
Translate Graphical XML Query Language to SQLX

Wei Ni Tok Wang Ling

Department of Computer Science, National University of Singapore, Singapore
E-mail: {niwei, lingtw}@comp.nus.edu.sg

Abstract: Semi-structured data has become more and more attention-getting with the
emergence of XML, and it has aroused much enthusiasm for integrating XML and
SQL in database community. Due to the complexity of XQuery, graphical XML query
languages have been developed to help users query XML data. In this paper, we
propose a new XML-to-SQL solution on the base of ORA-SS, a rich semantic model
for semi-structured data. We model the data by ORA-SS schema and store them in an
ORDB. Based on ORA-SS, we developed a graphical XML query language GLASS
that not only expresses the query constraints and reconstruction structure in XML view
but also the relational semantic in the XML view. This paper focuses on the translation
algorithm from GLASS to SQLX, an XML extension on traditional SQL.

1. Introduction

XML has been accepted as a potential standard for data publishing, exchanging and
integration on the web; and there is much enthusiasm for integrating XML and traditional
object-relational data model, which will benefit from the fruit of over 30 years research on
object-relational technology. Meanwhile, since XQuery[12] and other text-based functional
languages are complex and difficult to common users, researchers have proposed graphical
languages and graphical user interfaces (GUIs), such as Equix[3]/BBQ[7, 9], XML-GL[1, 2,
4], XMLApe [8], QURSED[11], etc, to make the XML query easier to use.

In this paper, we use ORA-SS (Object-Relational-Attribute model for Semi-
Structured data) [5], a rich semantic data model for semi-structured data, to describe
the XML schema; and the XML data are stored in an Object-Relational Database
(ORDB). To query the data, we have designed a graphical language GLASS
(Graphical query Language for Semi-Structured data) [10] with full consideration of
relational semantic information in ORA-SS, which has stronger expressive power
than other graphical XML query languages. And we translate the GLASS query into
SQLX[6], an expansion of SQL which is often used as a publishing tool from
relational table to XML file.

The rest of this paper is organized as follows. Section 2 is a brief presentation of
ORA-SS model and the mappings from ORA-SS schema to ORDB schema. In
Section 3, we introduce the GLASS query with an example. Section 4 discusses the
translation from GLASS to SQLX based on the query example in Section 3. And
before the end, we conclude this paper and highlight the future works in Section 5.

2. ORA-SS model and the storage of XML data

Compared with DTD, XML Schema [14], OEM, Dataguide, XML Graph [1] and their
equivalents, ORA-SS is a rich semantic data model for catching the relational information.
The most significant feature of ORA-SS is that it not only represents the tree structure of the
original schema in terms of object class, relationship types and attributes but also
distinguishes relationship attributes from object attributes, etc. For example, the ORA-SS
schema in Fig. 1(a) contains three object classes (project, member and publication) and two
relationship types (binary relationship type jm between project and member; and ternary
relationship type jmp among project, member and publication). The label “jm” on the arrow
from member to job_title indicates that job_title is an attribute of the relationship type jm, i.e.,
the job_title attribute is determined by both project and member rather than member only. It
should be emphasized that the object ID in ORA-SS (the attributes denoted as solid circles in
the diagram such as J#) is different from the object identifier in OEM. In ORA-SS, the
object ID identifies each unique object instance rather than each element instance (in OEM).
For example, if one member attends two projects, the same member instance may appear as
two element instances in the XML data. In ORA-SS, both use the same object ID (M#); but
in OEM, they will have different object identifiers.

project

member

publication

jm, 2, 1:n, 1:n

J# Jname

M#
Mname

age job_title

P# title review

degree

university

year

qualification
jmp, 3, 0:n, 1:n

jm

*

*

(a) An example ORA-SS schema (b) The ORDB storage schema of (a)

Fig. 1. An example of ORA-SS schema and its ORDB storage schema.

When we store the XML data in an ORDB, each object class will be stored in an object
relation with its object attributes and each relationship type will be stored in a relationship
relation with its relationship attributes. Composite attributes (e.g. the qualification in the
example in Fig. 1.) will be stored as a nested relation inside an object relation or relationship
relation according to the ORA-SS schema. Fig. 1(b) presents the ORDB schema when we
store the XML data conforming to the ORA-SS schema in Fig. 1(a).

3. GLASS query

GLASS is a graphical XML query language designed on the base of ORA-SS schema. The
most significant features of GLASS from other graphical XML query languages (or GUIs)
are:

Object Relations
 project (J#, Jname)
 member (M#, Mname, age
 qualification(degree,
 university,
 year)*)
 publication (P#, title, (review)*)
Relationship Relations
 jm (J#, M#, job_title)
 jmp (J#, M#, P#)

(1) GLASS separates the complex query logic from the query graph (the query graph is the
graphical part of a GLASS query). This feature makes the GLASS query clear and
concise even if it contains complex query logic with quantifiers and negation.

(2) GLASS considers relationship types in querying XML data. The relationship types could
be those either defined in ORA-SS schema or derived from the schema. This feature
enables the GLASS to define the query semantic precisely.

A typical GLASS query consists of four parts:
(1) Left Hand Side Graph (LHS graph) – denotes the basic conditions of a query, which

presents the fundamental features that users interest in.
(2) Right Hand Side Graph (RHS graph) – defines the output structure of the query result,

which is a compulsory part in the GLASS query.
(3) Link Set – specifies the bindings between the RHS graph and LHS graph. When two

graph entities are linked, they are visually connected by a line, which means the data
type and value of the entity in the RHS graph are from the corresponding linked entity
in the LHS graph.

(4) Condition Logic Window (CLW) – It is an optional part where users write conditions
and constructions that are difficult to draw, which includes Logic expressions,
Mathematic expressions, Comparison expressions and IF-THEN statements.

Most notations in GLASS are borrowed from those in ORA-SS schema diagram, yet some
new notations are introduced to represent the query condition and result reconstruction such
as Box of group entities and Condition Identifier. The box of group entities is used to specify
multi-field aggregations such as the query in Example 1. The condition identifier is defined
by user, quoted by a pair of “:”s, which specifies a connected sub-graph in the LHS graph
(e.g. the condition identifier “A”, appears to be “:A:” on the arrow from member to age).
Example 1. (For the schema in Fig. 1.)

Find the member whose age is less than 35, and he either has taken part in less than 5 projects
or written more than 6 publications in some of the projects he attended; display the member id
and name.

member

project publication

[AND]
[OR]:A:

:B:
:C:

CNT>6CNT<5

project

_group _group

Box

age
<35 jm, 2 jmp, 3

Fig. 2. The GLASS query of
Example 1.

Fig. 3. The condition tree of the GLASS query in
Fig. 2 from its LHS graph and CLW.

Fig. 2 shows the GLASS representation of Example 1. The result view structure is defined in
the RHS graph. The object node with name “member” is linked with the object node with
the same name in the LHS graph, which means the member in the RHS graph (the result
view) is from the member in the LHS graph. In the LHS graph, there are three condition
identifiers “A”, “B” and “C” where “A” means member should have age attribute less than

Mname

member

project

publication

member

age
< 35

_group :B:
jm, 2

CNT<5

CNT>6

_group :C:
jmp, 3

M#

:A:

CLW
 A AND (B OR C);

35; “B” means to group project under member in the binary relationship type jm having
count of project less than 5; and “C” means to group publication under each pair of member
and project in the ternary relationship type jmp having count of publication more than 6. By
default, the logic among the query conditions are “AND”; but it can be rewritten by the logic
expressions specified in the CLW with the help of condition identifier. In the above example,
the logic among the three conditions is defined as “A AND (B OR C)”.

4. Translate GLASS into SQLX

In this section, we discuss the translation from GLASS to SQLX. SQLX (aka. SQL/XML) is
an XML-related specification expanded on SQL. The syntax of SQLX combines the features
in both XML document processing and the traditional SQL. Before introducing the
translation algorithm, we shall preprocess the GLASS query as follows.

4.1 Preprocess

Observing the SQLX syntax [6], we find that, in translating from GLASS to SQLX query,
the SELECT and FROM clauses can be easily generated by checking the GLASS query and
the ORA-SS schema; and the major task in translation is the generation of query conditions.
To generate the query conditions and the target SQLX expression, we need preprocess the
GLASS query in the following 3 steps.

(1) Expansion of the simple projection;
(2) Expansion of the abbreviated RHS graph;
(3) Construction of the condition tree from LHS graph and CLW.
The GLASS query appears with RHS graph only when expressing simple

projections that do not contain any constraints in the LHS graph. For such kind of
query, we regard the LHS graph as null in translation.

The GLASS query supports abbreviated representation in defining the result XML
view in the RHS graph especially when all attributes of an object class are extracted;
and it is necessary for us to expand the RHS graph to get a full-version ORA-SS view
schema of the result before we translate the query.

The condition tree is a labeled graph containing all query constraints in both the
LHS graph and the CLW. The role of the condition tree in GLASS is similar to the
condition tree in TQL (Tree Query Language) defined in [11]. Nevertheless, the
condition tree in GLASS contains more features than TQL by including quantifiers,
relationship type information and aggregation. The purpose of the condition tree is to
combine the query constraints into one graph so that we can generate WHERE clauses
by traversing the condition tree. The condition tree is initially a copy of the LHS
graph in a given GLASS query, which can be a forest if the LHS contains multi-
graphs. When we copy the LHS graph, we record the aggregation information, add
the relationship type information, mark the condition identifiers in the condition tree
and insert the logic operators (and quantifiers) according to the expressions in CLW.
Particularly, the box is represented as a composite node (a triangular node) in the
condition tree. The condition tree of the GLASS query in Fig. 2 is shown in Fig. 3.

4.2 Translation Algorithm

The basic idea of the translation algorithm is to traverse the expanded RHS graph in
depth-first order and generate the nested SQLX query blocks according to the tree
structure. The XML construction functions in SQLX can be different due to different
the data types (element or attribute) in the result XML view. Like the traditional
XML-to-SQL method, parent-child/ancestor-descendant relations among different
object classes are performed by a series of join operations, which can be obtained
from the relationship type information in the ORA-SS schema. The query constraints
in the LHS graph (and the CLW) are only for the nodes with links in the RHS graph.
Checking the condition tree, we generate WHERE clauses (denoted as W(N)) in
different forms by applying the following rule.
Rule (Generate WHERE clauses of Node N from the condition tree):

If N is an attribute node, then W(N) is the value comparison expressions on N.
If N is an object class, N has k child nodes (say C1 to Ck); and it is associated in a
relationship type of D degree where the D-1 ancestor nodes of N are P1 … PD-1;
then W(N) is
CASE 1. there is a (negated) existential quantifier in front of NL, then we generate

WHERE [NOT] EXIST (SELECT N FROM …
 W(C1)θ1W(C2)θ2…θk-1W(Ck)θkW(P1)θk+1W(P2)θk+2…θk+D-2W(PD-1))

CASE 2. there is a “_group” label follows N, then we generate
 WHERE N IN (SELECT DISTINCT N FROM…
 W(C1)θ1W(C2)θ2…θk-1W(Ck)θkW(P1)θk+1W(P2)θk+2…θk+D-2W(PD-1))

CASE 3. there is a “_group” label before N under object class M, then we generate
 WHERE N IN (SELECT N, AGG(N) FROM …
 W(C1)θ1W(C2)θ2…θk-1W(Ck)θkW(P1)θk+1W(P2)θk+2…θk+D-2W(PD-1)
 GROUP BY M
 HAVING value comparison on AGG(N))

CASE 4. for all other cases, we generate
 WHERE N IN (SELECT N FROM …
 W(C1)θ1W(C2)θ2…θk-1W(Ck)θkW(P1)θk+1W(P2)θk+2…θk+D-2W(PD-1))

where θm (m = 1, …, k, k+1, …, k+D-2) are the logic operators (“AND” or “OR”). To avoid
repeating generation the where clauses of the same node, we exclude node N when we
generate each W(Pi) (i = 1, …, D-1); and we ignore the parent nodes when generating each
W(Cj) (j = 1, …, k).

Fig. 4. The translated SQLX expression of the Example in Fig. 2.

It should be emphasized that W(Pi) is indispensable when
(1) N is not the root in the condition tree, and
(2) In the RHS graph, N does not have any parent/ancestor nodes that are linked

SELECT XMLELEMENT(NAME “member”,
 XMLATTRIBUTES (M1.M# AS “member_id”)
 XMLELEMENT (NAME “Mname”, M1.Mname)
)FROM member M1

WHERE M1.age <35
AND (M1.M# IN (SELECT DISTINCT M# FROM member

 WHERE (SELECT COUNT(J#) FROM jm
 WHERE M# = jm.M#)<5)

OR M1.M# IN (SELECT DISTINCT M# FROM member
 WHERE (SELECT DISTINCT J# FROM project
 WHERE(SELECT COUNT(P#) FROM jmp
 WHERE jmp.J# = project.J#
 AND jmp.M# = member.M#)>6)))

with their counterparts in the LHS graph.
Otherwise, W(Pi) can be omitted.

Applying the above method and rules to the example in Fig. 2, we can get the
SQLX expressions of the query as shown in Fig. 4.

5. Conclusion and future work

In this paper, we have introduced a new XML-to-SQL query solution based on ORA-SS and
discussed the translation from GLASS, the graphical query language in our project, to SQLX.
Compared with other graphical XML query languages (and GUIs), GLASS define both the
structure and the relational semantic in the XML view; and the GLASS query is seamlessly
cohered with the ORDB and SQL/SQLX on ORA-SS schema. Compared with traditional
XML-to-SQL solutions that use XQuery or XPath [13], GLASS has stronger expressive power
and provides an easy-to-use interface. So far, the case tool of GLASS query has been partially
implemented. As to the future work, it may include the query optimization of GLASS queries
and the translated SQLX expressions as well as the improvement of the case tool.

References

1. S. Ceri, S.Comai, E. Damiani, P.Fraternali, S. Paraboschi, and L.Tanca. XML-GL: a graphical language of
querying and restructuring XML documents. In Proc. WWW8, Toronto, Canada, May 1999.

2. S. Ceri, S. Comai, E. Damiani, P. Fraternali, and L. Tanca. Complex Queries in XML-GL. SAC(2)
2000:888-893.

3. S. Cohen, Y. Kanza, Y. Kogan, W. Nutt, Y. Sagiv and A. Serebrenik. Equix – Easy Querying in XML
Databases. In proceedings of Webdb’98 – The Web and Database Workshop, 1998.

4. S. Comai, E. Damiani, P. Fraternali. Computing Graphical Queries over XML Data. ACM
Transactions on Information Systems, Vol. 19, No. 4, October 2001, Pages 371-430.

5. G. Dobbie, X. Y. Wu, T. W. Ling, M. L. Lee. ORA-SS: An Object-Relationship-Attribute Model for
Semistructured Data. TR21/00, Technical Report, Department of Computer Science, National
University of Singapore, December 2000.

6. Information technology -- Database languages -- SQL -- Part 14: XML-Related Specifications.
ISO/IEC 9075-14:2003

7. B. Ludaescher, Y. Papakonstantinou, and P. Velikhov. Navigation-driven evaluation of virtual
mediated views. In Proceedings of the sixth International Conference on Extending Database
Technology (EDBT)(Konstanz, Germany, March), Lecture Notes in Computer Science, vol. 1777,
Springer-Verlage, New York, 2000.

8. L. Mark, etc. XMLApe. College of Computing, Georgia Institue of Technology.
http://www.cc.gatech.edu/projects/XMLApe/

9. K. D. Munroe, B. Ludaescher and Y. Papakonstantinou. Blended Browsing and Querying of XML in
Lazy Mediator System. Konstanz, Germany, March 2000.

10. W. Ni, T. W. Ling. GLASS: A Graphical Query Language for Semi-Structured Data. DASFAA 2003.
11. Y. Papakonstantinou, M. Petropoulos and V.Vassalos. QURSED: Querying and Reporting

Semistructured Data. ACM SIGMOD 2002, Jun 4-6, Madison, Wisconsin, USA.
12. XQuery 1.0: An XML Query Language. W3C Working Draft 22 August 2003

http://www.w3.org/TR/xquery/
13. XML Path Language (XPath) 2.0. W3C Working Draft 22 August 2003 http://www.w3.org/TR/xpath20/
14. XML Schema. http://www.w3.org/XML/Schema

