given three DDE labels A and B and C =
A + B, such that A is a sibling of B and A ≺dde B, if A′

is a descendant of A, then A′ ≺dde C.
Proof: We denote A and B as A : v1.v2 . . . vm and

B : w1.w2 . . . wm respectively. From A is a sibling of
B and A ≺dde B, we have v1 ≡v w1, v2 ≡v w2, . . .,
vm−1 ≡v wm−1, vm ≺v wm. It follows from Theorem 5.2
and Theorem 5.1 that v1 ≡v (v1 + w1), v2 ≡v (v2 + w2),
. . ., vm−1 ≡v (vm−1 + wm−1), vm ≺v (vm + wm). Since A′

is a descendant of A, we can denote A′ as v′1.v
′
2 . . . v′m

. . . v′n−1v
′
n where v′1 ≡v v1, v′2 ≡v v2, . . ., v′m−1 ≡v vm−1,

v′m ≡v vm. From Lemma 3.2 and Lemma 3.6, v′1 ≡v w1,
v′2 ≡v w2, . . ., v′m−1 ≡v wm−1, v′m ≺v wm. Thus, A′ ≺dde

C.

5.2.9 Compact DDE (CDDE)
In [10], we have introduced Compact DDE (CDDE)
which is designed to enhance the performance of DDE
for insertions. By defining a one-to-one mapping from
CDDE labels to DDE labels, we can adapt the order and
properties of DDE labels to CDDE labels. How CDDE
labels are ordered is essentially the same as DDE labels.

6 QUALITATIVE COMPARISON

6.1 Order and update

We summarize the orders of the labeling schemes in Ta-
ble 1. For range-based labeling schemes, how the ranges
are ordered determines if they can avoid re-labeling or
not. Both lexicographical order and vector order are dy-
namic enough to make the labeling schemes persistent,
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Labeling scheme Order Component-
wise equality

Component-
wise order

Containment natural NA NA
Pre/post natural NA NA
Prime natural NA NA
QED-containment lex NA NA
QED-Pre/post lex NA NA
V-Containment vector NA NA
V-Pre/post vector NA NA
Dewey lex natural natural
VLEI-Dewey generalized lex natural lex
QED-Dewey generalized lex natural lex
ORDPATH generalized lex natural lex
V-Prefix generalized lex natural vector
DDE generalized lex v-equivalence vector
CDDE generalized lex v-equivalence vector

TABLE 1
Summary of orders of different labeling schemes

but natural order is weak against insertions. For prefix-
based labeling schemes, it is the component-wise order
that determines if a labeling scheme is dynamic. As we
can see, generalized lexicographical order can be used
to characterize existing prefix-based dynamic labeling
schemes.

In addition to different orders, it is worth noting the
inherent differences between prefix-based and range-
based labeling schemes. Compared with range-based
labeling schemes, an obvious advantage of prefix-based
labeling schemes is its ability to determine Sibling and
LCA relationships. However, the performance of prefix-
based labeling schemes is sensitive to the structure of the
XML documents as the size of a prefix label increases
linearly with its level. Range-based labeling scheme, on
the other hand, perform consistently regardless of the
depth of the XML tree.

6.2 Analysis of update and query performance
Although natural order is easy to compare, it is too rigid
to allow dynamic insertions without re-labeling. Lexi-
cographical order appears to be more robust because,
intuitively, both the value of each component and the
number of components contribute to the ordering of
labels. Insertion between two components that are con-
secutive in value can be accommodated by extending the
number of components. However, frequent extensions of
components can lead to significant increase in the overall
size. For example, QED-based labeling schemes perform
poorly for ordered insertions with increase in length at
2 bits per insertion.

In addition, QED based labeling schemes come with
additional encoding costs. That is, the time and computa-
tional costs spent on transforming containment, pre/post
or Dewey labels to the corresponding QED codes. The
process is especially complicated for Dewey labels, con-
sidering that the encoding has to be applied to every
sibling group from root to leaf. Each component in
ORDPATH labeling scheme, as we have seen, consists
of a variable number of even numbers followed by an

Dataset Size
(MB)

Total No.
of nodes

Max/average
fan-out

Max/average
depth

XMark 113 1666315 25500/3242 12/6
Nasa 23.8 476646 2435/225 10/7
Treebank 85.4 2437666 56384/1623 36/8
DBLP 127 3332130 328858/65930 6/3

TABLE 2
Test data sets

odd number. This fact complicates the processing of OR-
DPATH labels in several ways. First of all, all ORDPATH
labels in the initial labeling have to skip even numbers,
which makes them less compact than Dewey. Moreover,
the number of components in an ORDPATH label do
not necessarily reflect the level of the associated element
nodes. We have to count the number of odd numbers in
an ORDPATH label to derive the level information. This
also leads to more complicated relationship computation
such as PC and Sibling, even if the XML document does
not get updated at all.

7 EXPERIMENTS AND RESULTS

7.1 Experimental setup
We focus on the comparison of our vector order-based
labeling schemes against QED-based labeling schemes
and ORDPATH which are all persistent labeling schemes.
It has been shown that persistent labeling schemes have
much lower updating time than labeling schemes that
require re-labeling[6].

The evaluation of these labeling scheme was per-
formed with XMark Benchmark[17], Nasa, Treebank and
DBLP [16] data sets and their characteristics are shown
in Table 2. All the experiments were conducted on a
2.33GHz dual-core PC with 4 GB of RAM.

7.2 Initial labeling
The evaluation of initial labeling is shown in Figure 9,
with measures of label generation time and label size.
It can be seen that the label generation time of vector
order-based and ORDPATH labeling schemes are ap-
proximately the same, which is dominated by scanning
the the document once. QED-based labeling schemes
have much higher label generation time, because, in
addition to scanning the document, they have to perform
encoding into QED codes.

The labels of vector order-based and ORDPATH la-
beling schemes are stored in compressed ORDPATH
format[12]. QED-based labeling schemes use their own
physical storage format, with 0 as the separator be-
tween every two QED codes. The label size of range-
based labeling schemes is generally larger than that of
prefix-based labeling schemes. For range-based labeling
schemes, the label size of QED-based labeling schemes
is slightly less than that of vector order-based ones.
For prefix-based labeling schemes, DDE has the most
compact initial label size for all the four data sets.
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Fig. 9. Initial Labeling

7.3 Querying static document

We test the query performance on all the four data sets.
We present the results from Treebank and DBLP and the
other two data sets shown similar trends. Without any
updates, the labels used for processing queries remain
the same as the initial labels. We evaluate the query
performance on initial labels by computing the most
commonly used five relationships: document order, AD,
PC, sibling and LCA. We choose the first 10000 labels
from the initial labels of Treebank data set in document
order and, for each pair of the labels, we compute all the
five relationships. Note that as pointed out in [11], the
LCA of a set of nodes is effectively the LCA of the first
and the last node of the set in document order. Therefore
we only test the computation of the LCA of two labels
rather than many labels.

The querying time for prefix-based labeling schemes
are shown in Figure10 (a) on all the five relationships.
CDDE is not shown here because its performance is
the same as DDE for static documents. While QED-
Dewey is more efficient than ORDPATH for computing
PC and sibling relationships, it is significantly slower
for comparing document order and less efficient for AD
relationship and LCA computation. For all the five rela-
tionships, our DDE outperforms ORDPATH and QED-
Dewey.

Range-based labeling schemes are evaluated based on
three relationships including document order, AD and
PC. Sibling and LCA are excluded because they are not
supported by range-based labeling schemes. Results in
Figure 10 (b) show that V-Containment and V-Prefix
support the three relations more efficiently than QED-
based labeling schemes.
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Fig. 10. Querying initial labels
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Fig. 11. Uniform insertions

7.4 Update processing

7.4.1 Uniform insertions

We test with insertions made uniformly between every
two consecutive siblings. How these labeling schemes
respond to uniform insertions is shown in Figure 11. The
insertion time of ORDPATH is approximately the same
as our DDE and CDDE whereas QED shows a slower
updating time, as illustrated in Figure 11 (a). In Figure 11
(b), the comparison of label size after uniform insertions
remains similar to that for the initial labels (Figure 9
(b)), with CDDE giving the most compact labels. The
comparison of range-based labeling schemes and query
performance after uniform insertions are ignored here,
since the quality of these labeling schemes is not much
affected by uniform insertions.
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Fig. 12. Random skewed insertions

7.4.2 Skewed insertions
We classify skewed insertions into two different cases
that are common in practice:
• Ordered skewed insertion refers to repeatedly in-

serting before or after a particular node.
• Random skewed insertion refers to repeatedly in-

serting between two nodes in random order.
Compared with uniform insertions, skewed insertions

can have a more significant impact on the resulting
qualities of labels. Figure 12 (a) (b) and (c) shows the
updating cost and label size after ordered skewed in-
sertions. The insertion time of ORDPATH, DDE and
CDDE are negligible and their label sizes only increase
slightly. In contrast, QED-Dewey has relatively higher
updating time and its label size has shown a much
higher increase. This result conforms to our previous
discussions that the lengths of QED codes can increase
at 1 or 2 bits per insertion in case of ordered skewed
insertion, resulting in the fast increase of the overall
label size. The results for random skewed insertions are
shown in Figure 12 (d), (e) and (f). The updating time
and label size of ORDPATH increase at a much faster rate
than the other labeling schemes. This is because random
skewed insertions greatly increase the amount of ‘caret’s
that are needed to be used in ORDPATH labels. For both
types of insertions, our DDE and CDDE have shown
the best performance in terms of updating time and
label size. In addition, the label size of CDDE increases
at a slower rate than DDE, which is what we have
expected. Figure 14 and 15 show the response of range-
based labeling schemes to ordered skewed insertions.
The result for random skewed insertions is similar. It
can be seen that V-Containment and V-Prefix labeling
schemes are little affected by ordered insertion sequence
while QED encoded range-based labeling schemes have
shown much higher growth rate in label size.
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Fig. 13. Relationship computation time

7.5 Querying dynamic document

To compare the query performance on dynamic XML
documents, we adopt the same settings as the static case
except the 10000 labels chosen include 2000 labels that
are newly inserted. Figure 13 (a) gives the comparison
of relationship computation time after ordered skewed
insertions. Given the fast increase of QED-Dewey label
size, it conforms to our expectation that its query re-
sponse time also increases significantly, especially for
document order. The comparison after random skewed
insertions is shown in Figure 13 (b) where the query
response time of ORDPATH increases significantly, par-
ticularly for sibling relationship. Nevertheless, our DDE
and CDDE have demonstrated robust performance re-
gardless of the order and number of insertions. Their
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Fig. 14. Updating Treebank data set
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Fig. 15. Updating DBLP data set

query response times are least affected after both types
of skewed insertions. We have similar observation for
range-based labeling schemes in Figure 14 and 15.

8 CONCLUSION

In this paper, we study the problem of designing dy-
namic XML labeling scheme from a novel order-centric
approach. A framework has been developed to charac-
terize different labeling schemes and provide insight into
their behaviors for updates, paving the way for future
studies on this topic. After pointing out the limitations
of existing labeling schemes, we propose vector order
to solve this problem. We illustrate how vector order
can be applied to both range-based and prefix-labeling
to process insertions. Our solutions are highly efficient
for static documents, while being able to completely
avoid re-labeling when updates take place. In addition,
experimental results demonstrate the resilience of our
solutions against skewed insertions. In future we hope
to apply our techniques to other applications involving
order-sensitive updates.
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