
QED: A Novel Quaternary Encoding to Completely Avoid
Re-labeling in XML Updates

Changqing Li Tok Wang Ling
Department of Computer Science, National University of Singapore, Singapore, 117543

{lichangq, lingtw}@comp.nus.edu.sg

ABSTRACT
The method of assigning labels to the nodes of the XML tree is
called a labeling scheme. Based on the labels only, both ordered
and un-ordered queries can be processed without accessing the
original XML file. One more important point for the labeling
scheme is the label update cost in inserting or deleting a node into
or from the XML tree. All the current labeling schemes have high
update cost, therefore in this paper we propose a novel quaternary
encoding approach for the labeling schemes. Based on this
encoding approach, we need not re-label any existing nodes when
the update is performed. Extensive experimental results on the
XML datasets illustrate that our QED works much better than the
existing labeling schemes on the label updates when considering
either the number of nodes or the time for re-labeling.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems – Query processing

General Terms
Algorithms, Performance.

Keywords
Dynamic XML, Labeling scheme, Update, Quaternary.

1. INTRODUCTION
As a standard to represent and exchange data on the web, XML
[7] has gained a lot of attention from both research and enterprise
areas. Presently there is a lot of interest in query processing over
XML that conforms to an ordered tree-structured data model.

There are two main techniques, viz. structural index and labeling
(numbering) scheme, to facilitate the XML queries. The structural
index approaches [10, 14, 15] can help to traverse the hierarchy of
XML, but this traversal is costly. The labeling scheme approaches
[1, 2, 21] require smaller storage space, yet they can efficiently
determine the ancestor-descendant (A-D) and parent-child (P-C)
relationships between any two elements of the XML. In this
paper, we focus on the labeling schemes.

If the XML is static, the current labelling schemes can efficiently
process different queries. However if the XML is dynamically
changed, how to efficiently update the labels of the labelling
schemes becomes to an important issue.

As we know, the elements in the XML are intrinsically ordered,
which is referred as document order (the element sequence in the
XML). The relative order of two paragraphs in the XML is
important because the order may influence the semantics, thus the
standard XML query languages (e.g., XPath[5] and XQuery [6])
require the output of queries to be in document order by default.
Hence it is very important to maintain the document order when
the XML is updated.

Though some researches [3, 8, 17, 18, 19, 21] have been done to
maintain the document order in updating, the update costs of these
approaches are still expensive. Therefore in this paper we focus
on how to efficiently update the XML.

The main contributions of this paper are summarized as follows:

• We propose a novel dynamic quaternary encoding (called QED)
that can be applied to different labeling schemes.

• QED completely avoids the re-labeling when the XML is
updated.

• We conduct comprehensive experiments to demonstrate the
benefits of our QED over the previous approaches.

The rest of the paper is organized as follows. Section 2 reviews
the related work. We propose our dynamic quaternary encoding in
Section 3. The most important part of this paper is Section 4, in
which we show that the approach proposed in this paper is much
more efficient than the existing schemes in processing updates.
The experimental results are illustrated in Section 5, and we
conclude in Section 6.

2. RELATED WORK
In this section, we present three families of labeling schemes, viz.
containment [2, 13, 24], prefix [1, 8, 17, 19] and prime [21].

2.1 Containment Scheme
Zhang et al [24] use a labeling scheme in which every node is
assigned three values: “start”, “end” and “level”. For any two
nodes u and v, u is an ancestor of v iff u.start < v.start and v.end <
u.end. In other words, the interval of v is contained in the interval
of u. Node u is a parent of node v iff u is an ancestor of v and
v.level – u.level = 1. For instance, in Figure 1, “5,6,3” is a child
of “2,7,2” since interval [5, 6] is contained in interval [2, 7] and
levels 3 – 2 = 1.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CIKM’05, October 31-November 4, 2005, Bremen, Germany.
Copyright 2005 ACM 1-59593-140-6/05/0010...$5.00.

Although the containment scheme is efficient to determine the
ancestor-descendant relationship, the insertion of a node will lead
to a re-labeling of all the ancestor nodes of this inserted node and
all the nodes after this inserted node in document order (if we do
not re-label, not only can not the document order be maintained,
but the containment scheme can not work correctly to determine
the A-D etc. relationships). This problem may be alleviated if the
interval size is increased with values unused [13]. However, large
interval size wastes a lot of numbers which causes the increase of
storage, while small interval size is easy to lead to re-labeling.

To solve the re-labeling problem, [3] uses Float-point values for
the “start” and “end” of the intervals. It seems that Float-point
solves the re-labeling problem [19]. But in practice, the Float-
point is represented in a computer with a fixed number of bits [3,
19]. As a result, only 18 nodes can be inserted at a fixed place [3]
since [3] uses the consecutive integer values at the initial labeling.
Even if [3] uses values with large gaps, it still can not avoid the
re-labeling due to the float-point precision. In fact, Float-point is
equivalent to the method in [13] that some values are unused at
the beginning. Therefore, using real values instead of integers
only provides limited benefit for the node updating [19, 21].

2.2 Prefix Scheme
In the prefix labeling scheme, the label of a node is that its
parent’s label (prefix) concatenates its own (self) label. For any
two nodes u and v, u is an ancestor of v iff label(u) is a prefix of
label(v). Node u is a parent of node v iff label(v) has no prefix
when removing label(u) from the left side of label(v).

DeweyID [19] labels the nth child of a node with an integer n, and
this n should be concatenated to the prefix (its parent’s label) and
delimiter (e.g. “.”) to form the complete label of this child node.
In practice, DeweyID uses UTF8 [23] to process the delimiter.

[8] uses Binary Strings (BinaryString) to label the XML tree.
When a node is inserted, DeweyID [19] and BinaryString [8] both
need to re-label the sibling nodes after this inserted node and the
descendants of these siblings to maintain the document order. [11]
is also based on binary strings, but it is dynamic. However [11]
still can not completely avoid the re-labeling due to the overflow
problem (see Example 3.2).

OrdPath [17] is similar to DeweyID, but it only uses the odd
numbers at the initial labeling. When the XML tree is updated, it
uses the even number between two odd numbers to concatenate
another odd number. When the sizes of the OrdPath codes
overflow (see Example 3.2 in Section 3 for more details about the
overflow problem), it must re-label all the existing nodes.

[9] is similar to OrdPath [17] and [9] is not as compact as
OrdPath.

2.3 Prime Scheme
Wu et al [21] use Prime numbers to label XML trees. The root
node is labeled with “1” (integer). Based on a top-down approach,
each node is given a unique prime number (self_label) and the
label of each node is the product of its parent node’s label
(parent_label) and its own self_label. For any two nodes u and v,
u is an ancestor of v iff label(v) mod label(u) = 0. Node u is a
parent of node v iff label(v)/self_label(v) = label(u).

Prime [21] uses SC (Simultaneous Congruence) values in Chinese
Remainder Theorem [4] to determine the document order, i.e. SC
mod self_label = document order. When the order is changed,
Prime needs to re-calculate the SC values instead of re-labeling.

Although Prime supports order-sensitive updates without any re-
labeling of the existing nodes, it needs to re-calculate the SC
values based on the new ordering of nodes. The re-calculation is
very time consuming.

2.4 Motivation
All the current labeling schemes except Prime can not completely
avoid the re-labeling in updates (OrdPath will encounter the
overflow problem). Though Prime can completely avoid re-
labeling, it needs to re-calculate the SC values which is much
more expensive than re-labeling. Therefore the main objective of
this paper is to dramatically decrease the update costs and
completely avoid the re-labeling (see Sections 4.1, 5.1 and 5.2).

3. QED ENCODING
In this section, we elaborate our Quaternary Encoding for
Dynamic XML data (QED) which supports label insertion without
re-labeling or re-calculation (see Section 4.1). For the
containment scheme shown in Figure 1 (Section 2.1), the “start”
and “end” values are from 1 to 16. These decimal numbers can be
encoded in binary codes with fixed length, called FixedLength1
(FixedLength column of Table 1) or with variable length, called
VarLength (VarLength column of Table 1).

Definition 3.1 (Quaternary code) Four numbers “0”, “1”, “2”
and “3” are used in the code and each number is stored with two
bits, i.e. “00”, “01”, “10” and “11”.

Definition 3.2 (QED code) QED code is a quaternary code. The
number “0” is used as the separator and only “1”, “2” and “3”
are used in the QED code itself.

Now let us discuss how to encode the “start”s and “end”s (1-16)
using our QED encoding (16 is only an example for the tree in
Figure 1; our QED encoding can be applied to any other numbers;
see the formal algorithm in Section 3.1). The following steps
show the details of how to get the QED codes in Table 1 and these
steps are examples for the formal algorithms in Section 3.1.

Step 1: In the encoding of the 16 numbers, we suppose there is
one more number before number 1, say number 0, and one more
number after number 16, say number 17.

1 Float-point, DeweyID, OrdPath, Prime, FixedLength and

VarLength are all existing schemes. QED-PREFIX and QED
(with all fonts capitalized) are schemes proposed in this paper.

Figure 1. Containment scheme.

1,16,1

2,7,2 8,9,2 10,13,2 14,15,2

3,4,3 5,6,3 11,12,3

Table 1. Binary and our QED encoding approaches

Decimal FixedLength VarLength QED
1 00001 1 112
2 00010 10 12
3 00011 11 122
4 00100 100 13
5 00101 101 132
6 00110 110 2
7 00111 111 212
8 01000 1000 22
9 01001 1001 23

10 01010 1010 232
11 01011 1011 3
12 01100 1100 312
13 01101 1101 32
14 01110 1110 322
15 01111 1111 33
16 10000 10000 332

Total size 80 54 76

Step 2: The (1/3)th number is encoded with “2”, and the (2/3)th
number is encoded with “3”. The (1/3)th number is number 6,
which is calculated in this way, 6 = round(0+(17–0)/3). The
(2/3)th number is number 11 (11 = round(0+(17–0)× 2/3)).

Step 3: The (1/3)th and (2/3)th numbers between number 0 and
number 6 are number 2 (2 = round(0+(6–0)/3)) and number 4 (4 =
round(0+(6–0)× 2/3)). The QED code of number 0 (left code) is
now empty with size 0 and the QED code of number 6 (right code)
is now “2” with size 1 (here 1 refers to 2 bits). This is Case (a)
where the left code size is smaller than the right code size. In
this case, the (1/3)th code is that we change the last symbol of the
right code to “1” and concatenate one more “2”, i.e. the code of
number 2 is “12” (“2” → “1” and “1” ⊕ “2” → “12”), and the
(2/3)th code is that we change the last symbol of the right code to
“1” and concatenate one more “3”, i.e. the code of number 4 is
“13” (“2”→ “1” and “1”⊕ “3”→ “13”).

Step 4: The (1/3)th and (2/3)th numbers between numbers 6 and 11
are numbers 8 (8 = round(6+(11–6)/3)) and 9 (9 = round(6+(11–
6)× 2/3)). The QED code of number 6 (left code) is “2” with size
1 (here 1 refers to 2 bits) and the code of number 11 (right code)
is “3” with size 1 (here 1 refers to 2 bits). This is Case (b) where
the left code size is larger than or equal to the right code size.
In this case, the (1/3)th code is that we directly concatenate one
more “2” after the left code, i.e. the code of number 8 is “22”
(“2” ⊕ “2” → “22”), and the (2/3)th code is that we directly
concatenate one more “3” after the left code, i.e. the code of
number 9 is “23” (“2”⊕ “3”→ “23”).

Step 5: The (1/3)th and (2/3)th numbers between numbers 11 and
17 are numbers 13 (13 = round(11+(17–11)/3)) and 15 (15 =
round(11+(17–11) × 2/3)). The code of number 11 (left code) is
“3” with size 1 and the code of number 17 (right code) is empty
now with size 0. This is still Case (b). Therefore the QED code of
number 13 is “32” (“3”⊕ “2”→ “32”), and the code of number
15 is “33” (“3”⊕ “3”→ “33”).

In this way, all the numbers will be encoded. Finally we need to
discard the codes for numbers 0 and 17 since they do not exist
actually. It should be noted that Step 1 is not compulsory, but with
Step 1 the total code size is smaller. It should be noted also that if
the (2/3)th number exactly refers to the (1/3)th number, the code
for the (2/3)th number will not appear since this number has
already been encoded with the (1/3)th code.

With the following example illustration for the total code size, the
formal size analysis in Section 3.2 will be easier to understand.

Example 3.1 Table 1 shows that VarLength has smaller total code
size than FixedLength. However, we also need to store the size of
each VarLength code, e.g., the size of “10000” is 5. We need to
store this 5 using fixed length of bits (“101”; 3 bits). The sizes of
other codes should also be stored using fixed length of bits (3
bits), therefore the total code size for VarLength is 3× 16+54=102
bits which is larger than the bits required by FixedLength.

Example 3.2 The size of each VarLength code is stored with
fixed length (e.g. 3), therefore if many nodes are inserted into the
XML tree, the fixed length size (e.g. 3) is not enough for the new
labels, then we have to re-label all the existing nodes. Even if we
increase the size 3 to a larger number, it still can not completely
avoid the re-labeling, and it will waste the storage space. This is
called the overflow problem in this paper. Similarly FixedLength
and OrdPath [17] will encounter the overflow problem.

Example 3.3 On the other hand, our QED uses the separator “0”
(2 bits) to separate different codes instead of storing the sizes of
the codes. For example, “1120120” will be separated to “112” and
“12”. Therefore the size of our QED is 2× 16+76=108 bits. Each
size code of VarLength is stored with 3 bits, and this 3 will
increase as the number of nodes increases, but the size 2 (bits) of
our separator “0” will never increase. More important, we will
never encounter the overflow problem in this way.

The most important feature of our QED is that it is based on the
lexicographical order (for efficient updates in Section 4.1).

Definition 3.3 (Lexicographical order) Given two
Quaternary codes CA and CB, CA is lexicographically equal to CB
iff they are exactly the same. CA is said to be lexicographically
smaller than CB (CA CB) iff

(a) “0” “1” “2” “3”, or

(b) compare CA and CB symbol by symbol from left to right. If
the current symbol SA of CA and the current symbol SB of CB
satisfy condition (a), then CA CB and stop the comparison,
or

(c) CA is a prefix of CB.

Theorem 3.1 Our QED codes are lexicographically ordered but
not numerically ordered.

Example 3.4 The QED codes in Table 1 are lexicographically
ordered from top to bottom. For example, “132” “2” because
the comparison is from left to right, and the 1st symbol of “132” is
“1”, while the 1st symbol of “2” is “2”. Another example, “23”
“232” because “23” is a prefix of “232”.

When we replace the “start”s and “end”s (1-16) in Figure 1 with
our QED codes, and based on the lexicographical comparison, a
QED containment scheme is formed.

3.1 The Formal Encoding Algorithm
Algorithm 1: GetOneThirdAndTwoThirdCodes(Left_Code,
Right_Code)
Input: QED codes Left_Code, Right_Code, and Left_Code
Right_Code
Output: QED codes: Code_AtOneThirdPos,
Code_AtTwoThirdPos, such that Left_Code
Code_AtOneThirdPos Code_AtTwoThirdPos Right_Code
 1: get the sizes of Left_Code and Right_Code
 2: if Left_Code and Right_Code are both empty
 3: then Code_AtOneThirdPos = “2”
 4: Code_AtTwoThirdPos = “3”
 5: else //the below ⊕ means concatenation
 6: if size(Left_Code) < size(Right_Code) //case (a)
 7: then Temp_Code = the Right_Code with the last
 8: symbol changed to “1”
 9: Code_AtOneThirdPos = Temp_Code ⊕ “2”
10: Code_AtTwoThirdPos = Temp_Code ⊕ “3”
11: else if size(Left_Code) ≥ size(Right_Code) //case (b)
12: then Code_AtOneThirdPos = Left_Code ⊕ “2”
13: Code_AtTwoThirdPos = Left_Code ⊕ “3”

Figure 2. GetOneThirdAndTwoThirdCodes algorithm.

Algorithm 2: Encoding(TN)
Input: A positive integer TN
Output: The QED codes for numbers 1 to TN
 1: suppose there is one more number before the first number,
 called number 0, and one more number after the last number,
 called number (TN+1)
 2: SubEncoding(codeArr, 0, TN+1)
 //here codeArr is an array with size TN+2
 3: discard the 0th and (TN+1)th elements of the array codeArr

Procedure SubEncoding(codeArr, PL, PR)
/*SubEncoding is a recursive procedure; codeArr is an array, PL is
the left position, and PR is the right position*/

 4: PM1 = PL+round((PR-PL)/3) (PM1 is the (1/3)th position)
 5: PM2 = PL+round((PR-PL)× 2/3) (PM2 is the (2/3)th position)
 6: if PL ≠ PR
 7: then GetOneThirdAndTwoThirdCodes(codeArr[PL],
 codeArr[PR])
 8: if PM1 ≠ PL and PM1 ≠ PR
 9: then codeArr[PM1]=Code_AtOneThirdPos //from line 7
10: if PM2 ≠ PM1 and PM2 ≠ PR
11: then codeArr[PM2]=Code_AtTwoThirdPos //from line 7
12: if (PM1 ≠ PL and PM1 ≠ PR) or (PM2 ≠ PL and PM2 ≠ PR)
13: then SubEncoding(codeArr, PL, PM1)
14: SubEncoding(codeArr, PM1, PM2)
15: SubEncoding(codeArr, PM2, PR)

Figure 3. QED encoding algorithm.

Algorithm 1 and Algorithm 2 are a summary of Step 1 to Step 5
(in the previous page) which can be used to encode any total
number (not only 16). Here we do not explain them in detail.

3.2 Size Analysis
The size in this paper refers to bits. The log in this paper is
used as the logarithm to base 2. The log3 in this paper is
used as the logarithm to base 3.

In this section, we analyze the size required by Prime, Float-point,
FixedLength, VarLength and our QED. The “D” and “N” are
respectively used to denote the maximal depth and the number of
nodes of an XML tree.

Prime According to the size analysis of Prime in [21], the size
required to store all the nodes in the XML tree is:

))log(log(NNDN ××× (1)

Float-point According to [3], each float-point number is stored
with 64 bits, thus the size of Float-point:

642 ×N (2)

FixedLength The size of FixedLength is:

))2log(log()2log(2 NNN +
)1)log(log(2)log(2 +++= NNNN (3)

))2log(log(N is the size of label size (stored only once).

VarLength For VarLength, one number 1 is stored with one bit
(see VarLength column of Table 1), two numbers 2 and 3 are
stored with 2 bits, four numbers 4, 5, 6 and 7 are stored with 3
bits, ···, thus the total size of VarLength is:

)1(242322211 32 +×+⋅⋅⋅+×+×+×+× nn

12 1 +×= +nn (4)

Since the number of nodes is N, the number of “start”s and “end”s
is 2N which should be equal to 12222 110 −=+⋅⋅⋅++ +nn .
However 2N is an even number and can not be equal to 12 1 −+n .
We assume that there are 2N+1 numbers. After getting the
VarLength codes, we can discard one number, i.e. 2N numbers
are left. There is only a constant difference between 2N and
2N+1, thus we assume that 2N+1= 12 1 −+n , then formula (4)
becomes: 1)1log(2)1log(2 ++++ NNN (5)

Note that formula (5) is a little larger than the actural size required
by VarLength.

We need to store the size of each “start” and “end”. A fixed-
length number is used to store the size of the VarLength code.
The maximal size for a “start” or an “end” is)2log(N . To store
this size, the bits required are))2log(log(N , then the total bits
required to store the sizes of VarLength codes are

))2log(log(2 NN . When taking formula (5) into account, the
total size of VarLength is:

1)1log(2)1log(2))2log(log(2 +++++ NNNNN (6)

QED When considering our QED, it has two numbers 6 and 11
stored with size 1 (2 bits), 6 numbers 2, 4, 8, 9, 13 and 15 stored
with size 2 (2 bits), ···, therefore its size is:

+×××+×××+×××)23()32()22()32()21()32(210

)2)1(()32(×+××+⋅⋅⋅ nn (bits)

13)12(1 +×+= +nn (7)

We assume +×+×=)32()32(2 10N 13)32(1 −=×+⋅⋅⋅ +nn (both
sides are even numbers), then formula (7) becomes to:

NNNN 2)12(log2)12(log4 33 −+++ (8)

When considering the separator (“0”) size 22 ×N , the total label
size of our QED is:

NNNN 2)12(log2)12(log4 33 ++++ (9)

It can be seen that VarLength has larger label size than
FixedLength. Prime has larger size than VarLength. To make the
size of Float-point smaller than VarLength, N should be grossly
larger than 264, but generally speaking, an XML file can not have
so many nodes. That is to say, Float-point has larger label size
than VarLength. If N>264, 64 bits are not enough to store the
Float-point values.

When N=1, the size of our QED is 1.6 times of that of VarLength;
when]7,2[∈N , the multiple is between 1.16 and 1.28; when

]38,8[∈N , the multiple is between 1.12 and 1.15; when
]10000000,39[∈N , the multiple is between 1.11 and 1.13. Thus

the size of our QED is only a little larger than the size of
VarLength.

Also we need to consider the “level” size for the containment
schemes which is))log(log()log(DDN + and should be added
into formulas (2), (3), (6) and (9) to form the total label sizes of
these schemes.

Note that for simplicity, we omit the ceiling functions on the log
functions in all the formulas.

3.3 Application Scope of QED
Property 3.1 Our QED is orthogonal to specific labeling
schemes, thus it can be applied to all the labeling schemes or
other applications which need to maintain the order.

Our QED encoding can be applied to the prefix scheme and prime
scheme also to maintain the document order. When QED is
applied to prefix, we call it QED-PREFIX.

Example 3.5 Figure 4 shows that we apply QED to the prefix
scheme. The root has 4 children. To encode 4 numbers based on
our QED, the codes will be “12”, “2”, “3” and “32”. Similarly if
there are two siblings, their self_labels are “2” and “3”. If there is
only one sibling, its self_label is “2”.

For the prefix scheme, the delimiter “.” can not be stored together
with the numbers in the implementation to separate different
components.

For our QED encoding, we use the following approach to process
the delimiters. We use one separator “0” as the delimiter to
separate different components of a label (e.g. separate “12” and
“3” in “12.3”; the separator “0” is equivalent to the “.” in Figure
4), and use two consecutive separators “00” as the separator to
separate different labels (e.g. separate “12.2” and “12.3”).

We can apply our QED to the prime labeling scheme also to
record the document order. But because Prime employs the
modular and division operations to determine the ancestor-
descendant etc. relationships, its query efficiency is quite bad.
Thus we do not discuss in detail how QED is applied to Prime.

Similarly we can and it is better to apply our QED to the P-
Containment scheme proposed in [12] to completely avoid re-
labeling.

4. UPDATE
In Section 4.1, we show that our QED has much cheaper update
cost. Section 4.2 analyzes the case for the frequent update.

4.1 Avoid Re-labeling in Updates
The deletion of a node will not affect the ordering of the nodes in
the XML tree. Thus in this section, we only discuss the insertion.

Algorithm 3 is similar to Algorithm 1, and their difference is
marked in Figure 5 with italic fonts. Based on Algorithm 3, we
can avoid the re-labeling. As the QED codes are long which can
not be put in Figures 6, we still use decimal numbers in Figure 6
for the “start” and “end” values, but in practice, these numbers are
stored using our QED codes. Refer to Table 1 for the mappings
between the decimal numbers and our QED codes. We use an
example to show how Algorithm 3 works.

Example 4.1 When inserting node “a” (see Figure 6), we should
insert a number between the “start” of the parent “1” (Left_Code)
and the “start” of the first sibling “2” (Right_Code). If we use the
traditional approach, we can not insert a number between “1” and
“2”, and we must re-label the nodes. However, when referring to
Table 1, our QED codes for “1” and “2” are “112” and “12”.
Based on the GetInsertedCode algorithm, we insert a value
between “112” and “12”, then the “start” value of the inserted
node “a” is “113” (see lines 5-8 of the GetInsertedCode algorithm
in Figure 5). The “end” value of node “a” is an insertion between
the new “start” “113” and the “start” of the first sibling “12”, thus
the “end” value of “a” is “1132” (see lines 5, 9 and 10 in Figure
5). Obviously, “112” “113” “1132” “12”
lexicographically. We need not re-label any existing nodes, but
we can keep the containment scheme working correctly.

Algorithm 3: GetInsertedCode
Input: Left_Code, Right_Code
Output: Inserted_Code, such that Left_Code Inserted_Code
 Right_Code lexicographically.
 1: get the sizes of Left_Code and Right_Code
 2: if size(Left_Code) < size(Right_Code)
 3: then Inserted_Code = (the Right_Code with the last
 4: symbol changed to “1”) ⊕ “2”
 5: else if size(Left_Code) > size(Right_Code)
 6: if the last symbol of Left_Code is “2”
 7: then Inserted_Code = the Left_Code with the
 8: last symbol changed from “2” to “3”
 9: else if the last symbol of Left_Code is “3”
10: then Inserted_Code = Left_Code ⊕ “2”
11: else if size(Left_Code) = size(Right_Code)
12: then Inserted_Code = Left_Code ⊕ “2”

Figure 5. GetInsertedCode algorithm. Figure 4. QED-PREFIX scheme.

12 2 3 32

12.2 12.3 3.2

Theorem 4.1 Algorithm 3 guarantees that infinite number of
QED codes can be inserted between any two consecutive QED
codes with the orders kept and without any re-encoding of the
existing numbers.

Based on Theorem 4.1, the insertions of nodes “b”, “c” and “d”
will not cause any re-labeling also. After insertion, the level
values of “a”, “b” and “c” are still 2 (2 is a decimal number for
illustration), but the level value of node “d” is 3.

Now let us study the updates based on other schemes.

Example 4.2 For the containment schemes FixedLength and
VarLength, when “a” is inserted into the XML tree in Figure 6, all
the “start” and “end” values except the “start” value of the root
need to be added with 2. The “end” value of the root will be “18”
after update. It is similar for “b”, “c” and “d”.

Example 4.3 For the prefix schemes, our QED-PREFIX also need
not re-label any existing nodes. DeweyID has to re-label all the
sibling nodes after the inserted node and the descendants of these
following sibling nodes. For Prime, the insertion of nodes will
make the document order change (the orders of the nodes after
this inserted node should all be added with 1), therefore Prime has
to re-calculate the SC values.

Sometimes Float-point [3] and OrdPath [17] also need not re-
label the nodes. Sections 5.1 and 5.2 are the update performance
comparisons among Float-point, OrdPath and our approach.

4.2 Frequent Update
The size analysis in Section 3.2 is based on the initial labeling of
the XML. Our encoding algorithm (see Figure 3) is step by step
insertions of nodes uniformly at different places. Therefore if a
sequence of nodes are inserted randomly at different places of the
XML, the size analysis in Section 3.2 is still valid.

For the case that nodes are always inserted at a fixed place of the
XML, the size of our QED increases quickly. [8] proves that any
deterministic labeling scheme which does not re-label nodes must
in the worst case assign labels of size Omega(N). Our QED can
not escape from this claim also, i.e. the label size of our QED
increases linearly in the worst case. OrdPath [17] also has this
skewed insertion problem. [18] uses B-tree to balance the update

and lookup performance which can be used to process this skewed
insertion problem. The skewed insertion is not an emphasis of this
paper. In this paper, we mainly focus on how to completely avoid
the re-labeling.

5. PERFORMANCE STUDY
In this section, we evaluate and compare the performance of
different labeling schemes. All the schemes are implemented in
Java and all the experiments are carried out on a 3.0 GHz Pentium
4 processor with 1 GB RAM running Windows XP Professional.

Table 2 shows the characteristics of the test datasets. D1, D2 and
D3 are from [16], D5 and D6 are from [20], and all of them are
real-world XML data. D4 is a benchmark generated by XMark
[22].

Static XML is not the emphasis of this paper. However, we also
test how our QED works on the static XML data which shows that
our QED works not worse even in the static environment of XML
(its label sizes are small in the six datasets shown in Table 2 and
its query performance is not worse).

For the dynamic XML, in Section 5.1 we show that our QED
works much better compared to the existing labeling schemes
except OrdPath and Float-point. Although it seems that OrdPath
and Float-point also work well in the intermittent insertions, the
wide update performance difference between OrdPath and our
QED-PREFIX, and between Float-point and our QED can be seen
from Section 5.2, where frequent updates are performed.

OrdPath and our QED-PREFIX are prefix schemes. Float-point,
FixedLength, VarLength, and our QED are containment schemes.

5.1 Intermittent Update
We select one XML file Hamlet in D2 to test the update
performance (it is similar for other XML files). Hamlet has 5 act
elements. We test the following six cases: inserting an act before
act[1], inserting an act between act[1] and act[2], ···, inserting an
act between act[4] and act[5], and inserting an act after act[5].

Figure 7(a) shows the number of nodes for re-labeling when
applying different labeling schemes. FixedLength and VarLength
have the same number of nodes to re-label in all the six cases. For
case 1, 6596 (total 6636) nodes need to be re-labeled.

For Prime, the number of SC values that are required to re-
calculate is counted in Figure 7(a). Because Prime uses each SC
value for every five labels [21], the number of SC values required
to re-calculate is 1/5 of the number of nodes required by
FixedLength and VarLength to re-label. Note that it is impossible
to use a single SC value for all the nodes in the XML since the SC
value will be too large.

Table 2. Test datasets

Datasets Topics # of files Max/average fan-
out for a file

Max/average
depth for a file

Total # of nodes
for each dataset

D1 Company 24 529/135 5/3 161576
D2 Shakespeare’s play 37 434/48 6/5 179689
D3 NASA 1882 1188/9 7/5 370292
D4 XMark 1 25500/3242 12/6 1666315
D5 Treebank 1 56384/1623 36/8 2437666
D6 DBLP 1 328858/65930 6/3 3332130

1,16,1

14,15,2
a b c

d

2,7,2 8,9,2 10,13,2

3,4,3 5,6,3 11,12,3
Figure 6. Update.

0

1000

2000

3000

4000

5000

6000

7000

1 2 3 4 5 6

Insertion cases

N
um

be
r

of
 n

od
es

 to
 r

e-
la

be
l i

n
ho

ri
zo

nt
al

 u
pd

at
e

Prime
OrdPath1
OrdPath2
QED-PREFIX
Float-point
FixedLength
VarLength
QED

(a) Number of nodes to re-label

3.6165.2296.1486.841 2.093

0

0.01

0.02

0.03

0.04

1 2 3 4 5 6

Insertion cases

Ho
ri

zo
nt

al
 u

pd
at

e
tim

e
(s

ec
on

ds
)

Prime
OrdPath1
OrdPath2
QED-PREFIX
Float-point
FixedLength
VarLength
QED

(b) Time to re-label

Figure 7. Performance study on intermittent update.

In all the six cases, OrdPath1 (without overflow here), OrdPath2
(without overflow here), our QED-PREFIX, Float-point (less than
18 nodes), and our QED need not re-label any existing nodes.

Next we study the time required to re-label nodes or re-calculate
SC values. Figure 7(b) shows that the time required by Prime to
re-calculate the SC values is much larger (more than 202 times;
sum time of Case 1 to Case 6) than the time required by
FixedLength and VarLength to re-label the nodes. Prime
theoretically is a good scheme in updating order-sensitive nodes,
but it is not practicable. In contrast, our QED-PREFIX and QED
need less than 0.001 second (processing time) for the insertion in
all the 6 cases. The processing time of FixedLength or VarLength
is at least 84 times of that of QED-PREFIX and QED even if we
assume that our QED needs 0.001 second for the update (in fact,
it will be much larger than 84 times; see Section 5.2).

It can be seen that OrdPath1, OrdPath2 and Float-point also need
less than 0.001 second for the update. This is because only several
nodes are inserted into the XML. The update performance
difference among OrdPath, Float-point and our approach can be
seen in Section 5.2 where frequent insertions are executed.

5.2 Frequent Update
When intermittent nodes are inserted into the XML, Prime,
FixedLength and VarLength have much larger update time, thus it

will be a disaster for them to update the XML with frequent and
tiny insertions, which makes them impossible to answer any
queries in either the uniformly frequent or skewed frequent
insertion environment. In this section, we mainly compare the
update performance between OrdPath and our QED-PREFIX, and
between Float-point and our QED. Section 5.2.1 discusses the
case that frequent insertions are randomly at different places of
the XML. Section 5.2.2 discusses the worst case that frequent
insertions are always at a fixed place of the XML.

5.2.1 Uniformly Frequent Update
In this section, we test the uniformly distributed frequent
insertions. The Hamlet file has totally 6636 nodes. We insert 6635
nodes between every two consecutive nodes of the 6636 nodes.
Based on the new file after insertion, we insert another 13270
nodes between any two consecutive nodes. We repeat this kind of
insertion 6 times. After the 6th time insertion, the node number in
Hamlet is 424641 that is 63.99 times of the original node number.

The first two time insertions and the first four time insertions
respectively will not cause OrdPath [17] (without overflow) and
Float-point [3] (less than 18 nodes at a fixed place) to re-label the
existing nodes. Even without re-labeling, Figure 8(a) shows that
the update time of OrdPath is still at least 529 times of that of our
QED-PREFIX and Figure 8(b) shows that the update time of
Float-point is 386 times of that of our QED. OrdPath and Float-
point have much larger update time because they need the
addition and division operations to get the numbers between two
numbers which are very expensive. On the other hand, our QED-
PREFIX and QED only need to modify the last quaternary
number (two bits) of the neighbor label to get the label of the
inserted node which is much cheaper.

At the 3rd time insertion, OrdPath needs to re-label all the existing
nodes, and at the 5th and 6th time insertions, Float-point needs to
re-label all the existing nodes. The re-labeling time of OrdPath
and Float-point is at least 2492 times of that of our QED-PREFIX
and QED (see Figures 8(a) and 8(b)).

5.2.2 Skewed Frequent Update
In this section, we test the case that nodes are always inserted at a
fixed place of the Hamlet XML.

Figure 9 shows the re-labeling time (the update time without re-
labeling in skewed frequent insertions is similar to the update time
shown in Figure 8). For OrdPath (OrdPath1 and OrdPath2) [17],
after inserting 163 nodes at the fixed place, it needs to re-label 5
times. The re-labeling time of OrdPath is at least 8126 times of
that of our QED-PREFIX (see Figure 9(a)). When every 18 nodes
are inserted at the fixed place of the XML, Float-point [3] needs
to re-label. The update time of Float-point is 34383 times of that
of our QED after 199 nodes are inserted (see Figure 9(b)).

The very large update time makes OrdPath and Float-point
unsuitable to answer queries no matter in the uniformly or in the
skewed frequent insertion environment. This means even if we do
not use any skeweness processing technique, our QED still works
the best to answer queries in the environment that frequent
insertions are executed.

For the frequent update, our QED-PREFIX and QED have much
cheaper update cost than OrdPath and Float-point.

0

100

200

300

400

500

600

0 150000 300000 450000

Number of nodes inserted

U
pd

at
e

tim
e

fo
r

ba
la

nc
ed

 ti
ny

in

se
rt

io
ns

 (s
ec

on
ds

)

OrderPath1
OrderPath2
QED-PREFIX

(a) OrdPath1&2 vs QED-PREFIX

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 150000 300000 450000

Number of nodes inserted

U
pd

at
e

tim
e

fo
r

ba
la

nc
ed

 ti
ny

in

se
rt

io
ns

 (s
ec

on
ds

)

Float-point
QED

(b) Float-point vs QED

0

2

4

6

8

10

12

0 50 100 150 200

Number of nodes inserted

U
pd

at
e

tim
e

w
ith

 r
e-

la
be

lin
g

fo
r

sk
ew

ed
 ti

ny
 in

se
rt

io
ns

 (s
ec

on
ds

)

OrdPath1
OrdPath2
QED-PREFIX

(a) OrdPath1&2 vs QED-PREFIX

0

30

60

90

120

150

0 50 100 150 200

Number of nodes inserted

U
pd

at
e

tim
e

w
ith

 r
e-

la
be

lin
g

fo
r

sk
ew

ed
 ti

ny
 in

se
rt

io
ns

 (s
ec

on
ds

)

Float-point
QED

(b) Float-point vs QED

Figure 8. Performance study on uniformly frequent update. Figure 9. Performance study on skewed frequent update.

6. CONCLUSION
In this paper, we have proposed a novel Dynamic Quaternary
Encoding (QED) approach for the labeling schemes. This
encoding approach is orthogonal to specific labeling schemes,
therefore it can be applied broadly to different labeling shemes,
e.g. containment, prefix and prime schemes, to maintain the
document order when the XML is updated.

The QED (or QED-PREFIX) proposed in this paper completely
(no overflow) avoids the re-labeling in XML update. When a
node is inserted, our QED (or QED-PREFIX) only needs to
modify the last quaternary number (two bits) of the neighbor label
to get the label of the inserted node which is very easy and cheap
compared to Float-point (or OrdPath). The experimental results
show that our QED (or QED-PREFIX) encoding is the only
approach which supports frequent insertions efficiently.

7. REFERENCES
[1] S. Abiteboul, H. Kaplan, and T. Milo. Compact labeling

schemes for ancestor queries. In Proc. SODA, pages 547-
556, 2001.

[2] R. Agrawal, A. Borgida, and H.V. Jagadish. Efficient
Management of Transitive Relationships in Large Data and
Knowledge Bases. In Proc. of SIGMOD, pages 253-262,
1989.

[3] T. Amagasa, M. Yoshikawa, and S. Uemura. QRS: A Robust
Numbering Scheme for XML Documents. In Proc. of ICDE,
pages 705-707, 2003.

[4] J.A. Anderson and J.M. Bell. Number Theory with
Application. Prentice-Hall, New Jersey, 1997.

[5] A. Berglund, S. Boag, D. Chamberlin, M. F. Fernandez, M.
Kay, J. Robie, and J. Simon. XML path language (XPath)
2.0. W3C working draft 04, Apr 2005.

[6] S. Boag, D. Chamberlin, M. F. Fernandez, D. Florescu, J.
Robie, and J. Simon. XQuery 1.0: An XML Query
Language. W3C working draft 04, Apr 2005.

[7] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, and F.
Yergeau. Extensible markup language (XML) 1.0 third
edition W3C recommendation. Oct. 2000.

[8] E. Cohen, H. Kaplan, and T. Milo. Labeling Dynamic XML
Trees. In Proc. of PODS, pages 271-281, 2002.

[9] M. Duong and Y. Zhang. A New Labeling Scheme for
Dynamically Updating XML Data. In Proc. of ADC, pages
185-193, 2005.

[10] R. Goldman and J. Widom. DataGuides: Enabling Query
Formulation and Optimization in Semistructured Databases.
In Proc. of VLDB, pages 436-445, 1997.

[11] C. Li and T.W. Ling. An Improved Prefix Labeling Scheme:
A Binary String Approach for Dynamic Ordered XML. In
Proc. of DASFAA, pages 125-137, 2005.

[12] C. Li, T.W. Ling, J. Lu, and T. Yu. On Reducing
Redundancy and Improving Efficiency of Labeling schemes.
To appear in Proc. of CIKM, 2005.

[13] Q. Li and B. Moon. Indexing and Querying XML Data for
Regular Path Expressions. In Proc. of VLDB, pages 361-370,
2001.

[14] J. McHugh, S. Abiteboul, R. Goldman, D. Quass, and J.
Widom. Lore: A Database Management System for
Semistructured Data. SIGMOD Record, 26(3): 54-66, 1997.

[15] S. Nestorov, J.D. Ullman, J.L. Wiener, and S.S. Chawathe.
Representative Objects: Concise Representations of
Semistructured, Hierarchial Data. In Proc. of ICDE, pages
79-90, 1997.

[16] NIAGARA Experimental Data. Available at:
http://www.cs.wisc.edu/niagara/data.html

[17] P.E. O'Neil, E.J. O'Neil, S. Pal, I. Cseri, G. Schaller, and N.
Westbury. ORDPATHs: Insert-Friendly XML Node Labels.
In Proc. of SIGMOD, pages 903-908, 2004.

[18] A. Silberstein, H. He, K. Yi, and J. Yang. BOXes: Efficient
Maintenance of Order-Based Labeling for Dynamic XML
Data. In Proc. of ICDE, pages 285-296, 2005.

[19] I. Tatarinov, S. Viglas, K.S. Beyer, J. Shanmugasundaram,
E.J. Shekita, and C. Zhang. Storing and querying ordered
XML using a relational database system. In Proc. of
SIGMOD, pages 204-215, 2002.

[20] University of Washington XML Repository. Available at:
http://www.cs.washington.edu/research/xmldatasets/

[21] X. Wu, M.L. Lee, and W. Hsu. A Prime Number Labeling
Scheme for Dynamic Ordered XML Trees. In Proc. of ICDE,
pages 66-78, 2004.

[22] XMark — An XML Benchmark Project. Available at:
http://monetdb.cwi.nl/xml/downloads.html

[23] F. Yergeau. UTF8: A Transformation Format of ISO 10646.
Request for Comments (RFC) 2279, January 1998.

[24] C. Zhang, et al. On Supporting Containment Queries in
Relational Database Management Systems. In Proc. of
SIGMOD, pages 425-436, 2001.

