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Abstract. As business and enterprises generate and exchange XML data more
often, there is an increasing need for searching and querying XML data. A lot
of researches have been done to match XML twig queries. However, as far as
we know, very little work has examined the efficient processing of XML twig
queries with not-predicates. In this paper, we propose a novel holistic twig join
algorithm, called TwigStackList¬, which is designed for efficient matching an
XML twig pattern with negation. We show that TwigStackList¬ can identify a
large query class to guarantee the I/O optimality. Finally, we run extensive exper-
iments that validate our algorithm and show the efficiency and effectiveness of
TwigStackList¬.

1 Introduction

In the recent years, business and enterprises generate and exchange XML data more
often. The XML data can be very complex and deeply nested. Therefore, there is a lot
of interest in query processing over data that conforms to a tree-structured data model
([2, 7]). Efficiently matching all twig patterns in an XML database is a major concern
of XML query processing. Among them, holistic twig join approach has been taken as
an efficient way to match twig pattern since it has shown effectiveness by reducing the
intermediate result ([2–5]). We observe that, the existing work on holistic twig query
matching only consider twig queries without not-predicate, such as:
Q1: suppliersDatabase/supplier[.//store]//part

This twig pattern is written in XPath [15] format. It selects part elements which are
descendants of supplier elements having at least one descendent element store.

However, in real applications, XML queries is more complex and may contain
logical-NOT predicates (or not-predicates), such as:
Q2: suppliersDatabase/supplier[NOT (.//store)]//part

The query selects part elements which are descendent of supplier elements having no
descendant element store. Therefore, it is important for us to specify an algorithm to
efficiently solve the twig patterns with not-predicates.

In general, the not-predicates can be used in a nested manner, such as:
Q3:suppliersDatabase/supplier[NOT (.//store[NOT (location =′′ Singapore′′)])]/part



It selects part elements which are descendent of supplier elements having no descendent
element store that is not in Singapore. In another word, if the supplier only contains
store that is in “Singapore”, its descendent part is in the answer to query Q3.

We call the general twig queries with not-predicates as NOT-twig queries. The
queries without not-predicates are called normal-twig queries. The graphical represen-
tations of NOT-twig Q1, Q2, and Q3 are shown in Fig. 1(a), (b) and (c).
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Fig. 1. Examples of XML Queries

To match a twig query with not-predicates, a naı̈ve method is to decompose it into
several normal-twig queries (without not-predicates). Each decomposed normal-twig
queries are individually evaluated using the existing method, and the final result can be
calculated based on the results of the individual decomposed quires. Each not-predicate
in the NOT-twig produce an additional decomposed query.

For example, we can evaluate query Q2 by solving the following two queries:
Q4: suppliersDatabase/supplier//part

Q5: suppliersDatabase/supplier[.//store]//part

Existing holistic algorithms, TwigStack [2] or TwigStackList [7] can be used to find the
answers of Q4 and Q5, shown in Fig. 1(d) and (e). The query Q2 can be evaluated
by calculating the difference of two answering set for Q4 and Q5. Clearly, this naı̈ve
approach is not optimal in most cases. For example, the elements in supplier and part
has to be accessed twice in order to evaluate the two decomposed queries from query
Q2.

Jiao et al. [6] proposed a holistic path join algorithm for path query with not-
predicates. However, it cannot answer the problem of twig pattern with not-predicates.
To the best of our knowledge, this paper is the first that address the problem of XML
NOT-twig matching.

In this paper, we developed a new algorithm to match NOT-twig queries holistically
without decomposing them into normal-twigs. The contributions of our work are:

– We discuss the problem of sub-query matching and propose a novel holistic twig
join algorithm, namely TwigStackList¬, based on the new concept of Negation Chil-
dren Extension (for short NCE). Unlike naı̈ve method, this approach ensures that
all elements in the XML documents are scanned no more than once.

– We demonstrate that in a NOT-twig, when all the positive edges below branching
nodes are ancestor-descendant relationships, the I/O cost is only proportional to the
sum of sizes of the input and the final output. Therefore, our algorithm can guar-
antee the I/O optimality for a very large query set. Furthermore, even when there
exist positive parent-child relationships below branching nodes, the intermediate



solutions output by TwigStackList¬ are guaranteed to be smaller than the naı̈ve
method.

– We present experimental results on a range of real and synthetic data, and query
twig patterns. The results validate our analysis and show the superiority of TwigSta-
ckList¬ in answering twig patterns with not-predicates.

The rest of the paper is organized as follows. Section 2 studies the related work. Sec-
tion 3 defines the representation of twig queries with not-predicates and discusses the
problem of sub-query matching. Section 4 explains our algorithm TwigStackList¬, and
proves its correctness. Section 5 presents the performance study and the experimental
results. Finally, section 6 concludes the paper.

2 Related Work

With the increasing popularity of XML data representation, XML query processing and
optimization has attracted a lot of research interest. In this section, we summarize the
literature on matching twig queries efficiently.

Zhang et al. [16] proposed a multi-predicate merge join (MPMGJN) algorithm
based on (DocId, Start, End, Level) labeling of XML elements. The Twig join algo-
rithms by Al-Khalifa et al. [1] gave a stack-based binary structural join algorithm. The
later work by Bruno et al. [2] proposed a holistic twig join algorithm, TwigStack, to
avoid producing a large intermediate result. However, this algorithm is only optimal for
ancestor-descendent edges. Therefore, Lu et al. [7] developed a new algorithm called
TwigStackList, in which a list data structure is used to cache limited elements to identify
a larger optimal query class. Chen et al. [3] studied the relationship between different
data partition strategies and the optimal query classes for holistic twig join. Recently, Lu
et al. [8] proposed a new labeling scheme called extended Dewey to efficiently process
XML twig pattern.

In order to solve complex twig queries, Jiang et al. [4] researched the problem of
efficient evaluation of twig queries with OR predicates. Lu et al. [9] studied how to
answer an ordered twig pattern using region encoding. Jiao et al. [6] proposed a holistic
path join algorithm for path query with not-predicates.

In the recent years, two new algorithms, ViST [13] and PRIX [10], are proposed to
transform both XML data and queries into sequences, and answer XML queries through
subsequence matching. Their methods avoid join operations in query processing. How-
ever, to eliminate false alarm and false dismissal, they resort to time consuming opera-
tions (post-processing for false alarm and multiple isomorphism queries processing for
false dismissal [12]).

3 Preliminaries

3.1 XML Data Model

We model XML documents as ordered trees. The edges between the tree nodes can be
parent-child (for short PC) or ancestor-descendant (for short AD).



Many state of the art join algorithms on XML documents are based on certain num-
bering schemes. For example, the binary XML structural join in [1, 16], and the twig
join in [2] use (startPos: endPos, LevelNum). It is an example of using region encoding
to label elements in an XML file. Fig. 2 shows an example XML data tree. startPos and
endPos are calculated by performing a pre-order (document order) traversal of the doc-
ument tree; startPos is the number in sequence assigned to an element when it is first
encountered and endPos is equal to one plus the endPos of the last element visited. Leaf
elements have same startPos and endPos. LevelNum is the level of a certain element in
its data tree.
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Fig. 2. XML data tree with region encoding Fig. 3. Two NOT-twigs

Formally, element u is an ancestor of element v iff startPos(u) < startPos(v) and
endPos(u) > endPos(v). Similarly, element u is the parent of element v iff startPos(u)
< startPos(v), endPos(u) > endPos(v), and levelNum(u) + 1 = levelNum(v).

3.2 NOT-Predicate and Node Operations

Each NOT-twig query has a corresponding tree representation, which contains all the
nodes in the query, {n1,n2,...nm}. Each node ni and its ancestor (or parent respectively)
nj , are connected by an edge, denoted by edge(ni, nj). The tree edges can be classified
into one of the following four types: (1) positive ancestor/descendant edge, represented
as “||”; (2) positive parent/child edge, represented “|”; (3) negative ancestor/descendant
edge, represented as “||¬ ”; (4) negative parent/child edge, represented as “|¬”.

A negative edge corresponds to an edge(ni,nj) with a not-predicate in XQuery ex-
pression. It includes negative parent/child edge and negative ancestor/descendant edge.
In this case, node nj is called a negative child of node ni. Similarly, a positive edge
corresponds to an edge(ni,nj) without not-predicates in XQuery expression. Node nj

is considered to be a positive child of node ni.
As an example, consider the NOT-twig in Fig. 3(b), edge(B, C) and edge(C, D)

are negative ancestor/descendant edge, edge(B, H) is negative parent/child edge. Node
B has three children, in which node G is a positive child, node C node H are negative
children.

Given a query tree Q, a not-predicate is a subtree in Q such that the edge between
the root of the subtree and its ancestor (or parent respectively) is a negative edge. We
call the root of the subtree a negative child of its ancestor (or parent respectively).



As an example, the NOT-twig in Fig. 3(a) has one not-predicates (rooted at node
C), and the NOT-twig in Fig. 3(b) has three not-predicates (rooted at node C, D and
H). The not-predicates are nested, therefore, we can see that not-predicate C contains
not-predicate D.

In the following, we define some operations on query tree nodes. isRoot(n), isLeaf(n),
and isOutputNode(n) respectively checks if a query node n is a root, a leaf node, or an
output node. is Neg Child(n) checks if the edge between node n and its ancestor (or
parent respectively) has a not-predicate.

neg children(n) and pos children(n) respectively returns all the nodes that are the
negative and positive children of n. parent(n) returns the parent node of n, and the
function children(n) gets all child nodes of n. Therefore, we have neg children(n)∪
pos children(n) = children(n). Function AD neg children(n) and PC neg children(n)
returns all the negative AD child or negative PC child nodes of n. Similarly, func-
tion AD pos children(n) and PC pos children(n) returns all the positive AD child or
PC child nodes of n.

3.3 Sub-query Matching and the Output Elements

In this paper, a node refers to a query node in twig query pattern and element refers to
a data node in XML data tree. A NOT-twig matching problem can be decomposed into
recursive sub-query matching problems.

Given a NOT-twig query Q, a query node n and a XML data tree D, we say that an
element en(with the tag n) in the XML data tree D satisfies the sub-query rooted at n
of Q iff:
(1) n is a leaf node of NOT-query Q; OR
(2) For each child node ni of n in Q:

– (case i) If ni is a positive PC child node of n, there is an element eni
in D such that

eni is a child element of en and satisfies the sub-query rooted at ni in D.
– (case ii) If ni is a positive AD child node of n, there is an element eni in D such

that eni is a descendant element of en and satisfies the sub-query rooted at ni in D.
– (case iii) If ni is a negative PC child node of n, there does not exist any element

eni
in D such that eni

is a child element of en and satisfies the sub-query rooted at
ni in D.

– (case iv) If ni is a negative AD child node of n, there does not exist any element
eni

in D such that eni
is a descendant element of en and satisfies the sub-query

rooted at ni in D.

We classify the nodes in a NOT-twig query into the following categories:

Definition 1 (output node, non-output node, output leaf node, leaf node). A node
ni in a NOT-twig query is classified as an output node if ni does not appear below
any negative edge; otherwise, it is a non-output node. An output node with no positive
children is called a output leaf node. A query node without any children is called a leaf
node.

For the NOT-twig in Fig. 3(b), {A, B, G} and {C, D, E, F ,H} are the sets of
output nodes and non-output nodes. Note that G is the output leaf node and {D, F , G,
H} are the leaf nodes.



The output elements for a NOT-twig query is defined in the following:

Definition 2 (Output elements for a NOT-twig Query). Given an XML document D
and a twig query with K output nodes, {n1, n2... nk}. A tuple < e1,..., ek > is defined to
be a matching answer for the query iff (1) ei has the same type (tag name) as ni; (2) for
each pair of elements ei and ej in the tuple, ej is a descendant (or child respectively)
element of ei in D if edge(ni, nj) is a AD (or PC respectively) edge; and (3) Any output
node ek (with tag K) satisfies sub-query rooted at node k .

For example, consider the document in Fig. 4(a), we want to match the NOT-twig
in Fig. 4(b). < A1, B1 > is not a matching answer since A1 doesn’t satisfy the sub-
query rooted at A since it has a chid C1 that satisfy the sub-query rooted at C. However,
< A2, B2 > is a matching answer.

For the NOT-twig in Fig. 4(c), both < A1, B1 >, and < A2, B2 > are matching
answers, because A1 is an ancestor of B1, A2 is an ancestor of B2, and all of A1, B1,
A2, B2 satisfies the sub-query matching.

4 Negation Twig Join Algorithm

In this section, we present TwigStackList¬, an algorithm for finding all the matching
answers of a NOT-twig query against an XML document. We should know that although
TwigStackList¬ shares similarity with the TwigStackList algorithm in the previous work
[7], it makes an important extension to handle the NOT-twigs.

4.1 Notation and Data Structures

For each node n in the query twig, a data stream Tn is associated with it. Stream is a
posting list (or inverted list) accessed by a simple iterator. An XML document is parti-
tioned into streams and an additional region coding label is assigned to each element in
the streams. All elements in a stream are of the same tag and ordered by their startPos.
We can only read the elements in a stream once from head to tail. Cursor cn to access
to the current element in Tn.

Our algorithm uses two types of data structure: list and stack. A chain of linked
stacks is used to compactly represent partial results of individual query root-leaf paths.
Lists Ln are used to cache limited number of items in the main memory, when the
algorithm look-ahead read some elements. For each output node, we associate a list Ln

and a stack Sn with it. Since non-output nodes do not contribute to the final solution,
they don’t have stacks associated with them. Therefore, we only maintain a list for each
non-output node. At every point during computation: the nodes in stack Sn and Ln are
guaranteed to lie on a root-leaf path in the database, which means each element is an
ancestor or parent of that following it. Thus, the size of Sn and Ln are bounded by the
maximum depth of the XML document. For each list Ln, we declare an integer variable
pn, as a cursor to point to an element in the list Ln.

Based on the data structure definition, we can now define the concept of head ele-
ment:



Definition 3 (head element). In TwigStackList¬, for each node in the query, if list
Ln is not empty, we say that the element indicated by the cursor pn of Ln is the head
element of n. Otherwise, we say that element pointed by cn in the stream Tn is the head
element of n.

In our algorithm, we use the function getElement(n) to get the head element of a
query node n.

4.2 Negation Children Extension

We introduce a new concept: Negation Children Extension (for short NCE), which is
important to determine whether an element likely be involves in the results of a NOT-
twig query.
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Given an NOT-twig query Q and a dataset D, we say that an element en (tag n) in
XML database D has a Negation Children Extension (for short NCE) based on the
following conditions:

1. If in Q, query node n has no positive PC child or it is not an output node, the
element en has a NCE iff it satisfies the sub-query rooted at n; OR

2. If in Q, query node n has positive PC child ni and n is an output node, there is an
element e′

n (with tag n) in the path from en to eni
such that e′

n is the parent of eni

and eni
also has NCE. The checking for the positive AD child, negative PC child

and AD child nodes remains the same as sub-query matching.

The concept is different from sub-query matching method discussed in Section 3.3,
since holistic algorithm cannot guarantee optimality when processing positive PC rela-
tionships. When the nodes are output nodes, we can eliminate the useless intermediate
results using join operation, similar to the method used in TwigStackList. Condition
(2) of NCE is based on this property. However, if the node is non-output nodes, the
positive PC relationship has to be checked before the intermediate results are generated.

For example, consider the XML document and the two queries in Fig. 4(a), (b) and
(c). Observe that (1) For both query 1 and query 2, B1, B2 and D1 has NCE since they
are leaf nodes. (2) For query 1, C1 has NCE , since D1 is a descendant of C1. However,
for query 2, C1 doesn’t have NCE. It is because since D1 is a descendant of C1 in the
XML document, C1 doesn’t satisfy the sub-query rooted at C. (3) For query 1, since C1

has NCE, we can safely say A1 has no NCE. It is because C1 is a child of A1 and in the



NOT-twig, node C is a negative PC child of node A. A1 doesn’t satisfy the sub-query
rooted at A. (4) For query 2, in the XML document, there are no element with tag C
that has NCE. Also, A1 has a descendent B1 with NCE. Therefore, A1 has NCE. (5)
For both query 1 and query 2, A2 has NCE since A2 has a descendent B2 with NCE,
and does not have any child with the tag C.

In the previous algorithm, both TwigStack and TwigStackList might output useless
intermediate results when a branching node has at least one PC children. Now, we
discuss the effect of this sub-optimality problem based on the concept PC-Branching
node:

Definition 4 (PC-Branching node). In a NOT-twig, a node n is called PC-Branching
node if n has more than one positive children, among which at least one is a PC child.

If a PC-Branching node is also an output node, we call it output PC-Branching node.
Otherwise, it is called non-output PC-Branching node.

When we match a NOT-twig, the sub-optimality is caused by PC-Branching nodes
in the query. If the PC-Branching node is an output node, the algorithm can use the
method in TwigStackList and eliminate the useless intermediate results using join oper-
ation.

However, when the PC-Branching node is a non-output node, the useless interme-
diate result may result in false output. For example, the XML document and query are
shown in Fig. 5(a) and (b), the query node B is a non-output PC-Branching node. Ini-
tially, the algorithm scans A1, B1, C1 and D1. Since only the first element of a stream
is read, there is no way for the algorithm to decide if B1 has an child element D2.
If the XML dataset does not has element D2, the previous methods (TwigStack [2] or
TwigStackList [7]) will still assume that B1 has a child with tag D. In this case, the ele-
ment A1 cannot contribute to the final results and is deleted from the potential solution
list. This operation is wrong since we will lose a matching answer A1. Therefore, our
algorithm solve negative PC child nodes differently. For a non-output PC-Branching
node (of the type n), we need to use join operation to find the elements en with NCE
before generating intermediate results. For example, to match the NOT-twig in 5(b),
we search for elements of type B that has an descendent element Ci and a child ele-
ment Di. Since there is no matching element, we then conclude A1 is in the matching
answers.

In our algorithm, we use the function isNonBranching(n) to test if an node n is a
non-output PC-Branching node.

4.3 Algorithm: TwigStackList¬

The main algorithm of TwigStackList¬ (represented in algorithm 2), which computes
answers to a NOT-tiwg, operates in two phases. In the first phase (line 1-12), the indi-
vidual query root-leaf paths are output. In the second phase (line 13), these solutions
are merged-joined to compute the matching answers to the whole query.

getNext(n) is an important procedure call in the main algorithm of TwigStackList¬.
It returns a node n′ (possibly n′ = n). Assume that element en′ is the head element of
node n′. In our algorithm, the element en′ has NCE.



In line 2, if the node is a non-output PC-Branching node, we call TwigStackListCopy¬.
This function is a copy of TwigStackList¬ but matches the sub-query Qn (rooted at
node n). It uses the same data streams C as the calling function, but terminates when
the getStart(n) >getEnd(Parent(n)). Therefore, we only want to find the elements that
are a potential descendants of the element getElement(Parent(n)). The final results are
inserted to the list of n, Ln.

Algorithm 1 getNext(n)
1: if(isLeaf(n)) return n
2: if(isNonBranching(n)) TwigStackListCopy¬(Qn,getEnd(Parent(n)))
3: foreach node ni in pos children(n) do
4: gi=getNext(ni)
5: if(gi 6= ni) return gi

6: Posnmax=maxargni∈children(n)getStartPosnmax

7: Posnmin=maxargni∈children(n)getStartPosnmin

8: while (getEnd(n) < getStart(nmax)) proceed(n)
9: foreach node ni in neg children(n) do

10: while(getStart(ni) <getStart(n)) proceed ni

11: gi=getNext(ni)
12: if(gi 6= ni)
13: if(getEnd(ni) <getStart(gi)) return ni

14: else return gi

15: if(is Neg AD Child(ni))
16: while(getElement(n) is the ancestor of getElement(ni)) proceed(n)
17: if (getStart(n)>getStart(nmax)) return nmin

18: if(nmax! = null) MoveStreamToList(n,nmax)
19: foreach node ni in PC neg children(n)) do
20: while(cn.start < getStart(ni)) do
21: if(cn.end>getEnd(g)) Ln.append(cn)
22: advance(Tn)
23: if(there is an element ei in Ln such that ei is the parent of getElement(ni) )
24: delete elements ei and getElement(ni)
25: foreach node ni in PC pos children(n) do
26: if(there is an element ei in list Ln such that ei is the parent of getElement(ni) )
27: if(ni is the only child of n) move the cursor pn of list Ln to point to ei

28: else return ni

29: return n

Line 3-8 check for positive PC child nodes for output nodes (details discussed in
TwigStackList). Line 9-15 check for negative child nodes of n. We recursively call
for every ni ∈ neg children(n). If any returned node gi is not ni , we return gi, if
getStart(gi)<getEnd(ni) (line 9). Otherwise, if the return value is ni, we proceed(ni)
in the main algorithm and call getNext(n) again. If gi=ni and the head element of node
n is the ancestor of the head element of node ni (ni is a negative AD child of n in the
NOT-twig), the algorithm concludes the head element of n doesn’t appear in the final
answers(line 16).

If node n has at least one positive child, line 18 calls MoveStreamToList to push
elements en into the list of node n. Then, line 19-24 check the negative PC relationship



in condition (iv) of NCE. We push the potential parent of element eni
into the list of n

(line 21). In line 20-21, we make sure the elements are nested from top to end in the
list. If we can find an element that is a negative child of an element in the list Ln, the
parent element is deleted from the list (line 24). Finally, line 25-28 check the condition
(ii) of NCE.

Now we discuss the main algorithm of TwigStackList¬ (in Algorithm 2). First of all,
line 2 calls getNext to identify the next element to be processed. If returned node is non-
output nodes, the algorithm just proceed the node in line 12. Otherwise, the algorithm
check the output nodes the same way as TwigStackList.

Example 1. Consider the XML data and query shown in Fig. 4(a) and (b) again. Ini-
tially, the stream cursors are pointed to A1, B1, C1 and D1. In the first call of get-
Next(A), the element A1 is first pushed into the list LA (in line 18 of getNext), then
deleted from the list (in line 24 of getNext), since C1 has NCE and is a child of A1.
After the second call of getNext, the cursors of A and B are forwarded to A2, B2, and
the cursors of C and D are pointing to the end of the stream. The following steps push
A2 to stack and output the intermediate result < A2,B2 >. For this query, no merging
operation is needed.

Algorithm 2 TwigStackList¬
1: while(¬ end( )) do
2: nact=getNext(root)
3: if(!nact.isNonOutputNode( ))
4: if(¬ isRoot(nact)) cleanParentStack(nact,getStart(nact))
5: if(isRoot(nact) ∨¬ empty(Sparent(nact)))
6: clearSelfStack(nact,getEnd(nact))
7: moveToStack(nact,Snact ,pointertotop(Sparent(nact))
8: if(isOutputleaf(nact))
9: showSolutionsWithBlocking(Snact ,1)

10: pop(Snact )
11: else proceed(nact)
12: else proceed(nact)
13: mergeAllPathSolutions( )

Example 2. We now consider the same XML data, but change the query to Fig. 4(c).
Initially, the stream cursors points to A1, B1, C1 and D1. In the first call of getNext(A),
the node C is returned. It is because C1 is first pushed into the list (in line 18 of getNext),
then deleted from the list (in line 24 of getNext) since leaf node D1 is a child of C1 in the
XML data. We advance the stream of C and reach the end of the stream. Therefore, in
the next call of getNext, the element A1 is pushed to stack and output the path solution
< A1,B1 >. We call getNext again to advance stream A, and push element A2 into
stack SA. The path < A2,B2 > is then output by the algorithm.

4.4 Analysis of TwigStackList¬

In the section, we show the correctness of our algorithm and analyze its efficiency. Some
proofs are omitted here due to space limitation.



Lemma 1. For an arbitrary node n in the NOT-twig query we have getNext(n)=n′.
Then the following properties hold:

1. n′ has the NCE
2. Either (a) n=n’ or (b) parent(n) does not have NCE due to the node n′

Lemma 2. Suppose getNext(n)=n′ returns a non-output query node. The head element
does not contribute to any matching solutions, since it is not an output node. The Algo-
rithm just proceed the node.

Lemma 3. Any element e that is inserted to stack Sn satisfy the not-predicates of the
query. That is, if n has a negative descendant n′ in query, then there is no element en′

in stream Tn′ such that en′ is a descendant of en. If element e has a negative PC child
em (node type m. m is the negative PC child of node n in the query), e is deleted in line
24 of algorithm 1.

Lemma 4. In TwigStackList¬, when any element e is popped from stack , e is guaran-
teed not to participate a new solution any longer.

Theorem 1. Given a NOT-twig Q and an XML database D. Algorithm TwigStackList¬
correctly returns all matching answers for Q on D.

Proof. Using Lemma 2, we know that when getNext returns a query node n in getNext,
if the stack is empty, the head element en does not contribute to any matching solutions.
Thus, any element in the ancestors of n that has positive child en with NCE is returned
by the getNext before en. If n is negative child, we guarantee that each element en with
NCE in the list Ln is checked to remove their corresponding parent elements by using
lemma 3. Furthermore, with lemma 4, we can maintain that, for each node n in the
query, the elements that involve in the root-leaf path solution are all in the stack Sn.
Finally, each time that n = getNext(root) is an output leaf node, we output all solution
for en (line 9 of TwigStackList¬).
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Fig. 6. Optimality study

We now analyze the optimality of TwigStackList¬. For the normal-twig join algo-
rithms, TwigStack [2] is optimal for AD only twig patterns; TwigStackList [7] although
identifies a larger optimal class than TwigStack, can not guarantee optimality for PC
edges in non-branching node. In [3], the author proved that it is difficult to find an op-
timal normal-twig pattern matching method, since we cannot determine only from the



first elements of various streams if any first element is in the match to a given twig
pattern.

However, our algorithm can identify a larger optimal class than TwigStackList for
NOT-twigs. In particular, the optimality of TwigStackList¬ allows the existence of parent-
child relationship in more than one negative branching edges, as illustrated below.

For example, we want to match the NOT-twig in Fig. 6(c) to the dataset in Fig.
6(a). If the naı̈ve method uses TwigStackList to solve the problem, we removes the not-
predicates and change the query to Fig. 6(b). In order to solve it, TwigStackList first
scans A1, C1 and B1, and pushes element A1, A2 and A3 into the list LA. However,
since we can only read the head of a stream at a time, when we advance B, we could
not decide whether A1 has a child tagged with C. Therefore, this algorithm will output
one useless solution < A1,B1 >.

If we use TwigStackList¬ to directly match query 2 (in Fig. 6(c)). We first push
element A1, A2 and A3 into the list LA. Then, we can immediately identify that A3

has a child C1. Since there is an not-predicate on edge(A,C), A3 is removed from the
list. We advance C and since C2 is a child of A2, A2 is deleted from LA. We advance
C again, since A1 doesn’t have any child element with the tag name C. We output the
path < A1,B1 > as output.

We use the similar method to match the NOT-twig in Fig. 6(d). After we push A1,
A2 and A3 into the stack LA, we can identify that A1 has a child B1. Since there is an
not-predicate on edge(A, C), A1 is removed from the list. B is advanced to B2. Since
it is a child of A2, A2 is deleted from the list. B is advanced to B3, which is a child of
A3, A3 is also deleted from the list. Therefore, there is no matching answers to query 3.

Thus, this example shows that our algorithm may guarantee the optimality for queries
with parent-child relationship negative branching edge.

Theorem 2. Consider an XML database D and an NOT-twig query Q without non-
output PC-Branching nodes. The worst case I/O complexity of TwigStackList¬ is linear
in the sum of the sizes of input and output lists. The worst-case space complexity of this
algorithm is that the number of nodes in Q times the length of the longest path in D.

5 Experimental Evaluation

We implements two naive twig join algorithms, naı̈ve-TwigStack (for short NTS) and
naı̈ve-TwigStackList (for short NTSL), to be compared with our algorithm, twigstacklist¬.
The naive methods use the straightforward query decomposition approach. This ap-
proach first decomposes the NOT-twig into queries without not-predicates. The decom-
posed queries are then matched individually (using TwigStack [2] or TwigStackList [7],
respectively) and the NOT-twig solution is calculated by the set-difference of the de-
composed query results.

In our experiment, we use the following two metrics to compare the performance of
the three algorithms.

– Intermediate path solutions: This metric measures the total number of interme-
diate path solutions. For the naı̈ve methods, the total number is the sum of the
intermediate results of all the decomposed queries.



– Execution time: We calculate this metric using the average time elapsed to answer
a query with ten individual runs.
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5.1 Experimental Setup

We use JDK 1.4 with the file system as a simple storage engine. All experiments run
on a 1.7G Pentium IV processor with 768MB of main memory and 2GB quota of disk
space, running windows XP system. We used three real-world and synthetic data sets
for our experiments. The first one is a real dataset: TreeBank [11]. The file size is
82M bytes with 2.4 million nodes. The second one is the well-known benchmark data:
XMark [14]. The size of file is 115M bytes with factor 1.0. The third one is a Random
data set. We generated random uniformly distributed data trees using two parameters:
fan-out, depth. We use seven different labels (tag: a, b, c, d, e, f and g) to generate the
data sets.
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Fig. 8. Six NOT-twigs: Test Q(f), Q(g), Q(h) in XMark; Q(i), Q(j), Q(k) in Random data set

We tested five twig queries (in Fig. 7) in TreeBank, and three twig queries (in Fig. 8)
in XMark and Random data set separately. The queries give a comprehensive compari-
son of the three algorithms, since the queries have different structures and combinations
of positive and negative edges.

5.2 Performance Study

Fig. 9 shows the results on execution time in the three datasets. We can observe from
the three figures that TwigStackList¬ is more efficient than the two naı̈ve methods for all
the queries. It is because the naı̈ve methods have to match more than one decomposed
queries and generate more intermediate results.

An interesting observation is made when we test the queries in XMark database.
Query Q(f), Q(g), Q(h) have the same query nodes and structure, but the number of not-
predicates is different. We can see from Fig. 9(b) that for TwigStackList¬, the time to
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Fig. 9. Execution time of NOT-twig on three datasets

match the three queries is almost constant. However, the results for NTS and NTSL show
that when we increase the number of not-predicate, the total execution time increases
linearly. It is because as we increase the number of not-predicates, we are increasing
the number of decomposed queries that the naı̈ve method need to match.

For each NOT-twig, the number of decomposed queries and the the intermediate
results are listed in Table 1. The last column shows the number of path solutions in
the matching answers. The results show that TwigStackList¬ is sub-optimal if there are
PC-Branching nodes in the queriy, e.g PP in Q(b), V P in Q(d), a in Q(i).

In Table 1, we can see that the number of intermediate results output by our TwigStac-
kList¬ is always less than the results output by NTS and NTSL. It is because when we
output the intermediate results in TwigStackList¬, we already considered the not-predic-
ates. Thus, the number of useless intermediate paths is largely reduced.

Query Dataset Decomposed
Queries

NTS NTSL TwigStackList¬ Useful Solutions

Q(a) Treebank 2 31197 31197 31143 31143
Q(b) Treebank 2 64053 61646 60356 58405
Q(c) Treebank 3 355981 355981 14484 14484
Q(d) Treebank 3 78857 78675 1789 1508
Q(e) Treebank 3 215595 209652 78326 67312
Q(f) XMark 2 181066 171392 22870 21050
Q(g) XMark 3 228009 224027 12057 12057
Q(h) XMark 4 308708 306602 7476 7476
Q(i) Random 3 152 114 58 36
Q(j) Random 3 1701 1461 138 138
Q(k) Random 4 1731 1120 837 436

Table 1. The number of intermediate path solutions

Therefore, according to the experimental results, we can conclude that our new
algorithm TwigStackList¬ could be used to evaluate twig pattern with not-predicates
because it has obvious performance advantage over the straightforward approaches:
NTS and NTSL. TwigStackList¬ guarantees the I/O optimality for a large query class.



6 Conclusion and Future Work

In this paper, we proposed a new holistic twig join algorithm, called TwigStackList¬,
to process NOT-twig query. Although holistic twig join has been proposed to solve
normal-twig patterns, applying it to NOT-twig matching is nontrivial. We developed
a new concept Negation Children Extension to determine whether an element is in the
results of a NOT-twig query. We also make the contribution by identifying a large query
class to guarantee I/O optimality for TwigStackList¬. The experimental results show
that our algorithm is more effective and efficient than the naı̈ve method.

In the future, we will improve the algorithm based on the following two issues: one
is to design an efficient index scheme that might change the format of the input data.
Another possible issue to improve our algorithm is to identify a larger optimal query
class for NOT-twig matching.
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