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ABSTRACT
Keyword search in relational databases has gained popular-
ity due to its ease of use. However, the challenge to return
query answers that satisfy users’ information need remains.
Traditional keyword queries have limited expressive capa-
bility and are ambiguous. In this work, we extend keyword
queries to enhance their expressive power and describe an
semantic approach to process these queries. Our approach
considers keywords that match meta-data such as the names
of relations and attributes, and utilizes them to provide the
context of subsequent keywords in the query. Based on the
ORM schema graph which captures the semantics of objects
and relationships in the database, we determine the objects
and relationships referred to by the keywords in order to in-
fer the search target of the query. Then, we construct a set
of minimal connected graphs called query patterns, to rep-
resent user’s possible search intentions. Finally, we translate
the top-k ranked query patterns into SQL statements in or-
der to retrieve information that the user is interested in. We
develop a system prototype called ExpressQ to process the
extended keyword queries. Experimental results show that
our system is able to generate SQL statements that retrieve
user intended information effectively.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Search process
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1. INTRODUCTION
Designing effective query mechanisms for users to query

large and complex databases easily has been one of the most
elusive goals of the database research community. Tradi-
tional structured query models such as SQL for relational
databases provide functionalities to query databases pre-
cisely. However, they require users to be knowledgeable
about database schemas and query languages. Keyword
queries have gained popularity due to their ease of use. How-
ever, they are inherently ambiguous and it is difficult to de-
termine the users’ search intention.

The traditional approach to evaluate a keyword query first
materializes the database as a graph where each node rep-
resents a tuple and each edge represents a foreign key-key
reference, and then finds the minimal connected subgraphs
that contain all the keywords [8, 9, 6, 15]. But this is com-
putationally expensive as the number of subgraphs is huge.
Another approach translates a keyword query into a set of
SQL statements, and leverages on relational DBMSs to eval-
uate the statements and retrieve answers [1, 7, 5, 12, 13].
However, these works do not analyze the users’ search inten-
tion, and often returns an overwhelming amount of answers,
many of which are complex and not easily understood.

Recently, [2] exploits the relative positions of keywords in
a query along with auxiliary external knowledge to make an
educated guess of the users’ search intention. They measure
the likelihood of mapping from a keyword to the database
structure (a relation, an attribute, or a tuple), and generate
the most probable mappings for the query keywords.

We observe that a relational database is essentially a repos-
itory of objects that interact with each other via relation-
ships that are embedded in the foreign key-key references.
When a user issues a query, s/he must have some particular
search intention in mind. If we can determine the keywords
that refer to the same object or relationship in the database,
we would be able to infer the search target of the user. These
keywords can also provide the context of subsequent query
keywords that impose conditions on the search target.

Figure 1 shows a sample company database. Suppose a
user issues a keyword query {Employee Brown}. The key-
word Brown can refer to an employee name or a department
address. However, since the keyword Employee matches the
name of the Employee relation, we deduce that the user
is more likely to be interested in an employee called Brown



than the address of a department. In other words, a keyword
that matches a relation name specifies a target object or re-
lationship, while a keyword that matches an attribute name
indicates the information that the user wants to retrieve for
the target object/relationship. Keywords that match tuple
values impose restrictions on the object/relationship.

Employee 

Eid Name Salary Deptid JoinDate 

e1 Smith 3.5k d1 2010 

e2 Green 4.2k d1 2009 

e3 Brown 5.5k d1 2006 

EmployeeSkill 

Eid Skill 

e1 Java 

e2 SQL 

e3 Java 

e3 PhP 

Project 

Pid Name Budget 

p1 XML 40k 

p2 RDB 50k 

p3 Survey 30k 

Department 

Deptid Name Address 

d1 computing Brown Street 

d2 marketing Queen Street 

EmpProj 

Eid Pid JoinDate 

e1 p1 2010 

e2 p1 2009 

e2 p2 2010 

e3 p2 2007 

e3 p3 2008 ProjDept 

Pid Deptid 

p1 d1 

p2 d1 

p3 d2 

Figure 1: Example company database

In this work, we extend the expressive power of keyword
queries so that users can better express their search in-
tentions. We design a semantic approach to process these
extended keyword queries. Our approach considers key-
words that match meta-data e.g., names of relations and
attributes, and utilizes them to provide the context of sub-
sequent keywords in the query. We discover the various ways
objects in a database interact with each other, and construct
query patterns to denote user’s possible search intentions.
We propose a ranking scheme that takes into account the
search targets of the query as well as the number of objects
captured in a query pattern. The top-k ranked query pat-
terns are used to generate SQL statements. We develop
a prototype system called ExpressQ to process extended
keyword queries. Experimental results on two databases
demonstrate the effectiveness of ExpressQ in generating SQL
statements to retrieve relevant information for users.

2. PRELIMINARIES
The work in [16] classifies the relations in a database

into object relations, relationship relations, mixed relations
and component relations. An object (relationship) rela-
tion captures the information of objects (relationships), i.e.,
the single-valued attributes of an object class (relationship
type). Multivalued attributes are captured in the compo-
nent relations. A mixed relation contains information of
both objects and relationships, which occurs when we have
a many-to-one relationship.

In our example database in Figure 1, relations Project
and Department are object relations as they contain single-
valued attributes of project and department objects respec-
tively. Relations EmpProj and ProjDept are relationship
relations. Employee is a mixed relation as it captures in-
formation of employee objects and the many-to-one rela-
tionships between employee and department objects. The
relation EmployeeSkill is a component relation containing
the multivalued attribute of employees.

We can model the relational schema with an undirected
graph called Object-Relationship-Mixed (ORM) schema graph
G = (V,E) [16]. Each node v ∈ V comprises of an ob-
ject/relationship/mixed relation and its component relations,
and is associated with a v.type ∈ {object, relationship,

mixed}. Two nodes u and v are connected via an edge
e(u, v) ∈ E if there exists a foreign key-key constraint from
the relations in u to that in v.

Object Node

Relationship Node

Legend:

Mixed Node

Employee DepartmentEmpProj

Project ProjDept

Figure 2: ORM schema graph of Figure 1

Figure 2 shows the ORM schema graph of the database in
Figure 1. It has two object nodes (rectangle), two relation-
ship nodes (diamond) and one mixed node (hexagon). The
node Department is an object node that comprises of the
object relation Department, while the node Employee is a
mixed node that comprises of the mixed relation Employee
and component relation EmployeeSkill. These two nodes
are connected via an edge because there is a foreign key-
key constraint from the relation Employee to the relation
Department.

Suppose a user issues the keyword query {Smith Green}.
Both keywords match some employee name in the Employee
relation. Based on the ORM schema graph in Figure 2,
these two employees are possibly related via the relationship
EmpProj, the many-to-one relationship with departments,
and a combination of these relationships. Thus, some of the
possible interpretations of the query are:

a. Find information on the project in which both employ-
ees Green and Smith are involved.

b. Find information on the department in which both em-
ployees Green and Smith work.

c. Find information on the department which conducts
a project that involves the employee Green and the
employee Smith works in.

Existing works would consider all the above query inter-
pretations and retrieve the corresponding information from
the database. Consequently, the user is often overwhelmed
by a huge number of answers, many of which are complex
and not easily understood.

In order to reduce the ambiguity of keyword queries, we
propose to allow users to explicitly indicate his/her search
intention whenever possible. This can be achieved by aug-
menting the query with additional keywords that match the
names of relations and attributes. For example, if the user
would like to find the information on the department that
both the employee Smith and the employee Green work in,
s/he can express the query as {Department Employee Smith
Employee Green}. The keyword Department matches the
name of the Department relation, indicating that the user is
interested in the information of the department. While the
keyword Employee matches the name of the Employee rela-
tion, giving the context that the keywords Smith and Green
refer to names of two employees.

Definition 1. An extended keyword query consists of a
sequence of keywords Q = {k1 k2 · · · kn} such that each
keyword k matches a relation name, or an attribute name
or a tuple value.



3. KEYWORD QUERY EVALUATION
Given an extended keyword query, we want to generate

a set of SQL statements that best capture the user’s search
intention. This entails the following steps:

1. Query analysis. We parse each keyword in the query
and utilize the ORM schema graph of the database to
determine the object or relationship that a keyword
refers to. The semantic information of each keyword is
captured in a tag, and the tags that refer to the same
object or relationship are grouped together.

2. Query interpretation. Based on the groups of tags,
we generate a set of minimal connected graphs called
query patterns, that represent the possible search in-
tentions of the query, and rank these patterns.

3. SQL statement generation. The top-k ranked query
patterns are used to generate SQL statements to re-
trieve results from the relational database.

The following sections give the details of each of these steps.

3.1 Query Analysis
Given an extended keyword query Q = {k1 k2 · · · kn},

we will determine the interpretation(s) of each keyword in
Q. We capture each keyword interpretation in a tag T =
(label, attr, cond), where label is the name of the object or
relationship, attr is the attribute name, and cond is the
restriction on the object or relationship. The restriction
occurs in the form of a value. The tag(s) for a keyword k is
generated depending on the following type of matches:

a. k matches the name of some object/mixed/relationship
relation.

This indicates that k refers to some object or relation-
ship. The name of the object is given by the corre-
sponding object or mixed node in the ORM schema
graph, while the name of the relationship can be ob-
tained from the corresponding relationship node in the
graph. We capture this keyword interpretation by cre-
ating a tag (k, null, null) for this keyword.

b. k matches the name of a component relation or an
attribute name.

This implies that k refers to the attribute of the some
object or relationship l, and we create a tag (l, k, null)
for this keyword.

c. k matches some tuple value.

Clearly, k refers to the value of some attribute a of an
object or relationship l, and we create a tag (l, a, k) for
this keyword.

Example 1. Consider the keyword queries in Table 1.
Table 2 shows the sequence of tags generated for these queries.
For query Q1, we know that the keyword Department matches
an object relation, while the keyword Employee matches a
mixed relation from the ORM schema graph in Figure 2.
Hence, these keywords refer to the names of department and
employee objects in the database, and we capture their inter-
pretations in the corresponding tags. On the other hand, the
keywords Smith and Green match the Name attribute values
of some tuples in the Employee relation, and we capture
these information in their tags T13 and T15.

Query Q2 contains the keyword Skill that matches an at-
tribute name. From the ORM schema graph, we see that this

Table 1: Example Queries
Q1 Department Employee Smith Employee Green
Q2 Project Employee Skill Java PhP
Q3 Project Employee Green Brown

attribute belongs to the component relation EmployeeSkill
which is associated with the mixed node Employee. Hence,
we know that skill is a multivalued attribute of the employee
object and we capture this interpretation in the tag T23. Fur-
ther, the keywords Java and PhP match the Skill attribute
values of some tuples.

Note that Q3 contains the keyword Brown that matches
the Name attribute value of some tuple in Employee rela-
tion, as well as the Address attribute value of some tuple in
Department relation. In this case, we create a tag for each
matching. The tag T34 in Table 2 captures the interpretation
that keyword Brown refers to an employee name, while the
tag T ′34 captures the interpretation that Brown refers to a de-
partment address. Hence, we see that Q3 has two sequences
of tags, denoting two different query interpretations. 2

After creating a sequence of tags for the keywords in the
query, we group the tags that refer to the same object or re-
lationship together. Clearly, tags that do not have the same
label are placed into different groups since their keywords
refer to different objects/relationships. However, keywords
with tags that have the same label do not necessarily refer
to the same object/relationship.

Example 2. Consider query Q1 in Table 1 and its tags in
Table 2. All these tags except T11 have the same label Em-
ployee. However, their keywords actually refer to different
objects: keywords Employee and Smith refer to the employee
named Smith, while keywords Employee and Green refer to
the employee named Green. 2

This example demonstrates the need to process the tags
of keywords in a keyword query in sequence, and examine
the objects or relationships referred to by the current and
preceding keywords.

Let T be the sequence of tags for a query Q. We put
a tag Ti ∈ T into a new group to denote a different ob-
ject/relationship if one of these following cases is true:

Case 1. Ti has a different label from all the tags Tj ∈ T ,
j ∈ [1, i− 1].

Case 2. Ti has the same label as Tj ∈ T for some j ∈
[1, i− 1], and the attr and cond of Ti are null.

Case 3. Ti has the same label and attr as Tj ∈ T for some
j ∈ [1, i− 1], and attr is not a multivalued attribute.

A tag that satisfies Case 2 indicates that its keyword refers
to a new object/relationship and provides the context for
the next keyword in the query. Hence, we create a new
group for this tag. On the other hand, a tag that satisfies
Case 3 indicates that both its keyword and the preceding
keyword refer to the same single-valued attribute of an ob-
ject/relationship or its values. Since an object/relationship
cannot have a single-valued attribute with two values, the
keyword of this tag must refer to a new object/relationship.

Example 3. Let us consider the sequence of tags for Q1.
Tags T11 and T12 belong to two different groups g1 and g2



Table 2: Sequence of tags generated for the queries in Table 1
Q1 T11 = (Department,null,null), T12 = (Employee,null,null), T13 = (Employee,Name,Smith), T14 = (Employee,null,null), T15 = (Employee,Name,Green)
Q2 T21 = (Project,null,null), T22 = (Employee,null,null), T23 = (Employee,Skill,null), T24 = (Employee,Skill,Java), T25 = (Employee,Skill,PhP)
Q3 T31 = (Project,null,null), T32 = (Employee,null,null), T33 = (Employee,Name,Green), T34 = (Employee,Name,Brown)

T31 = (Project,null,null), T32 = (Employee,null,null), T33 = (Employee,Name,Green), T ′
34 = (Department,Address,Brown)

since they have different labels. Since tag T13 has the same
label Employee as its preceding tag T12, it is placed in the
same group g2. T14 is put in a new group g3 because its attr
and cond are null and it refers to a different employee object
(Case 2). Since T15 has the same label as T14, it is put in
g3. Note that we cannot put T15 in g2 because Name is a
single valued attribute of employees, and it is not possible
for the same employee to have two different names (Case
3). In other words, the keywords Smith and Green are the
names of two different employees. Hence, the tags for Q1

are grouped as follows:

• g11 = {T11} refers to some department object,

• g12 = {T12, T13} refers to an employee named Smith,

• g13 = {T14, T15} refers to an employee named Green.2

The following example illustrates a query involving mul-
tivalued attributes.

Example 4. Consider query Q2 and its sequence of tags
in Table 2. The tags T22, T23, and T24 have the same label
and are put in the same group. Note that T24 and its pre-
ceding tag T23 have the same label and attr. They are put
in the same group because the attribute Skill is a multivalued
attribute. In other words, the keywords Java and PhP refer
to the values of the multivalued attribute Skill, and the user
is interested in an employee who knows both Java and PhP.
Hence, the tags for Q2 are grouped as follows:

• g21 = {T21} refers to some project object,

• g22 = {T22, T23, T24} refers to an employee with skills
Java and PhP. 2

3.2 Query Interpretation
After grouping the tags of a query, the next step is to

generate query patterns. Each query pattern is a minimal
connected graphs that represents one possible search inten-
tion of the query. Intuitively, we construct a query pattern
by creating a node to represent each object/relationship re-
ferred to by each group of tags. These nodes will correspond
to nodes in the ORM schema graph and we can connect them
based on the edges in the graph.

Let S = {g1, g2, · · · , gm} be a set of tag groupings, and
G = (V,E) be the ORM schema graph. A query pattern
P = (V ′, E′) is constructed as follows. For each group of
tags gi ∈ S, 1 ≤ i ≤ m, we create a node ui to denote the
object/relationship referred to by gi. The corresponding
object class or relationship type is given by a node vi in G.
We say that ui corresponds to vi.

Let D′ = {u1, u2, · · · , um} and D = {v1, v2, · · · , vm}. We
first insert the nodes in D′ into the query pattern P . If
|D′| = 1, then all the tags in the query are in one group
which refers to the same object/relationship. Hence, the
query pattern P has only a single node. However, if we have
|D′| > 1, then we need to use the schema graph G to con-
nect these nodes. We have two cases to handle:

Case A. The object class or relationship type of every ob-
ject/relationship is distinct.

In this case, all the nodes in D′ correspond to distinct
nodes in D, i.e., |D′| = |D|. We find a minimal subgraph H
of G that connects all the nodes in D. For each intermediate
node x in H, we create a node x′ that corresponds to x and
insert it into P . For each edge e(x, y) in H, we create an
edge e(x′, y′) in P .

Case B. The object class or relationship type of every ob-
ject/relationship is not distinct.

In this case, some objects (or relationships) have the same
object class (or relationship type). In other words, two or
more nodes in D′ correspond to the same node in G, i.e.,
|D′| > |D|. We cluster the nodes in D′ according to their
object classes, and connect the nodes between the clusters.
We try to find a node u ∈ D′ such that u can connect to the
other nodes in D′ based on the paths between their corre-
sponding nodes in the ORM schema graph. If no such node
exists, we create a node x′ that corresponds to some node
x ∈ G to connect all the nodes in D′.

The following examples illustrate the above cases.

Example 5. Let us consider the set of tag groupings S =
{g21, g22} obtained for query Q2 in Example 4. We create
two nodes u1 and u2 to represent g21 and g22 respectively.
Nodes u1 and u2 correspond to the nodes Project and Em-
ployee in the ORM schema graph in Figure 2 respectively
(Case A). Since the Employee and Project nodes can be con-
nected via the EmpProj node in the ORM schema graph, we
create a new node u3 that corresponds to the EmpProj node
to connect u1 and u2, and output the graph as a query pat-
tern (see Figure 3). This query pattern captures the user’s
intention to find the information on the project that involves
the employees with both skills Java and PhP. 2

Project

u2

EmpProj

u1

Employee 
Skill={Java,PhP}

u3

Figure 3: Query pattern in Example 5

Example 6. Consider the 3 groups of tags g11, g12 and
g13 obtained for Q1 in Example 3. We create a set of nodes
D′ = {u1, u2, u3} for these groups, and D = {Employee,
Department}. Note that the corresponding object classes of
the nodes in D′ are not distinct (Case B). Node u1 corre-
sponds to the Department node in the ORM schema graph,
while both nodes u2 and u3 correspond to the Employee node.
We cluster the nodes in D′ according to their object classes,
and connect the nodes between the clusters, i.e., c1 = {u1}
and c2 = {u2, u3}, and we try to connect u1 to u2 and u3.
Based on the ORM schema graph, the Department node can
connect to the Employee node directly. Hence, we create two
edges to connect u1 to u2 and u3 respectively. Figure 4(a)
shows the query pattern P1 obtained which indicates that the
user wants to find information on the department that both
employees Smith and Green work in.



Department

u2

u3

u1
Employee
Name=Smith

Employee
Name=Green

u2

u3

u1

Employee
Name=Smith

Employee
Name=Green

Department

ProjDept Project EmpProj

EmpProjProjDept Project

u4 u6 u8

u5 u7 u9

(a) P1 (b) P2

Figure 4: Query patterns for query Q1 = {Department Employee Smith Employee Green} in Example 6

Further, we observe that the Department node can also
connect to the Employee node via the path Department −
ProjDept − Project − EmpProj − Employee in the ORM
schema graph. By creating nodes u4 and u5 (correspond
to ProjDept), u6 and u7 (correspond to Project), u8 and u9

(correspond to EmpProj), we obtain the query pattern P2 in
Figure 4(b). This pattern indicates that the user is inter-
ested in the department with projects involving both employ-
ees Smith and Green. 2

3.3 Query Pattern Ranking
After generating the various query patterns, the next step

is to rank them. The standard method typically ranks graphs
based on the number of nodes, i.e., a smaller graph is more
easily understood and is ranked higher than a larger com-
plex graph. This approach does not consider the semantics
of objects and relationships in the graphs. For example, a
query to find an employee who have both skills Java and PhP
will have a graph with 3 nodes (EmployeeSkill − Employee
− EmployeeSkill), each of which denotes a relation tuple.
However, all 3 nodes refer to the same employee object. It
should not be ranked equally as a graph with 3 nodes such
as Employee − EmpProj − Project, where nodes Employee
and Project refer to two different objects.

We observe that when a user issues a query, s/he must
have some particular search intention in mind. We refer to
the objects/relationships that meet the user’s interest in the
search intention as the search targets of the query. Our pro-
posed ranking scheme aims to take into account the search
targets of the query as well as the number of object/mixed
nodes in the query patterns.

In order to identify the search targets of a query, we clas-
sify the nodes that correspond to the tag groups into target
nodes and condition nodes since they denote the objects and
relationships that the user is interested in. A target node
specifies the search target of the query, while a condition
node indicates the search conditions of the query. In our
Example 6, u1 is a target node since the user is interested
in the information on a department. On the other hand,
u2 and u3 are condition nodes as they specify two particu-
lar employees by their names. We define target nodes and
condition nodes formally as below:

Definition 2. Let u be an object/relationship node re-
ferred to by a tag group g. We say u is a condition node if
∃ T ∈ g such that T.cond 6= null. Otherwise, u is a target
node if:

1. ∀ T ∈ g, we have T.cond = null or

2. ∃ T ∈ g such that T.attr 6= null and @ T ′ ∈ g where
T ′.attr = T.attr

The first condition indicates that the user is interested in
the information of an object/relationship, while the second
condition indicates that the user is interested in obtaining
information on an object/relationship attribute.

Note that a node can be both a target node and a condi-
tion node. Suppose we have the following group of tags:

T1 = (Department,null,null)
T2 = (Department,Address,Queen)
T3 = (Department,Name,null)

This group of tags refers to a department object node that
is both a target and a condition node since the semantics of
the tags indicates that the user is interested in the name of
the department in Queen street.

Let X be the set of target nodes, Y be the set of condition
nodes, and N be the number of object and mixed nodes in
a query pattern P . We compute a score for P by counting
the number of objects involved in the query pattern and the
average distance between the target and condition nodes.
We define the score of a query pattern P as:

score(P ) =
1

N ∗
∑

u∈X,v∈Y

dist(u,v,P )
|X|∗|Y |

where dist(u, v, P ) is the total number of object and mixed
nodes in the path connecting two nodes u and v in P .

Query patterns with fewer object/mixed nodes, and a
shorter average distance between target nodes and condi-
tion nodes will be scored higher.

Example 7. Figure 5 shows two query patterns P1 and
P2 for the query Q3 = {Project Employee Green Brown}. P1

indicates that the user wants to find the information on the
project that involves both the employees Green and Brown,
while P2 indicates that the user is interested in the project
involving the employee Green who works in the department in
Brown street. Both these query patterns have 3 object/mixed
nodes. Besides, node u1 is a target node while nodes u2 and
u3 are condition nodes. We compute the average distance
between the target node (u1) and the condition nodes (u2

and u3) for both query patterns. P1 has an average distance
of 2+2

2
= 2, while P2 has an average distance of 2+3

2
= 2.5.

Thus, we have score(P1) = 1
6

and score(P2) = 2
15

, and P1

will be ranked higher than P2.
We see that this ranking complies with human intuition

that both the employees Green and Brown are “closely” related
to the target project in P1. In contrast, the department in
Brown street is related to the target project just because it has
some employee (Green) involves in the project in P2. On the
other hand, using standard method which ranks graphs based
on the number of nodes will give P1 a lower rank than P2,
as P1 consists of 5 nodes while P2 consists of 4 nodes. 2



Project EmpProjEmpProj

u2 u3
Employee
Name=Brown

Employee
Name=Green

u4 u1 u5

(a) P1

Project EmpProj

u3u2
Employee
Name=Green

u1 u4
Department
Address=Brown

(b) P2

Figure 5: Query patterns in Example 7

Note that a query may not contain keywords that explic-
itly indicate the search targets. For example, none of the
keywords in the query {Project XML Project RDB} indicate
the search targets explicitly. In this case, we will need to
infer the target nodes.

The work in [11] defines the centric distance of a node
u as the longest distance between u and any node in the
graph. Further, the radius of the graph is the minimal value
among the centric distances of every node. A query answer
is a graph whose radius is not larger than a specified value.
Here, we use the radius of query patterns to determine the
target nodes.

We define the centric distance of a node u in P as the
longest distance between u and any node v in P , that is,

centric(u, P ) = maxv∈P dist(u, v, P )

Then the radius of P is given by the shortest centric distance
among all the nodes in P . We infer that a node u is a target
node if its centric distance is equal to the radius of P .

Example 8. Figure 6 shows a query pattern for the query
{Project XML Project RDB} with 3 object nodes. Both the
nodes u1 and u2 correspond to the Project node in the ORM
schema graph and are condition nodes. There is no target
node in the pattern according to Definition 2. Thus, we will
look for a node whose centric distance is equal to the radius
of the query pattern. This gives us u4 as the target node,
indicating that the user is interested in the department that
conducts both projects XML and RDB. We compute the av-
erage distance between the target node u4 and the condition
nodes u1 and u2, and obtain a score of 1

6
for this pattern. 2

Department ProjDeptProjDept

u1 u2u3 u4 u5
Project

Name=XML

Project
Name=RDB

Figure 6: Query pattern in Example 8

3.4 SQL Statement Generation
Finally, we generate a set of SQL statements based on the

top-k query patterns. These SQLs statements are used to
retrieve results from the relational database. The results are
then returned as answers to the extended keyword query.

For each query pattern P , we generate an SQL statement
as follows:

SELECT clause. For each target node u in P , if u specifies
a search target via the object or relationship name (Condi-
tion 1 in Definition 2), then we include all the attributes of
the relations of u in the SELECT clause. Otherwise, if u

specifies a search target via an attribute name (Condition
2 in Definition 2), then we include only the corresponding
attribute of the relations of u in the SELECT clause. If u
is inferred from the radius of P , then we assume that user
is interested in all of information of u and include all the
attributes of the relations of u in the SELECT clause.

FROM clause. The FROM clause contains the relations
of all the nodes in P .

WHERE clause. The WHERE clause joins the relations
in the FROM clause based on the foreign key-key constraints.
Further, for each condition node u in P , we check the group
of tags that refer to the object/relationship denoted by u.
For each tag T such that T.cond 6= null, we include the con-
dition “Tk.label.attr contains Tk.val” in the WHERE clause.

Example 9. Consider the query pattern P1 in Figure 4(a).
Node u1 is a target node and denotes a department object,
while nodes u2 and u3 are condition nodes that denote the
employee objects named Smith and Green respectively. We
will generate the following statement for the query pattern:

SELECT D.Deptid,D.Name,D.Address

FROM Department D,Employee E1,Employee E2

WHERE D.Deptid=E1.Deptid AND D.Deptid=E2.Deptid AND

E1.Name contains ‘Smith’ AND E2.Name contains ‘Green’ 2

4. EXPRESSQ SYSTEM PROTOTYPE
We design a system called ExpressQ which enables users

to query the database using extended keyword queries. Fig-
ure 7 shows the main components in ExpressQ: (a) Query
Analyzer, (b) Query Interpreter, and (c) SQL Generator.

Given a query Q and the ORM schema graph G, we first
call the Query Analyzer to produce a list of sets of tag group-
ings. Since a keyword in an extended keyword query may
be ambiguous, and may be associated with multiple tags,
we enumerate the different sequence of tags for a query. For
each sequence of tags, the Query Analyzer produces a set of
tag groupings. Then we call the Query Interpreter to gen-
erate a list of query patterns for each set of tag groupings.
We compute the scores of the query patterns and output the
top-k patterns. Finally, we generate the SQL statements for
the top-k ranked query patterns. The results of these SQLs
are returned as the answers of Q.

Query 
Analyzer

Extended 
Keyword Query

Query 
Interpreter

SQL 
Generator

Database

DB 
Index

ORM 
Schema 
Graph

Tag and group tags 
for keywords

Construct and rank 
query patterns

Generate SQL statements 

RDB 
Schema

Figure 7: Architecture of ExpressQ



Algorithm 1: QueryAnalyzer

Input: Q = {k1 · · · kn}, ORM schema graph G
Output: list of sets of tag groupings L

1 L← ∅;
2 for i = 1 to n do
3 TagListi = createTags(ki, G);
4 foreach tag sequence {T1, · · · , Tn}, Ti ∈ TagListi do
5 S ← ∅;
6 Let g = {T1}, glabel = T1.label, newg = false;
7 for i = 2 to n do
8 if Ti.label 6= glabel then
9 newg = true;

10 else if Ti.attr = null ∧ Ti.cond = null then
11 newg = true;
12 else if Ti.attr is not multivalued ∧∃j ∈ [i− |g|, i− 1]

such that Tj .attr = Ti.attr then
13 newg = true;
14 if newg is true then
15 S = S ∪ {g}; g ← ∅;
16 g = g ∪ {Ti}; glabel = Ti.label;

17 else
18 g = g ∪ {Ti};
19 S = S ∪ {g};
20 Insert S into L;

Algorithm 1 describes the details of the Query Analyzer.
We first create a list of tags for each keyword in the query
(Lines 2-3). For each sequence of tags, we group the tags
that refer to the same object or relationship. We initialize S
and put the tag of the first keyword T1 into a group g (Lines
5-6). Next, we check whether the tags of the subsequent
keywords can be put into the same group g (Lines 8-13),
and create new groups if needed (Lines 14-19). Finally, we
insert S into the list L (Line 20).

Algorithm 2 gives the details of the Query Interpreter. For
each group of tags gi in S, we create a node ui to denote the
object/relationship referred to by gi. We add ui into set D′

and its corresponding node vi in the ORM graph into set D.
Then we insert ui into the query pattern P (Lines 3-7).

If D′ has only one node, we simply add P into Plist (Lines
8-9). Otherwise, we compare the number of nodes in D′ and
D. If |D′| = |D|, we find the minimal subgraph H of G that
connects all the nodes in D. For each intermediate node x
in H, we create a node x′ that corresponds to x and insert
it into P . For each edge e(x, y) in H, we create an edge
e(x′, y′) in P . Then we add P into Plist (Lines 10-16).

If |D′| is larger to |D|, we divide the nodes in D′ into clus-
ters c1, c2, · · · , cm such that the nodes in each ci corresponds
to a node vi in D, and |ci| ≤ |ci+1|, ∀i ∈ [1,m− 1].

If the smallest cluster c1 has only one node u1, then we
connect u1 to the nodes in c2, c3, · · · , cm. Let H be the path
that connect v1 and vi in G. We connect u1 to the nodes in
ci based on H (Lines 17-25).

On the other hand, if c1 has more than one node, then we
will use a node x′ that corresponds to some node x ∈ G−D
to connect all the nodes in c1, c2, · · · , cm. For each object
or mixed node x in G − D, we first create a copy P ′ of P ,
and insert a node x′ that corresponds to x into P ′. Again,
let H be the path that connect x and vi in G. We connect
x′ to the nodes in ci based on H. After all the nodes in D′

are connected, we add P ′ into Plist (Lines 26-34).

5. PERFORMANCE STUDY
In this section, we evaluate the effectiveness and efficiency

of the ExpressQ system. We implement the algorithms in
Java and carry out experiments on an 3.40GHz CPU with

Algorithm 2: QueryInterpreter

Input: set of tag groupings S, ORM schema graph G
Output: list of query patterns Plist

1 Plist← ∅; D′ ← ∅; D ← ∅;
2 Let P be a query pattern;
3 for i = 1 to |S| do
4 Create a node ui for group of tags gi;
5 Let ui corresponds to vi in G;

6 D′ = D′ ∪ {ui}; D = D ∪ {vi};
7 Insert ui into P ;

8 if |D′| = 1 then
9 Add P into Plist;

10 else if |D′| = |D| then
11 H = findSubgraph(D, G);
12 foreach intermediate node x in H do
13 Create a node x′ and insert it into P ;
14 foreach edge e(x, y) in H do
15 Create an edge e(x′, y′) in P ;
16 Add P into Plist;

17 else if |D′| > |D| then
18 Let D′ = c1 ∪ c2 · · · ∪ cm, |ci| ≤ |ci+1|, i ∈ [1,m− 1];
19 if |c1| = 1 then
20 Let u1 be the node in c1;
21 for i = 2 to m do
22 Let H be the path that connects v1 and vi in G;
23 for j = 1 to |ci| do
24 Connect u1 to ui,j in ci based on H;

25 Add P into Plist;

26 else
27 foreach object/mixed node x in G−D do
28 P ′ = P ;

29 Create a node x′ and insert it into P ′;
30 for i = 1 to m do
31 Let H be the path that connects x and vi in G;
32 for j = 1 to |ci| do
33 Connect x′ to ui,j in ci based on H;

34 Add P ′ into Plist;

8GB RAM. We use two relational databases in our experi-
ments: the TPC-H database (TPCH) and the ACM Digital
Library publication (ACMDL).

We construct 7 queries for each database. Tables 3 and
4 show the queries and the corresponding descriptions (or
search intentions). The keywords of these queries may match
relation names, attribute names and tuple values.

5.1 Effectiveness Experiments
One of the advantages of ExpressQ is its ability to iden-

tify the context of keywords and the search target of a query
to retrieve user’s intended information. We verify its effec-
tiveness by comparing ExpressQ with Spark [13], an existing
relational keyword search engine that does not consider key-
word contexts or search targets.

Spark finds the relations whose tuples matches the query
keywords, and constructs a set of minimal connected graphs
called candidate networks based on these relations. The
candidate networks are ranked according to their size, and
SQL statements are generated from the top-k networks.

5.1.1 Results for the TPCH Database
Table 5 shows the generated SQL statements that best

match the descriptions of the queries for the TPCH database.
We see that although both ExpressQ and Spark generate the
same SQL statement for query T1, they differ greatly for the
rest of the queries.

Queries T2 to T4 show that ExpressQ is more selective in
its retrieval of information as it identifies the search target in
the query. ExpressQ retrieves only the retail price of the part



Table 3: Queries for the TPCH database
# Query Description
T1 part type nickel find the information of the parts with type ‘nickel’
T2 part retailprice name rose find the retail price of the part ‘rose’
T3 customer phone mktsegment automobile find the phone of the customers who are in ‘automobile’ market segment
T4 orders date priority high China find the date of the orders that have ‘high’ priority and come from ‘China’
T5 supplier Canada find the information of the suppliers in ‘Canada’
T6 supplier part cornflower find the information of the suppliers who supply part ‘cornflower’
T7 customer name lineitem ship rail find the name of the customers who order lineitems by ‘ship’ and ‘rail’

Table 4: Queries for the ACMDL database
# Query Description
A1 author “Tok Wang Ling” find the information of the author “Tok Wang Ling”
A2 paper “keyword search” find the information of the papers on “keyword search”
A3 author Jagadish affiliation find the affiliations of the author ‘Jagadish’
A4 publisher code proceeding SIGMOD find the code of the publisher for the ‘SIGMOD’ proceedings
A5 paper title author Hristidis find the title of the papers authored by ‘Hristidis’
A6 editor name proceeding EDBT ICDT find the names of the common editors for the proceedings ‘EDBT’ and ‘ICDT’

A7
author name paper “query processing”
“data integration”

find the name of the authors with both papers “query processing” and “data inte-
gration”

‘rose’ for T2, whereas Spark overwhelms the user by retriev-
ing all the attributes of this part. This is because ExpressQ
has identified retailprice as the search target in T2. Similarly,
ExpressQ retrieves only the customer phone and order date
information for T3 and T4 respectively, while Spark retrieves
all the attributes of the relations in the FROM clause.

Queries T5 to T7 demonstrate that by considering the
context of keywords, ExpressQ is able to generate SQL state-
ments to retrieve information that the user is interested in.
ExpressQ uses the context provided by the keyword supplier
in both T5 and T6 to correctly generates SQL statements
that retrieve supplier information.

In contrast, Spark generates SQL statements to retrieve
information on the nation ‘Canada’ for T5, and part infor-
mation for T6. We see that this does not match the query
descriptions of T5 and T6. Similarly, for T7, the SQL state-
ment obtained from ExpressQ retrieves the intended cus-
tomer information, while Spark retrieves item information
instead.

5.1.2 Results for the ACMDL Database
Table 6 gives the results for the ACMDL database. Both

ExpressQ and Spark generate the same SQL statements for
queries A1 and A2 because these are relatively straightfor-
ward keyword queries. However, for query A3, ExpressQ
correctly retrieves the affiliation of the author ‘Jagadish’
while Spark retrieves all the attributes of the author. This
is because Spark is unable to identify that affiliation is the
search target of a query.

Queries A4 to A7 show that the context of keywords is
important and enables ExpressQ to correctly generate SQL
statements that retrieves the intended information: pub-
lisher information for A4, paper information for A5, editor
information for A6, and author information for A7. On the
other hand, we observe that Spark retrieves information that
clearly do not match the query descriptions, e.g., proceed-
ings for A4, and authors for A5.

The results of this set of experiments clearly indicate that
identifying the keyword context and search target of queries
greatly enhances the evaluation of keyword queries and leads
to the retrieval of appropriate information.

5.2 Efficiency Experiments
Finally, we compare the time taken by ExpressQ and

Spark to generate SQL statements for the queries. Figure 8
shows the results for both TPCH and ACMDL queries in
Tables 3 and 4 on cold cache.

We observe that Spark is faster than ExpressQ when the
number of nodes in the candidate network/query pattern is
small. This is because Spark does not analyze the search
intention of the queries but only finds candidate networks
containing all the keywords that match tuple values.

However, Spark is slower than ExpressQ for queries T4,
T7, A6 and A7. This is because the number of nodes in
the candidate networks for these queries is large, and Spark
needs more time to enumerate the networks in a breadth-
first traversal manner. For example, Spark generates 339
intermediate graphs before finding the top 3 candidate net-
works for query T7. In contrast, ExpressQ finds the path
customer−lineitem−orders in the ORM schema graph, and
builds the query pattern based on this path directly.

Figure 9 compares the time taken by ExpressQ to gener-
ate SQL statements, and the time needed to execute these
statements over the databases. We see that the execution of
SQL statements dominates the overall processing time (in
seconds), indicating that the extra time taken by ExpressQ
to analyze the queries (in ms) to identify the search intention
of the user is a good tradeoff. We note that the execution
time of SQL statements varies significantly with the number
of results retrieved and the number of joins. For example,
the SQL statement for query T7 takes more than 30 minutes
to join 5 relations, while the SQL statement for query T5
takes only 78 ms to retrieve 412 results.

6. RELATED WORK
Existing works in relational keyword search typically use

a schema graph or a data graph to process a keyword query.
The schema graph approach models the database schema as
an undirected graph where each node represents a relation
and each edge represents a foreign-key key constraint. Early
works such as DBXplorer [1] and DISCOVER [7] propose a
breadth-first traversal on the schema graph to generate a set
of SQL statements. The output tuples of each SQL contain



Table 5: SQL statements generated for the TPCH database
# ExpressQ Spark
T1 select R1.partkey, R1.name... from part R1 where

match(R1.type) against (‘nickel’ in boolean mode);
select R1.partkey, R1.name... from part R1 where
match(R1.type) against (‘nickel’ in boolean mode);

T2 select R1.retailprice from part R1 where match(R1.name)
against (‘rose’ in boolean mode);

select R1.partkey, R1.name, R1.mfgr, R1.brand,
R1.type, R1.size... from part R1 where match(R1.name)
against (‘rose’ in boolean mode);

T3 select R1.phone from customer R1 where
match(R1.mktsegment) against (‘automobile’ in boolean
mode);

select R1.custkey, R1.name, R1.address... from cus-
tomer R1 where match(R1.mktsegment) against (‘automo-
bile’ in boolean mode);

T4 select R1.date from orders R1, customer R2,
nation R3 where R1.custkey=R2.custkey and
R2.nationkey=R3.nationkey and match(R1.priority)
against (‘high’ in boolean mode) and match(R3.name)
against (‘China’ in boolean mode);

select R1.orderkey, R1.custkey, ..., R2.custkey,
R2.name... from orders R1, customer R2, nation R3 where
R1.custkey=R2.custkey and R2.nationkey=R3.nationkey
and match(R1.priority) against (‘high’ in boolean mode) and
match(R3.name) against (‘China’ in boolean mode);

T5 select R2.suppkey, R2.name, R2.address... from nation
R1, supplier R2 where R2.nationkey=R1.nationkey and
match(R1.name) against (‘Canada’ in boolean mode);

select R1.nationkey, R1.name, R1.regionkey, R1.comment
from nation R1 where match(R1.name) against (‘Canada’
in boolean mode);

T6 select R3.suppkey, R3.name... from part R1, part-
supp R2, supplier R3 where R2.suppkey=R3.suppkey
and R2.partkey=R1.partkey and match(R1.name) against
(‘cornflower’ in boolean mode);

select R1.partkey, R1.name... R1.comment from part
R1 where match(R1.name) against (‘cornflower’ in boolean
mode);

T7 select R1.name from customer R1, orders R2,
lineitem R3, orders R4, lineitem R5 where
R2.custkey=R1.custkey and R3.orderkey=R2.orderkey and
R4.custkey=R1.custkey and R5.orderkey=R4.orderkey and
match(R3.shipmode) against (‘ship’ in boolean mode) and
match(R5.shipmode) against (‘rail’ in boolean mode);

select R1.orderkey, R1.partkey, ..., R2.orderkey,
R2.custkey... from lineitem R1, orders R2,
lineitem R3 where R1.orderkey=R2.orderkey and
R3.orderkey=R2.orderkey and match(R1.shipmode) against
(‘ship’ in boolean mode) and match(R3.shipmode) against
(‘rail’ in boolean mode);

Table 6: SQL statements generated for the ACMDL database
# ExpressQ Spark
A1 select R1.author id, R1.name from author R1 where

match(R1.name) against (“‘Tok Wang Ling”’ in boolean
mode);

select R1.author id, R1.name from author R1 where
match(R1.name) against (“‘Tok Wang Ling”’ in boolean
mode);

A2 select R1.paper id, ..., R1.title... from paper R1 where
match(R1.title) against (“‘keyword search”’ in boolean
mode);

select R1.paper id, ..., R1.title... from paper R1 where
match(R1.title) against (“‘keyword search”’ in boolean
mode);

A3 select R11.affiliation from author R1, au-
thor aff history R11 where R11.author id=R1.author id
and match(R1.name) against (‘Jagadish’);

select R1.author id, R1.name from author R1 where
match(R1.name) against (‘Jagadish’ in boolean mode);

A4 select R2.code from proceeding R1, pub-
lisher R2 where R1.publisher id=R2.publisher id and
match(R1.acronym) against (‘SIGMOD’ in boolean mode);

select R1.proc id, R1.publisher id, R1.acronym,
R1.description, R1.class, R1.title, R1.volume,
R1.isbn13... from proceeding R1 where
match(R1.acronym) against (‘SIGMOD’ in boolean mode);

A5 select R3.title from author R1, author paper
R2, paper R3 where R2.paper id=R3.paper id and
R2.author id=R1.author id and match(R1.name) against
(‘Hristidis’ in boolean mode);

select R1.author id, R1.name from author R1 where
match(R1.name) against (‘Hristidis’ in boolean mode)

A6 select R1.name from editor R1, edit proceeding
R2, proceeding R3, edit proceeding R4, pro-
ceeding R5 where R2.proc id=R3.proc id and
R2.editor id=R1.editor id and R4.proc id=R5.proc id
and R4.editor id=R1.editor id and match(R3.acronym)
against (‘EDBT’ in boolean mode) and match(R5.acronym)
against (‘ICDT’ in boolean mode);

select R1.proc id, ..., R2.publisher id, ..., R3.proc id
from proceeding R1, publisher R2, proceed-
ing R3 where R1.publisher id=R2.publisher id and
R3.publisher id=R2.publisher id and match(R1.acronym)
against (’EDBT’ in boolean mode) and match(R3.acronym)
against (’ICDT’ in boolean mode);

A7 select R1.name from author R1, au-
thor paper R2, paper R3, author paper R4,
paper R5 where R2.paper id=R3.paper id and
R2.author id=R1.author id and R4.paper id=R5.paper id
and R4.author id=R1.author id and match(R3.title) against
(“‘query processing”’ in boolean mode) and match(R5.title)
against (“‘data integration”’ in boolean mode);

select R1.paper id, R1.proc id, ...., R2.citing,
R2.cited, R3.paper id, R3.proc id... from pa-
per R1, paper citation R2, paper R3 where
R2.citing=R1.paper id and R2.cited=R3.paper id and
match(R1.title) against (“‘query processing”’ in boolean
mode) and match(R3.title) against (“‘data integration”’ in
boolean mode);
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Figure 9: Comparison of the SQL generation time by ExpressQ and the SQL execution time

all the query keywords. [5] incorporates an IR-style rank-
ing strategy to evaluate the relevance of query results and
proposes two algorithms to compute the top-k results. [12]
improves the effectiveness of [5] by normalizing the rank-
ing factors. [13] avoids the side effect of overly rewarding
contributions of the same keyword in [5] and [12].

The data graph approach models the database as an undi-
rected graph where each node represents a tuple and each
edge represents a foreign key-key reference. BANKS [8] pro-
poses a backward expansion search to find the Steiner trees
that contain all the keywords, and evaluates the relevance
of a Steiner tree based on its root and leaf nodes. [9] im-
proves the efficiency of BANKS by using a bidirectional ex-
pansion search to reduce the search space. [3] employs a dy-
namic programming technique by identifying top-k minimal
group Steiner trees. CI-Rank [15] considers the importance
of nodes, as well as the cohesiveness of the tree structure.

To improve the usability of keyword search, [10] summa-
rizes the results of keyword queries so that users can re-
fine their search based on these summaries. [14] finds co-
occurring terms of keywords to provide users relevant infor-
mation to refine the answers. [4] generates a list of object
summaries. None of these works consider the context of
keywords and search target in the queries.

7. CONCLUSION
In this paper, we have examined the problem of enhanc-

ing the expressive power and evaluation of relational key-
word queries. This is achieved by extending the keyword
queries in two aspects. First, we consider keywords that
match meta-data e.g., names of relations and attributes, and
utilize them to provide the context of subsequent keywords
in the query. Second, we use the ORM schema graph to
enrich the semantics of the keywords, and identify sets of
keywords that refer to the same object/relationship in the
database, in order to infer the search target of the query.
The proposed approach is implemented in a prototype sys-
tem called ExpressQ that analyzes keyword query to iden-

tify user’s search intention and generates SQL statements to
retrieve relevant information. Experimental results demon-
strate that the effectiveness of ExpressQ.
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