GLASS: A Graphical Query Language for Semi-Structured Data

Wei Ni

Tok Wang Ling

Department of Computer Science, National University of Sngapore, Sngapore
E-mail: {niwei, lingtw} @comp.nus.edu.sg

Abstract

The increase in the use of XML (eXtensble Markup
Language) makes the semidructured data more and more
important on the Web. To exploit the full power of XML
documents, a query language for semigructured data will bea
promising and interesting application. However, the XQuery
gandard released by W3C is too difficult for common usersto
use. Some XML graphical query languages for semistructured
data have been proposed but they are ether too complex or
too limited in use In this paper, we introduce a graphical
query language for semistructured data, which we call GLASS
GLASS is developed on the base of ORA-SS data modd, a
semantically richer data model for semigructured data. In
GLASS we combine the advantages of graphs and texts which
make the graphical language much clear and easy to use. The
paper presents the notations and basc capabilities of GLASS
via a series of examples with increas ngly complexity. We also
discuss some complex query examples such as order, group
entity, negation and IF-THEN gtatement.

1. Introduction and Motivation

Today, XML (Extensible Markup Language) has becomea
standard for data representation, mani pulation and exchange on
the web. From a database point of view, query engines that
dlow users to extract and manage the information in XML
data will be an exciting and crucid gpplication to exploit the
full power of XML. The current standard for querying XML
data is the XQuery rdeased by W3C, which is devel oped
based on XPath. However, the XQuery is 4ill difficult for
common user's to use; and as an intuitive solution, graphical
query languages or interfaces may hep people query data
sources In this paper, we use the ORA-SS data model [10],
which is a rich ssmantic data model for semistructured data,
and, based on this model, we design a graphical language to
represent user queries We tend to makethe graphical language
clear and concise in expresson and provide a user- friendly

query environment.

The res of the pgper is organized as follows In the
following two sections, wewill briefly talk about the criteria of
a good query language (Section 1.1) and the requirement of
graphical query languages (Section 1.2). In Section 2, we will
introduce the data modd we used, and in Section 3, we present
our grgphica query language with definitions and examples
The rdated work and comparison will be discussed in Section
4 and then we summarize the paper and propose the future
work in Section 5.

1.1 Criteria of a good query language

Here we sugged three important features of a good query
language, especidly from the view of users

(1) Expressveness agood guery language should be able to
express mog user queries and the expressions should be
clear and concise without ambiguity.

(2) Completeness a good query language should not only
support information extraction but also data manipulation
(e.g. INSERT etc.), data definition and data control .

(3) User-friendliness Mog query languages are developed
for human users and mogt users are not experts in
database. Thus, a good query language should be essy to
learn, easy to write and easy to read.

To meset the criteria, a graphicad solution, that is a graphical

query interface or language, is an interegting and intuitive way

to build agood query environment.

1.2 Therequirement of graphical query languages

The so-cdled graphicad query languages are known from
text-base query languages Since the famous gpplication of
QBE (Query By Example [9], M. M. Zloof, IBM), the
graphical query languages have evolved in two branches One
kind of grgphical query languages still use tables, negted forms,
etc to create an interface; and the other kind use vertices and
connectionsto express queries. However, most grgphica query
languages are not S0 popular because of many reasons. On one
hand, QBE isasoimpressve method that other languageswith
tables or nested forms could hardly exceed the success of QBE;

on the other hand, graphs with vertices and connections dways
perform messy and unclear for complex queries.

Though there are many problems in graphicd query
languages, the effort to make a user-friendly interface never
ends. Even the dominating text-based languages are changing
their facesin GUIs (Graphicd User Interfaces). Astothe XML
data, the current gandard of XML query language is XQuery
[20-24]. Based on XPath [19], XSL [12] and other standards,
the X Query languageis very difficult for ordinary usersto use.
Thus, the graphica query languages once again appear to bea
possble solution. Pepers and developing systems make
encouraging progresses in both theory and practice However,
there dill remain many problems in developing a good
graphical query language and o this paper will discuss some
of these problems and suggest some solutions viaour graphical
query language.

2. ORA-SS O thedata model of our language

The ORA-SS (Object-Reationship-Attribute modd for
Semi-Structured data) is a rich semantic data modd for
semidructured data. Besides reflecting the nested dructure, it
a0 digtinguishes among object classes, relationship typesand
atributes in ORA-SS. Moreover, the ORA-SS gecifies the
participation condraints of object dasses in reationship types
and indicates whether an attribute bel ongs to an object dass or
a rdaionship type, which is the information lacked in OEM
(Object Exchange Modd) and DOM (Document Object
Moddl). With the help of the semantic information in ORA-SS,
we can develop amuch powerful graphica query language for
semistructured data.

Before we discuss our query language, we give an
introduction about ORA-SS. Suppose we havea DTD (named
as “Depatment.dd’) of the XML document “Depart-
ment.xml” as Figure 1. The DTD in Fgure 1 specifies the
informetion about departments, courses and gudents. Every
department has a unigue name and provides one or many
Courses, every course hasa unique course code, atitle and one
or many sudents, and every sudent has a unique Sudent
number, a grade under the course and higher own name. The
ORA-SS schema diagram of the DTD isin Figure 2.

In ORA-SS, department, course and sudent are treated as
object clases that are represented by labded rectangles The
name of the department, course code and title, gudent number
and name and the grade are trested as attributes under the
corresponding object classes by using cirdes. Thefilled circles
are the primary keys. The arrowsindicate the nested sructure
of the schema and the labdls on the edges are for reldionship
types Thelabd “2, L'n, 1:1” near the arrow from department
to course means there is a binary relationship type between
department and course; and one department can has one or
many courses while one course can only beong to one
department. The labd “cs 2, 1:n, 1n" near the arrow from

course to gudent means: there is a binary relationship type,
named as “cs’, between course and sudent where one course
may has one or many students and one students can take one or
many courses. The “cs’ label near the arrow from student to
grade indicates that the grade is an attribute that belongsto the
reationship type“cs’ rather than the object class gudent. This
semantic information cannot be expressed in DTD, XML
schemaand OEM.
Example 1:
<IELEMENT department (course+)>
<IATTLIST department name ID #REQUIRED>
<IELEMENT course (title?, student+)>
<IATTLIST course code ID #REQUIRED>
<IELEMENT title PCDATA>
<IELEMENT student (name?, grade+)>
<IATTLIST student number #IMPLIED>

<!ELEMENT name PCDATA>
<IELEMENT grade PCDATA>

Figure 1. The “Department.dtd”

name
code title

number name grade
Figure 2. The ORA-SS schema diagram of
“Department.dtd”

As a superst of DTD, the ORA-SS schema needs some
semantic announcements from users[7]. Ignoring the labelson
the edges which are for relationship types, the ORA-SS
schema diagram exactly reflects the nested gructure of DTD.
However, the labds of rdationship types help us diginguish
relationship type atributes from object dlass atributes As a
result, such kind of semantic information will ad uswith view
vdidation[6] in query processng.

3. Our graphical query language

Our graphical query language, which we cdl GLASS
(Graphica Query Language for Semi-Structured Data), is
deveoped as a graphical language for users to extract
information from semistructured data. The language should be
able to express various queries clearly and concisdy without
ambiguity, and be smple to draw and easy to read. It should
support aggregation functions, negation and ather XQuery
standards, which will be discussed in this paper. Other
functiondities like data manipulation, control and integration
will not be included in this paper.

In this section, we firdly introduce the general idees
incuding the basc and advanced concepts in GLASS (in
Section 3.1.1 and 3.1.2) and the output congruction (3.1.3).
Following that, we show how to expressthe basic queries such

as Sdlection, Projection (3.2.1) and Join (3.22). After that we
present the aggregation functions (3.2.3) and the queries on
order sengdtive data (3.24). Fnaly, in Section 3.3, we give
some complex query examples that are difficult to expressin
other graphical query languages.

3.1 General conceptsin GLASS

In GLASS, we use graphs to express user queries Based
on the ORA-SS modd, most notations in GLASS are reused
from the ORA-SS diagram.

3.1.1 Basic concepts

(1) Datalcons
We badcaly have two data icons rectangles and circles,

which are the verticesin query graphs.

(8) Rectangles represent the object classes in ORA-SS. If we
map the rectanglesinto the XML schema, they are al non-
terminal dementsin XML (element with subeements or
atributes).

(b) Circles represent the attributes in ORA-SS, both object
class atributes and relaionship type attributes. When we
meatch the cirdes into the XML schema, they are dl
terminal elements with PCDATA only and the attributes
(or attribute lists) in XML.

(2) Connections,

Bedide the icons the connectionsin the query graphs also
take important roles.

(@ Arrow: the firg connection is the arrows thet are used to
represent the relationships.

(b) Dashed arrow:. the dashed arrows are used to represent the
IDREF in XML. Both types of arrows, the solid or dashed,
are reused from ORA-SS diagram.

(¢) Line: the solid lines are used to specify congraints between
outputs and origind data in the query graphs Thelireis
not derived from ORA-SS but XML-GL [4, 5], we will
seetheuse of linein Query 7 (in Section 3.2.1.).

(3) Box:

The box is used to indicate group entities in our query
graphs. The group entity conssts of al rectanges or circles
ingde the box. Inthe query graph, aboxed group ertity can be
regarded as a complex vertex. The use of box will be
mentioned in Section 3.3.1.

3.1.2 Advanced concepts

(1) Derived entities:

Derived entities, including derived object clases and
atributes are represented as dashed rectangles and dashed
circles. The dashed data icons are trested the same as solid
0nes in congructing outputs since they are the new data types
defined by users (See Figure 9 in Section 3.2.3.)

(2) Condition Logic Window (CLW):
The condition logic window isan optiond partina GLASS

query. It is a place to write logic expressions and Satements
(eg. IFTHEN) for complex query conditionsrather than draw
them in the graph. The use of CLW will be discussed in 3.3.
(3) Path Identifier and Condition I dentifier:

Both identifiersare user-defined unique names of entitiesin
query graphs. The entities here include dl daa icons
connections and boxes.

The path identifiers are the unique names given to data
iconsor boxes They start with “$’” and are assigned a theright
Sde of data icons or boxes between two “:"s The path
identifiers are used to represent the corresponding entities in
query graph.

The condition identifiers are the unique names given to the
connections. They are asigned between two “:"s after the
typename of the connection without beginning with “$’. The
typename of the connection can be omitted whenit is*” default”.
The condition idertifiers dand for certain pats of query
conditions.

To both identifiers, the colons are not parts of the
identifiers but distinguish them from the names of
relationship types.

(4) Logic Expresson and Satement:

Both logic expressionsand gatements are writtenin CLW.
The datements are quoted by a pair of braces (“{}") to be
diginct from logic expressons. The logic expresson ecifies
the logic over or among the conditions in query while the
gatement helps congtruct complex outputs.

3.1.3 Construct output

<?xml version =“1.0" standalone =“no” encoding =“UTF-8">
<DOCTYPE BOOK SYSTEM *“Department.dtd”>
<department name="CS’>
<course code="201">
<title>Software Engineering</title>
<student number="1001">
<name>John Smith</name>
<grade>A</grade>
<grade>B</grade>
</student>
<student number="1002">
<name>Mel Green</name>
<grade>C</grade>
<grade>A</grade>
</student>
</course>
<course code="303">
<title>Database Design</title>
<student number="1001">
<name>John Smith</name>
<grade>B</grade>
</student>
</course>
</department>

Figure 3. The content of “Department.xml”

Oneof theimportant features of XML dataisthe flexibility
in its schema One st of information can be organized in
different ways according to different users. Therefore, we
should alow user to define the needed output Sructure in
GLASS.

Recall the DTD file “ Department.dtd” from Example 1 in
Fgure 1. The“Department.xml” in FHgure 3 is supposed to be

the document according to the definitionin “Department.dtd”.
In Fgure 4, we lig series queries to condruct different

outputs and, based on the data in Figure 3, we compare the

result in Fgure 5.

| COUI’S€| | COUI’S€| | COUI’S€| | COUTSEl | COUI’S€| | COUTSEl

& 5B

Queryl Query2 Query3 Query4 Query5 Query 6
Figure 4. Queries 1 to 6, the basic ways of output
construction
Query 1. Extract courses and dl information one level under

course elements by using the default output method;

Query 2. Extract coursesand dl information at dl levels under
course elements by using the default output method;

Query 3. Extract courses with dl attributes of course dement
inthe original XML document;

Query 4. Extract courses and dl termind entities & one leve
under course eements;

Query 5. Extract courses and dl entities (both termind and
nontermina ones) at one level under course;

Query 6. Extract courses with their titles as atributes and
codes as subelementsin the output.

As we can s in Hgure 5, by using the default output
method, everything will be kept in the origind style from
source data as in Query 1 and Query 2. The wildcard “*” in
Query 2 means dl nested levels under course element. Query
3extractscoursesand dl attributes of course elementsin XML
document. The symbol “@" near the cirde implies al
atributes of course element in the original XML document.

Query 4 extracts courses and dl terminal entities at one
level under course lements. The so-cdled termind entitiesare
those leef entities in the ORA-SS schema diagram. A termina
entity can be an attribute or a Smple dement with PCDATA
only. The nonterminad entities are the dements with
subelements or attributes in XML. Therefore, Query 4 only
extracts course codes and titles. Query 5 uses a rectangle to
extract the nonterminal entities one levd under course
elements such as“student”. Sncewe just extract the entities at
one level under course, the student number at the second level
under course doesn't appear in the result. Also, the sudent
elements appear NULL sncethey haven't any contentsexcept
subd ements and/or attributes.

Query 6 is a demondration of the converson between
atribute and subelement.

3.2 Basic query operators

In this section, we present how we use GLASS to
represent the basic query operators in most query languages:
SHection, Projection and Join. Besides the aggregetion
functions and the queries on order senstive data will aso be
discussed.

Query 1: Extract courses with the information at one level under
course elements by using the default output method

<course code="201">

<title>Software Engineering</title>
</course>
<course code="303">

<title>Database Design</title>
</course>

Query 2: Extract courses with all information at all levels under
course elements by using the default output method

<course code="201">
<title>Software Eng1 neeri ng</t|t|e>
<student number=
<name>John Smlth</name>
<grade>A</grade>
<grade>B</grade>
</student>
<student number="1002">
<name>Mel Green</name>
<grade>C</grade>
<grade>A</grade>
</student>
</course>
<course code="303">)
<title>Database Design</title>
<student number="1001">
<name>John Smith</name>
<grade>B</grade>
</student>
</course>

Query 3: Extract courses with all their attributes in the original
XML document.

<course code=" 201" ></course>
<course code=" 303" ></course>

Query 4: Extract courses with all terminal entities at one level
under course elements

<course code="201">

<title>Software Engineering</title>
</course>
<course code="303">

<title>Database Design</title>
</course>

Query 5: Extract courses with all entities at one level under course
elements

<course code="201">
<title>Software Engineering</title>
<student></student>
<student></student>

</course>

<course code=" 303"
<title>Database Dw gn</title>
<student></student>

</course>

Query 6: Extract courses with their titles as attributes and codes as
subelements in the output

<course title=" Software Engineering”>
<code>201</code>

</course>)

<course title=" Database Design”>
<code>303</code>

</course>

Figure 5. The corresponding outputs of Queries 1 to 6
3.2.1 Selection and projection

Now we demondrate how we express selection and
projection in GLASS in comparison with XQuery.
Query7. FOR $cIN $department/course
WHERE $c/@code/data() = ‘2%’
RETURN $c

The XQuery expresson in Query 7 sdect dl courses whose
codes begin with “2". In the XQuery expression, $c is a
variable of dement type “ department/course” and “ data()” isa
keyword to extract data under the given path “ $c¢/@code/”. We
expressthe query asthe graphin Figure 6.

To project al courseswith their titles, XQuery will givethe
following expresson:
Query8. FOR $cIN $department/course

RETURN <course>{ $cftitle }</course>

This query will display al courses and extract ther titles as
subelements In Fgure 6, we draw this query as a smple

constructi on.
course course |
code

='2%

Query 7 Query 8
Figure 6. Selection (Query 7)
and Projection (Query 8) in GLASS.

The GLASS gqueries generally have two parts separated by
a verticd line. The left hand Sde (LHS) is used to pecify
conditions which isoptiona (See Query 8 where there isright
hand 9de only.). In contragt, the right hand side (RHS) isused
to define the output, which is compulsory. The solid line
connecting two courses on both sdes is a condraint that the
coursesinthe result onthe RHS arejud the coursesthat stisfy
the conditions on the LHS. In Query 7, the RHS has the same
dructure as Query 2 in Fgure 4. Thus it will pick out dl
courseswhaose codes begin with “2” and extract all information
of those courses in the same format as Query 2 does.

3.2.2 Join

In this section we discuss the third basic query operation,

join. Suppoe we have another XML data named as
“Destription.xml” containing the descriptions of all courses
and the DTD and ORA-SS schema diagram (Figure 7) of
“Description.xml” isshown asfollows.
Query 9. To extract everything of the courses from
“Department.xml”, which have descriptions in “Des
cription.xml”, and put the corregponding descriptions under the
booksin the results (See Figure 8).

Notice that, in Figure 8, the line connects the coursein the
output with the course under “Department.xml” rather than
“Descriptionxml”, which indicates that the extracted
informetion about the courses comes from “ Department.xml”
as mentioned in Query 9. Thus the result will contain the
sudent information and grade as in “Department.xml”.
Without this line or change the connection to the course under
“Description.xml”, the query meaning and the result will also
be changed.

Similarly, the line connecting the description in the result

<IELEMENT course (title?, description)> course
<IATTLIST course
code | D #REQUIRED>
<IELEMENT title PCDATA>
<IELEMENT desiption FCDATA> o
code title description

DTD ORA-SS schema diagram
Figure 7. The DTD and the ORA-SS schema diagram of
“Description.xml”

FROM FROM course
Department.xml Description.xml
course course .
code description description

Figure 8. Query 11 in GLASS, join from two documents

with the description under the course from “Description.xml”
means that, in the result, the description dements come from
“Destription.xml”. Without this line, the description elements
in the result will be NULL snce the course in “Depart-
ment.xml” doesn’'t have a subelement called “ description”

3.2.3 Aggregation functions

grade
Figure 9. Query 10, aggregation function “average” over
result

The GLASS adso supports aggregaion functions over
reaults such as “max”’, “min”, “avg’, etc. Since the output
vaue after aggregation process may not be the origina data,
we use derived datatypesto expressthe aggregation results.
Query 10. For dl courses digdlay courses with their
informetion (in default way) and the average grade of each
course (Figure 9).

The “_group” labd besde the arrows from course to
sudent means to group student under course. The element
type “avg_grade’ is a derived atribute in the results which is
the average grade of dl students grades grouped under one
course. The hexagon labded as “AVG” is the aggregation
function to get average vaue of grades of sudent grouped by
course.

3.24 Query order sensitive data

In XML, the data can be order sensitive. In ORA-SS, we
express the order sendtive data by usng the symbol “<”. The
diagram in FHgure 10 represents an order sendtive data
“Bibxml”. The “<” symboal in the binary relation means the
“author” order isimportant to “book” in the relation.

Example 2:

isbn title content

firstname lastname
Figure 10. The ORA-SS schema diagram of “Bib.xml",
order-sensitive data

Figure 11. Query 11, find the first author

Query 11. Digplay dl books with their ison’s titles and their
first authors (Figure 11).

The “[1]" operator besde the author means to return the
value of thefirgt author element of a certain book.

3.3 Advanced features of GLASS

Example 3:

name job_title

number title
Figure 12. The ORA-SS schema diagram of the data about
“project, member and publication”

In this section, we tend to introduce box and Condition
Logic Window to express more complex queries The queries
are based on the data about projects, membersand publications.
The ORA-SS diagram of the dataiis shown in Figure 12.

There are two rdétions in Fgure 12. One is a binary
relationship type between project and member and the other is
a ternary rdationship type among project, member and
publication. For the binary relaionship, one project can have
one or many members and one member can attend one or
many projects. As to the ternary rdaionship, one member in
one project can write zero or many publications while one
publication can bel ong to one or many (project, member) pairs.

3.3.1 Group entity

In GLASS, we use box to express group entity in query.
Query 12. Display the members with names who have taken
partinlessthan 5 projects but written more than 6 publications
in some project they attended, and their names begin with the
character “S’ (Fgure 13).

The box includes member and project, which makes a
group entity, that is pairs of member and project. The
“_group” label near the arrow from the box to publication
means to group publication under each pair of (member,
project). Since the member’s name is not insde the group
entity, it should be outsde the box. The “CNT” is the short
form of count, which is an aggregation function after group
operation.

Anocther important thing is thet the podtion between
member and project has been changed from the origind
schema. We cdl the GLASS query graphs as view graphs
because it is exactly a user defined view ingead of tying him
with the original data schema. This is much more flexible for
user to focus on what he want to query rather than how he
could draw a query. The further congderation may lead to the
problem that whether the user-defined view is vdid or not.
With the semantic information included in ORA-SS modd , we
check the view vdidation [6] and the technology isbeyond the
scope of this paper.

member I manberl | n‘enberl—
; i roup g Cg &group
m
CNT <5 e e O
= ONT<5 name

L_group roup
9
=9 CNT>6 CNT_UNIQUE>6

Query 12 Query 13
Figure 13. Group with boxes (Query 12) and without boxes
(Query 13)

In Query 12, the box is very important because it explicitly
specifiesthe group entities In contragt, Query 13, which hasno
box, makesatotaly different meaning.

Query 13. Digplay the memberswith names who have totdly
taken part in lessthan 5 projectsand totally written more than 6
publications, and their names begin with character “S’.

Thefirg differencein Query 13 from Query 12 isthet there
is no box in the grgph. The publication is grouped under
member directly. However, to group publication under
member in the ternary relationship among project, member and
publication may cause duplicatesin the results when a member
haswritten one publication for two or more projects Hence we
use “CNT_UNIQUE" here, which is the second difference
from Query 12, ingead of “CNT” to diminae duplicates in
count.

3.3.2 Negation

Asmentioned in Section 3.1.2, we can use Condition Logic
Window to express complex query conditions in GLASS
Here isan example of negation.

Query 14. Digplay the memberswith their names who haven’t
written any publication titled “ Introduction to XML".

name

title
="“Introduction to XML"

CLW

-0A;

Figure 14. Query 14, negation in query

In Query 14, “A” isacondition identifier, which stands for
the condition that member has some publication titled as
“Introduction to XML". Then we put the logic expresson -]
A;” in CLW, which means “not exig condition A” in the
sected member. Here, “[0' is the Exigential quantifier and
“=" isthe logic operator “NOT". Other logic operators such as
“ (and), “[" (or) and “XOR” (digunctive operator) as well
asthe universal quantifier “[1" are dso availablein GLASS.

3.3.3IF-THEN Statement

In some queries the output may be conditiondly organized
such as “if some condition is satisfied, display the result in
some way, otherwise, in some other way”. We express the
gatementsin GLASS asfollows.

A :B:
[publicatior] [publicatio]

title title
="“Introduction ="Introduction
toXML” to Intemet”

CLW

AOB;
{IF (A) THEN EXTRACT $pro;}

Figure 15. Query 15, IF-THEN statement to construct
complex output

Query 15. Digplay the members with their names who have
written a publication titled “Introduction to XML" or
“Introduction to Internet”; and for those members who have
written “Introduction to XML", also digplay dl information
about the projectsthat they have attended in (Figure 15).

Thepart insdeapair of bracesinthe CLW isthe IFTHEN
satement that we use to express the query. Without this |-
THEN datement, the information of the projects of the
members who have written “Introduction to XML” or
“Introduction to Internet” will be displayed. The IFTHEN
datement here secures that only when a member who has
written “Introduction to XML” (i.e. when the condition “A” is
satiffied), the information of the project of the member that is
identified as “$pro” will be extracted. Recall from Section

3.1.2, “$pro” is a path identifier. The prefix “$” didinguishes
path identifiers from condition identifiers.

Natice that the result of Query 15 will display the selected
member in the origind member order from the source data,
and for those who have written “Introduction to XML”", the
project information of them are also displayed.

4. Related works and comparison

When we tak about the graphicd query language, QBE
may be the firs application that appears in our topic. As we
mentioned in Section 1.2, QBE is bath the language name and
the system name of the early gpplication by IBM in 1970s[9)]. It
is desgned for reationd daabase with table-like interfaces
QBE can express mos SQL queries including sdection,
projection, join, aggregation and trandtive closure. Along with
the success of QBE, many graphica languages for relationd
datagppear uch as QBD* [2], GM (Graph Modd) [3], GrIT [11]
and Condor [14] eic.

Asto the semidructured data like XML, the graphica query
languages for relaiond data cannat be Smply modified even if
we manage to dore the data in an Object-Oriented and/or
Reationd Database Management Sysem (OO/RDBMS) [1, 16]
because there is no reation in XML schema and the XML
documentsare tree-sructured data

Before we desgn the GLASS, there is only one gragphical
language desgned for XML. Itsnameis XML-GL [4, 5], which
sharessome Smilaritieswith our GLASS.

XML-GL ishuilt on the base of agraphica representation of
XML documents and DTDs, which is cdled XML grgphs
XML greph represents the XML documents and DTDs by
means of labeled graphs All XML-GL queries condst of two
pats, left hand Sde (LHS) and right hand side (RHS), which are
dmilar to the Query 7 in FHgure 6. The LHS of XML-GL
indicatesthe data source and conditions, and the RHS condructs
the output.

The main difference between GLASS and XML-GL is the
datamodd. GLASS uses ORA-SS data model that is a supersst
of DTD and XML Schema. The semantic information in ORA-
SS scuresthe view vaidation; and the GLASS queries areview
graphs condructed by the users as their wishes. However, based
onthe DTD or XML Schema, XML-GL has no mechaniam to
secureview vdidation. Thus theLHS of XML-GL, whichisthe
ingance of the query, mug keep the origind data sructure in
XML graphs. Although users can condruct the output, XML-
GL does't know whether the congructionisvaid or not.

Compared with GLASS XML-GL query graphscan bevery
ophidicated. XML-GL doesv't indicate the group entities
explicitly and has ambiguity in expresson (epecidly when
expressing IFFTHEN gatement in output condruction).

Other graphicd XML query languages use nesting forms to
expressthe nesing data sructurein DTDs and/or XML Schema
Such gpplications as Graphical XML Query Language [13] and
XMLApe Query Language [15] are exactly graphical user-

interfaces for usersto query XML data Users assgn values into
the formsto define theingances of queries. Thefirg problem of
these two graphicad query languages is that neither of them
upport user-defined output condruction. Besides, both use color
to express join fidds which is not a good sdlution since some
color can bevery smilar and the color only supportsequijoin.

The Table 1 compares our graphica query language with
XML-GL, Graphicad XML Query Language and XMLApe
Query Language

Graphical
GLASS X'\[’J‘Lé?‘ XML Query X'\ﬂ‘;?pe
’ Language[15]

XML XML
DataModd ORA-SS Graphs XML DTD Schema
?idei%n Projection Yes Yes Yes Yes
Query Order Yes Yes No No
“Group by” operator
and Aggregetion Yes Yes No No
function
Negation Yes No No No
Qudifiers(0, O Yes No No No
Conditiond output
condruction (eg. IF-| Yes No No No
THEN daus)
User-defined View Yes Yes No No
View Validation Yes No No No

Table 1. Comparison among GLASS, XML-GL,
Graphical XML Query Language and XMLApe

5. Conclusion and futurework

GLASS (Graphical query Language for Semi-Structured
data) is a powerful visua language to express queries on XML
data Based on ORA-SS the GLASS credes a query
environment of freedom, which alows user condruct any view
graphsthat he thinksin the mogt natural way. GLASS combines
the advantages of graphs and texts, which keeps the graphical
part dlear and makesthetextud part easly undergood.

The future reseerch work on GLASS is that: we firgly need
to enhance the language, map the graphica expresson into
XQuery standard; then in the second gep, we will expand the
content of GLASS including data manipulation (e.g., INSERT,
€fc), dataintegration, and view maintenance to exploit the power
of graphica method for querying XML data sources.

References

[1] S. Abiteboul, D. Quass, J. McHugh, J. Widom and J. Wiener. The
Lord Query Language for Semidructured Daa Department of
Computer Science, Sanford University. Internationa Journd on Digital
Libraries, 1(1):68-83, Apr. 1997.

[2] M. Angdaccio, T. Caard, and G. Santucd. QDB*: A graphicd
query language with recurson. IEEE Transactions on Software
Engineering, 16(10):1150-1163, 1990.

[3] T. Caad, SK. Chang, M.F. Codtabile, S Leviddi, and G. Santucd.
A grephrbased framework for multiparadigmetic visud access to
databases. |EEE Transactions on Knowledge and Data Engineering,

8(3):455-475, 199.

[4] S. Ceni, S Comd, E Damiani, P, Fraterndi, S. Paraboschi, and L.
Tanca XML-GL: a grgphicd language of querying and restructuring
XML documents. In Proc. WWW8, Toronto, Canada, May 1999

[5] S Ceri, S. Comd, E. Damiani, P. Fraterndi, and L. Tanca. Complex
Queriesin XML-GL. SAC (2) 2000: 888-893

[6] Y abing Chen, Tok Wang Ling, Mong Li Lee Desgning Vdid XML
Views. To appeer in the proceedings of 21 Internationa Conferenceon
Conceptud Modding (ER2002), October 7-11, 2002, Tampere, Finland.
[7] Zhuo Chen. Extracting Schemafrom XML Documents. SoC, NUS.
HonoursY ear Project Report.

[8] SaraComai, Ernesto Damiani, LetiziaTanca The WG-Log System:
Daa Modd and Semartics INTERDATA technicd report, T2-R06,
July 1998.

[9] C. J Dae An Introduction to Datebese Sysems 3(d Egition,
Addison-Wed ey Publishing Company, 1981.

[10] Gillian Dobbie, Wu Xiaoying, Tok Wang Ling, Mong Li Lee
ORA-SS An Object-Rdationship-Attribute Modd for Semigtructured
Daa TR21/00, Technicd Report, Department of Computer Science,
Nationd University of Singapore, December 2000.

[11] PW. Eklund, J. Leane, and C. Nowak. GrIT: Animplementation of
a grgphicd user interface for conceptud structures. Technical Report
TR94-03, Computer Science Department, The University of Addade,
February 1994.

[12] Extensble Syleshest Languege (XSL) Spedfication. W3C
Working Draft. Apr 1999. hitp/AMmw.w3.org/ TR/1999WD-xd-
19990421/

[13] Ankur Gupta, Zahid Khan. Graphicd XML Query Language.
Course paper. Callege of Computing, Georgia Ingtitute of Technology,
Sep 2000

[14] Joshua S. Hodas Robert M. Kédler, Ingo Muschenets Jeffrey
Poakow, Amy R. Wad and Will Bdlard. Condor: A Smple
Expressve Grgphicd Datebase Queary Language Depatment of
Computer Science, Harvey Mudd Cdllege Computer Science Technica
Report HMC-CS-97-04.

[15] Leo Mark, etc. XMLApe. College of Computing, Georga Ingitue
of Technology.

http:/Aww.cc.gatech.edu/project X ML Ape/

[16] Yuaying Mo, Tok Wang Ling. Storing and Maintaning
Semigtructured Data Effidiently in an Object-Rdationd Database
Research Report. SoC, NUS

[17] Jen Paredeens, Peter Pedman, Letizia Tanca G-Log: A Graph
Based Query Languege |EEE Transactions on Knowledge and Data
Engineering, 7(3):436--453, June 1995.

[18] Jayavd Shanmugasundaram, Krigtin Tufte, Gang He, Chun Zhang,
David DeWwitt and Jeffrey Naughton. Relaiond Databasesfor Querying
XML Documents: Limitationsand Opportunities VLDB 1999: 302-314
Department of Computer Sciences, University of Wiscongn-Madison.
[19] XML Path Language (X Path) 2.0. W3C. Apr 2002.
http:/Amwww.w3.org/ TR/xpath20/

[20] XML Query Requirements. W3C. Feb 2001.

http:/Aww.w3.org/ TR/Xmlquery-req

[21] XML Syntax for XQuery 1.0 (XQueryX). W3C. dun 2001.
http:/Aww.w3.org/ TR/Xqueryx

[22] XQuery 1.0 and XPath 20 DataModd. W3C. Apr 2002.
http:/Aww.w3.org/ TR/query-datamodd/

[23] XQuery 1.0 and XPath 2.0 Functions and Operators Version 10.
WB3C. Apr 2002. http:/imww.w3.org/ TR/xquery-operators

[24] XQuery 1.0 Formd Semantics W3C. Mar 2002.
http:/Aww.w3.org/ TR/query-semantics/

