
MCN: A New Semantics towards Effective XML

Keyword Search

Junfeng Zhou1,2, Zhifeng Bao3, Tok Wang Ling3, and Xiaofeng Meng1

1School of Information, Renmin University of China
2Department of Computer Science and Technology, Yanshan University

{zhoujf2006,xfmeng}@ruc.edu.cn
3School of Computing, National University of Singapore

{baozhife,lingtw}@comp.nus.edu.sg

Abstract. We investigate the expressiveness of existing XML keyword
search semantics and propose Meaningful Connected Network (MCN) as
a new semantics to capture meaningful relationships of the given key-
words from XML documents. Our evaluation method adopts a two-step
strategy to compute all MCNs. In the first step, we identify a set of query
patterns from a new schema summary; in the second step, all query pat-
terns are processed based on two efficient indices, partial path index and
entity path index. The experimental results show that our method is
both effective and efficient.

1 Introduction

As an effective search method to retrieve useful information, keyword search has
gotten a great success in IR field. However, the inherently hierarchical structure
of XML data makes the task of retrieving the desired information from XML
data more challenging than that from flat documents. An XML document can
be modeled as either a rooted tree or a directed graph (if IDRefs are considered).
For example, Fig. 1 shows an XML document D, where solid arrows denote the
containment edge, dashed arrows denote the reference edge, and the number
beside each node denotes the node id.

The critical issue of XML keyword search is how to find meaningful query re-
sults. In both tree model and graph model, the main idea of existing approaches
is to find a set of Connected Networks (CNs) where each CN is an acyclic sub-
graph T of D, T contains all the given keywords while any proper subgraph of
T does not. In particular, in tree data model, Lowest Common Ancestor (LCA)
semantics [1] is first proposed, followed by SLCA (smallest LCA) [1] and MLCA
[5] which apply additional constraints on LCA. In graph data model, methods
proposed in [6–10] focused on finding matched CNs where IDRefs are considered.

In practice, however, most existing approaches [1–10] only take into account
the structure information among the nodes in XML data, but neglect the node
categories ; thus they suffer from the limited expressiveness, which makes them
fail to provide an effective mechanism to describe how each part in the returned
data fragments are connected in a meaningful way, as shown in Example 1.

person auctionitem

watches

itemref

seller

watch

@auction

@person

@item

name

site

auction

itemref

@item
buyer

@person

person

watches

watch

@auction

name

“John”“Mike”

name

“gem”

item

name

“rue”

photo

provider

photo

provider

“Mike”
“John”

photos persons

item

name

“bow”

1

2

3
4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

Fig. 1. An example XML document D

person

item

seller

@person

name

buyer

@person

person

name

“John”

“Mike”

photo

provider

photo

provider

“Mike”

“John”

photos

persons 2

4

5

6

7

8

13

14

18

19

29

30

31

32

33

photo

provider

provider

“Mike”

“John”

photos4

5

6

7

8

person

name

site

person

name

“John”

“Mike”

1

13

14

18

19

person

watches

watch

@auction

name

auction

person

watches

watch

@auction

name

“John”“Mike”

13

14

15

16

17

18

19

20

21

22

23

photo

person

seller

@person

name

buyer

@person

person

name

“John”
“Mike”

persons

13

14

18

19

29

30

31

32

33

auction26

R1 R2 R3 R4 R1' R4'

Fig. 2. R1 to R4 are four possible answers of existing methods for query Q={Mike,
John} against D in Fig. 1. R3, R1′ and R4′ are three meaningful answers of our method.

Example 1. Consider a keyword query Q={Mike, John} issued on D in Fig. 1.
If IDRefs in D are not considered, then R1 and R2 in Fig. 2 are two (not all)
matched results according to the LCA semantics [1] where the LCA node are
photos and site, respectively. If IDRefs in XML data are considered, we may find
more results, e.g., R1 to R4 are four matched results of existing methods. How-
ever, we cannot identify any meaningful relationship between ‘Mike’ and ‘John’
from R1, R2 and R4, because the nodes (photos, site, persons) connecting ‘Mike’
and ‘John’ do not convey any useful information to explain the relationship be-
tween ‘Mike’ and ‘John’. We observe when talking about relationships between
data elements, users just care about relationships of those representative nodes
(photo, person, item and auction in Fig. 1), which we call entities in ER model,
and most of the time their query is based on the relationships of entities, rather
than those meaningless ones (e.g., photos, site and persons), which are just used
to organize data. With this observation, R3, R1′ and R4′ in Fig. 2 should be
meaningful results. R3 means ‘Mike’ and ‘John’ watch the same auction; R1′

means both ‘Mike’ and ‘John’ provided a photo to the same item; R4′ means
‘Mike’ bought an item sold by ‘John’ in an auction. However, according to the
semantics of existing works [1–10], R1′ and R4′ will be removed as answers
because of R1 and R4, respectively.

Motivated by the above problem, we propose a new semantics called Mean-
ingful Connected Network (MCN) to capture the meaningful relationships of the

given keywords from XML document graph by considering reference relation-
ship. A MCN is an acyclic subgraph T of the given XML document D and
contains all the keywords at least once, which is defined based on the relation-
ships among entities (or entity instances), rather than simply on data elements
without considering their categories. For the above query, we first check which
entity instances ‘Mike’ (‘John’) belongs to, then find the meaningful relationships
of the two entity instances of ‘Mike’ and ‘John’. Finally, R3, R1′ and R4′ (not
R1, R2 and R4) as MCNs are considered as meaningful results and returned.

However, finding even the first CN is reducible to the classical group Steiner
tree problem, which is known to be NP-complete [12]. As a MCN may contain
nodes that are redundant to a CN (e.g., item in R1′ is redundant to R1), finding
all MCNs from the given XML document is more difficult than finding all CNs.
Note all MCNs can be classified into different groups according to their structure,
we call the structure of a MCN together with all query keywords a query pattern
(QP) (e.g., R3, R1′ and R4′ are three QPs after removing all node id), thus
finding all occurrences of MCNs equals to solving the following two problems.

– (P1) Efficiently identify all QPs from the underlying schema.
– (P2) Efficiently evaluate all QPs against the given XML data.

For problem P1, we propose to use entity graph as a schema summary to
capture the meaningful relationships of entity nodes from the original schema.
Entity graph is generated from the original schema by removing the noisy infor-
mation while preserving the connection relationships of entity nodes. Then we
propose an algorithm based on entity graph to efficiently compute all QPs.

For problem P2, we design two efficient indices to improve the query perfor-
mance. The first is partial path index. For each keyword k, partial path index
stores a set of paths, each of which starts with an entity instance and ends at one
of its attribute node that directly contains k. The second is entity path index.
Entity path index stores all the matching instances of entity pairs, where each
pair is joined by one edge of the entity graph.

In summary, our contributions are listed as follows:

– We propose an effective semantics, i.e., Meaningful Connected Network (MCN),
to enhance the expressiveness of keyword search query.

– We propose to use an entity graph to reduce the cost of computing QPs.
– We propose an algorithm based on partial path index and entity path in-

dex to improve the performance of query evaluation. We proved the costly
structural join operations1 can be avoided from the evaluation of all QPs.

– Extensive experiments are conducted on datasets of various characteristics,
and the results show our method is both effective and efficient.

2 Background and Related Work

Schema: We assume the schema is always available, as we can use the methods
proposed in [13, 14] to infer the schema (if unavailable). We use a node labeled
directed graph to model a schema. Formally, S = (VS , ES), where VS denotes a

1 Join operations based on ancestor-descendant or parent-child relationship.

set of schema elements each with a distinct tag name, ES denotes a set of directed
edges between schema elements. As shown in Fig. 3, there are two kinds of edges
in S. The first is the containment edge, which is drawn as a solid arrow from an
element to its child element. The second is the reference edge, which is drawn as
a dashed arrow from the attribute of referrer element to referee element.
Node Categories: In the following discussion, whenever we mention entity and
attribute, they refer to the notions defined in ER-model, rather than that defined
in XML specification2. Generally speaking, two kinds of methods can be adopted
to specify the category of each schema element, which are (1) automatic methods
using heuristic inference rules [4, 6] and (2) manual method done by users, DBA
or domain expert. The inference rules used in [4, 6] are as follows:

1. A node represents an entity if it corresponds to a ∗-node in the DTD.
2. A node denotes an attribute if it does not correspond to a ∗-node, and only

has one child, which is a value.
3. A node is a connection node if it represents neither an entity nor an attribute.

A connection node can have a child that is an entity, an attribute or another
connection node.

site

person auction
item

buyer

watches itemref

sellerwatch

@auction @person

@item

name

typelocation

phone

quantity

addressvideo photo

provider

* * *

*

* *
*

*

? ?

?

?

?

*

photos personsvideos

?
?

?

Fig. 3. An example schema S of XMark

The automatic method can avoid the cost of manual intervention, but it may
not be quite correct. E.g., for the schema in Fig. 3, person is a ∗-node, thus by rule
1, person represents entity, instead of the attribute of site. name is considered
as an attribute of person and item according to rule 2. site is not a ∗-node and
has no value child, so it is a connection node by rule 3. However, according
to the above rules, phone will be considered as entity, which is unreasonable,
since phone is usually considered as a multi-value attribute of person. By using
manual method from scratch, we can get accurate category of each schema node.
However, it may impose great burden to users, DBA or domain experts.

Therefore, to achieve as accurate as possible node categories while paying
minimum manual intervention, we first employ the above three inference rules
to get an approximately accurate categorization, followed by a minor manual
adjustment from users, DBA or domain expert. Using this method, we can con-
sider phone, watch, buyer and seller as multi-value attributes of their entities,
respectively. We take the underlined nodes as entities in Fig. 3.

To facilitate our discussion, whenever we use entity, it refers to the entity-
type which corresponds to an entity node of a schema; the term entity instance is

2 http://www.w3.org/TR/REC-xml/

used to denote the instance of entity in XML document. In this paper, we mainly
focus on how to provide effective and efficient mechanism to extract meaningful
results based on the results of existing classification methods. The notations used
in our discussion are shown in Table 1.

Table 1. Summary of notations
Notation Description Notation Description

MEW meaningful entity walk QP query pattern

(M)CN (meaningful) connected network TP tree (or twig) pattern

PPI partial path index EPI entity path index

Discussion and Related Work : Among existing XML keyword search meth-
ods [1–10], The basic semantics [1–5] is based on the tree model, thus cannot
capture the meaningful relationship conveyed by IDRefs.

For graph model (IDRefs considered) based methods [6–10], the first group [9,
10] directly compute all CN s from the given XML document. However, finding
even the minimal connected network is reducible to the classical NP-complete
group Steiner tree problem [12]. Thus these methods [9, 10] apply special con-
straints to CN and find only a subset of all CNs.

The second group [6–8] adopt a two-step strategy: (1) compute the set of QPs
that are isomorphic to the set of CNs, (2) evaluate all QPs to get the matching
results. However, when the schema graph becomes complex and when evaluating
large amount of QPs, both the two steps are no longer a trivial task.

For step 1 : the methods proposed in [6, 8] focus on finding all QPs of schema
elements, text values are attached to different schema elements, thus they cannot
process queries involving text values attached to two schema elements of same
name, e.g., {person:Mike, person:John}. [7] proposed a method to compute from
the schema graph all QPs of keyword queries that allow both text values and
schema elements. The main idea is to find all QPs from a new expanded graph
G′ that is generated from G and each QP is a subgraph of G′.

For a given keyword query Q = {k1, k2, ..., km}, [7] maintains for each key-
word k an inverted list which stores the data elements directly containing k and
works through the following steps. (1) For each keyword ki ∈ Q, produce the
element set Ski

which consists of all data elements containing ki. (2) Based on
the m sets Sk1

, Sk2
, ..., Skm

, produce data element set SK for all subsets K of Q,
where SK = {d|d ∈ ∪k∈KSk ∧ ∀k ∈ K, d contains k ∧ ∀k ∈ Q −K, d does not
contain k} [11]. (3) For all elements of SK , find the set of corresponding schema
elements Slabel(SK) = {l|∃d ∈ SK , l = label(d)}. For each l ∈ Slabel(SK), add a
node named l to the original schema graph by attaching K to l to produce a new
schema graph G′. (4) Find from G′ all the QPs, where each QP q is a subgraph
of G′, q contains all keywords at least once, while any proper subgraph of q does
not. Thus the performance of the first step is affected by three factors: (1) I/O
cost of accessing all data instances to construct G′ in the first two steps; (2) the
maximum size of QP, and (3) the size of the new expanded graph G′.

For step 2 : as a keyword query may correspond to multiple QPs, and each
QP consists of several tree (twig) patterns (TPs) connected together by reference
edges, which imposes great challenges for subsequent query processing. Existing
methods made improvements from the following four orthogonal aspects: (1)

designing efficient algorithms [15, 16], (2) reducing the size of the given QP [17],
(3) designing efficient indices to reduce the size of input streams [15, 16], and (4)
reusing the intermediate results to improve the whole performance. However, all
these methods suffer from costly structural join operation, which greatly affects
the whole performance.

3 Semantics of Keyword Search Queries

From D in Fig. 1, we know person “Mike” bought the item sold by person
“John”, which can be expressed as answer R4′ in Fig. 2. R4′ manifests the
meaningful relationship between entity instances may contain edges of different
directions (mixed directions problem) and cannot be got by simply traversing
the document. Even if we omit the direction of each edge, it is infeasible to XML
document because of its large size. An alternative way is finding such relationship
from schema graph, which has much smaller size. However, some relationships
produced in such case may be meaningless (meaningfulness problem). For exam-
ple, R′ : “item→name←person” is a possible relationship produced by traversing
undirected schema graph Su of S in Fig. 3, such relationship is meaningless since
according to S, person and item must have different child element of same el-
ement type name in XML documents, which contradicts R′. Thus, we need an
effective way to capture both “mixed directions” and “meaningfulness” so as to
avoid losing meaningful relationships (e.g., R4′) by traversing directed graph and
producing meaningless relationships (e.g., R′) by traversing undirected graph.

Definition 1 (Walk). A v0−vk walk W : v0, e1, v1, e2, v2, . . . , vk−1, ek, vk of
the undirected schema graph Su is a sequence of vertices of Su beginning with v0

and ending at vk, such that each two consecutive vertices vi−1 and vi are joined
by an edge ei of Su.

The number of edges of W is called the length of W , which is denoted as
L(W). For any two nodes u and v of Su, if there exists at most one edge joining
u and v in Su, W can be written as W : v0, v1, . . . , vk. Any vi − vj walk W ′ :
vi, ei+1, vi+1, . . . , vj−1, ej, vj(0 ≤ i ≤ j ≤ k) extracted from W is called a sub-
walk of W , which is denoted as W ′ ⊆W .

Intuitively, a walk denotes a possible connection relationship of two schema
nodes where direction is not considered. Note Definition 1 doesn’t require the
listed vertices and edges to be distinct, there may be more than one walk between
two nodes. We define walk so as to avoid the problem of “mixed directions”, and
Definition 2 is used to avoid the problem of “meaningfulness” and capture the
meaningful connection relationship of two entities.

Definition 2 (Meaningful Entity Walk (MEW)). Let S be a schema graph,
a v0− vk walk W of the undirected schema graph Su is a meaningful entity walk
of S if both v0 and vk are entity nodes and

– L(W) ≤ 1, or,
– W doesn’t contain a sub-walk W ′ that has the form u→v←w in S, where

“→” denotes a solid arrow from u(w) to v in S. Moreover, if W ′ has the
form u←v→w in S, v must be an entity node.

Example 2. According to Definition 2, W1:“person” is a MEW since person is an
entity and L(W1) = 0 ≤ 1. W2:“item→name←person” is not a MEW according
to Definition 2, the reason is stated in the first paragraph of this section, where
W2 is denoted as R′. W3:“person→watches→watch→@auction99Kauction” is a
MEW according to Definition 2, which means a person is watching an auction.
W4:“personL99@person←buyer←persons←auction→persons→seller →@person
99Kperson” is a MEW which means a person bought an item sold by another
person. W5:“item←site→person” is not a MEW according to Definition 2 as W5

has the form “u←v→w” and site is not an entity, which means the relationship
of item and person cannot be interpreted by a non-entity node, i.e., site.

Definition 3 (Meaningful Connected Network (MCN)). Let Q = {k1, k2,
..., km} be the given keyword query. A meaningful connected network of Q on the
XML document D is a subgraph T of D, which holds all the following properties:
1. T contains ki(1 ≤ i ≤ m) at least once,
2. for any node u of T , if u is not an entity instance and joined by just one

edge with other nodes of T , u contains at least one keyword,
3. for any two nodes u and v of T , if u and v are entity instances, there exists

at least one u− v MEW instance W on T ,
4. no proper subgraph of T can hold for the above three properties.

Example 3. Consider the six subgraphs in Fig. 2, where there are four entities,
i.e., person, photo, item and auction. For R1, we cannot explain intuitively the
relationships of the two photo nodes as they are connected together through
a connection node, i.e., photos. Similarly, we cannot explain intuitively the re-
lationships of the two person nodes in R2 and R4 as they are connected to-
gether through two connection nodes, i.e., site and persons. Since the walk
“photo←photos→photo” in R1 is not a MEW (photos is not an entity node),
according to Definition 3, R1 is not a MCN. R2 and R4 are not MCNs for the
same reason. Thus they will be considered as meaningless answers. The intuitive
meanings of R3, R1′ and R4′ are explained in Example 1, where each pair entity
nodes in R3, R1′ and R4′ are connected through MEWs. According to Definition
3, R3, R1′ and R4′ are MCNs and considered as meaningful answers.

As shown in [11], the size of the joining sequence of two data elements in a
given XML document is data bound (data bound means the size of a result may
be as large as the number of nodes in an XML document), so is the MCN. Thus
users are usually required to specify the maximum size C for all MCNs, which
equals to the number of edges. However, such method may return results of very
weak semantics or lose meaningful results. For example, each one of R3, R1′ and
R4′ contains 3 entity instances, thus the semantic strongness of the three MCNs
should be equal to each other, if all edges have the same weight. By specifying
C = 10, R3 and R4′ will not be returned as matching results. On the other hand,
a MCN may contain no connection node but an overwhelming number of entity
instances, if its size equals to C, it may convey very weak semantics. Therefore
in our method, the constraints imposed on MCN is not the maximum number
of edges, but that of entity instances. This C is a user-specified variable with a
default value of 3. As a result, a formal definition of keyword search is as below.

Definition 4 (Keyword Search Problem). For a given keyword query Q,
find all matched MCNs from the given XML document D, where each MCN
contains at most C entity instances.

4 Computation of Query Patterns

Definition 5 (Entity Path). Path p : v1, v2, ..., vk(2 ≤ k) of schema graph S
is called an entity path if only v1 and vk are entity nodes, and for any vi(2 ≤
i ≤ k − 1), vi 6= vj(1 ≤ j ≤ k ∧ i 6= j).

Definition 6 (Partial Path). A partial path p is a path of the given QP Q,
which starts with an entity node n that is the only entity node of p.

Intuitively, an entity path describes the direct relationship of two entities,
a partial path denotes containment relationship of an entity and one of its at-
tributes. As the definition of MCN is based on relationship of entity nodes, an
important operation is for a given keyword k, finding the set of entity nodes that
have entity instances containing k as their attribute or attribute values, which
is denoted as selfE(k). We maintain an auxiliary index H that stores the set of
partial paths (not their instances) for each keyword k, where each partial path
has database instances appearing in the given XML document D, which can be
got after parsing D. For example, H stores “photo/provider, person/name” for
‘Mike’. According to H , selfE(‘Mike’)={photo,person}.

Definition 7 (Entity Graph). Let S be a schema graph, P the set of entity
paths of S. The entity graph of S is represented as G = (V, E), which consists
of only entity nodes of S, and for each entity path p ∈ P that connect u and v
in S, there is an edge in G that joins u and v.

As shown in Fig. 4 (A), in an entity graph, two entity nodes may be joined
by two or more edges, e.g., person and auction are joined by e4, e5, e6. Each edge
of an entity graph may be a containment edge (solid arrow) or reference edge
(dashed arrow). Each containment edge of G denotes an entity path that consists
of just containment edges in S, and each reference edge denotes an entity path
that consists of at least one reference edge in S. According to Definition 7, we
have the following lemma.

Lemma 1 There exists a one-to-one mapping between the edges of an entity
graph and the entity paths of the original schema graph.

person

auctionitem

video photo

e2 e3 e4 e5 e6

e1

e2() : item videos video

e3() : item photos photo

e4(-->) : auction persons buyer @person--> person

e5(-->) : person watches watch @auction-->auction

e6(-->) : auction persons seller @person--> person

e1(-->) : auction itemref @item-->item(A) (B)

person

auction
e4 e6

person

name name

“Mike” “John”

Fig. 4. The entity graph G (A) of S in Fig. 3, (B) is the QP of R4′ in Fig. 2.

Moreover, we observe that a QP consists of two kinds of relationships, (1) the
relationship between entity nodes, i.e., entity path; (2) the relationship between

Algorithm 1: getQP(Q, G, C) /*Q = {k1, k2, ..., km}*/

Q ← ∅ /*queue of QPs*/1

if (|Q| = 1) then {SQP ← selfE(k1); return SQP }2

foreach (combination E = (E′
1, E

′
2, ..., E

′
m), E′

i ∈ selfE(ki)) do3

get the partition P = {SE1
, SE2

, ..., SEq} of E according to entity names4

get the keyword set KEi
= {k|E ∈ SEi

∧E ∈ selfE(k) ∧ k ∈ Q} of SEi
5

get the entity set SKEi
= {EK

i |K ⊆ KEi
} of Ei(1 ≤ i ≤ q)6

put nodes of SKEi
into SQP if they are QPs, otherwise put them into Q7

while (¬ empty(Q)) do8

J ← RemoveHead(Q)9

foreach (edge e = (E, u) in Gu that is incident with a node u of J) do10

if (E ∈ {E1, E2, ..., Eq}) then11

foreach (node E′ ∈ SKE
) do12

J ′ ← Add E′ and (E′, u) to J ;13

if (isQP(J ′)∧nEntity(J ′) ≤ C) then SQP ← SQP ∪ {J
′}14

else if (nEntity(J ′) < C) then Add J ′ to Q15

else16

J ′ ← Add E and (E,u) to J ;17

if (nEntity(J ′) < C) then Add J ′ to Q18

return SQP19

entity nodes and attribute or attribute values, i.e., partial path. For example,
after removing the node id, R4′ as a QP is shown in Fig. 4 (B), which contains two
entity paths, i.e., e4 and e6, and a partial path, i.e., “person/name”. According
to Lemma 1, for a QP, the relationships of entity nodes can be got from entity
graph, and the partial paths can be got from the auxiliary index H stated in the
paragraph after Definition 6. For simplicity, we use the relationships of entity
nodes of a QP to denote the QP in the following.

Algorithm 1 shows how to compute all QPs, which has three parameters, a
keyword query Q, an entity graph G and the maximum number C of entity nodes.
If Q contains only one keyword k, the set of QPs SQP equals to selfE(k) (line
2); otherwise, for each combination E=(E′

1, E
′
2, ..., E

′
m) where E′

i∈selfE(ki), it
computes the set of QPs of E (line 3-18). In particular, it first gets a partition
P={SE1

, SE2
, ..., SEq

} of E according to entity names, where SEi
= {E|E ∈ E

∧label(E) = Ei} (line 4). Then it gets the set of keywords KEi
of SEi

and gets all
combinations of keywords contained by an entity node, i.e., multiple keywords
may be contained by an entity node(line 5-6). Then adds all nodes of an entity
set SKEi

to Q if they do not contain all keywords; otherwise, put them into SQP

(line 7). In line 8-18, while Q is not empty, a graph J is removed from Q in line 9
for further computing. isQP(J ′)=TRUE means that J ′ is a QP and nEntity(J ′)
denotes the number of entity nodes in J ′. Finally, SQP is returned (line 19).
Note a MCN is an instance of a QP, the checking of QP is similar to that of
MCN except that QP is defined on schema graph.

Example 4. Assume C=3, G is the entity graph in Fig.4(A). As shown in Fig.5,
according to D in Fig. 1, for Q={M, J},we have selfE(‘M’)=selfE(‘J’)={P, PH}.
There are three combinations of entities for Q, i.e., (PH, PH), (P, PH) and
(P, P). For (PH, PH), according to line 4 of Algorithm 1, P={SPH}, where
SPH= {PH1, PH2} (PH1 and PH2 denote they are two entity nodes of same
name). In line 5, we know that a PH node may contain two keywords, i.e.,
KPH={M, J}. According to line 6, there are three possible cases where a photo
node contains these keywords, that is, SKPH

={PH [M], PH [J],PH [M,J]}. In line
7, PH [M] and PH [J] are put into Q and PH [M,J] is put into SQP since it is
already a QP. In line 9, PH [M] is first removed from Q, since there is only one
node, i.e., item, adjacent to photo in G and nEntity(PH [M]←e4I)=2, it is put
into Q in line 18. There are six newly generated graph for PH [M]←e4I, and
only PH [M]←e4I→e4PH [J] is a QP. We omit the computation for (P, PH) and
(P, P) and just show them in Fig. 5.

A

e4

P(M)

PH

(M, J) PH(M)

e3

I

PH(J)

e3 P

(M, J)

e4

P(J)

A

P(M) P(J)

e4 e5

A

P(M) P(J)

e4
e6

A

P(M) P(J)

e4e5

A

P(M) P(J)

e5e5

A

P(M) P(J)

e6e5

A

P(M) P(J)

e4e6

A

P(M) P(J)

e5
e6

A

P(M) P(J)

e6e6

Q1 Q2 Q3 Q4 Q5 Q6

Q7 Q8 Q9 Q10 Q11 Q12

P : person

PH : photo

A : auction

I : item

M : Mike

J : John

Fig. 5. The set of QPs of Q={Mike, John}, partial paths are omitted, for Q1 and Q2,
the partial path is ‘photo/provider’, for Q3 to Q12, partial path is ‘person/name’.

Theorem 1 (Completeness) For a given ATP query, Algorithm 1 produces
all QPs that satisfy each QP has at most C entity nodes.

The correctness of Theorem 1 is obvious according to Algorithm 1 and Ex-
ample 4 and we omit the proof for limited space. Compared with the method
of [7], our method made improvements from three aspects: (1) by postponing
checking the real dataset until evaluating QPs, Algorithm 1 avoids the costly
I/O operation, (2) Algorithm 1 is based on entity graph, which is much smaller
than the expanded schema graph, and (3) the value of C in Algorithm 1 is much
smaller than that of [7], where C equals to the number of edges in a QP.

5 Query Processing

To accelerate the evaluation of QPs, we firstly introduce partial path index PPI.
For each keyword k, we store in PPI a list of tuples of the form < PID, Path >,
where PID is the ID of a partial path, and Path is a database instance of PID in
XML documents. All Paths are clustered together according to PID and sorted
in document order. The PPI of D in Fig. 1 is shown in Table 2, where only
partial content is presented. The second index is entity path index EPI, for each
edge e of the given entity graph, we maintain in EPI a set of database instances
of e. The EPI of D in Fig. 1 is shown in Table 3.

Theorem 2 Let Q be a given keyword query. Using PPI and EPI, the struc-
tural join operations can be avoided from the evaluation of Q.

Table 2. The partial path index of the XML document D in Fig. 1.

Keyword Tuple sets Keyword Tuple sets

Mike < photo/provider, 5/6 > John < photo/provider, 7/8 >
< person/name, 13/14 > < person/name, 18/19 >

Table 3. The entity path index of the XML document D in Fig. 1.

Edge Entity Paths Edge Entity Paths

e1 {23/24/25/11, 26/27/28/9} e4 {26/29/32/33/13}
e2 ∅ e5 {13/15/16/17/23, 18/20/21/22/23}
e3 {2/4/5, 2/4/7} e6 {26/29/30/31/18}

Proof. [Sketch] According to Algorithm 1, any keyword query Q has a set of
QPs SQP . Each Q′∈SQP consists of two kinds of relationships, (1) the relation-
ship between entity nodes and (2) the relationship between entity nodes and
attribute or attribute values. The former can be computed by probing EPI and
the latter can be computed by probing PPI, the final results can be got from
the results of all selection operations on PPI and EPI.

As shown in Algorithm 2, we find the set of QPs SQP in line 1. In line 2-3,
all QPs that contain at least one selection operation that produces empty set
is removed from SQP . In line 4-12, we check for each node EK of a QP Q′,
whether EK has database instances that contain all keywords in KE (KE is the
set of keywords attached to EK). If EK does not have such database instances,
REK

= ∅. In line 13-17, for each QP Q′ ∈ SQP , if there is an entity node EK and
REK

= ∅, Q′ is removed from SQP in line 14; otherwise, Q′ is evaluated in line
16. In line 17, the results RQ′ of Q′ are put into R. In line 18, R is returned.

Example 5. According to Example 4, Q={Mike, John} corresponds to 12 QPs
shown in Fig. 5, i.e., SQP ={Qi|1≤i≤12}. According to Table 3 and Table 2, we
can get Table 4, which shows all selection operations of SQP . Obviously, there are
8 selection operations involved in Q1 to Q12. According to line 4-12 and the PPI
in Table 2, we have E={PH(M, J), PH(M), PH(J), P (M, J), P (M), P (J)} for
Q1 to Q12 in Fig. 5. As RPH(M,J)=RP (M,J)=∅, we can delete Q1 and Q3 from
SQP in line 14. In line 16, we evaluate the remainder QPs, among which three
QPs have non-empty result sets, i.e., Q2, Q6, Q8.RQ2

= σphoto/provider∼‘Mike′⊲⊳σe3

⊲⊳σe3
⊲⊳σphoto/provider∼‘John′={R1′}. Similarly, RQ6

={R4′}, RQ8
={R3}, where

R3, R1′, R4′ are the three MCNs in Fig. 2. Other QPs in SQP have empty result
sets. Therefore the final result set RQ=RQ2

∪RQ6
∪RQ8

={R3, R1′, R4′}.

Note Algorithm 1 may produce redundant QPs. For instance, consider the
schema graph in Fig. 6 (A), where photo and item are entities, (B) is the XML
document conforming to (A). Assume C = 3, i.e., each QP contains at most
three entity nodes, Fig. 6 (C) and (D) are two QPs according to Algorithm 1.
Obviously, Fig. 6 (E) and (F) are two matches of Fig. 6 (C) and (D), respectively.
In fact, the QP in Fig. 6 (D) is redundant since in Fig. 6(E), both the two photo
nodes and the two provider nodes represent same data element in Fig. 6 (B).
Therefore before evaluating each QP Q′ in Q, we need to check in line 2-14
for each EK , whether there exists entity instances of label E such that each
entity instance d contains all keywords of K and no other E′

K′ exists such that
k ∈ (K ′ −K) and d contains k. Thus we have Theorem 3.

Theorem 3 (Non Redundancy.) If a QP evaluated in line 16 of Algorithm
2 produces a MCN d, then no other QPs can produce d as their instance.

Table 4. The selection operations of the 12 QPs of Q in Example 5.

Selection Op. Result Queries Selection Op. Result Queries

photo/provider∼‘Mike′ 6= ∅ Q1, Q2 e3 6= ∅ Q2

photo/provider∼‘John′ 6= ∅ Q1, Q2 e4 6= ∅ Q4 to Q7, Q10

person/name∼‘Mike′ 6= ∅ Q3 to Q12 e5 6= ∅ Q5, Q7 to Q9, Q11

person/name∼‘John′ 6= ∅ Q3 to Q12 e6 6= ∅ Q6, Q9 to Q12

Algorithm 2: indexMerge(Q, G, C)

SQP ← getQP(Q, G, C)1

foreach (edge e ∈ Q′, where Q′ ∈ SQP) do2

if (Rσe = ∅) then SQP ← SQP − {Q
′}3

foreach (node EK ∈ Q′ ∧Q′ ∈ SQP ∧EK 6∈ E) do4

if (EK is attached with keywords set KE) then5

REK
←merge the results of selection operations of each keyword of KE6

foreach (E′

K′ ∈ E ∧ label(E) = label(E′)) do7

R = REK
∩RE′

K′
8

if (KE ⊂ K′

E′) then REK
← REK

−R9

else if (KE ⊃ K′

E′) then RE′

K′

← RE′

K′

−R10

else {REK
← REK

−R; RE′

K′

← RE′

K′

−R}11

E ← E ∪ {EK}12

foreach (Q′ ∈ SQP) do13

if (∃EK ∈ E ∧EK ∈ Q′ ∧REK
= ∅) then SQP ← SQP − {Q

′}14

else15

RQ′ ← merge the results of all selection operations of Q′
16

R ← R∪RQ′17

return R18

photo

item

provider

(A)

*
photo

item

provider

(B)

“Mike and John”

photo(C)

photo

item(D)

photo

photo

provider

(E)

photo

item

provider

(F)

photo

provider

“Mike and John” “Mike and John”“Mike and John”

provider

~Mike, ~John

provider provider

~John~Mike

Fig. 6. Illustrating of redundant QP.

6 Experimental Evaluation

6.1 Experimental Setup

We used a PC with Pentium4 2.8 GHz CPU, 2G memory, 160 GB IDE hard
disk, and Windows XP professional as the operating system. We implemented IM
(short for indexMerge) algorithm using Microsoft Visual C++ 6.0. The compared
methods include SLCA [1], XSEarch [3]. Further, we select two query engines,
X-Hive3 and MonetDB4, to compare the performance of evaluating QPs.
3 http://www.x-hive.com
4 http://monetdb.cwi.nl/projects/monetdb/XQuery/index.html

6.2 Datasets, Indices and Queries

We use XMark5 and SIDMOD6(short for SIGMOD Record) datasets for our
experiments. The main characteristics of the two datasets can be found from
Table 5. The last column of Table 5 is the ratio of index size to document size,
where index consists of (1) PPI, (2) EPI, and (3) assistant index used to get self
entity nodes, of which PPI has much larger size than the other two.

Table 5. Statistics of datasets, L denotes Length.

Dataset Size(M)Nodes(M)Max LAvg L Index/Doc.

XMark 115 1.7 12 5.5 5.3

SIGMOD 0.5 0.01 6 5.1 4.8

We select 40 keyword queries (32 from XMark and 8 from SIGMOD), which
are omitted for limited space and classified into 4 groups containing 2, 3, 4 and
5 keywords, respectively. Table 6 shows the statistics of our keyword queries.

Table 6. Statistics of keyword queries. The 2nd column is the average number of
keywords of a keyword query, the 3rd column is the average number of QPs of a keyword
query, the 4th column is the average number of entities in a QP, the 5th column is the
average number of distinct selection operations for the set of QPs of a keyword query.

Keyword queries# of KeywordsAvg. # of QPsAvg. # of entities Avg. # of Sel. Op.

1st group 2 5.7 1.77 11.8

2nd group 3 10.3 2.13 14.1

3rd group 4 16.5 2.42 19.4

4th group 5 19 2.61 21.2

In our experiment, the node category is assigned using the method discussed
in Section 2, we assume each MCN has at most 3 entity nodes, i.e., C=3 for
Algorithm 2. Note C=3 means there may have 17 edges in a MCN, which is
large enough to find most meaningful relationships.

6.3 Evaluation Metrics

We consider the following performance metrics to compare the performance of
different methods: (1) Running time, (2) Precision and (3) Recall.

We define the Precision and Recall using the following steps: (1) users submit
their keyword queries, (2) by asking users’ search intension, we formulate the
XQuery expressions corresponding to their keyword queries, then let them select
the XQuery expressions that meet their search intension. For a given keyword
query Q, the result of the selected XQuery expressions is denoted as R. (3)
evaluate all keyword queries using different methods, the result of a specific
method on Q is denoted as RQ. Then the Precision and Recall of this method
are defined as: Precision=(RQ ∩R)/RQ, Recall=(RQ ∩R)/R.

6.4 Performance Comparison and Analysis

Figure 7 (a) to (d) compare the Precision and Recall of different methods for the
four group of keyword queries in Table 6, from which we know for XMark dataset,
the Recall of our method is 100%, this is because all results that meet users’

5 http://monetdb.cwi.nl/xml
6 http://www.sigmod.org/record/xml/

search intension are returned by our method. However, the Precision is a little
worse than SLCA and XSEarch, this is because our method may return results
involving IDREF. If the users’ search intension involves IDREF, obviously, our
method will be more effective; otherwise, SLCA has the highest Precision. The
average figures in Figure 7 (a) and (b) shows that for XMark dataset, though
the Precision of our method is not better than SLCA and XSEarch, it has the
highest Recall. For SIGMOD dataset, as shown in Figure 7 (c) and (d), both
Precision and Recall of our method are better than SLCA and XSEarch, since
in such a case IDREF is not considered, thus the number of QP is very small,
usually equals to 1, and our method always return results that meet the users’
search intension.

Figure 7 (e) shows the running time of different methods, where xHive and
MonetDB process all QPs as our method. From this figure we know existing
query engines cannot work well for these queries as they need to process large
number of complex QPs (we try to merge as many as possible query patterns
to one XQuery expression so as to make full use of their optimization methods
to achieve better performance). Further, except SLCA (which is based on tree
model and thus has lower Recall), our method achieves best query performance.

As the demo and optimization techniques of [7] are not publicly available, we
do not make comparison with it. Even though, the improvement of our method
is obvious and predictable. In our experiment, (1) C=3, (2) our method is based
on an entity graph that is much smaller than the original schema graph, (3)
our method does not need to scan real data. However, C=3 in our method
means C=12 in [7] for XMark dataset, such a value is unnegligible because [7]
is based on an expanded schema graph and the cost of computing QPs grows
exponentially, let alone scanning the real data to construct an expanded schema
graph for each query.02 55 07 51 0 0 2 3 4 5P reci si on(%) X S E a r c h S L C A I M 02 55 07 51 0 0 2 3 4 5R ecall(%) X S E a r c h S L C A I M 02 55 07 51 0 0 2 3 4 5P reci si on(%) X S E a r c h S L C A I M

02 55 07 51 0 0 2 3 4 5R ecall(%) X S E a r c h S L C A I M 11 01 0 01 0 0 0 2 3 4 5R unni ngTi me(S) I M S L C A X S E a r c h x H i v e M o n e t D B(a) Precision (XMark) (b) Recall (XMark) (c) Precision (SIGMOD Record)

(d) Recall (SIGMOD Record) (e) Running Time

Fig. 7. The comparison of the average Precision (a and c), Recall (b and d) and running
time (e). 2,3,4 and 5 denote the number of keywords in a query and the corresponding
four query groups in Table 6, respectively.

7 Conclusion

In this paper, Meaningful Connected Network (MCN) was proposed to enhance
the expressiveness of XML keyword search. Entity graph and two indices were

then introduced to improve the performance of query evaluation. We proved
our method is not only effective (Completeness and No Redundancy), but also
efficient (the costly structural join operations can be equivalently transformed
into just a few selection and value join operations). The experimental results
verify the effectiveness and efficiency of our method in terms of various evalua-
tion metrics. We will focus on designing effective automatic node classification
method and ranking mechanism considering node categories in the future work
to provide higher reliability to the effectiveness of our keyword search method.

Acknowledgements. This research was partially supported by the grants from
the Natural Science Foundation of China under grant number 60833005, 60573091;
China 863 High-Tech Program (No:2007AA01Z155); China National Basic Re-
search and Development Program’s Semantic Grid Project (No. 2003CB317000).

References

1. Yu, X., Yannis P.: Efficient Keyword Search for Smallest LCAs in XML Databases.
In: SIGMOD Conference, pp. 537-538. (2005)

2. Lin, G., Feng, S., Chavdar, B., Jayavel, S.: XRANK: Ranked Keyword Search over
XML Documents. In: SIGMOD Conference, pp. 16-27. (2003)

3. Sara, C., Jonathan, M., Yaron, K., Yehoshua, S.: XSEarch: A Semantic Search
Engine for XML. In: VLDB Conference, pp. 45-56. (2003)

4. Ziyang, L., Yi, C.: Identifying meaningful return information for XML keyword
search. In: SIGMOD Conference, pp. 329-340. (2007)

5. Yunyao, L., Cong, Y., Jagadish, H. V.: Schema-Free XQuery. In: VLDB Conference,
pp. 72-83. (2004)

6. Cong, Y., Jagadish, H. V.: Querying Complex Structured Databases. In: VLDB
Conference, pp. 1010-1021. (2007)

7. Vagelis, H., Yannis, P., Andrey, B.: Keyword Proximity Search on XML Graphs. In:
ICDE Conference, pp. 367-378. (2003)

8. Sara, C., Yaron, K., Benny, K., Yehoshua, S.: Interconnection semantics for keyword
search in XML. In: CIKM Conference, pp. 389-396. (2005)

9. Konstantin, G., Benny, K., Yehoshua, S.: Keyword proximity search in complex data
graphs. In: SIGMOD Conference, pp. 927-940. (2008)

10. Hao, H., Haixun, W., Jun, Y., Philip, S., Y.: BLINKS: ranked keyword searches
on graphs. In: SIGMOD Conference, pp. 305-316. (2007)

11. Vagelis, H., Yannis, P.: DISCOVER: Keyword Search in Relational Databases. In:
VLDB Conference, pp. 670-681. (2002)

12. Reich, G., Widmayer, P.: Beyond Steiner’s problem: a VLSI oriented generalization.
In: WG Workship. (1990)

13. Geert, J., B., Frank, N., Stijn, V.: Inferring XML Schema Definitions from XML
Data. In: VLDB Conference, pp. 998-1009. (2007)

14. Geert, J., B., Frank, N., Thomas, S., Karl, T.: Inference of Concise DTDs from
XML Data. In: VLDB Conference, pp. 115-126. (2006)

15. Nicolas, B., Nick, K., Divesh, S.: Holistic twig joins: optimal XML pattern match-
ing. In: SIGMOD Conference, pp. 310-321. (2002)

16. Haifeng, J., Wei, W., Hongjun, L., Jeffrey, X., Y.: Holistic Twig Joins on Indexed
XML Documents. In: VLDB Conference, pp. 273-284. (2003)

17. Sihem, A., Y., SungRan, C., Laks, V., S., L.: Minimization of Tree Pattern Queries.
In: SIGMOD Conference, pp. 497-508. (2001)

