
Efficient Processing of XML Twig Patterns with Parent
Child Edges: A Look-ahead Approach

Jiaheng Lu, Ting Chen and Tok Wang Ling
School of Computing National University of Singapore

3 Science Drive 2, Singapore 117543
{lujiahen,chent,lingtw}@comp.nus.edu.sg

ABSTRACT
With the growing importance of semi-structure data in in-
formation exchange, much research has been done to provide
an effective mechanism to match a twig query in an XML
database. A number of algorithms have been proposed re-
cently to process a twig query holistically. Those algorithms
are quite efficient for quires with only ancestor-descendant
edges. But for queries with mixed ancestor-descendant and
parent-child edges, the previous approaches still may pro-
duce large intermediate results, even when the input and
output size are more manageable. To overcome this limi-
tation, in this paper, we propose a novel holistic twig join
algorithm, namely TwigStackList. Our main technique is
to look-ahead read some elements in input data steams and
cache limited number of them to lists in the main mem-
ory. The number of elements in any list is bounded by the
length of the longest path in the XML document. We show
that TwigStackList is I/O optimal for queries with only
ancestor-descendant relationships below branching nodes.
Further, even when queries contain parent-child relation-
ship below branching nodes, the set of intermediate results
in TwigStackList is guaranteed to be a subset of that in pre-
vious algorithms. We complement our experimental results
on a range of real and synthetic data to show the significant
superiority of TwigStackList over previous algorithms for
queries with parent-child relationships.

Categories and Subject Descriptors
H.2.4 [Database Management]: [Systems-query process-
ing]

General Terms
Algorithm, Performance

Keywords
XML, Holistic twig pattern matching

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’04, November 8–13, 2004, Washington, DC, USA.
Copyright 2004 ACM 1-58113-874-1/04/0011 ...$5.00.

1. INTRODUCTION
XML is emerging as a de facto standard for informa-

tion exchange over the Internet. Although XML documents
could have rather complex internal structures, they can gen-
erally be modelled as ordered trees. In most XML query lan-
guages (see, e.g. [2, 3]), the structures of XML documents
are expressed by twig (i.e. a small tree) patterns, while
the values of XML elements are used as part of selection
predicates. Finding all occurrences of a twig pattern in an
XML database is a core operation in XML query processing,
both in relational implementations of XML databases and in
native XML databases [5]. In the past few years, many algo-
rithms [5, 6, 9, 11, 12, 13, 14, 17] proposed in the literature
are based on a form of labeling scheme that encodes each
element in an XML database by its positional information.
In order to answer a query twig pattern, these algorithms
access the labels alone without traversing the original XML
documents

In particular, Al-Khalifa et al. [1] propose to decompose
the twig pattern into many binary relationships, and then
use Tree-merge or Stack-tree algorithms to match the bi-
nary relationships, and finally stitch together basic matches
to get the final results. The main disadvantage of such a
decomposition based approach is that intermediate result
sizes can get very large, even when the input and the fi-
nal result sizes are much more manageable. To address the
problem, Bruno et al. [5] propose a holistic twig join algo-
rithm, namely TwigStack. With a chain of linked stacks
to compactly represent partial results of individual query
root-to-leaf paths, their approach is I/O and CPU optimal
among all sequential algorithms that read the entire input
for twigs with only ancestor-descendant edges.

The work reported in this paper is motivated by the fol-
lowing observation: although TwigStack has been proved to
be I/O optimal in terms of input and output sizes for queries
with only ancestor-descendant edges, their algorithms still
cannot control the size of intermediate results for queries
with parent-child edges. To get the better understanding
of this limitation, we experimented with TreeBank dataset
which was downloaded from University of Washington XML
repository [16]. We use three twig queries patterns(as shown
in Table 1), each of which contains at least one parent-child
edge. TwigStack operates two steps:(i) a list of intermedi-
ate path solutions is output as intermediate results;(ii) the
intermediate path solutions in the first step are merge-joined
to produce the final solutions. Table 1 shows the numbers of
intermediate path solutions output in the first step and the
merge-joinable paths among them in the second step. An

immediate observation from the table is that TwigStack
output too many partial paths that are not merge-joinable.
For all three queries, more than 95% partial paths produced
by TwigStack in the first step are ”useless” to final an-
swers. Thus, our experiment shows that it is a big challenge
to improve the previous algorithms to answer queries with
parent-child edges.

Query Partial
paths

Merge-
joinable
paths

Percentage
of useless
paths

VP[/DT]//PRP DOLLAR 10663 5 99.9%
S[/JJ]/NP 70988 10 99.9%
S[//VP/IN]//NP 702391 22565 96.8%

Table 1: Number of partial path solutions produced
by TwigStack against TreeBank data

In this paper, we propose a new holistic twig join algo-
rithm, which has the same performance as TwigStack for
query patterns with only ancestor-descendant edges, but it
is significantly more efficient than TwigStack for queries
with the presence of parent-child edges. In particular, we
propose Algorithm TwigStackList to match query twig pat-
terns. The main technique of TwigStackList is to make use
of two data structures: stack and list for each node in query
twigs. A chain of linked stacks is used to compactly repre-
sent partial results of individual query root-leaf paths. We
look-ahead read some elements in input data streams and
cache limited number of them in the list. The number of
elements in any list is bounded by the length of the longest
path in the XML document. The elements in lists help us to
determine whether an element possibly contributes to final
answers.

Our contribution can be summarized as follows:

• We propose a novel holistic twig join algorithm, namely
TwigStackList. When all edges below branching nodes
in the query pattern are ancestor-descendant relation-
ships, the I/O cost of our algorithm is only propor-
tional to the sum of sizes of the input and the final
output. In other words, unlike previous algorithms,
our algorithm can guarantee the I/O optimality even
for queries with parent-child relationships below non-
branching nodes. This improved result mainly owe to
the look-ahead technique of our algorithm.

• Furthermore, even when there exist parent-child re-
lationships below branching nodes, we show that the
intermediate solutions output by TwigStackList are
guaranteed to be a subset of that by the previous al-
gorithms.

• We present experimental results on a range of real and
synthetic data, and query twig patterns. Our experi-
ments validate our analysis results and show the supe-
riority of TwigStackList over previous algorithms.

The rest of the paper proceeds as follows. We first discuss
the previous algorithm and show our intuitive observation in
Section 2. The novel algorithm TwigStackList is presented
in Section 3. We report the experimental results in Section
4. Section 5 is dedicated to the related work and Section 6
concludes this paper.

2. BACKGROUND

2.1 Data model and twig pattern query
XML data is commonly modelled by a tree structure,

where nodes represent elements, attributes and texts, and
parent-child edges represent element-subelement, element-
attribute and element-text pairs. Most existing XML query
processing algorithms [5, 9, 14] use a region code (start,
end, level) to present the position of a tree node in the
data tree. The region encodings support efficient evaluation
of structural relationships. Formally, element u is an an-
cestor of element v if and only if u.start <v.start <u.end.
For parent-child relationship, we also check whether u.level
=v.level -1.

Queries in XML query languages make use of twig pat-
terns to match relevant portions of data in an XML data-
base. Twig pattern nodes may be elements, attributes and
texts. Twig pattern edges are either parent-child relation-
ships (denoted by “/”) or ancestor-descendant relationships
(denoted by “//”). If the number of children of a node is
greater than one, then we call this node a branching node.
Otherwise, when the node has only one child, it is a non-
branching node.

Given a twig pattern T and an XML database D, a match
of T in D is identified by a mapping from nodes in T to ele-
ments in D, such that: (i) query node predicates are satisfied
by the corresponding database elements; and (ii) the parent-
child and ancestor-descendant relationships between query
nodes are satisfied by the corresponding database elements.
The answer to query T with m nodes can be represented as
a list of m-ary tuples, where each tuple (t1,...,tm) consists
of the database elements that identify a distinct match of T
in D.

2.2 TwigStack and our observation
Bruno et al. [5] propose a novel holistic twig join algo-

rithm called TwigStack to match XML twig patterns. They
use a chain of linked stacks to compactly represent partial
results of individual query root-to-leaf paths. In particular,
TwigStack operates two phases as follows.

1. Output path solutions A list of root-leaf path so-
lutions is output as intermediate path solutions. Each
root-leaf solution matches the corresponding path pat-
tern in the query pattern.

2. Merge All lists of path solutions in the first phase are
merged to produce the final answer to the whole query
twig pattern

When all edges in query patterns are ancestor-descendant
(A-D) relationships, TwigStack ensures that each root-leaf
solution in the first phase is merge-joinable with at least one
solution to each of the other root-leaf query paths. Thus,
none of those path solutions is redundant. However, this
property does not hold if there is a parent-child (P-C) edge
in the query pattern.

To see an example, if we evaluate the twig pattern in Fig-
ure 1(a) on the XML document in Figure 1(b), TwigStack
will push a1 into the stack and output all root-leaf path so-
lutions: (a1,b1,c1), (a1,b1,c2),...,(a1,bn−1,cn), (a1,bn,cn), be-
cause they match path a//b//c. Notice that in this example,
there is no match at all! But TwigStack output 4n “use-
less” intermediate path solutions. Since the size of interme-
diate path solutions has a great impact on the performance

a

b

c

d

a1

b1 bn-1

b2
bn

c1

c2

cn-1

cn

e1

d1 dn

en

....

....

(a) Query twig pattern (b) An XML tree

Figure 1: Illustration to the sub-optimality of
TwigStack

of holistic twig joins algorithms, in this paper, we focus on
shrinking the size of intermediate path solutions for queries
with P-C relationships.

The main problem of TwigStack is that it only consid-
ers ancestor-descendant property between nodes in the first
phase. The level information of nodes, on the other hand, is
not sufficiently exploited. As an illustration, see the query
and data in Figure 1(a) and (b) again. Since < a, d > edge
in the twig pattern is the parent-child relationship, node a1

in the document contributes to the final answer only if a1

has a child with name d. But TwigStack pushes a1 into
the stack only because a1 has a descendant (not a child)
with tag d. Thus, this algorithm outputs a large size of in-
termediate paths. However, our method pushes a1 into the
stack only if a1 or its descendant(with tag a) has a child
with name d. In the document of Fig 1 (b), although a1

has many descendants with tag d, none of them has a child
with tag d. Thus, our method does not push a1 into the
stack and thereby avoid outputting the “useless” intermedi-
ate path solutions.

In the following, we extend the intuition in the above ex-
ample and propose a new holistic twig matching algorithm,
which is able to produce much less intermediate path so-
lutions than TwigStack for queries with parent-child rela-
tionships.

3. TWIG JOIN ALGORITHM
In this section, we present TwigStackList, a new efficient

algorithm for finding all matches of a query twig pattern
against an XML document. We start this section with in-
troducing some notations and data structures which will be
used by TwigStackList.

3.1 Notation and data structures
A query twig pattern can be represented with a tree. The

self-explaining function isRoot(n) and isLeaf(n) examine
whether a query node n is a root or a leaf node. The function
children(n) gets all child nodes of n, and PCRchildren(n),
ADRchildren(n) returns child nodes which has the parent-
child or ancestor-descendant relationship with n in the query
twig pattern, respectively. That is, PCRchildren(n)

S
ADRchildren(n) = children(n). In the rest of the paper,
“node” refers to a tree node in the twig pattern (e.g. node
n), while “element” refers to an element in the data set
involved in a twig join (e.g. element e).

There is a data stream Tn associated with each node n in
the query twig. We use Cn to point to the current element
in Tn. Function end(Cn) tests whether Cn is at the end of

n1

n2

1
n

S

2
n

S

n3

3
n

S

1
n

L

2
n

L
3

n
L

1
n

c

2
n

c

3
n

c

Figure 2: Stacks Sn and lists Ln used in our algo-
rithm

Tn. We can access the attribute values of Cn by Cn.start,
Cn.end, Cn.level. The cursor can be forwarded to the next
element in Tn with the procedure advance(Tn). Initially, Cn

points to the first element of Tn.
Our join algorithm will make use of two types of data

structure: list and stack. Given a query twig, we associate a
list Ln and a stack Sn for each node n in the twig, as shown
in Figure 2.

The use of stack in our algorithm is similar to that in
TwigStack. That is, each data node in the stack consists
of a pair: (positional representation of an element from Tn

, pointer to an element in Sparent(n)). The operations over
stack are: empty, pop, push, topStart, topEnd. The last two
operations return the start and end attributes of the top
element in the stack, respectively. At every point during
computation: (i) the node in stack Sn (from bottom to top)
are guaranteed to lie on a root-leaf path in the XML data-
base (ii) the set of stacks contain a compact encoding of
partial and total answers to the query twig pattern.

For each list Ln, we declare an integer variable say pn,
as a cursor to point to an element in the list Ln. We
use Ln.elementAt(pn) to denote the element pointed by pn.
We can access the attribute values of Ln.elementAt(pn) by
Ln.elementAt(pn).start, Ln.elementAt(pn).end and
Ln.elementAt(pn).level. At every point during computa-
tion: elements in each list Ln are strictly nested from the
first to the end, i.e. each element is an ancestor of the ele-
ment following it. The operations over list Ln are delete(pn)
and append(e). The first operation delete Ln.elementAt(pn)
in list Ln and the last operation appends element e at the
end of Ln .

3.2 TwigStackList
Algorithm TwigStackList, which computes answers to a

query twig pattern, is presented in Algorithm 2. This algo-
rithm operates in two phases. In the first phase (line 1–11),
it repeatedly calls the getNext algorithm with the query
root as the parameter to get the next node for processing.
We output solutions to individual query root-to-leaf paths
in this phase. In the second phase (line 12), these solutions
are merge-joined to compute the answer to the whole query
twig pattern.

In Section 3.2.1, we explain the getNext algorithm and
Section 3.2.2 presents the main algorithm in detail.

3.2.1 getNext algorithm
getNext(n) is a procedure called in the main algorithm of

TwigStackList. It returns a node n′ (possibly n′ = n) with
three properties : assume that element en′=getElement(n′),

Algorithm 1 getNext(n)

1: if isLeaf(n) return n
2: for all node ni in children(n) do
3: gi = getNext(ni)
4: if (gi 6= ni) return gi

5: end for
6: nmax = maxargni∈children(n) getStart(ni)
7: nmin = minargni∈children(n) getStart(ni)
8: while (getEnd(n) < getStart(nmax)) proceed(n)
9: if (getStart(n) > getStart(nmin)) return nmin

10: MoveStreamToList(n, nmax)
11: for all node ni in PCRchildren(n) do
12: if (there is an element ei in list Ln such that ei is the

parent of getElement(ni)) then
13: if (ni is the only child of n) then
14: move the cursor pn of list Ln to point to ei

15: end if
16: else
17: return ni

18: end if
19: end for
20: return n

Procedure getElement(n)

1: if ¬empty(Ln) then
2: return Ln.elementAt(pn)
3: else return Cn

Procedure getStart(n)

1: return the start attribute of getElement(n)

Procedure getEnd(n)

1: return the end attribute of getElement(n)

Procedure MoveStreamToList(n, g)

1: while Cn.start < getStart(g) do
2: if Cn.end > getEnd(g) then
3: Ln.append(Cn)
4: end if
5: advance(Tn)
6: end while

Procedure proceed(n)

1: if empty(Ln) then
2: advance(Tn)
3: else
4: Ln.delete(pn)
5: pn = 0 {Move pn to point to the beginning of Ln}
6: end if

a

b c

a1

(a) Query (b) Document

b1

c1

b2 c2

a2

root

d1

Figure 3: An example to illustrate getNext algorithm

then (i) en′ has a descendant eni in each of stream Tni for
ni ∈ children(n′); and (ii) if n′ is not a branching node
in the query, element en′ has a child eni in Tni , where
ni ∈ PCRchildren(n′) (if any); and (iii) if n′ is a branching
node, there is an element eni in each Tni such that there ex-
ists an element ei(with tag n) in the path from en′ to enmax

that is the parent of eni , where ni ∈ PCRchildren(n′) (if
any) and enmax has the maximal start attribute for all
children(n′).

At line 2-5, in Algorithm getNext, we recursively invoke
getNext for each ni ∈ children(n). If any returned node gi

is not equal to ni , we immediately return gi (line 4). Oth-
erwise, we will try to locate a child of n which satisfies the
above three properties. Line 6 and 7 get the max and min
elements for the current head elements in lists or streams,
respectively. Line 8 skips elements that do not contribute
to results. If no common ancestor for all Cni is found, line
9 returns the child node with the smallest start value, i.e.
gmin .

Line 10 is an important step. Here we look-ahead read
some elements in the stream Tn and cache elements that are
ancestors of Cnmax into the list Ln. Whenever any element
ni cannot find its parent in list Ln for ni ∈ children(n), al-
gorithm getNext returns node ni (in line 17). Note that this
step manifests the key difference between TwigStackList
and the previous algorithms (i.e. TwigStack) . In this sce-
nario, the previous ones return n instead of ni , which may
results in many “useless” intermediate paths. But our algo-
rithm adopt a clever strategy: return ni that has no parent
in list Ln, since we make sure that ni does not contribute
to final results involved with the elements in the remaining
parts of streams. Finally, if n is not a branching node, in
line 14, we need to move the cursor in the list Ln to point
to the parent of getElement(ni).

The main difference between two getNext algorithms in
TwigStack and TwigStackList can be summarized as fol-
lows. In TwigStack, getNext(n) return n′ if the head ele-
ment en′ in stream Tn′ has a descendant eni in each stream
Tni , for ni ∈ children(n′) (which is the same as the first
property as mentioned above), but TwigStackList needs n′

to satisfy three properties, as illustrated as follows.

Example 1. Consider a query twig pattern a[/b]/c on a
data set visualized in Figure 3. A subscript is added to each
element in the order of their start values for easy reference.
Initially, the three elements are (a1,b1,c1). The first call of
getNext(root) returns node c, because element c1 cannot
find parent with tag a in the path from a1 to it. But in
this scenario, the first call of getNext(root) of TwigStack
would return a1, since a1 has two descendants b1 and c1 in
stream b and c respectively. Because TwigStack return a1

instead of c1, in the main algorithm, TwigStack will output
the useless path solution < a1, b1 >. Further, the second call
of getNext(root) in TwigStackList returns b1. In addition,
the cursor of node a is forwarded to a2. Right before the
third call, TwigStackList reach a cursor setup (a2, b2, c2),
which is actually the match of the query.

3.2.2 Main Algorithm
Algorithm 2 shows the main algorithm of TwigStackList.

It repeatedly calls getNext(root) to get the next node n to
process, as described next.

First of all, line 2 calls getNext algorithm to identify the

Algorithm 2 TwigStackList

1: while ¬end() do
2: nact = getNext(root)
3: if (¬isRoot(nact)) then
4: cleanParentStack(nact,getStart(nact))
5: end if
6: if (isRoot(nact) ∨¬empty(Sparent(nact))) then
7: clearSelfStack(nact,getEnd(nact))
8: moveToStack (nact,Snact ,pointertotop(Sparent(nact)))
9: if (isLeaf(nact)) then

10: showSolutionsWithBlocking(Snact ,1)
11: pop(Snact)
12: end if
13: else
14: proceed(nact)
15: end if
16: end while
17: mergeAllPathSolutions()

Function end()

1: return ∀ni ∈ subtreeNodes(n) : isLeaf(ni)
V

end(Cni)

Procedure moveToStack(n, Sn, p)

1: push (getElement(n),p) to stack Sn

2: proceed(n)

Procedure clearParentStack(n, actStart)

1: while (¬empty(Sparent(n))
V

(topEnd(Sparent(n)) < actStart)) do
2: pop(Sparent(n))
3: end while

Procedure clearSelfStack(n, actEnd)

1: while (¬empty(Sn)
V

(topEnd(Sn) < actEnd)) do
2: pop(Sn)
3: end while

node nact to be processed. Line 4 and 7 remove partial an-
swers from the stacks of parent(nact) and nact that cannot
be extended to total answer. If n is not a leaf node, we
push element getElement(nact) into Snact (line 8); other-
wise (line 10), all path solution involving getElement(nact)
can be output. Note that path solutions should be output
in root-leaf order so that they can be easily merged together
to form final twig matches (line 17). As a result, we may
need to block some path solutions during output. Interested
readers may refer to TwigStack [4] to know more details
about blocking technique.

It is not correct to merge cleanParentStack and cleanSelf-
Stack into one procedure cleanStack as Figure 4. Consider
a twig query a[//b//c]/d and a document in Figure 5. Sup-
pose the four elements are initially at (a1,b1,c1,d1). At the
first call of getNext, node a is returned. At this point, note
that the current element pointed by cursor pb in list Lb is
b2, instead of b1 (recall, line 14 in Algorithm 1). Then the
next two calls of getNext return b,c once to consume b1 and
c1. After that, the current elements are (b1,c2,d1) (stream
a has finished). The next call of getNext will return node
b again. Here, if we used the algorithm shown in Figure 4,
then b2 would not be popped from stack. Then, the property
of stack (i.e. the upper element should be the descendant of
the lower one) would not be hold.

......

3: if (¬isRoot(nact) then

4: cleanStack(parent(nact,getStart(nact))

5: endif

6: if (isRoot(nact) ∨¬ empty(Sparent(nact)) then

7: cleanStack(nact,getStart(nact))

......

Procedure cleanStack(n,actStart)

1: while (¬empty(Sn)
V

(topEnd(Sn)<actStart)) do

2: pop(Sn)

Figure 4: The incorrect merge of two procedures

a

b

c

d

a1

b1 d1

c1

b2 c2

(a) Query twig pattern (b) An XML tree

Figure 5: An example to show the incorrectness of
codes in Fig. 4

Compared to the previous algorithm TwigStack, the ben-
efit of the new algorithm TwigStackList can be illustrated
with the following two examples.

Example 2. Consider the query twig pattern Q1 in Fig 6(a)
and Doc1 in Fig 6 (b). Initially, the first call of getNext() in
TwigStack returns node a, but the first call of getNext() in
TwigStackList returns node c. As a result, unlike algorithm
TwigStack, TwigStackList does not output the intermedi-
ate result (a1, e1), which does not contribute to any final
answers. 2

Example 3. Consider Q2 in Fig 6(c) and Doc2 in Fig 6
(d). Initially, the first call of getNext in TwigStack and
TwigStackList return node a. After the second call of
getNext, (a1,b1) is output as intermediate results in both
TwigStack and TwigStackList. Subsequently, the third
call of getNext in TwigStack returns node a again. But
the third call of getNext in TwigStackList returns node b,
since b2 has not the parent in the stream Ta . Thus, unlike
TwigStack, TwigStackList does not output the intermedi-
ate result (a2,d1) and (a2,d2), which do not contribute to
any final answers. 2

Example 2 illustrates the fact that, in TwigStackList,
when twig patterns contain only ancestor-descendant rela-
tionships below branching nodes, each solution to individual
query root-leaf path is guaranteed to be merge-joinable with
at least one solution to each of the other root-leaf paths.
On the other hand, Example 3 illustrates another fact that
even if there exist parent-child relationships below branch-
ing nodes, TwigStackList is still superior to TwigStack in
that it output less useless intermediate solutions.

a

b e

c

d

a1

b1 e1

c1

c2

b2

d1

a

b d

b1 a2

d1

b2

a1

d2

(a) Q1 (b) Doc1 (c) Q2 (d) Doc2

Figure 6: Two examples to illustrate the benefits of
Algorithm TwigStackList

3.3 Analysis of TwigStackList
In this section, we discuss the correctness of Algorithm

TwigStackList, and then we analyze its complexity. Fi-
nally, we compare TwigStackList with TwigStack in terms
of the size of intermediate results.

Definition 1. (head element en) In TwigStackList, for
each node n in the query twig pattern, if the list Ln is not
empty, then we say that the element indicated by the cursor
pn of Ln is the head element of n, denoted by en. Otherwise,
we say that element Cn in the stream Tn is the head element
of n.

Definition 2. (child and descendant Extension) We say
that a node n has the child and descendant extension if the
following three properties hold:

1. for each ni ∈ ADRchildren(n), there is an element eni

(with tag ni) which is a descendant of en, and;

2. for each ni ∈ PCRchildren(n), there is an element ei (
with tag n) in the path from en to enmax such that ei is
the parent of eni , where enmax has the maximal start
attribute value for all head elements of child nodes of
n; and

3. each of children of n has the child and descendant ex-
tension.

The above two definitions are important to establish the
correctness of the following lemma.

Lemma 1 Suppose that for an arbitrary node n in the
twig query we have getNext(n) = n′. Then the following
properties hold:

• n′ has the child and descendant extension.

• Either (a) n = n′ or (b) parent(n) does not have the
child and descendant extension because of n′ (and pos-
sibly a descendant of n′).

Using Lemma 1, we can prove the following lemma.

Lemma 2. Suppose getNext(n) = n′ returns a query node
n′ (n′ 6= n) in the line 17 of Algorithm getNext. If the stack
is empty, then the head element does not contribute to any
final solutions.

Proof(Sketch): Suppose that on the contrary, there is
a solution using the head element. In line 10 of algorithm
getNext, we insert all elements with the name parent(n′)

which are in the path from eparent(n′) to enmax into the
list Lparent(n′). According to line 12, if the parent of en′ is
not in Lparent(n′), then using our hypothesis, we know that
parent(en′) also participate in the final solution. But using
Lemma 1, we see that this is a contradiction, since the start
attribute of parent(en′) is less than that of eparent(n′) and
the stack Sparent(n′) is empty. 2

Lemma 3. At every point during computation of Algo-
rithm TwigStackList: elements in each stack Sn are strictly
nested, i.e. each element is a descendant of the element be-
low it.

Proof: This lemma is obvious in the previous TwigStack.
But since algorithm TwigStackList may change the cursor
of the list, this lemma is nontrivial. In TwigStackList,
we can insert elements into the stack only in Procedure
moveToStack. There are four cases for relationship between
the new element enew to be pushed into stack and the ex-
isting top element etop in stack(see Figure 7).
Case(i): Since etop.end < enew.end, the element etop will
be popped in Procedure cleanSelfStack . So this case is
impossible.
Case(ii): In this case, enew will be added into the stack
safely.
Case(iii): Similar to case (i), since etop.end < enew.end, the
element etop will be popped. We also ensure that etop can-
not participate in final answers any longer.
Case(iv): This case is impossible. Because, in algorithm
TwigStackList , we can change the cursor of a list only in
line 14 of getNext. The new element indicated by the cursor
is guaranteed to be a descendant of the previous one.
Therefore, this lemma holds in all cases. 2

Lemma 4. In TwigStackList, any element that is popped
from the stack Sn does not participate in any new solution
any more.

Proof: Any element is popped from stack Sn in either
Procedure cleanParentStack or cleanSelfStack. In the fol-
lowing, we prove the correctness of the lemma in these two
cases respectively.

• In cleanParentStack, suppose on the contrary, there
is a new solution involving the popped element epop.
According to line 1 of cleanParentStack, epop.end <
actStart, where actStart is the start attribute of the
head element of parent(n) (i.e. eparent(n)). Using
the containment property, epop cannot be contained
by any element in the path from the root to eparent(n)

and after eparent(n), which is a contradiction.

• In cleanSelfStack, using the containment property,
we see that cleanSelfStack pops elements that are de-
scendants of en , where en is the head element of node
n. The popped element does not participate in new an-
swers any more. This is because, at this point, n has
only one child with parent-child relationship. Thus,
the start value of any child of epop is less than that
of the head element of node children(n). Thus, there
is no element that is a child of epop in the remaining
portion of the stream Tchild(n). Therefore, epop does
not participate in any new solutions. 2

Theorem 1. Given a query twig pattern q and an XML
database D, Algorithm TwigStackList correctly returns all
answers for q on D.

Case(i) Case(ii) Case(iii) Case(iv)

Property

Segment

top
e

new
e

etop.end <enew.start

etop

enew

etop

enew

enew

etop

etop.start <enew.start

 etop.end>enew.end

etop.start > enew.start

 etop.end < enew.end
enew.end <etop.start

Figure 7: Illustration to the proof of Lemma 3

Proof(Sketch): We prove Theorem 1. Using Lemma 2,
we know that when getNext returns a query node n in the
line 17 of getNext, if the stack Sparent(n) is empty, then the
head element en does not contribute to any final solutions.
Thus, any element in the ancestors of n that use en in the
descendant and child extension is returned by getNext be-
fore en . By using Lemma 3 and Lemma 4, we can maintain,
for each node n in the query, the elements that involve in
the root-leaf path solution in the stack Sn. Finally, each
time that n = getNext(root) is a leaf node, we output all
solutions that use en. 2

While correctness holds for query twig patterns with both
ancestor-descendant and parent-child relationships in any
edges, we can prove optimality only for the case where parent-
child relationships appear only in edges below non-branching
nodes. The intuition is that we push into stacks only el-
ements that have the child and descendant extension. If
there is a parent-child relationship below the non-branching
node, according to Lemma 1, we are guaranteed that en is
pushed into stack only if en has a child element in the stream
Tchild(n) . Therefore, we have the following result.

Theorem 2. Consider a query twig pattern with m nodes,
and there are only ancestor-descendant relationships below
branching nodes (in other words, this pattern may have
parent-child relationships below non-branching nodes), and
an XML database D. Algorithm TwigStackList has the
worst-case I/O complexities linear in the sum of sizes of the
m input lists and the output list. 2

Since the worst-case size of any stack and list in TwigStack-
List is proportional to the maximal length of a root-leaf path
in the XML database, we have the following results about
the space complexity of TwigStackList.

Theorem 3. Consider a query twig pattern with m nodes
and an XML database D. The worst-case space complexity
of algorithm TwigStackList is proportional to m times the
maximal length of a root-leaf path in D.

It is particularly important to note that, even for the
case where query patterns contain parent-child relationships
below branching nodes, as shown in our experimental re-
sults in Section 4, algorithm TwigStackList usually out-
put much less intermediate path solutions than TwigStack.
The reason is simple. TwigStackList pushes any element
into stack that has both descendant and child extension, but
TwigStack pushes any element that has only the descendant
extension into the stack. Therefore, TwigStackList pushes
fewer elements that do not contribute to final answers to the
stack and thereby output less intermediate results.

4. EXPERIMENTAL EVALUATION
In this section we present experimental results on the per-

formance of the twig pattern matching algorithms, namely
TwigStackList and TwigStack, with both real and syn-
thetic data. We evaluated the performance of these algo-
rithms using the following metrics:

1. Number of partial solutions. This metric measures
the total number of partial path solutions, which re-
flects the ability of the algorithms TwigStackList and
TwigStack to control the size of intermediate results
for different kinds of query twig patterns.

2. Running time. The running time of an algorithm
is obtained by averaging the running times of several
consecutive runs.

4.1 Experimental Setting
We implemented all algorithms in JDK 1.4. All our ex-

periments were performed on 1.7GHz Pentium 4 processor
with 768MB RAM running on windows XP system. We
used the following three real-world and synthetic data sets
for our experiments:

• TreeBank. We obtained the TreeBank data set
from the University of Washington XML repository
[16]. The document in the TreeBank is deep and has
many recursions of element names. The data set has
the maximal depth 36 and more than 2.4 million nodes.

• DTD data set. We used the following simple DTD to
create highly and less nested data trees: a → bc|cb|d;
c → a; where a and c are non-terminals and b and
d are terminals. We generated about 114M bytes raw
XML data according to this DTD. The maximal depth
of each data tree varied from 3-30.

• Random. We generated random data trees using two
parameters: fan-out, depth. The fan-out of nodes in
data trees varied in the range of 2-100. The depths of
data trees varied from 10-100. We use seven different
labels, namely: a,b,c,d,e,f ,g, to generate the data sets.
The node labels in the trees were uniformly distrib-
uted.

4.2 TwigStackList Vs TwigStack
We compare algorithm TwigStackList against TwigStack

with different twig pattern queries over above three data
sets.

4.2.1 TreeBank
We first used the queries shown in Table 2 over the real-

world Treebank data. These queries have different twig
structures and different distribution of ancestor-descendant
(A-D) and parent-child (P-C) edges. In particular, all edges
in Q1 are A-D relationships, while all edges in Q2,Q6 are
P-C relationships. In Q3,Q5, all edges below branching
nodes are A-D relationships, but in Q4, edges below branch-
ing nodes contain both A-D and P-C relationships. We
choose these different queries so that we can give a com-
prehensive comparison between Algorithm TwigStackList
and TwigStack.

Query XPath expression

Q1 S[//MD]//ADJ
Q2 S/VP/PP[/NP/VBN]/IN
Q3 S/VP//PP[//NP/VBN]//IN
Q4 VP[/DT]//PRP DOLLAR
Q5 S[//VP/IN]//NP
Q6 S[/JJ]/NP

Table 2: Queries over TreeBank data

Queries TwigStack
Path

TwigStackList
Path

Reduction
percent-
age

Useful
Path

Q1 35 35 0% 35
Q2 2957 143 95% 92
Q3 25892 4612 82% 4612
Q4 10663 11 99.9% 5
Q5 702391 22565 96.8% 22565
Q6 70988 30 99.9% 10

Table 3: Number of intermediate path solutions pro-
duced by TwigStack and TwigStackList for TreeBank
data

Figure 8(a) shows the execution time of queries for two al-
gorithms and Table 3 shows the number of partial solutions,
where the fourth column is the number of merge-joinable
path that can contribute to at least one final answer. From
the table and figure, we have several observations and con-
clusions:

• When the query twig pattern contains only ancestor-
descendent edges, both TwigStackList and TwigStack
are I/O optimal in that each of path solutions can con-
tribute to final answers(see Q1 in Table 3). Thus, in
this case, both algorithms have very similar perfor-
mance(see Q1 in Fig 8(a)).

• When all edges below branching nodes contain only
ancestor-descendant relationships, TwigStackList is
still I/O optimal, but TwigStack has not the nice
property. For example, see Q3 in Table 3. The num-
bers of intermediate path solution in TwigStack is
25892, while TwigStackList produces only 4612 solu-
tions. Considering the number of merge-joinable path
is also 4612, each of path solutions in TwigStackList
contributes to final answers.

• When edges below branching nodes contain any parent-
child relationship, both algorithms TwigStackList and
TwigStack are suboptimal (see Q2,Q4,Q6 in Table 3).
But in this case, we observed that the number of in-
termediate paths produced by TwigStackList is sig-
nificantly less than that by TwigStack. For example,
in queries Q4 and Q6, TwigStack produced 10663 and
70988 intermediate paths, while TwigStackList only
produce 11 and 30 solutions. About 99% partial so-
lutions of TwigStack are pruned by TwigStackList.
Therefore, the execution time of TwigStack is con-
siderably slower than that of TwigStackList for these
queries.

In summary, Algorithm TwigStackList performs better
than TwigStack for query twig patterns with parent-child
edges.

4.2.2 DTD data set
We then used the query a[//c]//b/d over different syn-

thetically generated data sets. Note that in this query, all
edges below the branching node are ancestor-descendant re-
lationships. According to the DTD rules a → bc|cb|d and
c → a, since b is a terminal and has not any child nodes,
clearly, there is no answer for this query in the data set.
So any path solution does not contribute to final answers.
We varied the size of tag d relative to the size of tag b
and c as the child of tag a from 10% to 90% . We gen-
erated nine data sets and each of them has about 1 million
nodes. Figure 8 (b-c) show the execution time of TwigStack
and TwigStackList and the number of partial path solu-
tions each algorithm produces. The consistent gap between
TwigStack and TwigStackList results from the fact that
the latter is I/O optimal for this query, but the former is
not. As seen in Figure 8(c), the number of solutions pro-
duced by TwigStack is very large, but TwigStackList does
not produce any partial solutions at all!

We issued the second Xpath query a[/c][/d]/b over the
previous nine data sets. As before, there is no match for the
query in data sets. But the main different with the previ-
ous experiment is that TwigStackList is also not optimal
in the second case (since there are parent-child relationships
below the branching node a). Therefore, both TwigStack
and TwigStackList output some intermediate path solu-
tions that do not contribute to the final answers. Figure 8
(d) shows the execution time for two algorithms and Figure
8 (e) shows the number of partial solutions. We can see that
even in the presence of parent-child relationship below the
branch node , TwigStackList is again more efficient than
TwigStack.

4.2.3 Random data set
Finally we used random data set to compare TwigStack

and TwigStackList. In particular, we generate random
XML documents consisting of seven different labels, namely:
a,b,c,d,e,f ,g. The random data set has about 1 million
nodes. We issued five twig queries shown in Figure 9, which
have more complex twig structures than that of the queries
in the previous experiments. The experimental results, in-
cluding the execution time and the number of partial solu-
tions are shown in Fig 8(f) and Table 4 respectively. From
the figure and table, we see that for all queries, TwigStackList
is again more efficient than TwigStack.

0

2

4

6

8

10

12

14

Q1 Q2 Q3 Q4 Q5 Q6

Query

E
x
e
c
u
ti

o
n
 t

im
e
(s

e
c
o
n
d

)
TwigStack TwigStackList

29s

0

5

10

15

20

25

30

10% 20% 30% 40% 50% 60% 70% 80% 90%

 Fraction of the number of elements with tag d relative to the number of

elements with tag b and c

E
x

e
c
u

ti
o

n
 t

im
e
 (

s
e
c
o

n
d

)

TwigStack TwigStackList

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

10% 20% 30% 40% 50% 60% 70% 80% 90%

Fraction of the number of elements with tag d relative to the number

of elements with tag b and c

N
u

m
b

e
r

o
f

in
te

rm
e
d

ia
te

s
o

lu
ti

o
n

s

TwigStack TwigStackList

(a)Execution time on TreeBank (b) Execution time for a[//c]//b/d (c)Intermediate solutions for a[//c]//b/d

0

5

10

15

20

25

30

10% 20% 30% 40% 50% 60% 70% 80% 90%

 Fraction of the number of elements with tag d relative to the

number of elements with tag b and c

E
x

e
c
u

ti
o

n
 t

im
e
 (

se
c
o

n
d

)

TwigStack TwigStackList

0

100000

200000

300000

400000

500000

600000

700000

800000

10% 20% 30% 40% 50% 60% 70% 80% 90%

Fraction of the number of elements with tag d relative to the

number of elements with tag b and c

N
u
m

b
e
r

o
f

in
te

rm
e
d
ia

te
 s

o
lu

ti
o
n
s TwigStack TwigStackList

0

2

4

6

8

10

12

Q1 Q2 Q3 Q4 Q5

Query

E
x
e
c
u
ti

o
n
 t

im
e
(
s
e
c
o

n
d

)

TwigStack TwigStackList

(d) Execution time for a[/c][/d]/b (e) Intermediate solutions for a[/c][/d]/b (f) Execution time on random data

Figure 8: (a) Execution time against TreeBank data (b)-(e) Performance comparison of two algorithms using
generated DTD data (f) Execution time against random data

Queries TwigStack
Path

TwigStackList
Path

Reduction
percentage

Useful
Path

Q1 9048 4354 52% 2077
Q2 1098 467 57% 100
Q3 25901 14476 44% 14476
Q4 32875 16775 49% 16775
Q5 3896 1320 66% 566

Table 4: Number of intermediate path soltuions pro-
duced by TwigStack and TwigStackList for random
data

(a) Q1 (b) Q2 (c) Q3

(d) Q4 (e) Q5

a

b c

d e f g

a

aa

a

bb

bb cc

d

e

f

g

d

e

f

g

c d

e f g

c d

e f g

Figure 9: Queries against random data

Interestingly, if we compare Table 3 and 4, we find that
most of the reduction percentage in Table 4 is smaller than
that in Table 3. This fact is due to the difference between
TreeBank and random data. There are more than 50 tags
in the real-world TreeBank data, but there are only 7 tags
in random data. Further, random data (average depth 50)
is deeper than TreeBank (average depth 8). Therefore, for
random data, in the line 12 of getNext algorithm, the IF
condition usually returns true. But for TreeBank, the con-
dition of line 12 usually returns false. Thus, more interme-
diate paths are pruned by TwigStackList in TreeBank than
that in random data. From this fact, we conclude that (i)
compared to TwigStack, TwigStackList can reduce partial
path solutions for the queries that have parent-child rela-
tionship, and (ii) the reduction percentage is relative to the
tag distribution in the data sets.

5. RELATED WORK
Join processing is central to query evaluation. In the

context of semi-structured and XML databases, structural
join is essential to XML query processing because XML
queries usually impose certain structural relationships (e.g.
parent-child or ancestor-descendant relationships). For bi-
nary structural join, Zhang et al [17]. proposed a multi-
predicate merge join (MPMGJN) algorithm based on (Start,
End, Level) labelling of XML elements. The later work by
Al-Khalifa et al [1] gives a stack-based binary structural join
algorithm. Then Wu et al [14] studied the problem of bi-
nary join order selection for complex queries on a cost model
which takes into consideration factors such as selectivity and
intermediate results size.

More recently, Bruno et al [5] propose a holistic twig join
algorithm, namely TwigStack, to avoid producing a large
intermediate result. TwigStack is I/O optimal for queries

with only ancestor-descendant relationships. Jiang et al [9]
studied the problem of holistic twig joins on all/partly in-
dexed XML documents. Their proposed algorithms use in-
dexes to efficiently skip the elements that do not contribute
to final answers, but their method cannot reduce the size of
intermediate results. Choi. et al [7] proves that optimality
evaluation of twig patterns with arbitrarily mixed ancestor-
descendant and parent-child edges is not feasible. In this
paper, we proposed the algorithm TwigStackList, which is
better than any of previous work in term of the size of inter-
mediate results for matching XML twig pattern with both
parent-child and ancestor-descendant edges.

6. CONCLUSION AND FUTURE WORK
In this paper, we propose an enhanced holistic twig pat-

tern matching algorithm TwigStackList. Unlike the previ-
ous Algorithm TwigStack, our approach takes into account
the level information of elements and consequently results in
much smaller intermediate path solutions for query twig pat-
terns with both ancestor-descendant and parent-child edges.
Experimental results showed that our method is much more
efficient than TwigStack for queries with parent-child edges.

Since Choi et al.[7] have proven that there is no algo-
rithm which is I/O and CPU optimal for all query patterns,
one issue to improve our algorithm is to modify the cod-
ing method of the intermediate path solutions so that its
size is guaranteed to be no more than the size of input data
for all queries. Another possible issue involves designing a
new powerful numbering scheme, which needs to change the
format of input data.

7. REFERENCES

[1] S. Al-Khalifa, H. V. Jagadish, N. Koudas, J. M. Patel.
Y. Wu, N. Koudas, D. Srivastava “Structural Joins: A
primitive for efficient XML query pattern matching”
In Proceedings of ICDE 2002 pages 141-152

[2] A. Berglund , S. Boag , D. Chamberlin, M. F.
Fernandez, M. Kay, J. Robie, J. Simeon “XML Path
Language (XPath) 2.0” W3C Working Draft 22
August 2003

[3] S. Boag, D. Chamberlin, M. F. Fernandez, D. Florescu
J. Robie , J. Simeon “Xquery 1.0: An XML
QueryW3C” Working Draft 22 August 2003

[4] N. Bruno, N. Koudas, and D. Srivastava. “Holistic
twig joins: Optimal XML pattern matching”
Technical Report Columbia University March 2002

[5] N. Bruno, N. Koudas, and D. Srivastava. “Holistic
twig joins: Optimal XML pattern matching” In
Proceedings of ACM SIGMOD 2002 pages 310-321

[6] Y. Chen, S. B. Davidson, Y. Zheng “BLAS: An
Efficient XPath Processing System” In Proceedings of
SIGMOD 2004, pages 47-58

[7] B. Choi, M. Mahoui, D. Wood “On the Optimality of
Holistic Algorithms for Twig Queries” DEXA 2003
pages 28-37

[8] J.Hellerstein, J. Naughton, and A. Pfeifer
“Generalized search trees for database systems” In
Proceedings of VLDB, 1995 pages 562-573

[9] H. Jiang, W. Wang, H. Lu and J.X. Yu “Holistic twig
joins on indexed XML documents” In Proceedings of
VLDB 2003 pages 273-284

[10] H. Jiang, H. Lu, W. Wang, B. C. Ooi “XR-Tree:
Indexing XML Data for Efficient Structural Joins” In
Proceedings of ICDE 2003, pages 253-263

[11] H. Jiang, H. Lu, W. Wang “Efficient Processing of
Twig Queries with OR-Predicates” In Proceedings of
SIGMOD 2004, pages 59-70

[12] Q. Li and B. Moon “Indexing and querying XML data
for regular path expressions” In Proceedings of VLDB
2001 pages 361-370

[13] I. Tatarinov, S. Viglas, K. Beyer, J.
Shanmugasundaram, E. Shekita, and C. Zhang
“Storing and Querying Ordered XML Using a
Relational Database System” In Proceedings of ACM
SIGMOD 2002 pages 204-215

[14] Y. Wu, J. M. Patel, H. V. Jagadish “Structural Join
Order Selection for XML Query Optimization” ICDE
2003 pages 443-454

[15] XML-benchmark http://monetdb.cwi.nl/xml

[16] University of Washington XML Repository. Available
from
http://www.cs.washington.edu/research/xmldatasets/

[17] C. Zhang, J.F. Naughton, D.J. Dewitt, Q. Luo and
G.M. Lohman “On Supporting containment Queries
in Relational Database Management Systems” In
Proceedings of. ACM SIGMOD, 2001 pages 425-436

