
Noname manuscript No.
(will be inserted by the editor)

A General Framework to Resolve the MisMatch Problem in XML
Keyword Search

Zhifeng Bao · Yong Zeng · Tok Wang Ling · Dongxiang Zhang · Guoliang Li · H.
V. Jagadish

Received: date / Accepted: date

Abstract When users issue a query to a database, they have
expectations about the results. If what they search for is un-
available in the database, the system will return an empty
result or, worse, erroneous mismatch results. We call this
problem the MisMatch Problem. In this paper, we solve the
MisMatch problem in the context of XML keyword search.
Our solution is based on two novel concepts that we intro-
duce: Target Node Type and Distinguishability. Target Node
Type represents the type of node a query result intends to
match, and distinguishability is used to measure the impor-
tance of the query keywords. Using these concepts, we de-
velop a low-cost post-processing algorithm on the results of
query evaluation to detect the MisMatch problem and gen-
erate helpful suggestions to users. Our approach has three

Z. Bao (B)
School of CS&IT, RMIT University, Melbourne, Australia, 3000
E-mail: zhifeng.bao@rmit.edu.au

Y. Zeng (B)
School of Computing, National University of Singapore, Singapore,
117417
E-mail: zengyong@comp.nus.edu.sg

T. W. Ling
School of Computing, National University of Singapore, Singapore,
117417
E-mail: lingtw@comp.nus.edu.sg

D. Zhang
School of Computing, National University of Singapore, Singapore,
117417
E-mail: zhangdo@comp.nus.edu.sg

G. Li
Department of Computer Science and Technology, Tsinghua Univer-
sity, Beijing, China, 100084
E-mail: liguoliang@tsinghua.edu.cn

H. V. Jagadish
Elec. Engg. and Computer Science, University of Michigan, MI, USA,
48109
E-mail: jag@umich.edu

noteworthy features: (1) for queries with the MisMatch prob-
lem, it generates the explanation, suggested queries and their
sample results as the output to users, helping users judge
whether the MisMatch problem is solved without reading
all query results; (2) it is portable as it can work with any
Lowest-Common-Ancestor-based matching semantics (for
XML data without ID references) or Minimal-Steiner-Stree-
based matching semantics (for XML data with ID references)
which return tree structures as results. It is orthogonal to the
choice of result retrieval method adopted; (3) it is lightweight
in the way that it occupies a very small proportion of the
whole query evaluation time. Extensive experiments on three
real datasets verify the effectiveness, efficiency and scalabil-
ity of our approach. A search engine called XClear has been
built and is available at http://xclear. comp.nus.edu.sg.

Keywords XML · keyword search · MisMatch problem

1 Introduction

When users issue a query to a database, they have expec-
tations about the results. If what they search for is unavail-
able in the database, due to reasons like product removed
from shelves, clothes size unavailable, etc., the result they
seek may not be found in the database. In such a case, the
system may return an empty result or, worse, return erro-
neous results. We call this the MisMatch Problem.

For example, a user wants to search for a laptop. She
wants the model Vaio W with color being red. If red color
is unavailable for laptop Vaio W in the database, then obvi-
ously the user will not get what she wants no matter how the
data is organized or what kind of query it is.

The MisMatch problem is a natural and common prob-
lem. It can happen in any form of information retrieval over
data of any structure, i.e. can be either structured query or
keyword query on structured, unstructured and semi-structured

2 Zhifeng Bao et al.

data. Such a problem has attracted a lot of research effort
in the context of structured queries on structured data [17,
6,31,29,30], with descriptions such as failing queries and
non-answer queries. However, no such work has been done
in the context of keyword search on semi-structured data.
This is an important area to address. According to our ex-
periments conducted on XClear, an XML keyword search
engine available at [41], users suffered from such a problem
for 27% of their queries.

What can we offer to help the user? Ideally, we can get
the following help if we are interacting with a human:

1. Notification: “Sorry, we do not have such a product.”
2. Explanation: “Because red color is unavailable for Vaio

W.”
3. Suggestion: “You can choose some other available col-

ors: white, blue and pink.”

When structured queries are issued over structured data
(relational tables), the MisMatch problem (i.e. what users
search for is unavailable in the database) leads to empty re-
sult. Detecting the problem is trivial because empty result is
obvious. A message (notification part) will be given to users.
Some existing works [17,6] try to explain the non-answer
queries by pinpointing the constraint causing the empty re-
sult (explanation part). Some works [31,29,30] focus on gen-
erating some alternative constraints to come up with some
suggested queries (suggestion part).

When keyword queries are issued over unstructured data
(in web search), the MisMatch problem will lead to a list of
mismatch results. It is even difficult to detect the problem in
the first place. Because most likely the results being returned
are not empty. It could be the case that the query keywords
appearing in one document are far away from each other and
not semantically related. E.g., for a keyword query ‘Vaio W
red’, if color red is not available for laptop Vaio W, there
still can be many webpages being returned, where ‘Vaio W’
appears in one part of the webpage while ‘red’ appears in
another part of the webpage. It leads to mismatch results.
Therefore, we need to analyze whether the keywords are
‘semantically’ related in the results. Such analysis is chal-
lenging because the data is unstructured. A limited solution
to a part of the problem (only the suggestion generation part)
is to mine some similar and popular queries from query log
[19,42] and show them to users (suggestion part). But the
downside is that such popular queries do not guarantee to
have reasonable results.

In this work, we focus on identifying and solving the
MisMatch problem in the context of keyword search over
semi-structured data, i.e. XML data. Most research works on
XML are done based on XML data without ID references. In
this paper, we also focus on solving the MisMatch problem
on XML keyword search without considering ID references.
But later in Sec. 6, we will extend our MisMatch problem

solution onto XML keyword search which considers ID ref-
erences, where the matching semantics are different. In the
rest of the paper, without specification, we are talking about
XML without ID references by default. We will only talk
about XML data with ID references in and after Sec. 6.

Now, let us take a look at how the MisMatch problem
behaves in the context of XML keyword search.

Example 1 An XML data tree in Figure 1 describes the item
information of an online shopping mall. Suppose a user wants
to buy a laptop. She prefers Sony’s Vaio W with red color,
and wants to know how much it is. Then she may issue a
query Q = {‘Vaio’,‘W’,‘red’,‘price’} to search for a lap-
top. Unfortunately, no laptop can meet all her requirements.
Vaio W only has three colors: white, blue and pink. Existing
keyword search methods, such as LCA (Lowest Common
Ancestor) [33], SLCA [38], ELCA [12] or even the most
recent variant [22] of LCA, still can find some results con-
taining all query keywords. One of the query results is the
subtree rooted at shop:0.0.0, where keyword ‘red’ matches
one laptop while the rest keywords match another laptop.
Obviously, the subtree rooted at shop is not expected by the
user, as it contains too much irrelevant information, i.e. all
laptops. What is worse, there could be hundreds of shops
selling Viao W and therefore hundreds of mismatch results
are returned. In this case, imagine if the user was interacting
with a salesman, she would be informed of the unavailabil-
ity of the product and suggested with some other available
colors for the laptop Vaio W. �

As we can see, the MisMatch problem in XML keyword
search also leads to a list of mismatch results. It poses three
challenges for a search engine to help users: (1) how to de-
sign a detection method to distinguish queries with the Mis-
Match problem from those without; (2) how to explain why
the query leads to mismatch results; (3) how to find good
suggestions, and what should be a good way to present them
to users.

Our solution to the MisMatch problem is to run a small
post-processing job at the end of the query evaluation, con-
sisting of two components, namely detector and suggester.
The former addresses the first challenge above, and the latter
addresses the remaining two.

The central idea of our technique for mismatch detection
is based on the notion of Target Node Type (see Sec. 2 for the
formal definition). Intuitively, Target Node Type denotes the
type of node a query result r intends to match. We calculate
it at schema level. Meanwhile, the actual root of result r is
calculated at data level by existing techniques. If r’s root
does not match its Target Node Type, we claim that r misses
the target. We can perform a similar check on all results of
a query Q. If all results of a query Q miss their targets, then
we say that Q has the MisMatch problem.

A General Framework to Resolve the MisMatch Problem in XML Keyword Search 3

electronics
0.0

online_mall
0

Alan
Priceshop

0.0.0

name
0.0.0.0

EStage

rating
0.0.0.1

4.6

ID
0.0.0.2

SP072

laptop
0.0.0.3

shop
0.0.1

books
0.1

brand
0.0.0.3.0

model
0.0.0.3.1

Hellet
Packard

Pavilion

color
0.0.0.3.2

red

grocery
0.2

owner
0.3

color
0.0.0.3.3

purple

price
0.0.0.3.4

$469

OS
0.0.0.3.5

Windows
7

laptop
0.0.0.4

brand
0.0.0.4.0

model
0.0.0.4.1

Sony Vaio W

color
0.0.0.4.2

white

color
0.0.0.4.3

blue

price
0.0.0.4.5

$449

OS
0.0.0.4.6

Windows
vista

color
0.0.0.4.4

pink

name
0.0.1.0

Blue Pro

rating
0.0.1.1

4.7

ID
0.0.1.2

SP066

laptop
0.0.1.3

brand
0.0.1.3.0

model
0.0.1.3.1

Hellet
Packard

Omni

color
0.0.1.3.2

black

price
0.0.1.3.3

$399

OS
0.0.1.3.4

Windows
7

... ...

Keyword Frequency:
�red� - 90
�price� - 200
�Vaio W� - 1

Fig. 1 Sample XML Document about an Online Shopping Mall

Once a mismatch is detected, we propose a concept called
Distinguishability to find ‘important’ keywords in the orig-
inal query, and use these to explain the reason for the mis-
match and to suggest possible relaxations. Distinguishabil-
ity is inspired by the tf*idf scoring measure proposed in IR
[32] while taking the structural property of XML data into
account. Then based on each query result r we try to find
some ‘approximate’ query results, which contain these ‘im-
portant’ query keywords and are structurally consistent with
r, while having reasonable replacement for the rest ‘less-
important’ query keywords. Finally, the explanation and sug-
gested queries can be inferred from the approximate results.
To further improve the user experience, our suggester also
generates a sample result for each suggested query Q′ even
without evaluating the query Q′, which helps users to judge
whether Q′ is helpful.

Putting these together, we have our complete algorithm.
The input is a (ranked) list of all results returned by search
engine. For a user query that has the MisMatch problem, the
output of our algorithm consists of three parts:

1. An explicit notification to user: “what you search for is
not available”.

2. An explanation on which keyword(s) in the query leads
to mismatch results.

3. Some data-driven suggested queries, which guarantee to
have reasonable results.

Note that the quality of query results is always the holy grail
of keyword search problem, especially for those queries that
have ambiguity problem. As no existing approach can solve
the ambiguous query thoroughly [2], our solution cannot
guarantee the detection of the MisMatch problem to be hun-
dred percent correct as well, which has actually been studied
in our experiments as well. That also explains why we adopt
a post-processing without affecting the results of the original
query, i.e. the results of their original query will be returned
together with our generated suggestion.

There are many possible relaxations of a given query,
and many of these may themselves also be empty (result
in mismatch). It is important to ensure that the suggestions
given have at least some results and are not mismatch them-
selves.

As discussed in the related work section below, there is
a great body of work on query relaxation and on generating
partial match answers. These systems, while valuable, do
not address all three of the challenges we described above,
and hence are not suited for our problem context. In par-
ticular, many of them generate large lists of possible partial
match answers that the user has to wade through even to re-
alize that there is a mismatch at all.

In summary, our major contributions include:

1. We identify the MisMatch problem in XML keyword
search. We detect the MisMatch problem by investigat-
ing into the query results and inferring the Target Node
Type for each query result. It is portable as it can work
with any LCA-based matching semantics and is orthog-
onal to the choice of result retrieval method.

2. We design a data-driven approach to generate explana-
tion and suggested queries by finding approximate query
results, which contain important keywords in the origi-
nal query Q while having consistent structure with the
results of Q. We propose Distinguishability, which is a
structure-aware tf*idf scoring measure, to quantify the
importance of keywords.

3. We propose a novel bitmap-based labeling scheme to
accelerate finding approximate results. As a result, the
MisMatch detector and suggester is lightweight: it takes
only 4% of the whole query processing time.

4. We further extend the detector and suggester to han-
dle XML data with ID references, where the data is no
longer a tree structure and the search semantics/methods
are different, i.e., Minimal-Steiner-Tree-based search se-
mantics/methods. This results in a general framework

4 Zhifeng Bao et al.

solving the MisMatch problem, which is portable, data-
driven and lightweight.

5. We build a search engine called XClear [41] which em-
beds the above MisMatch problem detector and suggester,
and is capable of handling any XML data with/without
ID references. Extensive experiments have verified the
effectiveness, efficiency and scalability of our method.

We first solve the MisMatch Problem over XML data
without ID references. Detecting the MisMatch problem is
in Sec. 2. Sec. 3 discusses how to find the explanations and
suggested queries. Sec. 4 presents our labeling scheme for
efficient approximate results detection. Sec. 5 presents in-
dices and algorithms. Then we further extend our MisMatch
solution onto XML data with ID references in Sec. 6. Exper-
iments are in Sec. 7. Related works are in Sec. 8, where we
also state the difference between this work and our previous
work in [39]. Then we conclude with future work in Sec. 9.

2 Detecting the MisMatch Problem over XML Data
without ID References

In this section, we would like to present how to detect
the MisMatch problem over XML data without ID refer-
ences. First, we model the XML document and the query
results (Sec. 2.1). Then we will talk about how the detector
will infer user’s possible search target(s) based on the query
results (Sec. 2.2). Finally the MisMatch Problem can be eas-
ily detected by checking the inferred search target(s) and the
query results (Sec. 2.3).

2.1 Preliminaries

2.1.1 Data Model

We model a data-centric XML document without ID ref-
erences as a rooted, labeled and ordered tree. Each node of
the tree corresponds to an element of the XML data, and it
has a tag name and (optionally) some value. Without loss
of generality, we simply use the word “node” to mean the
node in an XML tree. To accelerate the keyword query pro-
cessing, all existing works adopt the dewey labeling scheme
[37]. As shown in Figure 1, for a node n, its dewey label
consists of a sequence of components that implicitly contain
all ancestor nodes on the path from the document root to n.
E.g., from laptop:0.0.0.3, it is easy to find that the label of
its parent is 0.0.0.

Definition 1 Node Type. The type of a node n in an XML
tree, denoted as n.type, is the tag name path from root to
n.�

In the rest of the paper, the tag name of n is used to
represent the node type of n if no ambiguity is caused.

Definition 2 Keyword Match Node. A node n is called a
keyword match node for a keyword k if the tag name or the
value part of n contains k. �

Definition 3 Subtree-contain. A node n is said to subtree-
contain another node m if n equals to m or there exists a
directed path from n to m. n is also said to subtree-contain
the keywords in m’s tag name or value part.

E.g., in Figure 1, the node type of laptop:0.0.0.3 is
online mall/electronics/shop/laptop; color:0.0.0.3.2 is
a keyword match node w.r.t. keyword ‘red’; laptop:0.0.0.3 is
said to subtree-contain node color:0.0.0.3.2; laptop:0.0.0.3
is also said to subtree-contain keyword ‘red’ as ‘red’ is the
value part of color:0.0.0.3.2.

2.1.2 Query Result Format

To define a general format to represent the query results,
let us look at the existing matching semantics first. Existing
matching semantics so far, such as SLCA [38,15], ELCA
[12], entity-based SLCA [26] are all based on the concept
of lowest common ancestor (LCA). Let lca(m1, ..., mn) be
the lowest common ancestor of nodes m1,...,mn. For a given
query Q = {k1,...,kn} and an XML document D, Li denotes
the inverted list of ki. Then the LCAs of Q on D are defined
as LCA(Q) = {v | v = lca(m1, ...,mn),mi ∈ Li(1 ≤ i ≤
n)}. Both SLCA and ELCA define a subset of LCA(Q), and
we refer readers to Sec. 8 for detailed definitions of SLCA
and ELCA, and their relationships with LCA.

Definition 4 Query Result Format. For a keyword query
Q={k1, ...,kn}, we define the format of a query result r as:

r = (vlca,
{
m1,m2, ...,mn

}
)

where mi is a keyword match node w.r.t. keyword ki (i ∈
[1, n]), and vlca is the lowest common ancestor of nodes
m1,..., mn, i.e. vlca = lca(m1, ...,mn). �

Defn. 4 is highly general in two aspects: (1) it is com-
patible with any existing LCA-based matching semantics
adopted by search engines, because one necessary condition
for a node v to be an SLCA (or ELCA) node of a query Q
is: v must be a lowest common ancestor of a set of keyword
match nodes mi w.r.t. Q. (2) Our query result format forms
the skeleton for both Path Return (returning the paths in the
XML tree from each LCA node to its keyword match nodes)
[15,24] and subtree Return (returning the subtree rooted at
each LCA node) [12,38]. This observation is important in
explaining the portability feature of our solution to detect
and resolve the MisMatch problem later in Sec. 3.4.

A General Framework to Resolve the MisMatch Problem in XML Keyword Search 5

2.2 Inferring the Target Node Type for a Query Result

In this section, we are going to infer user’s search tar-
get(s) based on the query results. It is obvious that user’s
search intention is not dependent on the availability of the
data. Normally, a user issues a keyword query with her search
target in mind but without knowledge of the availability of
the data. So user’s search intention should be inferred by
analyzing the semantics of her query keywords. However,
existing LCA-based result retrieval methods generate the
query results purely at data level without inferring user’s
search intention at all. Therefore, we propose to use node
types to simulate the semantics of the keyword match nodes,
which are matched by the query keywords. By analyzing
those node types, we will infer user’s search intention at
schema level.

Since a keyword can match different types of nodes,
user’s search target may be various for a certain query. E.g.,
keyword “price” can match an owner’s name (node owner:0.3)
or the price of a product (node price:0.0.0.3.4) in Figure 1.
But a certain query result r corresponds to a unique search
target. Because each query keyword has a unique correspond-
ing keyword match node in a given query result r. Therefore,
we introduce a concept called Target Node Type (TNT) to de-
note the node type which a query result r intends to match.

To infer the TNT of a result r, we propose to use node
types to simulate the semantics of each keyword match node.

Example 2 For the query Q = {‘V aio’,‘W ’,‘red’,‘price’}
in Example 1, if the user is interacting with a salesman,
the salesman will know that the user is finding a laptop be-
cause the salesman knows the meaning of each query key-
word. Here for XML keyword search, one result is r =

(0.0.0, {0.0.0.4.1, 0.0.0.4.1, 0.0.0.3.2, 0.0.0.4.5}). We use
node types to simulate the semantics of each keyword match
node. The node types of each distinct keyword match node
are (‘Vaio’ and ‘W’ match the same node):
0.0.0.4.1: {online mall/electronics/shop/laptop/model}
0.0.0.3.2: {online mall/electronics/shop/laptop/color}
0.0.0.4.5: {online mall/electronics/shop/laptop/price}.

Then we can know that the user inputs three kinds of in-
formation: laptop model, laptop color and laptop price. The
user’s search intention, i.e. a laptop, corresponds to the node
type “online mall/electronics/shop/laptop”, which is closely
related to the above three node types. �

Following a similar philosophy of LCA, which finds the
lowest/smallest nodes connecting all query keywords as the
most relevant results, we define the lowest node type which
connects to all the above node types at schema level as the
Target Node Type, where the formal definition will be intro-
duced later. It is the most relevant node type connecting to
user’s input information. E.g., in Example 2, {online mall/

electronics/shop/laptop} is the lowest node type connect-
ing to laptop model, laptop color and laptop price at schema
level even though no laptop can meet all the requirements at
data level.

However, an XML document actually comes with some
constraints on how many nodes of a type ta can be subtree-
contained by another node of type tb. E.g., a laptop node
(of node type online mall/electronics/shop/laptop) can
subtree-contain only one laptop model node (of node type
online mall/electronics/shop/laptop/model) while it can
subtree-contain more than one laptop color node (of node
type online mall/electronics/shop/laptop/color). Sim-
ilarly, a shop node (of node type online mall/electronics

/shop) can subtree-contain multiple laptop node and there-
fore a shop node also can subtree-contain multiple laptop
model nodes.

Such constraints will affect the inferring of Target Node
Type when we try to find the lowest node type connecting to
user’s input information at a schema level.

Example 3 Suppose a user wants to find a shop selling two
laptop models, both model Pavilion and Omni produced by
Hewlett Packard, she may issue a query Q = {‘Hewlett’,
‘Packard’, ‘Pavilion’, ‘Omni’} in Figure 1, which contains
two different laptop model names. If the user is interacting
with a salesman, the salesman will know the user is not find-
ing a particular laptop but something related to two differ-
ent laptops, e.g. a shop selling those two laptops. Here in
terms of XML keyword search, one query result is a subtree
rooted at an eletronics node: r=(0.0,{0.0.0.3.0, 0.0.0.3.0,
0.0.0.3.1, 0.0.1.3.1}). The node types of each distinct key-
word match node are (‘Hewlett’ and ‘Packard’ match the
same node):
0.0.0.3.0: {online mall/electronics/shop/laptop/brand}
0.0.0.3.1: {online mall/electronics/shop/laptop/model}
0.0.1.3.1: {online mall/electronics/shop/laptop/model}.
The user’s keywords are describing one laptop brand and
two different laptop models, i.e., the user inputs two differ-
ent laptop names matching two different laptop models. In
such a case, assuming one laptop can only have one laptop
model name in the data, the lowest node type connecting the
above three node types is no longer online mall/electronics/
shop/laptop. Because there are two different laptop model
nodes here while a laptop node can subtree-contain only one
laptop model node. Instead, the lowest node type connecting
the above three node types is online mall/electronics/shop
because a shop node can subtree-contain multiple laptop
model nodes. Therefore, we can infer that the search inten-
tion is to find a shop selling two laptop models rather than
finding a particular laptop model. �

The containment constraints among different types of
nodes can be easily inferred from the schema of the XML

6 Zhifeng Bao et al.

document. E.g. DTD is a commonly used XML schema lan-
guage, where operator * (zero or more occurrences), + (one
or more occurrences), ? (zero or one occurrence) are used
to specify the occurrence constraints of sub-elements or at-
tributes under a particular type of node. Let t1.maxContain(
t2) be the maximum number of nodes of type t2 which can
be subtree-contained by another node of type t1. The range
is [0,+∞]. E.g., in Figure 1, if a laptop node can subtree-
contain at most one laptop model node, then we have laptop
.maxContain(model) = 1; if a shop node can subtree-
contain multiple laptop nodes, we have shop.maxContain(
laptop) = +∞; besides, since shop node is the parent of
laptop node and laptop node is the parent of model node,
we can further infer shop.maxContain(model) = +∞ by
multiplying the above two values. Such a calculation can be
done offline based on the schema. If the schema of the XML
document is unavailable, we can infer such constraints ap-
proximately by scanning the XML document to summarize
a DataGuide [11]1.

Now we need to count the number of occurrences of
each different node type for the keyword match nodes. Let
T = {t1, t2, ..., tx} be a set of different node types for the
keyword match nodes. As some of the keyword match nodes
could be of the same node type, let count(ti) be the number
of keyword match nodes which are of type ti. E.g. for the
query result in Example 3, there are three distinct keyword
match nodes: two of them are of type online mall/electronics
/shop/laptop/model and one of them is of type online mall
/electronics/shop/laptop/brand. In this case, T = {brand,
model}, count(brand) = 1 and count(model) = 2.

We are trying to find the the most relevant node type
connecting to user’s input as the TNT, i.e., to find the lowest
node type which can connect to all the node types that are
matched by the query keywords. Next we will define the
Target Node Type of a result r formally.

First, TNT should be related to and connecting to each
node type in T, i.e. the TNT should be a common prefix
of the node types in T. Second, a node of the Target Node
Type should be able to subtree-contain all occurrences of
each node type in T. Last, TNT should be as low as possible
such that it can connect to each node type in T as closely
as possible. So we define the extended TNT formally as fol-
lows:

Definition 5 Target Node Type (TNT) for a single query
result. Given a query Q = {k1, k2, ..., kn} and a query
result r = (vlca, {m1,m2, ...,mn}) on an XML document

1 Specifically, we use strong DataGuide proposed in [11]. Our pur-
pose of using DataGuide is only to provide a data structure to store the
occurrence constraints summarized from the XML data. Many other
data structures are possible.

D, let T = {t1, t2, ..., tx}2 be the set of different node types
for m1 to mn, the Target Node Type TNT (r) for result r is
defined as:

TNT (r) = t

such that t satisfies the following 3 conditions
- Condition 1: t ∈ commonPrefix(t1, t2, ..., tx);
- Condition 2: t.maxContain(ti) ≥ count(ti), i ∈ [0, x];
- Condition 3: @t′ such that t′ is a descendent of t and t′ also
satisfies condition 1 and condition 2,
where commonPrefix(t1, t2, ..., tx) represents all possi-
ble common prefixes for a set of node types; t.maxContain(
ti) represents the maximum number of ti type nodes which
can be subtree-contained by a t type node; count(ti) repre-
sents the number of different keyword match nodes in m1 to
mn which are of node type ti. �

TNT is the lowest node type which can connect to all
the node types that are matched by the query keywords. It is
defined at the schema level by making use of node types, no
matter whether what users search for exist in the XML doc-
ument at data level or not. To calculate the TNT for a given
result, we check the prefixes of each node type in T from the
lowest one upwards, see whether it satisfies condition 2.

In the following two examples, we will infer the TNT ac-
cording to the above definition for two sample queries, both
of which are with the MisMatch problem, i.e., what users
search for is unavailable in the data. In Example 4, all key-
word match nodes are of different node types; in Example 5,
some keyword match nodes are of the same node type.

Example 4 For the query Q = {‘V aio’,‘W ’,‘red’,‘price’}
in Example 1, one of the results is r = (0.0.0, {0.0.0.4.1,
0.0.0.4.1, 0.0.0.3.2, 0.0.0.4.5}), where the node types of each
distinct keyword match node are (‘Vaio’ and ‘W’ match the
same node):
0.0.0.4.1: {online mall/electronics/shop/laptop/model}
(denoted as t1)
0.0.0.3.2: {online mall/electronics/shop/laptop/color}
(denoted as t2)
0.0.0.4.5: {online mall/electronics/shop/laptop/price}
(denoted as t3).

The set of distinct node types T = {t1, t2, t3}, where
count(t1) = 1, count(t2) = 1 and count(t3) = 1.

Then we check the prefixes of all node types in T. The
lowest one is t = “online mall/electronics/shop/laptop”.
Suppose we have the following constraints (either inferred
from the XML schema or by scanning the XML document):
one laptop node can subtree-contain one model node, one
price node and multiple color nodes, then it will satisfy:
t.maxContain(t1) = 1 ≥ count(t1) = 1, t.maxContain(

2 ti may not necessarily be a one-to-one mapping to mi. Because
two keyword match nodes, say mi and mj , could be of the same node
type.

A General Framework to Resolve the MisMatch Problem in XML Keyword Search 7

t2) = +∞ ≥ count(t2) and t.maxContain(t3) = 1 ≥
count(t3).

Therefore, TNT (r) = t = “online mall/electronics/
shop/laptop” even though no laptop can meet all the user’s
requirements at data level. It is the lowest node type which
can connect to all the node types that are matched by the
query keywords. �

Example 5 For the query Q = {‘Hewlett’,‘Packard’,
‘Pavilion’,‘Omni’} in Example 3, since there is no shop
selling both of these models in Figure 1, the results being
returned are not shops as expected by the user. One of the re-
sults is r = (0.0, {0.0.0.3.0, 0.0.0.3.0, 0.0.0.3.1, 0.0.1.3.1}),
where the node types of each distinct keyword match node
are (‘Hewlett’ and ‘Packard’ match the same node):
0.0.0.3.0: {online mall/electronics/shop/laptop/brand}
(denoted as t1)
0.0.0.3.1: {online mall/electronics/shop/laptop/model}
(denoted as t2)
0.0.1.3.1: {online mall/electronics/shop/laptop/model}
(denoted as t2 which is the same as the previous one).

The set of distinct node types T = {t1, t2}, where count(
t1) = 1 and count(t2) = 2.

Then we check the prefixes of all node types in T. The
lowest one is t = “online mall/electronics/shop/laptop”.
Suppose we have the following constraints (either inferred
from the XML schema or by scanning the XML document):
one laptop node can subtree-contain one brand node and one
model node, then we will have: t.maxContain(t1) = 1 ≥
count(t1) = 1 but t.maxContain(t2) = 1 � count(t2) =
2. As we can see, t is not the TNT as a laptop node cannot
subtree-contain two model nodes.

Then we will check another prefix t′ = “online mall/

electronics/shop”, which is just above t. Suppose we have
the following constraints in the XML document (either in-
ferred from the XML schema or by scanning the XML doc-
ument): one shop node can subtree-contain multiple brand
nodes while it can subtree-contain multiple model nodes,
then we have: t′.maxContain(t1) = +∞ ≥ count(t1) =

1 and t.maxContain(t2) = +∞ ≥ count(t2) = 2.
Therefore, Target Node Type of result r is TNT (r) =

t′ = “online mall/electronics/shop”. It is the lowest node
type which can connect to all the node types that are matched
by the query keywords. �

Our solution assumes there is no outer semantics pro-
vided. Because usually XML data exists without such in-
formation, so that we use node types to simulate semantics,
where two nodes of the same type will be with the same se-
mantics. If we do have outer semantics, like thesaurus, on-
tology, etc., we can further improve our approach such that
we can even tell that node types “/laptop/color” and “/note-
book/color” are with the same semantics while node types

“/owner/name” and “/product/name” are with different se-
mantics. This will be one of our future work.

Similar to how a salesman understands a customer’s re-
quest (in Example 2), user’s search intention should be in-
ferred by analyzing the semantics of users’ query keywords
w.r.t. both the meta-data and the data. The intuitive idea of
Target Node Type is to use node types (at meta-data level) to
simulate the semantics of each keyword match node, which
contains the matching query keyword(s) (at data level). By
analyzing those node types, we can intuitively infer users’
search intention.

2.3 Detecting The MisMatch Problem based on Target
Node Type

With the Target Node Type of a query result r being in-
ferred, the detector should figure out whether there is a mis-
match between the TNT of r and the actual root of r, namely
vlca. If what users search for exists in the data, these two
should be consistent to each other.

Definition 6 Given a query Q = {k1, k2, ..., kn} and a
query result r = (vlca, {m1,m2, ...,mn}) on the XML data
D, if vlca is not of the same node type as TNT (r), the query
result r misses the target. �

For result r in Example 4, vlca.type = shop̸=laptop =
TNT (r), so we say r misses the target. Now, we can for-
mally define the MisMatch problem.

Definition 7 MisMatch Problem. Given a query Q and its
results R retrieved from the keyword search engine, Q has
the MisMatch problem if all r ∈ R misses the target. �

As we mentioned earlier in Sec. 2.2, different users have
different search targets for a certain query. Here we choose
to take a conservative approach: we only judge a query to
have the MisMatch problem when there is a mismatch for
all possible search intentions. Such a conclusion holds for
all users with different intentions. E.g., for the result r in
Example 4, we inferred that it misses the target. In a similar
way, we will also calculate a TNT for each of the other re-
sults (if any). We will claim that the query has the MisMatch
problem only if all the results miss their corresponding tar-
get.

Moreover, users usually investigate the retrieved results
starting from the top-ranked ones. Therefore, without loss of
generality, we can also easily extend Defn. 7 by considering
the top-K retrieved results of Q, such that we can adjust the
aggressiveness of the approach by changing the value K. K
can be as aggressive as 1 or can be as tolerant as the total
number of results of query.

Time Complexity of the detector is O(|R|), which is very
efficient. As discussed in Sec. 5.1 later, we store the type in-
formation of each node when building the keyword inverted

8 Zhifeng Bao et al.

list. Thereby for each r∈R, TNT (r) can be computed in
O(1) time assuming the number of keywords in a query and
the depth of the XML tree are bounded by some constants.
Summary of underlying intuitions:
Note that, when user specifies a structured query like SQL,
they need to specify their target in select clause and predi-
cates in where clause. As an analogy, the node type (Defini-
tion 1) is an implicit representation of predicates specified in
a structured query, while the difference is that in a keyword
query you have no way to specify constraint on the structural
relationship among keywords. Thereby, we try to collect the
possible search predicates (in form of the node types asso-
ciated with each query keyword) in a keyword query, that
comes out Definition 5. Since our primary goal is to de-
tect the query that has MisMatch problem, we exploit the
inconsistency between this “target” (at structure level) and
the target (i.e. root node of result r at content level) to jus-
tify whether a MisMatch problem occurs. That results in our
Definition 6 “Miss the Target”. The intuitive idea of Mis-
Match problem (in Definition 7) is: if there is a target incon-
sistency between structure level and content level for ALL
the results of a query, we can safely conclude what users
search for is unavailable in the database.

3 Explanations and Suggestions for the MisMatch
Problem over XML Data without ID References

As discussed in Sec. 2, the main feature of the Mis-
Match problem is: there does not exist a single TNT node
that subtree-contains all query keywords. So the query key-
words have to scatter in more than one TNT node and then
lead to a mismatch result. As a result, the root of the returned
subtree is always an ancestor of the TNT nodes which are
expected by the user. Given a user query Q={k1, k2, ..., kn}
and a mismatch query result r=(vlca,{ m1,m2, ...,mn}),
where mi is a keyword match node for ki, the basic idea to
find the explanations and some promising suggested queries
can be illustrated in three steps.
Step 1: Since each keyword match node mi in r may contain
several keywords K in Q, we first propose a tf*idf -inspired
heuristic called distinguishability to score the importance of
such K.
Step 2: We then try to find the approximate query results,
i.e. r′ = (v′lca,{m′

1,m
′
2, ...,m

′
n}), which are some subtrees

containing the ‘important’ keywords (derived by Step 1).
An ideal approximate result r′ should satisfy the following
properties: (a) the node type of r′ should be the same as
TNT (r); (b) for each keyword match node mi in original
result r, there always exists a node m′

i that has the same
node type as mi (i ∈ [1, n]). By such properties, it can en-
sure at least the structure of r′ and r are consistent with each
other.

Step 3: Then, we can pinpoint which keyword(s) in the user’s
query lead to the mismatch results, i.e. the query keywords
not contained by the approximate results. This is the expla-
nation part. We can further infer the suggested queries by
replacing those keywords with the keywords associated with
the aforementioned m′

i (in approximate result) in step 2.
Step 1 is illustrated in Sec. 3.1, and the last two steps are

described in Sec. 3.2. Lastly, we complement our suggester
by discussing how to rank the suggested queries in Sec. 3.3.

3.1 Distinguishability

In this section, we will present a concept to measure the
importance of query keywords, namely distinguishability.
We find that the importance of query keywords is closely
related to what type of nodes they match. E.g., in Figure 1,
keyword ‘blue’ can match either a shop name name:0.0.1.0
or a laptop color color:0.0.0.4.3. When it matches a shop
name, most likely it is important since few shop names con-
tain the keyword ‘blue’; when it matches a laptop color, it
may be less important since many color nodes contain the
keyword ‘blue’. Therefore, we propose the concept of dis-
tinguishability.
Distinguishability D(K, t) represents the importance of the
query keywords K when K matches a node of type t, which
also means this node of type t subtree-contains each key-
word in K. Large D(K, t) means K is important with respect
to t.

Recall Step 1 in Sec. 3, K actually represents the query
keywords derived from the keyword match node(s). To quan-
tify D(K, t), we propose a scoring measure inspired by Term
Frequency * Inverse Document Frequency (tf*idf) [32], which
is widely used in information retrieval.

For tf, we can simply count the keyword frequency in
an XML node. In this work we focus on data-centric XML
data, where each XML node does not contain long text and
in most cases keyword frequency is 1. The same problem
is also pointed out by [13], so we follow [13] and do not
consider tf in the formula.

For idf, it tells that the keywords contained by fewer doc-
uments are more important. Similar to idf, we have Intuition
1 in the context of XML. Let ft be the number of nodes of
type t, and fK

t be the number of nodes which are of node
type t and subtree-contain each keyword in K.

Intuition 1 idf(K, t). If few nodes of type t contain key-
words K, K should be important with respect to the node
type t. Formally, the smaller the fK

t is as compared to ft,
the larger the idf(K, t) should be.

As there are many variants of idf to follow Intuition 1,
we define idf(K, t) = 1− fK

t

ft
. In this way, idf(K, t) is nor-

malized in [0,1).

A General Framework to Resolve the MisMatch Problem in XML Keyword Search 9

The tf*idf works by assuming there is only one type of
(flat) document, but in the context of XML data there is more
than one type of node. The type of the node alone may also
contribute to the importance of the keywords that match the
node. Let us look at a motivating example first.

Example 6 Consider a keyword ‘price’ in Figure 1. It can
match both an owner node and all price nodes. When ‘price’
matches a price node, it may not be important as there are
many price nodes and all of them contain ‘price’. Accord-
ingly, idf ({‘price’},price)=0 because fK

t =ft. When it matches
the owner node, it should be important as there is one and
only one owner across the whole XML data. But since fK

t =ft
=1, idf ({‘price’},owner)=0 as well. As we can see, simply
by tf*idf, we cannot distinguish these two cases (idf is 0 for
both cases). Because the idea of tf*idf assumes there is only
one type of node while we have nodes of different types and
we need to consider the weight of different node types. �

So we have Intuition 2 to cater for the node type weight
(ntw).

Intuition 2 ntw(t). The weight of a node type t is inversely
proportional to ft within the XML data.

Therefore, We define ntw(t) = 1
ft

. Finally, we can de-
fine D(K, t) to capture the concept of distinguishability as:

D(K, t) = idf(K, t)+ntw(t) = 1−fK
t

ft
+

1

ft
(1 ≤ fK

t ≤ ft)

(1)

It is easy to verify that the range of distinguishability is (0,1].
Note that there can be some alternative formulas which are
able to simulate distinguishability above. It is one of our
future work to study those possibilities and the differences
among them.

3.2 Finding Explanation and Suggested Queries

In order to find the explanation and suggested queries,
we first need to find some ‘important’ query keywords (in
terms of distinguishability) from the result r of the origi-
nal query. So first of all, we need to set a threshold τ 3, say
τ=90%. Those keywords whose distinguishability is higher
than τ are considered as ‘important’ and must be kept. Be-
sides, we find that those ‘important’ keywords K are indeed
derived from the keyword match node(s) of r. thereby we
may need to consider two independent cases at the same
time:
(1) K is derived from a single keyword match node of r;

3 The choice of an appropriate τ will be discussed in the experimen-
tal study.

(2) K is derived from multiple keyword match nodes of r,
i.e., combing the keywords from multiple keyword match
nodes could achieve high distinguishability.

Then the remaining task is to find the approximate re-
sults, each containing the important keywords K, from which
suggested queries are inferred.

3.2.1 Phase 1: based on single keyword match node

In Phase 1, we derive important keywords from a single
keyword match node and find the approximate results as fol-
lows:
Given a user query Q and a mismatch query result r=(vlca,{
m1,m2, ...,mn}), each keyword match node mi contains
some keyword(s) Ki in Q. For each distinct mi, we cal-
culate the distinguishability D(Ki,mi.type). If it is larger
than the threshold, then we try to find a TNT node contain-
ing mi as an approximate result. Let the path from vlca to mi

be (vlca/p1/p2/.../pj/mi), where p1,p2,....,pj are the nodes
between vlca and mi. Then we proceed to traverse each node
v′lca from p1 down to mi (i.e. v′lca∈ {p1, p2, ..., pj ,mi}),
and verify whether the subtree rooted at v′lca can form an
approximate query result r′=(v′lca,{ m′

1,m
′
2, ...,m

′
n}) w.r.t.

r.

Definition 8 Approximate Result. Given a query result
r=(vlca,{m1,m2, ...,mn}) for a query Q, r′ = (v′lca, {m′

1,
m′

2, ...,m
′
n}) is an approximate result if r′ have the follow-

ing two properties:

– P1: v′lca.type = TNT (r)
– P2: ∀mi in the original result r, ∃m′

i in r′, such that
m′

i.type = mi.type, for i ∈ [1, n].

P1 is specified to ensure the approximate result should
be consistent with the Target Node Type that we infer in
Sec. 2 based on a result r. In other words, P1 is to ensure
v′lca of r′ should have the same node type as the TNT that
result r intends to match (but fail to do so). P2 is to en-
sure a consistency of the internal structure of r and r′ in the
way that, each node type appearing in the keyword match
node of r must also appear in those of r′. Intuitively speak-
ing, the node type of each keyword match node implicitly
reflects the constraint that user intends to specify for the de-
sired query result. Therefore we need to keep all of them
in the approximate result. As an analogy, it is an implicit
representation of predicates specified in a structured query,
whereas the difference is that in a keyword query you have
no way to specify constraint on the structural relationship
among keywords. Note that, if possible, m′

i and mi should
be the same node, since we prefer changing as small number
of keywords as possible. That is why we find the approxi-
mate results by checking the path from vlca to mi. Only the

10 Zhifeng Bao et al.

mi that is not in the subtree rooted at v′lca will be replaced
by a distinct node m′

i.
The construction of the approximate result starts from

the subtree rooted at v′lca, followed by checking whether this
subtree satisfies the aforementioned properties.
Suggested Query and Sample Query Result. After the
approximate query results are found, the explanation and
suggested query can be inferred easily by the following way:
1) for each different keyword match node mi which is not the
same node as m′

i, the query keyword(s) in mi is the reason
for the mismatch results; 2) the suggested query can be gen-
erated by replacing the keywords in mi with the associated
value of m′

i, highlighted by an underline. Besides, the ap-
proximate query result will be used as a sample query result
for the corresponding suggested query.

Property 1 For a given query with MisMatch problem, each
suggested query produced by our MisMatch suggester guar-
antees to have at least one result which does not miss the
target.

Proof Given a query result r=(vlca,{m1,m2, ...,mn}) and
its approximate result r′ = (v′lca, {m′

1, m
′
2, ...,m

′
n}), let the

set of different node types for m1 to mn be T = {t1, t2, ..., tx}
and the set of different node types for m′

1 to m′
n be T′ =

{t′1, t′2, ..., t′x}, we can have ti = t′i (i ∈ [1, x]) according
to P2 in Defn. 8. Then according to Defn. 5 we can know
TNT (r) = TNT (r′). Because of P1 in Defn. 8, we can
have v′lca.type = TNT (r′). So r′ does not miss the target.

Next, we will use two running examples to illustrate how
we find the suggested queries and sample query result. The
following two running examples correspond to the queries
in Example 4 and Example 5 respectively.

Example 7 For query Q ={‘Vaio’,‘W’,‘red’,‘price’} in Ex-
ample 4, one query result is r=(0.0.0, {0.0.0.4.1, 0.0.0.4.1,
0.0.0.3.2, 0.0.0.4.5}), where there are only three distinct key-
word match nodes. So we calculate three distinguishability
values w.r.t. the query keywords in the three keyword match
nodes: D({‘V aio’, ‘W ’},model) = 100%, D({‘red’}, color)
= 68.2%, D({‘price’}, price) = 0.5%.

Since D({‘Vaio’, ‘W’},model)>τ=90%, it is important
and must be kept. Then we check the path from shop:0.0.0
(vlca) to model:0.0.0.4.1 (mi), which is (shop:0.0.0/laptop
:0.0.0.4/model:0.0.0.4.1). In Example 4 we know TNT (r)

= laptop, so we check the subtree rooted at laptop:0.0.0.4.
For each keyword match node mi in the original result r,
within the subtree rooted at 0.0.0.4, we can always find a
node m′

i with the same type. E.g. for the keyword match
node 0.0.0.3.2 in r, we can find node 0.0.0.4.2 with the same
node type: (0.0.0.4.2).type = color = (0.0.0.3.2).type.
Thus the set of m′ nodes is: {0.0.0.4.1, 0.0.0.4.1, 0.0.0.4.2,

0.0.0.4.5}. Therefore, an approximate query result r′ is con-
structed:

r′ = (0.0.0.4, {0.0.0.4.1, 0.0.0.4.1, 0.0.0.4.2, 0.0.0.4.5})

Compared to r, keyword match node color:0.0.0.3.2 is
changed to color:0.0.0.4.2. Node color:0.0.0.3.2 contains
keyword ‘red’ and the content of color:0.0.0.4.2 is ‘white’.
So the keyword ‘red’ in user’s query leads to the mismach
results. The suggested query can also be inferred as {‘Vaio’,
‘W’,‘white’, ‘price’} by changing ‘red’ to ‘white’, and r′ is
its corresponding sample result. Similarly, we can also find
suggested queries by changing ‘red’ to ‘blue’ or ‘pink’. �

Example 8 For query Q={‘Hewlett’,‘Packard’,‘Pavilion’,
‘Omni’} in Example 5, where the user wants to search for
a shop selling both the laptop model ‘Pavilion’ and ‘Omni’.
However, there is no such shop which sells both of the laptop
models. One query result is a subtree rooted at an electronics
node: r=(0.0,{0.0.0.3.0, 0.0.0.3.0, 0.0.0.3.1, 0.0.1.3.1}), where
there are only three distinct keyword match nodes. So we
calculate three distinguishability values w.r.t. the query key-
words in the three keyword match nodes: D({‘Hewlett’,
‘Packard’}, brand) = 75.5%, D({‘Pavilion’},model)

= 100%, D({‘Omni’},model) = 100%.
Since both D({‘Pavilion’},model) and D({‘Omni’},model)

are larger than the threshold τ (90%), both of them are im-
portant. So we will check the following two paths for find-
ing approximate results: path from electronics:0.0 (vlca) to
model:0.0.0.3.1 (mi); path from electronics:0.0 (vlca) to
model:0.0.1.3.1 (mi). Here we will take the first path as
an example to illustrate how to check the path, which is
(electronics:0.0/shop:0.0.0/laptop :0.0.0.3/model:0.0.0.3.1).
In Example 5 we know TNT (r) = shop, so we check
the subtree rooted at shop:0.0.0. For each keyword match
node mi in the original result r, within the subtree rooted
at 0.0.0, we can always find a node m′

i with the same type.
E.g. for the keyword match node 0.0.1.3.1 in r, we can find
node 0.0.0.4.1 with the same node type: (0.0.0.4.1).type =
model = (0.0.1.3.1).type. Thus the set of m′ nodes is:
{0.0.0.3.0, 0.0.0.3.0, 0.0.0.3.1, 0.0.0.4.1}. Therefore, an ap-
proximate query result r′ is constructed:

r′ = (0.0.0, {0.0.0.3.0, 0.0.0.3.0, 0.0.0.3.1, 0.0.0.4.1})

Compared to r, keyword match node model:0.0.1.3.1 is
changed to model:0.0.0.4.1. Node model:0.0.1.3.1 contains
keyword ‘Omni’ and the content of model:0.0.0.4.1 is ‘Vaio
W’. So the keyword ‘Omni’ in user’s query leads to the
mismach results. The suggested query can also be inferred
as {‘Hewlett’,‘Packard’,‘Pavilion’,‘Vaio’,‘W’} by changing
‘Omni’ to ‘Vaio W’. Because shops selling these two models
are available. r′ is the corresponding sample result. �

A General Framework to Resolve the MisMatch Problem in XML Keyword Search 11

Note that, if we set the threshold τ to a very low value,
say zero, which means all keywords are with acceptably
high distinguishability, then we will examine all the TNT
nodes containing at least one of the keyword match nodes.
This can cover all possibilities but of course more time will
be consumed. We will show in the experiment (Sec. 7) that
most likely it is not necessary.

3.2.2 Phase 2: based on multiple keyword match nodes

When the important keywords are derived from multi-
ple keyword match nodes mi, i.e., combing the keywords
from multiple keyword match nodes could achieve high dis-
tinguishability, we need to compute the lowest common an-
cestor of these mi, denoted by v, in order to calculate dis-
tinguishability. This is the only difference as compared to
Phase 1. Let K be the query keywords subtree-contained by
v. Then the rest job is similar to Phase 1, where we calculate
D(K, v.type) and if it is acceptably high, we will check the
path from vlca to v to find the approximate result(s). Please
refer to Algorithm 1 for details on our two-phase solution.

However, it requires 2n times of calculation to get all
possible lowest common ancestors of any subset of the n

keyword match nodes. But we find Property 2 to help fulfill
it in linear time.

Property 2 Let M = {m1,m2, ...,mn} be the set of dis-
tinct keyword match nodes for a query result (mi ̸= mj if
i ̸= j), sorted by their Dewey labels. Then all possible low-
est common ancestors (LCA) for any subset S of M , where
|S| ≥ 2, are in the set
{lca(m1,m2), ..., lca(mi,mi+1), ..., lca(mn−1,mn)}.

Proof (By Induction) Step 1: For n = 2, this property obvi-
ously holds. Step 2: We assume that for n=k−1, all LCAs of
any subset of Mk−1={m1,m2,...,mk−1} are in {lca(m1,m2),
lca(m2,m3),...,lca(mk−2,mk−1)}. We will show that for
a set of k nodes Mk={m1,m2,...,mk−1,mk}, all possible
LCAs are in the set L= {lca(m1,m2),lca(m2,m3),...,lca(
mk−1,mk)}. Suppose Dewey(mk−1)=a1.a2...aj .aj+1...
and Dewey(mk)=a1.a2 ...aj .a′j+1..., let m′ = lca(mk−1,mk),
then Dewey(m′)=a1.a2...aj . As nodes are sorted by Dewey
label, there does not exist another node mi in Mk such that
lca(mi,mk) is a descendant of m′; otherwise, Dewey(mi)
should be of the form a1.a2...aj .a

′
j+1... and mi should ap-

pear between mk−1 and mk. So for any subset containing
mk, namely {m′

1,m
′
2, ...,mk}, their LCA must not be a de-

scendant of m′. If the LCA node equals to m′, it is in L; if
the LCA node is an ancestor of m′, we can get the following
because finding LCA is equal to finding the longest common
prefix of Dewey labels of a set of nodes: lca({m′

1,m
′
2, ...,mk})

=lca({m′
1,m

′
2, ...,m

′})= lca({m′
1,m

′
2, ...,mk−1}), which

is also in L according to the assumption. Besides, for subsets
not containing mk, their LCAs will also be in L according
to the assumption.

With Property 2, for a query that has MisMatch problem,
we only need to conduct at most n−1 times of LCA compu-
tations to find all possible approximate results. We will use
Example 9 to illustrate how we infer suggested queries for
Phase 2.

Example 9 Suppose a user wants to find a laptop which is of
brand Hewlett Packard with purple color running windows
vista. She may try to issue a query Q={‘Hewlett’, ‘Packard’,
‘purple’, ‘windows’, ‘vista’} in Figure 1. One of the query
results is r=(0.0.0,{0.0.0.3.0, 0.0.0.3.0, 0.0.0.3.3, 0.0.0.4.6,
0.0.0.4.6}). By Defn. 6 we know that TNT (r) = laptop
but the result is a subtree rooted at a shop node. Therefore it
misses the target.

Suppose Hewlett Packard only has two models with pur-
ple color. The keywords matching brand:0.0.0.3.0, color:
0.0.0.3.3 and OS:0.0.0.4.6 are not of high distinguishability
(90%) in Phase 1: D({‘Hewlett’,‘Packard’},brand)=75.5%;
D({‘windows’, ‘vista’}, OS)=42.5%; D({‘purple’},color)=
80.7%. Now in phase 2, by Property 2, all possible lowest
common ancestors of the keyword match nodes are 0.0.0.3
and 0.0.0. Take 0.0.0.3 as an example, we will find that
the keywords subtree-contained by laptop:0.0.0.3 have high
distinguishability:

D({‘Hewlett’, ‘Packard’, ‘purple’},laptop)=98.4%
Note that the above three keywords are actually from two
keyword match nodes, i.e., brand:0.0.0.3.0 and color:0.0.0.3.3.

Then similar to Phase 1, we will try to find an approxi-
mate query result along the path from r’s vlca to laptop:0.0.0.3,
i.e. (shop:0.0.0/laptop:0.0.0.3). Finally we find the approx-
imate result rooted at laptop:0.0.0.3 and get a suggested
query by changing keywords ‘windows vista’ to ‘windows
7’. �

3.3 Ranking the Suggested Queries

After all suggested queries are generated, we build a pre-
liminary ranking model to judge the quality score of a sug-
gested query with the following factors:

1. Number of keywords (in original query) that need to be
changed, denoted as cn. The larger cn is, the lower score
should be.

2. Distance between the approximate query result root v′lca
and original query result root vlca, denoted as dt (dt is
equal to the length difference of their Dewey labels). The
larger dt is, the higher score should be. Because a more
compact subtree is preferred.

3. Sum of distinguishability of the keywords that need to
be changed, denoted as

∑
D. The larger

∑
D is, the

lower score should be. Because we prefer not to replace
keywords those are with high distinguishability.

12 Zhifeng Bao et al.

To sum up the above ranking factors, we calculate the
ranking score by taking a product of them:

score =
1

ecn
× (1− 1

edt
)× 1

e
∑

D
(2)

3.4 Summary of Features of Our Approach

To summarize, our MisMatch detector and suggester have
the following features. First, it is portable: by capturing the
LCA commonality among existing search semantics in defin-
ing the format of query result (Defn. 4), our approach can
work with any LCA-based matching semantics (recall Sec.
2.1.2); since our approach is a post-processing of the query
evaluation, it is orthogonal to the result retrieval method
adopted. Second, it is result-driven: our approach accepts
the results of the original query as input, and recall Sec. 3.2
the suggester finds the important keywords (to be kept in
suggested queries) from each result, to guarantee the empir-
ical quality of suggestions. Third, it is lightweight: it occu-
pies a small proportion of the whole query evaluation time,
as discussed in Sec. 4 later. Thereby, for user queries that
do not have mismatch problem, the user will not be an-
noyed much by the extra time taken by the detector. Last,
the suggestions come along with the results of original user
query, so for users satisfying the current results of the origi-
nal query, they can simply ignore our suggestion and browse
the results of their original query.

Fig. 2 An XML Tree with Nodes Labeled by exLabels

Fig. 3 Schema Tree Flattening and Virtual Bitmap Construction

4 Efficient MisMatch Problem Processing by a Novel
Labeling Scheme over XML Data without ID
References

Recall Defn. 8, to check whether a TNT node is an ap-
proximate query result, the core operation is to verify whether
the two properties P1 and P2 hold. Checking P1 is trivial, so
we aim to achieve an efficient check of P2 by designing a

novel node labeling scheme and the corresponding logical
operations.

4.1 Node Labeling

Since our suggester needs to frequently access the type
of a node along the way to finding suggested queries, we
first collect all node types in XML data. By simply scanning
the XML file, we can get a schema tree which contains all
node types using DataGuide [11]. E.g., for the XML data in
Figure 2, we can construct a schema tree as shown in Figure
3(a), where each node in the schema tree represents a unique
node type. Note that each node in Figure 3 should be a node
type represented as a path (according to Defn. 1), but for
simplicity we use a tag name instead because there is no
ambiguity.

Then, we use a bitmap to denote all node types in the
schema tree, where each bit in the bitmap corresponds to a
specific type. We purposefully decide which bit corresponds
to which type as follows:

– Flatten the schema tree level by level in a top-down man-
ner. Suppose a node n has k children, then n will be in-
serted into a place between its ⌊k

2 ⌋th and (⌊k
2 ⌋ + 1)th

children. As a result, n will maintain its position be-
tween its neighbors and neighbors’ children. Figure 3(a),
(b) and (c) show such a process of flattening.

– Construct a virtual bitmap as shown in Figure 3(d). Each
distinct node type has a unique position number in bitmap.
E.g., F’s position number is 3.

Such a bit-to-type mapping has a nice property: the bits
of all node types that appear in a specific subtree in XML
will stay together. As we can see later, this property helps
ensure the label size as compact as possible.

For a node n in the XML tree, the subtree rooted at
n may contain different types of nodes. To indicate which
node types appear in its subtree STn, we assign n a label
(a, b, bm), called exLabel. Here, a is the smallest position
number (in the bitmap) of the node type appearing within
STn; similarly, b is the largest position number of the node
type appearing within STn. bm is a sub-sequence of the
bitmap (of the schema tree) from position a to b, indicat-
ing which type of nodes can be found in the subtree rooted
at n. In particular,

– bm[i]=1, if the node type at position a+ i− 1 in bitmap
appears in the subtree rooted at n;

– bm[i]=0, otherwise. (i∈[1,b-a+1])

Example 10 In Figure 2, for the subtree rooted at node B
circled by the dotted line, it contains nodes of types E, B
and G. According to the bitmap in Figure 3(d), the position
number is 1 for E, 2 for B and 4 for G. Among the four

A General Framework to Resolve the MisMatch Problem in XML Keyword Search 13

node types ranging from position 1 to 4, bm of node B indi-
cates which of those four node types appear in B’s subtree
STB . As a result, bm=1101 as the 3rd node type F does not
appear in STB , and B’s exLabel = (1,4,‘1101’). Note that
the exLabel of B is compact because the bits representing E,
B and G are staying together, which is the benefit from the
aforementioned bit-to-type mapping. �

4.2 Logical Operation

Similar to node labeling, for a query result r = (vlca, {m1,
m2, ...,mn}), we can intentionally construct an exLabel to
represent its node type information even though it is not a
node at all. Let a′ (b′) be the smallest (largest) position num-
ber of the node type for mi, and the label for the query result
is denoted as (a′, b′, bm′).

Having a query result label (a′, b′, bm′) and a subtree
root label (a, b, bm), we can verify property P2 by examin-
ing the following containment relation: (a′, b′, bm′) ⊆ (a, b,
bm). This relationship holds only if a ≤ a′ ≤ b′ ≤ b and
all bits that appear in bm′ also appear in bm. This can be
efficiently done by a logical AND operation on bm′ and bm.

Example 11 In Figure 2, suppose a query result r = (vlca, {m1,
m2}), where m1.type = B, m2.type = G. Then the exLabel
for r is (2,4,‘101’). If we want to check whether an approxi-
mate query result exists in the subtree rooted at the left node
B in Figure 2, whose exLabel is (1,4,‘1101’), then we know
the approximate query result exists because (2,4,‘101’) ⊆
(1,4,‘1101’). �

5 Index Construction and Algorithms for MisMatch
Solution over XML Data without ID References

5.1 Data Processing and Index Construction

In the phase of XML document parsing, we collect all
distinct node types and generate a bitmap code for each node
type as discussed in Sec. 4.1. For each node n visited, we
assign a Dewey label deweyID [37] to n; get the node type
tn of n; construct an exLabel for n. To speed up the query
processing and refinement, three indexes are built.

The first index is called replacement table, which is a B+
tree storing each node with (t,deweyID) as its key. Such an
index has the following property: by scanning rightwards of
the position (t,deweyID), we can find all the nodes of type
t under the subtree rooted at deweyID. Recall in Sec. 3.2,
after we find an approximate query result r′, we need to ma-
terialize the replacement nodes within r′ in order to infer the
suggested query. Since we know the type t of each replace-
ment node and the deweyID of the root node of r′, with
replacement table, we can easily materialize all such nodes

by calling getReplacement (t,deweyID). The second index
is to maintain the exLabel and type info for each node.

Algorithm 1: MisMatchResolver(Q, R)
suggestedQueries←∅;1
{Detector}2
foreach r ∈ R do3

if r.vlca.type = getTNT (r) then4
return null;5

{Suggester}6
foreach r ∈ R do7

rExlabel = constructExlabel(r);8
{Phase 1}9
foreach nd ∈ r.matchnodes do10

if getDist(nd.dewey, nd.keywords)>τ then11
foreach n ∈ nodes on the path from r.vlca to nd12
AND n.type = getTNT (r) do

if contain(getExLabel(n.dewey), rExlabel)13
then

QuerySuggester(n, r, suggestedQueries);14
{Phase 2}15
sort(r.matchnodes);16
for i = 1 to (r.matchnodes.length-1) do17

Let v = getLCA(r.matchnodes[i],18
r.matchnodes[i+ 1]);
kwinside = getQueryKwsInside(r, v);19
if getDist(v, kwinside)>τ then20

foreach n ∈ nodes on the path from r.vlca to v21
AND n.type = getTNT (r) do

if contain(getExLabel(n.dewey), rExlabel)22
then

QuerySuggester(n, r, suggestedQueries);23
return suggestedQueries.sort();24

To speed up the computation of distinguishability, par-
ticularly for parameter fK

t in Formula 1, the third index
called inverted index is built: For each combination of a dis-
tinct node type t and a distinct keyword k (in XML data),
we build an inverted list containing all nodes of type t where
each node subtree-contains keyword k. Those inverted lists
are grouped by node type t. As a result, fK

t can be com-
puted by simply computing the intersection of the inverted
lists for each keyword in K under node type t [23]. Opera-
tion getDist(deweyID,K) returns the distinguishability of a
set of keywords K w.r.t. the type of the node with deweyID.

5.2 Algorithms

The main procedure is presented in Algorithm 1, where
the input is the query Q and its retrieved results R. For De-
tector, it checks each result of Q (line 3) and calculates its
TNT (line 4). Once one of the results does not miss the tar-
get, which means what the user wants is in the retrieved re-
sults, it will terminate the process (line 5). Otherwise, it con-
structs an exLabel for the query result (line 8) as discussed
in Sec. 4.2.

14 Zhifeng Bao et al.

For Suggester, in Phase 1 as discussed in Sec. 3.2.1,
it checks each keyword match node nd of the query result
(line 10). If the distinguishability is larger than the thresh-
old τ (line 11), the TNT node on the path from the vlca to
this node will be checked in order to find an approximate
query result (line 12). Whether an approximate query result
exists can be easily checked by examining the containment
relationship between the exLabels (line 13), where function
contain() will be shown in Algorithm 3. If an approximate
query result exists, the explanations and suggested queries
will be inferred by calling QuerySuggester() (line 14).

For Phase 2 as discussed in Sec. 3.2.2, we sort the key-
word match nodes (line 16) and check the LCA node of ev-
ery two adjacent keyword match nodes (line 18) according to
Property 2. Then we need to find which query keywords are
subtree-contained by this LCA node (line 19). Afterwards,
we follow the same steps (line 20-23) as Phase 1. Finally, it
returns the suggested queries (line 24) sorted by the ranking
formula in Sec. 3.3, attached with one sample result for each
suggested query.

Algorithm 2: QuerySuggester(v′lca, r, sugQueries)
input : the approximate result root v′lca, the query result being

changed r and the suggested queries sugQueries
output: new suggested queries + one sample result v′lca
i = 0;1
foreach nd ∈ r.matchnodes do2

if nd is not a descendant of v′lca then3
replace[i++] = getReplacement(nd.type,4
v′lca.dewey);

foreach n1 ∈ replace[1],...,ni ∈ replace[i] do5
sugQueries = sugQueries

∪
6

(r.matchnodes[1]→ n1,..., r.matchnodes[i]→ ni);

Given the approximate result root and the original query
result, Algorithm 2 presents how to infer the suggested queries.
Keyword match nodes which are not in the subtree rooted at
v′lca will be replaced by nodes in v′lca that have the same
node type according to property P2 in Defn. 8 (line 2-4).
For a keyword match node that needs to be changed, there
may be more than one replacement node to replace it. Such
nodes can be retrieved from index by calling the function
getReplacement() (line 4). Note that there might be more
than one keyword match node needed to be changed, so sug-
gested queries will be inferred by considering all possible
cases (line 6).

Algorithm 3 presents the function contain() to examine
the containment relationship between two exLabels, i.e., the
first contains the second. As discussed in Section 4.2, one
condition for the relationship to be held is that the range of
the second label should be contained by the first (line 1-2).
After that, we need to make sure every bit that appears in the
second label also appears in the first. Since the bitmap length

of the two may not be the same, we shrink the first bitmap
as the same length as the second (line 3). Then bit check-
ing can be done by only doing a logical AND operation on
two bitmaps (line 4). Then a boolean result indicating the
containment relationship will be returned accordingly (line
5 and line 6).

Algorithm 3: contain(elx, ely)
input : exLabel elx and exLabel ely
output: a boolean indicating whether elx contains ely
if (elx.a 6 ely.a and ely.b 6 elx.b)==false then1

return false;2
bmTemp = subset of elx.bm from position ely.a to ely.b;3
if (bmTemp & ely.bm)==ely.bm then4

return true;5
return false;6

6 Resolving the MisMatch Problem over XML data
with ID References

In the previous sections, we have discussed how to de-
tect and resolve the mismatch problem over the XML data
without ID references. In a more general scenario, XML
data may contain ID nodes and IDREF nodes to represent
the reference relationships among the data. E.g., Figure 4 is
an XML document with ID references describing an online
shopping mall, where the containment edges and reference
edges are presented by solid line (→) and dashed line (99K)
respectively. Each shop sells some laptops. Each laptop node
can have some IDREF nodes, i.e. laptopRef nodes, point-
ing to the laptop information, which can be reused by dif-
ferent shops to avoid duplication. An XML document with
ID references is usually modeled as a digraph rather than a
tree, which we will call XML IDREF digraph in this paper.
Both search semantics and search methods on the digraph
model differ from that of the tree model, which brings more
challenges to extend the detector and suggester to be able to
work on such a general scenario.

A literature study shows that the problem of keyword
search on an XML IDREF digraph can be reduced to the
problem of finding Minimal Steiner Tree (MST) or its vari-
ants in a digraph [16,40,8,20,14]: given a digraph G =
(V,E), where V is a set of nodes and E is a set of edges, a
keyword query result is defined as a minimal directed sub-
tree T in G such that the leaves or the root of T contain
all keywords in the query. Although the matching semantics
on XML IDREF digraph is different from the LCA-based
semantics on XML tree, MisMatch problem could still ex-
ist. Because MisMatch problem exists in any form of infor-
mation retrieval over data of any structure, as discussed in
Sec. 1.

A General Framework to Resolve the MisMatch Problem in XML Keyword Search 15

catalog
0.0

online_mall
0

shop
0.0.1

name
0.0.1.0

EStage

laptop
0.0.1.1

shop
0.0.2

catalog
0.1

laptopRef
0.0.1.1.1

catalog
0.2

price
0.0.1.1.0

$469

laptop
0.0.1.2

laptopRef
0.0.1.2.1

price
0.0.1.2.0

$449

name
0.0.2.0

iVerge

...
...

laptop_info
0.1.2

brand
0.1.2.1

model
0.1.2.2

Sony Vaio W

color
0.1.2.3

blue

ID
0.1.2.0

ltp032

laptop_info
0.1.1

brand
0.1.1.1

model
0.1.1.2

Hellet
Packard

Pavilion

color
0.1.1.3

red

ID
0.1.1.0

ltp027

laptop
0.0.2.1

laptopRef
0.0.2.1.1

price
0.0.2.1.0

$439

OSRef
0.1.2.4

ID
0.2.1.0

os001

name
0.2.1.1

Windows
7

OS
0.2.1

containment edge

reference edge

category
0.0.0

shop

category
0.1.0

laptop

category
0.2.0

OS

Fig. 4 Sample XML Document with ID References

Example 12 Suppose a user wants to find the price of a lap-
top with model being Vaio W and red color, she may issue
a query Q = {‘V aio’,‘W ’,‘red’,‘price’} over the data in
Figure 4. But red color is unavailable for model Vaio W.
Therefore, what will be returned is a list of mismatch results.
One of the results by Minimal Steiner Tree (MST) [9] is a
tree rooted at shop:0.0.1, with three keyword match nodes:
0.1.2.2 for keyword ‘Vaio’ and ‘W’,
(following a path 0.0.1→0.0.1.1→0.0.1.1.199K0.1.2→0.1.2.2)
0.1.1.3 for keyword ‘red’,
(following a path 0.0.1→0.0.1.2→0.0.1.2.199K0.1.1→0.1.1.3)
0.0.1.1.0 for keyword ‘price’.
(following a path 0.0.1→0.0.1.1→0.0.1.1.0)

As we can see, shop is returned because there is no lap-
top that can meet all the requirements. So MisMatch prob-
lem exists and mismatch results are returned.

The results being returned (Minimal Steiner Tree) for
XML IDREF digraph are also tree-structured. As our Mis-
Match solution is a post-processing job working on tree-
structured results and orthogonal to the result retrieval method,
such an observation offers a good opportunity for us to ex-
tend our post-processing MisMatch solution onto XML IDREF
digraph.

In this section, we will discuss the necessary extension
we need to make to extend our MisMatch solution onto XML
IDREF digraph. Recall Sec. 2, 3 and 4, the solution to the
MisMatch problem is based on two novel concepts we pro-
posed: Target Node Type (TNT) and Distinguishability. The
framework includes three main steps: 1) Detect the Mis-
Match problem by calculating the Target Node Type; 2) Mea-
sure the keywords importance based on the distinguishabil-
ity; 3) Efficiently discover approximate results, from which
the suggested queries can be inferred.

Next we will talk about how to extend our MisMatch
solution to the context of XML IDREF digraph, resulting in
a general framework.

6.1 Target Node Type for Detecting the MisMatch Problem

Given a result, the central idea to calculate the Target
Node Type is getting the node type of each keyword match
node and count their occurrences. But in an XML IDREF
digraph, there could be more than one paths from one node
to another. Therefore, there could have more than one node
types for a given node. This is different from XML tree.
E.g., for the node laptop info:0.1.1 in Figure 4, there are
two possible paths from the document root node to it. One is
through ID reference and the other one is not through ID ref-
erence. So there are two different node types for that node,
i.e., node type “online mall/ catalog/laptop info” and “on-
line mall/catalog/ shop/laptop/laptopRef/laptop info”. There-
fore, given a query result, we need to know which path it
goes through from the answer root to each keyword match
node.

First of all, we will define the format of search result for
XML IDREF digraph, which is slightly different from the
format for XML tree in Defn. 4:

Definition 9 Query Result Format for XML IDREF Di-
graph. For a keyword query Q={k1, ...,kn} issued on the
XML data with ID references, we define the format of a
query result r as:

r = (vMSTRoot,
{
m1(path1),m2(path2), ...,mn(pathn)

}
)

where mi is a keyword match node w.r.t. keyword ki (i ∈
[1, n]); vMSTRoot is the root node of the Minimal Steiner
Tree connecting m1 to mn; pathi is the path from vMSTRoot

to mi. �

Comparing to Defn. 4, the only difference is that we
need to specify the path from the result root to each keyword
match node, as there could be more than one path from one
node to another in an XML IDREF digraph. E.g. in Figure
4, there is multiple paths from node onine mall:0 to node

16 Zhifeng Bao et al.

laptop info:0.1.1, either through the reference edges or not
through the reference edges.

Secondly, to calulate the Target Node Type (TNT) of
a result r, we need to get the node type of each keyword
match node and count their occurrences. Given a result r =
(vMSTRoot, {m1(path1),m2(path2), ...,mn(pathn)}), the
node type of mi consists of two parts: (1) path from docu-
ment root to vMSTRoot; (2) path from vMSTRoot to mi, i.e.
pathi. We can just combine these two parts to get the node
type of mi.

After the node type for each keyword match node is ready,
we can now calculate the TNT of a given result and detect
the MisMatch problem in the same way in Sec. 2.

Example 13 For a query Q = {‘V aio’,‘W ’,‘red’,‘price’}
issued in Figure 4, one of the results is
r = (0.0.1, {
0.1.2.2 (0.0.1→0.0.1.1→0.0.1.1.199K0.1.2→0.1.2.2),
0.1.2.2 (0.0.1→0.0.1.1→0.0.1.1.199K0.1.2→0.1.2.2),
0.1.1.3 (0.0.1→0.0.1.2→0.0.1.2.199K0.1.1→0.1.1.3),
0.0.1.1.0 (0.0.1→0.0.1.1→0.0.1.1.0)}).
The node types of these keyword match nodes are (‘Vaio’
and ‘W’ match the same node):
0.1.2.2: {online mall/catalog/shop/laptop/laptopRef/

laptop info/model} (denoted as t1)
0.1.1.3: {online mall/catalog/shop/laptop/laptopRef/
laptop info/color} (denoted as t2)
0.0.1.1.0: {online mall/catalog/shop/laptop/price} (de-
noted as t3).

The set of distinct node types T = {t1, t2, t3}, where
count(t1) = 1, count(t2) = 1 and count(t3) = 1.

Then we check the prefixes of all node types in T. The
lowest one is t = “online mall/catalog/shop/laptop”.
Suppose we have the following constraints (either by ex-
amining the XML schema or scanning the XML document):
t.maxContain(t1) = 1 ≥ count(t1) = 1, t.maxContain(
t2) = 1 ≥ count(t2) and t.maxContain(t3) = 1 ≥
count(t3).

Therefore, by Defn. 5, TNT (r) = t = “online mall/
catalog/shop/laptop” even though no laptop can meet all
the user’s requirements at data level.

6.2 Distinguishability for Measuring Keywords’
Importance

Recall Sec. 2 that we have proposed the concept of dis-
tinguishability to measure the importance of the query key-
words contained in a certain keyword match node in XML
tree model. However, in an XML IDREF digraph, the ref-
erence edges can make the structure a bit complex. There
could be sequential references (a node a references a node
b, and then a descendent of b also references a third node
c) and cyclic references (containment edges and references

edge form a cycle). Then there can be exponentially many
node types. This poses challenges for directly adopting the
distinguishability formula (i.e. Equation 1). But we also no-
tice that many node types in an XML IDREF digraph are
actually representing the same type of information. There-
fore, in computing the distinguishability in XML digraph,
we propose to exploit the node types to replace each other
when they are representing the same type of information.

Recall Equation 1, distinguishability D(K, t) measures
the importance of the query keywords K when K match a
node of type t. It is defined based on two variables ft and
fK
t . ft is the number of nodes of type t; fK

t is the number
of nodes which are of node type t and subtree-contain each
keyword in K.

As discussed in Sec. 5, we store a ft value for each dis-
tinct node type t; to calculate fK

t , we build the following
inverted index: for each combination of a distinct node type
t and a distinct keyword k (in the XML data), we build an
inverted list Lk

t , where each node in the list is of type t and
subtree-contains keyword k. As a result, fK

t can be com-
puted by simply computing the intersection of the inverted
lists Lk

t for each k ∈ K.
Here for the XML IDREF digraph, it will be good if we

could build the same index. However, there could be expo-
nentially many node types in the XML IDREF digraph. So
it is not feasible to store a ft value for each distinct node
type t and build an inverted index for each combination of a
distinct node type t and a distinct keyword k.

Comparing the node types in an XML tree to those in
an XML IDREF digraph, we notice that many node types in
an XML IDREF digraph are actually representing the same
type of information. For example in Figure 4, the node type
ta= “online mall/catalog/laptop info” and tb=“online mall
/catalog/shop/laptop/laptopRef/laptop info” are actually rep-
resenting the same type of information, i.e. laptop info. If
we extract the schema graph of the XML document, as shown
in Figure 5, it will be clearer that these two node types actu-
ally represent the same type of information, i.e. they corre-
spond to the same schema node in the schema graph. Node
type ta contains no ID reference edge in its path while tb
contains ID reference edge in its path.

Definition 10 Solid & Virtual Node Type We call a node
type which does not contain ID reference edges in its path
as solid node type; a node type which contains ID reference
edges in its path as virtual node type.

Since solid node types do not include ID reference edges,
the number of solid node types equals to the number of schema
nodes in the schema graph. For example in Figure 5, the
number of solid node types is 17 as there are 17 schema
nodes in the schema graph, while the number of virtual node
types can be exponentially many. But it is easy to know from
the schema graph that, every virtual node type corresponds

A General Framework to Resolve the MisMatch Problem in XML Keyword Search 17

online_mall

shop

name laptop

catalog

laptopRefprice

laptop_info

brand model colorID OSRef ID name

OS

Schema Graph

category

Fig. 5 Schema Graph of Figure 4

to a solid node type, i.e. they correspond to the same schema
node in the schema graph.

Therefore, to calculate the distinguishability, a feasible
solution is to use the distinguishability for a solid node type
to simulate the distinguishability for a virtual node type,
if they are representing the same type of information. Let
solid(t) be the corresponding solid node type for a virtual
node type t, then we can define the distinguishability as fol-
lows:

D(K, t) =

{
1− fK

t

ft
+ 1

ft
, if t is a solid node type.

D(K, solid(t)), if t is a virtual node type.

(3)

If a node type t is a solid node type, we define it the
same way as Equation 1; if a node type t is a virtual node
type, we use the distinguishability for solid(t) to simulate
its distinguishability value.

So now we can store a ft value for each distinct solid
node type and build an inverted index for each combination
of a distinct solid node type t and a distinct keyword k. Then
distinguishability can calculated based on such indexes in
the same way as discussed in Sec. 5.

6.3 exLabel for Efficient Approximate Results Detection

When we adopt the exLabel for the XML IDREF di-
graph, we encounter the same problem as we do in calculat-
ing the distinguishability: there could be exponentially many
node types in an XML IDREF digraph (including solid node
types and virtual node types). The exLabel is bitmap-based:
every node n’s exLabel records what types of nodes are
subtree-contained by n; each bit of the exLabel corresponds
to a particular node type and the value of the bit indicates
whether some nodes of this type are subtree-contained by n.

In an XML IDREF digraph, there could be exponentially
many node types. Every node n in the data could have expo-
nentially many node types appearing in the nodes subtree-
contained by n. Therefore, it is not a feasible solution to

record all node types in n’s exLabel. We adopt a similar so-
lution as discussed in Sec. 6.2: using a solid node type to
replace a virtual node type in an exLabel if they are repre-
senting the same type of information.

Actually the purpose of exLabel is: we want to check the
exLabel of a node n to see whether n can be an approximate
result. If the exLabel shows that node n subtree-contains the
replacement for a particular type of node, then it could be an
approximate result. In XML IDREF digraph, every virtual
node type corresponds to a solid node type representing the
same type of information, e.g. “online mall/catalog/laptop info”
and “online mall/catalog/shop/laptop/laptopRef/laptop info”
in Figure 4 represent the same type of information. Also,
there are relatively small number of solid node types in an
XML IDREF digraph.

So a feasible solution is to use the solid node types to
represent the virtual node types in the exLabel (which is
actually a bitmap). E.g. if a node n subtree-contains some
nodes of virtual node type t, then we can set the bit for node
type solid(t) in the exLabel because solid(t) represents the
same type of information as t. As a result, the maximum
size of an exLabel (number of bits) equals to the number of
distinct solid node types in the XML IDREF digraph. Then
the approximate results can be efficiently found based on
the exLabel, as discussed in Sec.5. Each approximate result
will subtree-contain the replacement nodes for the keyword
match nodes containing the keywords of less importance,
where such replacement nodes and the keyword match nodes
represent the same type of information. So the suggested
queries can be inferred by replacing those less important
keywords with the keywords in the replacement nodes. Note
that to make sure that each suggested query does not have
MisMatch problem anymore, we need to check whether the
TNT of the approximate result is same as its root’s node type
before we return the suggested query to users.

7 EXPERIMENTS

We have conducted extensive experiments to verify the
effectiveness, efficiency and scalability of our approach. For
expository convenience, we refer to our MisMatch Detector
& Suggester as MisMatch Module, and refer to our extended
MisMatch solution (which works on XML data with ID ref-
erences) as Extended MisMatch Module.

7.1 Experimental Settings

All experiments are conducted on a 2.83GHz Core 2
Quad machine with 3GB RAM running 32-bit windows 7.
All codes are implemented in Java. Berkeley DB Java Edi-
tion [1] is used to store all indexes for our algorithms.

18 Zhifeng Bao et al.

Table 1 10 of the Sample Queries on IMDB

IMDB
Query suggested queries best-3 suggested queries (Format: explanation→ suggested options)
Q1 Gladiator Spanish 5 (language): Spanish→ English / Japanese / French
Q2 Spielberg DiCaprio Action movie 6 (genres): Action→ Biography / Crime / Drama
Q3 Neo hacker phonebooth 3061 (keyword): phonebooth→ computer / software / programmer
Q4 Warner Bros. movie 0 None
Q5 Italy Betty Fisher 12 (country): Italy→ France / Canada / USA
Q6 Spielberg Schwarzenegger 58 (name): Schwarzenegger→Meredith Brooks / Jim Conroy / Dean Spunt
Q7 Terminator 3 cast Sarah 19 (name): Sarah→ Nick Stahl / Claire Danes / Kristanna Loken
Q8 Panic Room 2001 11 (year): 2001→ 2002

(title): Panic Room→ Promised Land / Nowhere Road
Q9 Ettore The Man movie 1189 (director): Ettore→ Ethan Coen / Salvatore Maira / Massimo Sani
Q10 boy death ghost love 992 (keyword): love→ orphanage / bully / bomb

Table 2 10 of the Sample Queries on ACMDL

ACMDL (with ID references)
Query suggested queries best-3 suggested queries (Format: explanation→ suggested options)

QA1 Jeffrey Ullman INFOCOMM 163 (proceeding): INFOCOMM→ PODS / SIGMOD / KDD
QA2 Ling Tok Wang KDD 1993 87 (year): 1993→ 2000

(proceeding): KDD→ SAC / ACM Transaction on Database Systems
QA3 Michael Stonebraker PODS 255 (proceeding): PODS→ CHI / OOPSLA / SIGMOD
QA4 Victor Vianu PODS 1999 81 (year): 1999→ 2000 / 1998 / 1997
QA5 Hanspeter Pfister database 671 (title): database→ Integrated volume compression and visualization /

The VolumePro real-time ray-casting system /
VolVis a diversified volume visualization system

QA6 Michael Franklin 2000 0 None
QA7 Tan Kian-lee robot 229 (title): robot→ A framework for modeling buffer replacement strategies /

Sampling from databases using B+-trees /
Rule-assisted prefetching in Web-server caching

QA8 SIGIR England 1985 992 (country): England→ Canada
(year): 1985→ 1984 / 1980

QA9 David Dewitt skyline 34 (title): skyline→ The 007 Benchmark /
A status report on the OO7 OODBMS benchmarking effort /
Crash recovery in client-server EXODUS

QA10 Jagadish SIGMOD graph 2474 (title): graph→ Incorporating Hierarchy in a Relational Model of Data /
A Retrieval Technique for Similar Shapes/
Linear Clustering of Objects with Multiple Atributes

Data Set. - Three real datasets are tested for our MisMatch
Module: (1)IMDB4 90MB, where around 200,000 movies
of recent years are selected in our dataset. Each movie con-
tains information like title, rating, director, etc. (2) DBLP
520MB, which contains publications since 1990. (3) IEEE
Publication 90MB from INEX5.

- One real dataset with ID references, ACMDL6 45MB,
is tested for the Extended MisMatch Module. The dataset
we use contains 38K publications and 253K citation (as ID
references) among the publications.
Query Set. Our query set contains 18 queries for each of the
four datasets, all of which are collected from the real-world
user log data of our system. 10 sample queries for IMDB
and ACMDL with their best-3 suggested queries (if any) are
shown in Table 1 and Table 2. Besides, 1000 random queries

4 http://www.imdb.com/interfaces
5 https://inex.mmci.uni-saarland.de/
6 Thanks to Craig Rodkin at ACM Headquarters for providing the

ACM Digital Library dataset.

are generated for each dataset as well (see Sec. 7.5.2), where
the max (average) number of results is 2691 (169).

Ground Truth. For each dataset, we employ 15 assessors
to pick up the queries with the MisMatch problem, and their
judgements are based on both the queries given and their
respective results. We obtained the ground truth by judging
a query to have the MisMatch problem if at least 8 of the
15 assessors agree on that. Eventually, 9 (10, 10, 9) out of
the 18 queries for IMDB (DBLP, IEEE, ACMDL) have the
MisMatch problem.

Keyword Search Method. For XML data without ID ref-
erences, we choose SLCA [38], which is one of the most
efficient ones so far. Since no SLCA-based search method
proposed so far has result ranking component, for the exper-
iment we adopt the result ranking scheme of XRank [12].

For XML data with ID references, we choose BLINKS
[14], which is one of the most efficient graph search method
by building a bi-level index.

A General Framework to Resolve the MisMatch Problem in XML Keyword Search 19

 0

 1

 2

 3

 4

 5

Q1 Q2 Q3 Q5 Q6 Q7 Q8 Q9 Q10

best-3 suggested queries
best-5 suggested queries

(a) IMDB

 0

 1

 2

 3

 4

 5

QD1 QD2 QD3 QD4 QD5 QD6 QD7 QD8 QD9 QD10

best-3 suggested queries
best-5 suggested queries

(b) DBLP

 0

 1

 2

 3

 4

 5

QE1 QE2 QE3 QE4 QE5 QE6 QE7 QE8 QE9 QE10

best-3 suggested queries
best-5 suggested queries

(c) IEEE

 0

 1

 2

 3

 4

 5

QA1 QA2 QA3 QA4 QA5 QA7 QA8 QA9 QA10

best-3 suggested queries
best-5 suggested queries

(d) ACMDL (with ID references)

Fig. 6 Average Quality Measure of Suggested Queries (for the Testing Queries with MisMatch Problem)

7.2 Evaluating the MisMatch Problem

7.2.1 Frequency of the MisMatch Problem

We have done a survey among 15 human assessors. Each
assessor is required to issue 30 queries in XClear [41], an
XML keyword search engine, to find some movies they want
to watch in the IMDB dataset. Each assessor is asked to
judge whether her queries have the MisMatch problem ac-
cording to the query results. The same experiments are also
conducted on DBLP, IEEE and ACMDL datasets. We find
that, averagely users suffered from such a problem for 27%
of their queries.

7.2.2 Sensitivity of the MisMatch Detector

With the ground truth obtained, we study the precision
and recall of our MisMatch detector. Let A be the set of
queries that do have MisMatch problem. Let B be the set of
queries that our detector claims to have MisMatch problem.
Then the precision=|A∩B|/|B|, while recall=|A∩B|/|A|.
The result for queries on each dataset is shown in Table 3.
We find:

(1) Our detector achieves a perfect recall, i.e. we do not
miss any query that does have MisMatch problem. This is
because the detector checks all the results of Q before de-
ciding whether Q has MisMatch problem (by Definition 7).

(2) A non-perfect precision tells that we may acciden-
tally identify some queries without MisMatch problem as
problematic. E.g. for a query ‘Joel Ethan’ issued on IMDB,
no person in database has such a name. For such a query, it
is ambiguous that whether the user intends to find a movie
related to two persons, or to find a person with that name
which does not exist. In this case, our approach infers movie
as the TNT, but some users may think it is to find one person
but with the name wrongly input. Note that in fact no exist-
ing approach can solve the ambiguous query thoroughly [2].

(3) For the datasets with and without ID references, the
recall and precision are almost the same. Because our de-
tector is working on the tree-structured query results regard-
less of the fact whether the results are returned by SLCA or
BLINKS.

Table 3 Sensitivity of the MisMatch Detector

Data Set Precision Recall

Without ID reference
IMDB 90% 100%
DBLP 91% 100%
IEEE 100% 100%

With ID references ACMDL 90% 100%

Further, we evaluated the sensitivity of our detector in a
more general setting of MisMatch problem (Defn. 7), in or-
der to simulate various degrees of aggressiveness by differ-
ent users, where we decide a query to have mismatch prob-
lem when its top-K results miss the target (in Sec. 2.3). In
particular, we vary K from 1 to 10. The results are same as
Table 3 in terms of precision and recall. The reason is as
below. Since the input of our detector is the top-K results re-
turned by XRank [12], whose ranking scheme gives higher
scores to more compact results, and those non-mismatched
results are more compact than the mismatched results, so the
non-mismatched results will be prioritized in the ranked list.
Therefore, there are two cases to consider. Case 1: if a query
Q has at least one result that does not miss the target (by
Defn. 6), the top-1 result will always not miss the target, so
by Defn. 7 Q will not have mismatch problem. Case 2: if
each result of a query Q misses the target, then we can cer-
tainly derive that each of its top-K results misses the target
as well (because top-K results is a subset of all results).

7.3 Effectiveness

We first have a glance at how explanations and sugges-
tions look like for real-world queries in Table 1. For Q8,
‘Panic Room’ (‘2001’) is associated with the node of type
title (year), but no single movie contains all keywords. Natu-
rally, one suggestion is to find a movie with the same title but
different year (e.g. ‘2001’→‘2002’), or to find a movie with
the same year but different title (e.g. ‘Panic Room’→‘Promised
Land’). Note that we do not replace the keyword(s) directly,
instead we first replace the keyword match node, then derive
the keywords as replacement. The term inside the parenthe-
sis in Table 1 indicates the type of the node in which the re-
placement is involved. The left hand side of the arrow is the

20 Zhifeng Bao et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

Q1 Q2 Q3 Q5 Q6 Q7 Q8 Q9Q10

P
re

c
is

io
n

XRank
XClear

(a) IMDB

 0

 0.2

 0.4

 0.6

 0.8

 1

QD1 QD2 QD3 QD4 QD5 QD6 QD7 QD8 QD9QD10

P
re

c
is

io
n

XRank
XClear

(b) DBLP

 0

 0.2

 0.4

 0.6

 0.8

 1

QE1 QE2 QE3 QE4 QE5 QE6 QE7 QE8 QE9QE10

P
re

c
is

io
n

XRank
XClear

(c) IEEE

Fig. 7 Top-5 results of XClear for suggested queries v.s. Top-5 results of XRANK for the original query (XRANK’s precision = 0 for all queries)

keyword(s) which lead to the mismatch problem (explana-
tion part). Q3 has 3061 suggestions, because Q3 has a large
number of results, and our suggester works by checking each
result to generate suggestions (if any).

For ACMDL dataset (with ID reference), some of the
suggested queries are found involving ID references while
some of them are found without involving ID references.
E.g. for QA1, according to the dataset, Jeffrey Ullman did
not publish any paper at INFOCOMM or reference any IN-
FOCOMM paper in his paper. The results being returned
are all mismatch results. The suggested options PODS and
SIGMOD are found without involving ID references, which
are the conferences Jeffrey Ullman has published papers at.
Another suggested option KDD is found involving ID ref-
erences. KDD is suggested because some KDD papers are
referenced in Jeffrey’s papers and such paper reference re-
lationship is expressed by XML reference edges. However,
such information is not reflected simply by the suggested
queries. This is why our MisMatch Module also returns a
sample result for each suggested query to help users under-
stand our suggestion.

7.3.1 Evaluation Method

We select the queries with the MisMatch problem for
each dataset to conduct a user study.

To conduct a fair evaluation, we are aware of two things.
First, we invite both experts and novices to participate the
task of scoring the suggested query. For DBLP, IEEE and
ACMDL, we ask three CS research students and three under-
graduates in other faculties; for IMDB, we ask three movie
fans and three non-fans. The assessors are shown the match-
ing results of each query, the best-5 suggested queries to-
gether with the corresponding sample query results. Second,
the assessors are asked to score the quality of each suggested
query by using the Cumulated Gain-based evaluation (CG)
metric [18] (from 0 to 5 points, 5 means best while 0 means
worst). In contrast to traditional metrics like precision and
recall which adopt a binary judgement (yes or no), CG is
aware of the fact that all results are not of equal relevance to
user.

7.3.2 Evaluation of Overall Quality

The average scores for best-3 and best-5 suggestions are
shown in Figure 6 7. We can find for queries with the Mis-
Match problem, our approach is able to find reasonable sug-
gested queries for them, and subsequently it leads to more
meaningful results; the scores for best-3 suggestions are al-
ways higher than those of best-5, which also shows the effect
of our query ranking scheme.

Although our suggested queries can lead to better query
results, some are still given low scores by some assessors
because new keywords and old keywords are not semanti-
cally similar, such as the replacement for Q10 in Table 1.
But considering lexical semantics is out of the scope of this
paper.

Most likely, the best-3 suggested queries will be viewed
by the struggling users. So in the rest of the paper, when we
talk about the quality of the suggested queries, we mean the
average score of the best-3 suggested queries.

Table 4 Suggestion Quality w.r.t. different τ and ranking factors

τ all ranking factors no cn no dt no
∑

D

IMDB

0.9 4.63 4.30 4.37 4.13
0.6 4.63 4.30 4.37 4.13
0.3 4.63 4.30 4.37 4.13
0.0 4.63 4.30 4.37 4.13

DBLP

0.9 4.71 4.39 4.39 4.13
0.6 4.71 4.36 4.42 4.18
0.3 4.71 4.36 4.42 4.18
0.0 4.71 4.36 4.42 4.18

IEEE

0.9 4.68 4.34 4.41 4.18
0.6 4.68 4.34 4.42 4.19
0.3 4.68 4.34 4.42 4.19
0.0 4.68 4.34 4.42 4.19

ACMDL

0.9 4.61 4.32 4.35 4.10
0.6 4.61 4.32 4.35 4.10
0.3 4.61 4.32 4.35 4.10
0.0 4.61 4.32 4.35 4.10

7 Here by default we adopt τ = 0.9. Experiment on effects of thresh-
old setting is discussed in Sec. 7.3.4.

A General Framework to Resolve the MisMatch Problem in XML Keyword Search 21

 0

 50

 100

 150

 200

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

T
im

e
(m

s
)

SLCA
Result Ranking

MisMatch Module

(a) IMDB

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 600

 650

QD1 QD2 QD3 QD4 QD5 QD6 QD7 QD8 QD9 QD10

T
im

e
(m

s
)

SLCA
Result Ranking

MisMatch Module

(b) DBLP

 0

 50

 100

QE1 QE2 QE3 QE4 QE5 QE6 QE7 QE8 QE9 QE10

T
im

e
(m

s
)

SLCA
Result Ranking

MisMatch Module

(c) IEEE

 0

 150

 300

 450

 600

 750

 900

 1050

 1200

QA1 QA2 QA3 QA4 QA5 QA6 QA7 QA8 QA9 QA10

T
im

e
(m

s
)

BLINKS (with Ranking)
Extended MisMatch Module

(d) ACMDL (with ID references)

Fig. 8 Processing Time for some Sample Queries (The result ranking time is too small to display.)

 0

 20

 40

 60

 80

 100

 120

 140

 160

90 135 180 225 270

T
im

e
(m

s
)

Data Size(MB)

SLCA
Result Ranking

MisMatch Module

(a) IMDB

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

520 1040

T
im

e
(m

s
)

Data Size(MB)

SLCA
Result Ranking

MisMatch Module

(b) DBLP

 100

 150

 200

 250

 300

 350

15 30 45

T
im

e
(m

s
)

Data Size(MB)

BLINKS (with Ranking)
Extended MisMatch Module

(c) ACMDL (with ID references)

Fig. 9 Impact of Data Size.

7.3.3 Study of the query ranking scheme

We further study how the proposed ranking factors for
ranking suggested query affect the overall quality of sug-
gested queries. The ranking factors include cn, dt and

∑
D,

as discussed in Sec. 3.3. The scores for the suggested queries
of each case are shown in Table 4. Please ignore the choice
of τ for the time being. By comparing the scores in a colum-
nwise way, we find:
(1) The model taking all ranking factors always outperforms
any models that miss one of the three ranking factors.
(2) Without considering the distinguishability of the key-
words to be replaced (i.e.,

∑
D), the suggested query qual-

ity decreases more than the case without any of the other
two factors. It shows that distinguishability plays an impor-
tant role.

7.3.4 Study of the distinguishability threshold

Besides the query ranking scheme, recall Sec. 3.2, the
choice of the distinguishability threshold τ will determine
what ‘important’ keywords to keep in suggestions, thereby
may lead to different candidates for suggested queries Q′s,
which in turn may affect the overall quality of Q′s. There-
fore, we adopt 4 choices of τ , from strong (0.9) to weak (0),
as shown in Table 4.

By comparing the scores in a rowwise way, we can see
that the best suggested queries usually do not change even
when we set a smaller threshold τ . It is because we have al-
ready found the best suggested queries when we set a high

τ like 0.9, since preserving the keywords with high distin-
guishability is more reasonable as discussed in Sec. 3. Later
we will also study the impact of τ on the efficiency of our
approach in Sec. 7.5.1.

7.3.5 System Comparison: XClear vs. XRank

To further verify the importance of the MisMatch Mod-
ule, we compare XClear that incorporates our MisMatch Mod-
ule with a well-known LCA-based search engine XRank
[12], which only works on XML data without ID references.
Therefore, we only test three of the datasets which are with-
out ID references, i.e. IMDB, DBLP and IEEE. For queries
with MisMatch problem, XRank may still return a ranked
list of query results while XClear returns a ranked list of sug-
gested queries. Therefore, for a fair comparison, we retrieve
the results for each suggested query produced by XClear,
rank them using XRank’s result ranking scheme, and then
pick the top-5 results to compare with the top-5 results of
XRank. A result is regarded as relevant if 8 of the 15 asses-
sors agree that the result does not miss the target; otherwise
it is regarded as irrelevant. Figure 7 shows the precision of
top-5 results of queries on our three datasets, which is calcu-
lated as (number of relevant results in top-5 results)/5. We
find for queries with MisMatch problem, XRank cannot find
any relevant result, leading to a precision of zero. Because
XRank is not aware of the fact that what user searches for
may not exist, but return the full matches as ‘perfect results’,
which are usually the whole XML data tree.

22 Zhifeng Bao et al.

Another thing to take note here is that, we are measuring
the quality of top-5 results in this set of experiment. Even
though our suggested queries guarantee to have some results
which do not miss the target by Property 1, they should still
be ranked higher than those mismatched results and be visi-
ble to users. Since the result ranking formula of XRank [12]
gives higher scores to more compact results, and those non-
mismatched results are more compact than the mismatched
results, so the non-mismatched results will be prioritized in
the ranked result list.

7.4 Efficiency

For each query in Table 1, we run our algorithm 10 times
and collect the average processing time on hot cache, as
shown in Figure 8(a). The query result ranking time is too
small to display. Moreover, we record the time used by the
MisMatch Module. We have three observations from Figure
8(a):
(1) The MisMatch Module only takes a small portion of the
whole query processing time. On average, it is around 4%
for our query set. For the queries on which MisMatch Mod-
ule spends less than 1ms, it is too small to display in Fig-
ure 8(a). Besides, on average the detector spends about 1/40
time of the suggester because it only needs to check the node
type of the results as discussed in Sec. 4.
(2) When more suggested queries are generated, the process-
ing time of MisMatch Module is relatively longer. E.g., as
we can see in Table 1, Q3 generates more suggested queries
than the other queries, so MisMatch Module consumes more
time.
(3) For the query that has no MisMatch problem, MisMatch
Module introduces a negligibly small time as compared to
the query evaluation time. Because it will terminate once
it finds a query result without the MisMatch problem. E.g.
for Q4 which intends to find the movie by company Warner
Bros, since there exist such kind of movies, Q4 does not
have the MisMatch problem, and our MisMatch Module takes
only 0.05ms.

Figure 8(b) and 8(c) show the processing time for 10 (out
of the total 18) queries on DBLP and IEEE, where we can
get similar observations. For ACMDL, the keyword evalua-
tion time by BLINKS dominates the whole query processing
time, as shown in Figure 8(d). The processing time of the
Extended MisMatch Module for all ten queries are less than
10ms. So it could be too small to display in Figure 8(d).

7.5 Scalability

Recall that our detector checks all results of a query be-
fore concluding the existence of the MisMatch problem, and
for each query result, our suggester tries to derive suggested

query. Therefore, the processing time of the MisMatch Mod-
ule should be dependent on the number of suggested queries
found, which in turn depends on

– the size of the XML data being queried, and
– the choice of the distinguishability threshold τ , and
– the number of results investigated by MisMatch Module

7.5.1 Sample Queries

Firstly, we conduct our scalability test by studying the
impact of increasing data size on the MisMatch Module. We
run the queries on IMDB and DBLP with different sizes.
Since BLINKS is an in-memory approach, we find that it
throws out-of-memory errors in our machine if the dataset
is larger than 45MB. A recent survey [7] also has a simi-
lar conclusion. Therefore, we have to downgrade the size of
ACMDL dataset for this experiment. Figure 9 shows the av-
erage processing time of one query on the datasets, where
we have two observations.
(1) The processing time of the MisMatch Module increases
linearly w.r.t. the data size. Because larger data size leads to
possibly larger number of results, and our MisMatch Mod-
ule needs to check all results to decide the MisMatch exis-
tence and find suggestions based on each result.
(2) As the query processing time increases w.r.t. the data size
as well, the MisMatch Module only takes around 4% of the
whole query processing time regardless of the data size.

 600

 800

 1000

 1200

 1400

 1600

0.9 0.6 0.3 0

#
 o

f
S

u
g
g
e
s
te

d
 Q

u
e
ri

e
s

Threshold τ

IMDB

ACMDL

(a) Impact on Suggested Queries

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 600 800 1000 1200 1400 1600

T
im

e
(m

s
)

of Suggested Queries

IMDB

ACMDL

(b) Impact on Processing Time

Fig. 10 Impact of Distinguishability Threshold τ

Secondly, we study the impact of the distinguishability
threshold τ on the processing time of our MisMatch Mod-
ule. Figure 10 shows the average number of suggested queries
generated for one query w.r.t. different distinguishability thresh-
old τ and the corresponding processing time, where the choice
of τ is same as that of the query quality study (in Sec. 7.3.4).
As we can see, more suggested queries will be generated
when τ is set to be smaller. Meanwhile, it will take longer
to process. Because when threshold τ is set lower, more
keywords will be considered as with acceptably high distin-
guishability, and we will check more TNT nodes and there-
fore find out more suggested queries. As discussed in Sec. 7.3,

A General Framework to Resolve the MisMatch Problem in XML Keyword Search 23

10%

20%

30%

40%

50%

60%

70%

[0,500)

[500,1000)

[1000,1500)

[1500,2000)

[2000,2500)

[2500,3000)

others

%
 o

f
R

a
n
d
o
m

 Q
u
e
ri

e
s

of Suggested Queries (range)

IMDB
ACMDL

(a) Distribution

 1

 1.5

 2

 2.5

 3

 3.5

 4

[0,500)

[500,1000)

[1000,1500)

[1500,2000)

[2000,2500)

[2500,3000)
T

im
e
(m

s
)

of Suggested Queries (range)

IMDB

ACMDL

(b) MisMatch Processing Time

Fig. 11 Scalability Test of Random Queries

most likely, setting τ to 0.9 can find the same best suggested
queries as setting τ to 0.6, 0.3 and even 0.0. So we set τ
to 0.9 as a balance between efficiency and effectiveness. To
summarize, MisMatch Module takes a very small portion of
the keyword query processing time, while can come up with
some helpful suggested queries to users for possible Mis-
Match problem.

7.5.2 Random Queries

Besides the real-world sample queries, we further study
the performance of our MisMatch Module over random queries.
Keywords in IMDB and ACMDL datasets are randomly picked
to form queries of length 2∼5 and those with MisMatch
problem will be kept. We record the first 1000 of such queries
and count the suggested queries output by our MisMatch
Module. The distribution of these queries with different ranges
for the number of suggestions is shown in Figure 11(a), from
which we find most queries will result in suggested queries
no larger than 500. Besides, comparing to IMDB, there are
slightly more queries over ACMDL which lead to more than
500 suggested queries. This is because the ID references
in ACMDL make the data more linked to each other, such
that more replacement can be found. Similar to our findings
on sample queries, Figure 11(b) reports the linear relation-
ship between the MisMatch Module processing time and the
number of suggested queries on random queries.

In this section, we have verified in experiments that, our
post-processing approach can detect the MisMatch problem
with high precision and recall, and subsequently generate
useful suggestion to help users. Meanwhile, it is also scal-
able and light-weight, which only takes around 4% of whole
query processing time.

8 Related Work

To the best of our knowledge, so far there is no work on
the MisMatch problem in XML keyword search. In the re-
lated work, we will look at 1) how the MisMatch problem is
handled in other forms of information retrieval; 2) keyword

search over XML data without ID references; 3) keyword
search over XML data with ID references.

8.1 MisMatch Problem in Information Retrieval

Structured Data. When structured queries are issued over
structured data (relational tables), the MisMatch problem
(i.e. what users search for is unavailable in the database)
leads to empty result. It has attracted a lot of research efforts
such as [17,31,29,30], where the problem is also known as
failing queries, non-answer queries. [31] proposed a method
to remove some constraints of the query with the help of
approximate functional dependencies, and then execute the
new queries to finally find some alternative queries. [29,30]
proposed another method which adopts the machine learn-
ing way to learn some rules from the database. For each
failed query, it will find the most similar rule for generat-
ing the alternative queries. Recently, [17] also studied how
to explain non-answer queries by pinpointing the constraint
causing the empty result. Meanwhile, even for queries with
meaningful results, some work [10] studied how to recom-
mend some related data in the database which is not part of
the result.
Unstructured Data. When keyword queries are issued over
unstructured data (in web search), the MisMatch problem
will lead to a list of mismatch results. As discussed in Sec. 1,
detecting the MisMatch problem may be challenging. One
way to alleviate the problem is to mine some similar and
popular queries from query log. [19] tried to modify the
query by some pre-computed queries and phrases based on
user query log and similarity, which is given by a machine
learning model. Later, [42] proposed methods to improve
query substitution by selecting a better training set for the
machine learning model.

Since the results of XML keyword search are very dif-
ferent, which are some subtrees with structure, none of the
above techniques consider tree structure and can be used to
detect MisMatch problem in XML keyword search. Our so-
lution makes use of the unique tree structure information in
XML, i.e. node types, to find some useful suggestion for
users.

Compared with our previous work in [39], this article
includes the following additional materials: (1) We have im-
proved the definition of Target Node Type in Sec. 2.2 to
cover a more general case, where users’ query keywords
could match the same type of nodes multiple times. E.g.,
users giving two different laptop model names in the query
are with different intention with those who give one laptop
model name in the query. (2) For the process of finding ex-
planation and suggested queries in Sec. 3.2, we further con-
sider the situation where the important keywords are derived
from multiple keyword match nodes. (3) We have extended
the MisMatch solution to resolve the MisMatch problem

24 Zhifeng Bao et al.

over XML data with ID references in Sec. 6, resulting in
a general framework of solving the MisMatch problem. (4)
We have conducted extensive experiments in Sec. 7 to eval-
uate the effectiveness, efficiency and scalability of our pro-
posed extension in addressing the MisMatch problem over
XML IDRef Digraph. In particular, real dataset ACM Digi-
tal Library (ACMDL) is used and the complete XClear sys-
tem (with general solution to address both XML data tree
and XML digraph) is re-evaluated for queries and XML data
without IDRef in our earlier work [39].

8.2 Keyword Search on XML Data without ID references

An XML document without ID references is usually mod-
eled as a tree. The first part of the research efforts is the def-
inition of matching semantics. LCA (lowest common ances-
tor) semantics is first proposed in [12] to find XML nodes,
each of which contains all query keywords within its sub-
tree. For a given query Q = {k1,...,kn} and an XML docu-
ment D, Li denotes the inverted list of ki. Then the LCAs of
Q on D are defined as LCA(Q)={v | v = lca(m1, ...,mn),
vi ∈ Li(1 ≤ i ≤ n)}. Subsequently, SLCA (smallest LCA
[38,15]) is proposed, which is indeed a subset of LCA(Q),
of which no LCA in the subset is the ancestor of any other
LCA. ELCA [12], which is also a widely adopted subset
of LCA(Q), is defined as: a node v is an ELCA node of
Q if the subtree Tv rooted at v contains at least one oc-
currence of all query keywords, after excluding the occur-
rences of keywords in each subtree Tv′ rooted at v’s descen-
dant node v′ and already contains all query keywords. [24]
proposed Valuable LCA (VLCA) by eliminating redundant
LCAs that should not contribute to the answer, but also re-
trieves the false negatives filtered out wrongly by SLCA. Re-
cently, structural consistency [22] is proposed to further con-
strain LCA s.t. no query result has an ancestor-descendant
relationship at the schema level with any other query results.
The second part is the proposals of efficient result retrieval
methods based on a certain matching semantics: [38,26] for
computing SLCA nodes and [12,35] for computing ELCA
nodes.

Moreover, improving user experience is studied in vari-
ous ways [28,24,25,2,3,4], but none of them is aware of the
MisMatch problem. [2,3] proposed a statistical way to iden-
tify the search target candidates. [35] studied the problem of
finding the nearest node containing a specific keyword to a
given node. [36] proposed a ranking approach for keyword
queries based on an extension of the concepts of data depen-
dencies and mutual information. Sun et al. [34] generalize
SLCA to support keyword search involving combinations
of AND and OR boolean operators. XSeek [26] generates
the return nodes which can be explicitly inferred by key-
word match pattern and the concept of entities in XML data.
[27] further proposed an axiomatic way to decide whether a

result is relevant to a keyword query in term of the mono-
tonicity and consistency properties w.r.t the XML data and
query. [28] studied how to differentiate the search results of
an XML keyword query, aiming to save user efforts in in-
vestigating and comparing potentially large results.

However, all the keyword search methods above are try-
ing to find sub-structures containing all query keywords, and
the MisMatch problem may exist in all of them. Since our
technique to solve the MisMatch problem is orthogonal to
keyword search methods, our technique can be easily de-
ployed to all existing keyword search methods.

8.3 Keyword Search on XML Data with ID references

An XML document considering ID references is usually
modeled as a directed graph (digraph) [16]. Keyword search
on a digraph is usually reduced to the Steiner Tree problem
or its variants: given a digraph G = (V,E), where V is a
set of nodes and E is a set of edges, a keyword query re-
sult is defined as a minimal directed subtree T in G such
that the leaves or the root of T contain all keywords in the
query. The Steiner tree problem is NP-complete [9], and
many works are interested in finding the “best” answers of
all possible Steiner trees, i.e. finding top-K results according
to some criteria, like subtree size (sum of length of all edges
in the subtree), diameter (maximum distance between any
two nodes in the subtree), etc. Backward expanding strat-
egy is used by BANKS [5] to search for Steiner trees in
a digraph. It starts the searching from the nodes which di-
rectly contain the query keywords. Then it concurrently runs
multiple threads to traverse from those nodes until they find
some common nodes which connect to all query keywords.
To improve the efficiency, BANKS-II [20] proposed a bidi-
rectional search strategy to reduce the search space, which
searches as small portion of digraph as possible. It starts a
backward searching from the nodes directly containing the
keywords. Meanwhile, it also conducts a forward searching
starting from the nodes which have been visited during back-
ward searching. Later [8] designed a dynamic programming
approach (DPBF) to identify the top-k Steiner trees contain-
ing all query keywords. With some slightly modification on
DPBF, a variant of DPBF to output the top-k results in in-
creasing weight order is also proposed in the work. BLINKS
[14] proposes a bi-level index and a partition-based method
to prune and accelerate searching for top-k results in a di-
graph. It first divide the XML nodes into several blocks.
Then it builds intra-block index and inter-block index for
all the nodes. With the index which conveys the connectiv-
ity information among and within the blocks, it can prune
some unnecessary search space. XKeyword [16] presented
a method to optimized the query evaluation by making use
of the schema of the XML document. It infers the possi-
ble schema structure of the potential results such that it can

A General Framework to Resolve the MisMatch Problem in XML Keyword Search 25

avoid some search space which will not lead to any results
complied with that structure. But it is still orders of mag-
anitude slower than BLINKS as it involves a lot of table
joins [40]. Recently STAR [21] proposed an approximate
approach which returns near-optimal Steiner trees as results.
The results are returned quickly and then iteratively refined.

9 Conclusion and Future Work

In this paper, we first identified and defined the Mis-
Match problem, in which what user intends to search for
does not exist in the XML data. Then we proposed a practi-
cal way to detect the MisMatch problem and generate help-
ful suggestions to users based on two novel concepts that we
introduce: Target Node Type and Distinguishability. Our ap-
proach can be viewed as a post-processing job of query eval-
uation, and has four main features: (1) both detector and sug-
gester are result-driven; (2) it adopts explanations, suggested
queries and their sample results as the output to users, help-
ing users judge whether the MisMatch problem is solved
without reading all query results; (3) it is portable as it is or-
thogonal to the choice of result retrieval method, which can
work with any LCA-based matching semantics (for XML
without ID references) or MST-based matching semantics
(for XML with ID references); (4) it is lightweight as it oc-
cupies a very small proportion of the whole query evaluation
time.

References

1. Berkeley DB. http://www.sleepycat.com
2. Bao, Z., Ling, T.W., Chen, B., Lu, J.: Effective xml keyword

search with relevance oriented ranking. In: ICDE (2009)
3. Bao, Z., Lu, J., Ling, T.W., Chen, B.: Towards an effective xml

keyword search. IEEE Trans. Knowl. Data Eng. 22(8), 1077–1092
(2010)

4. Bao, Z., Lu, J., Ling, T.W., Xu, L., Wu, H.: An effective object-
level xml keyword search. In: DASFAA (2010)

5. Bhalotia, G., Hulgeri, A., Nakhe, C., Chakrabarti, S., Sudarshan,
S.: Keyword searching and browsing in databases using banks. In:
ICDE (2002)

6. Chapman, A., Jagadish, H.V.: Why not? In: SIGMOD (2009)
7. Coffman, J., Weaver, A.C.: An empirical performance evaluation

of relational keyword search techniques. IEEE Trans. Knowl. Data
Eng. 26(1) (2014)

8. Ding, B., Yu, J.X., Wang, S., Qin, L., Zhang, X., Lin, X.: Finding
top-k min-cost connected trees in databases. In: ICDE (2007)

9. Dreyfus, S.E., Wagner, R.A.: The steiner problem in graphs. In:
Networks (1971)

10. Drosou, M., Pitoura, E.: Ymaldb: exploring relational databases
via result-driven recommendations. VLDB J. 22(6), 849–874
(2013)

11. Goldman, R., Widom, J.: Dataguides: Enabling query formulation
and optimization in semistructured databases. In: VLDB (1997)

12. Guo, L., Shao, F., Botev, C., Shanmugasundaram, J.: Xrank:
Ranked keyword search over xml documents. In: SIGMOD (2003)

13. Hadjieleftheriou, M., Chandel, A., Koudas, N., Srivastava, D.: Fast
indexes and algorithms for set similarity selection queries. In:
ICDE (2008)

14. He, H., Wang, H., Yang, J., Yu, P.S.: Blinks: ranked keyword
searches on graphs. In: SIGMOD (2007)

15. Hristidis, V., Koudas, N., Papakonstantinou, Y., Srivastava, D.:
Keyword proximity search in xml trees. IEEE Trans. Knowl. Data
Eng. 18(4) (2006)

16. Hristidis, V., Papakonstantinou, Y., Balmin, A.: Keyword proxim-
ity search on xml graphs. In: ICDE (2003)

17. Huang, J., Chen, T., Doan, A., Naughton, J.F.: On the provenance
of non-answers to queries over extracted data. PVLDB 1(1) (2008)

18. Järvelin, K., Kekäläinen, J.: Cumulated gain-based evaluation of
ir techniques. ACM Trans. Inf. Syst. 20(4) (2002)

19. Jones, R., Rey, B., Madani, O., Greiner, W.: Generating query sub-
stitutions. In: WWW (2006)

20. Kacholia, V., Pandit, S., Chakrabarti, S., Sudarshan, S., Desai, R.,
Karambelkar, H.: Bidirectional expansion for keyword search on
graph databases. In: VLDB (2005)

21. Kasneci, G., Ramanath, M., Sozio, M., Suchanek, F.M., Weikum,
G.: Star: Steiner-tree approximation in relationship graphs. In:
ICDE (2009)

22. Lee, K.H., Whang, K.Y., Han, W.S., Kim, M.S.: Structural consis-
tency: enabling xml keyword search to eliminate spurious results
consistently. VLDB J. 19(4) (2010)

23. Lemire, D., Kaser, O., Aouiche, K.: Sorting improves word-
aligned bitmap indexes. CoRR (2009)

24. Li, G., Feng, J., Wang, J., Zhou, L.: Effective keyword search for
valuable lcas over xml documents. In: CIKM (2007)

25. Li, G., Li, C., Feng, J., Zhou, L.: Sail: Structure-aware indexing
for effective and progressive top-k keyword search over xml doc-
uments. Inf. Sci. 179(21) (2009)

26. Liu, Z., Chen, Y.: Identifying meaningful return information for
xml keyword search. In: SIGMOD (2007)

27. Liu, Z., Chen, Y.: Reasoning and identifying relevant matches for
xml keyword search. PVLDB 1(1) (2008)

28. Liu, Z., Sun, P., Chen, Y.: Structured search result differentiation.
PVLDB 2(1) (2009)

29. Muslea, I.: Machine learning for online query relaxation. In: KDD
(2004)

30. Muslea, I., Lee, T.J.: Online query relaxation via bayesian causal
structures discovery. In: AAAI (2005)

31. Nambiar, U., Kambhampati, S.: Answering imprecise queries over
autonomous web databases. In: ICDE (2006)

32. Salton, G., McGill, M.J.: Introduction to Modern Information Re-
trieval. McGraw-Hill, Inc., New York, NY, USA (1986)

33. Schmidt, A., Kersten, M.L., Windhouwer, M.: Querying xml doc-
uments made easy: Nearest concept queries. In: ICDE (2001)

34. Sun, C., Chan, C.Y., Goenka, A.K.: Multiway slca-based keyword
search in xml data. In: WWW (2007)

35. Tao, Y., Papadopoulos, S., Sheng, C., Stefanidis, K., Stefanidis,
K.: Nearest keyword search in xml documents. In: SIGMOD
(2011)

36. Termehchy, A., Winslett, M.: Using structural information in xml
keyword search effectively. ACM Trans. Database Syst. 36(1)
(2011)

37. Vesper, V.: http://www.mtsu.edu/vvesper/dewey.html
38. Xu, Y., Papakonstantinou, Y.: Efficient keyword search for small-

est lcas in xml databases. In: SIGMOD (2005)
39. Zeng, Y., Bao, Z., Ling, T.W., Jagadish, H.V., Li, G.: Breaking out

of the mismatch trap. In: ICDE (2014)
40. Zeng, Y., Bao, Z., Ling, T.W., Li, G.: Efficient xml keyword

search: From graph model to tree model. In: DEXA (2013)
41. Zeng, Y., Bao, Z., Ling, T.W., Li, G.: Removing the mismatch

headache in xml keyword search. In: SIGIR (2013, demo paper.
http://xclear.comp.nus.edu.sg)

42. Zhang, W.V., He, X., Rey, B., Jones, R.: Query rewriting using
active learning for sponsored search. In: SIGIR (2007)

