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Abstract. Designing dynamic labeling schemes to support order-sensitive
queries for XML documents has been recognized as an important research
problem. In this work, we consider the problem of making range-based
XML labeling schemes dynamic through the process of encoding. We
point out the problems of existing encoding algorithms which include
computational and memory inefficiencies. We introduce a novel Search
Tree-based (ST) encoding technique to overcome these problems. We
show that ST encoding is widely applicable to different dynamic labels
and prove the optimality of our results. In addition, when combining
with encoding table compression, ST encoding provides high flexibility
of memory usage. Experimental results confirm the benefits of our en-
coding techniques over the previous encoding algorithms.

1 Introduction

XML is becoming an increasingly important standard for data exchange and
representation on the Web and elsewhere. To query XML data that conforms
to an ordered tree-structured data model, XML labeling schemes have attracted
a lot of research and industrial attention for their effectiveness and efficiency.
XML Labeling schemes assign the nodes in the XML tree unique labels from
which their structural relationships such as ancestor/descendant, parent/child
can be established efficiently.

Range-based labeling schemes[6, 11, 12] are popular in many XML database
management systems. Compared with prefix labeling schemes[7, 2, 13], a key ad-
vantage of range-based labeling schemes is that their label size as well as query
performance are not affected by the structure (depth, fan-out, etc) of the XML
documents, which may be unknown in advance. Range-based labeling schemes
are preferred for XML documents that are deep and complex, in which case
prefix labeling schemes perform poorly because the lengths of prefix labels in-
crease linearly with their depths. However, prefix labeling schemes appear to be
inherently more robust than range-based labeling schemes. If negative numbers
are allowed for local orders, prefix labeling schemes require re-labeling only if
a new node is inserted between two consecutive siblings. Such insertions can
be processed without re-labeling based on existing solutions[14, 9]. On the other
hand, any insertion can trigger the re-labeling of other nodes with range-based
labeling schemes.



The state-of-the-art approach to design dynamic range-based labeling schemes
is based on the notion of encoding. It is also the only approach that has been pro-
posed which can completely avoid re-labeling. By applying an encoding scheme
to a range-based labeling scheme, the original labels are transformed to some dy-
namic format which can efficiently process updates without re-labeling. Existing
encoding schemes include CDBS[4], QED[3, 5] and Vector[8] encoding schemes
which transform the original labels to binary strings, quaternary strings and vec-
tor codes respectively. The following example illustrates the applications of QED
encoding scheme to containment labeling scheme, which is the representative of
range-based labeling schemes.

Example 1. In Figure 1 (a), every node in the XML tree is labeled with a con-
tainment label of the form: start, end and level. When QED encoding scheme
is applied, the start and end values are transformed into QED codes based on
the encoding table in (b). We refer to the resulting labels as QED-Containment
labels which are shown in (c). QED-Containment labels not only preserve the
property of containment labels, but also allows dynamic insertions with respect
to lexicographical order[3].

(a) Containment Labels
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(c) QED-Containment Labels

Decimal

Number

QED 

Code

1 112

2 12

3 122

4 13

5 132

6 2

7 212

8 22

9 222

10 223

11 23

12 232

13 3

14 312

15 32

16 322

17 33

18 332

Fig. 1. Applying QED encoding scheme to containment labeling scheme

Formally speaking, we consider an encoding scheme as a mapping f from the
original labels to the target labels. Let X and Y denote the set of order-sensitive
codes in the original labels and target labels respectively, f maps each element
x in X to an element y = f(x) in Y . For the mapping to be both correct and
effective, f should satisfy the following properties:

1. Order Preserving: The target labels must preserve the order of the original
labels, i.e. f(xi) < f(xj) if and only if xi < xj for any xi, xj ∈ X.

2. Optimal Size: To reduce the storage cost and optimize query performance,
the target labels should be of optimal size, i.e. the total size of f(xi) should
be be minimized for a given range. To satisfy this property, f has to take
the range to be encoded into consideration. The mappings may be different
for different ranges.



The following example illustrates how this mapping in Figure 1 (b) is derived
based on QED encoding scheme.

Example 2. To create the encoding table in Figure 1 (b), QED encoding scheme
first extends the encoding range to (0, 19) and assigns two empty QED codes
to positions 0 and 19. Next, the (1/3)th (6=round(0+(19-0)/3)) and (2/3)th

(13=round(0+(19-0)×2/3)) positions are encoded by applying an insertion al-
gorithm with the QED codes of positions 0 and 19 as input. The QED insertion
algorithm takes two QED codes as input and computes two QED codes that are
lexicographically between them which are as short as possible (Such insertions
are always possible because QED codes are dynamic). The output QED codes
are assigned to the (1/3)th and (2/3)th positions which are then used to partition
range (0, 19) into three sub-ranges. This process is recursively applied for each
of the three sub-ranges until all the positions are assigned QED codes. CDBS
and Vector encoding schemes adopt similar algorithms.

We classify these algorithms i.e. CDBS, QED and Vector, as insertion-based
algorithms since they make use of the property that the target labels allow
dynamic insertions. However, a drawback of the insertion-based approach is that
by assuming the entire encoding table fits into memory, it may fail to process
large XML documents due to memory constraint. Since the size of the encoding
table can be prohibitively large for large XML documents and main memory
remains the limiting resource, it is desirable to have a memory efficient encoding
algorithm. Moreover, the insertion-based approach requires costly table creation
for every range, which is computationally inefficient for encoding multiple ranges
of multiple documents.

In this paper, we show that only a single encoding table is needed for the
encoding of multiple ranges. As a result, encoding a range can be translated into
indexing mapping of the encoding table which is not only very efficient, but also
has an adjustable memory usage. The main contributions of this paper include:

– We propose a novel Search Tree-based (ST) encoding technique which has a
wide application domain. We illustrate how ST encoding technique can be
applied to binary string, quaternary string and vector code and prove the
optimality of our results.

– We introduce encoding table compression which can be seamlessly integrated
into our ST encoding techniques to adapt to the amount of memory available.

– We propose Tree Partitioning (TP) technique as an optimization to further
enhance the performance of ST encoding for multiple documents.

– Experimental results demonstrate the high efficiency and scalability of our
ST encoding techniques.

2 Preliminary

2.1 Range-based Labeling Schemes

In containment labeling scheme, every label is of the form (start, end, level)
where start and end define an interval and level refers to the level in the



XML document tree. Assume node n has label (s1, e1, l1) and node m has label
(s2, e2, l2), n is an ancestor of m if and only if s1 < s2 < e2 < e1. i.e. interval
(s1, e1) contains interval (s2, e2). n is the parent of m if and only if n is an
ancestor of m and l1 = l2− 1. Other range-based labeling schemes[11, 12] have
similar properties.

Example 3. In Figure 1 (a), node(1,18,1) is an ancestor of node(7,8,3) because
1<7<8<18. Node(4,11,2) is the parent of node(5,6,3) because 4<5<6<11 and
2=3-1.

Although range-based labeling schemes work well for static XML documents,
insertions of new nodes may lead to costly re-labeling. Leaving gaps[12] only
allows limited number of insertions before re-labeling is required. Floating point
numbers have been suggested to be used[1]. However, the precision of floating
point number is limited by the fixed number of bits in its mantissa. As a result,
re-labeling is still necessary when the number of insertions exceeds certain limits.

2.2 Dynamic Formats

Dynamic formats proposed in the literature include binary strings that end with
1[4], quaternary strings that end with 2 or 3[3] and vector codes[8]. They are
dynamic in the sense that arbitrary insertions can be made between two consec-
utive codes without affecting other codes. We use binary strings to illustrate the
property of dynamic formats. We include the descriptions of quaternary strings
and vector codes in the extended version of this paper[10].

Definition 1. (Binary String) Given a set of binary numbers A = {0, 1}
where each number is stored with 1 bit. A binary string is a sequence of elements
in A.

Binary strings are compared based on lexicographical order. The following
theorem formalizes the dynamic property of binary strings that end with 1.

Theorem 1. Given two binary strings Cl and Cr which both end with 1 such
that Cl precedes Cr in lexicographical order (denoted as Cl ≺ Cr), we can always
find Cm which also ends with 1 and Cl ≺ Cm ≺ Cr.

Theorem 1 can be proved based on Algorithm 1.

Example 4. Given three binary strings 01, 11 and 111, it follows from lexico-
graphical order that 01 ≺ 11 ≺ 111. Insertion between 01 and 11 will produce
011, since length(01) ≥ length(11) (01⊕1, Algorithm 1 line 2). And insertion
between 11 and 111 gives 1101, since length(11) < length(111) (111 with the
last 1 change to 01, Algorithm 1 line 4).

3 ST Encoding Technique

In this section, we present the details of our ST encoding technique which can
be applied to binary string, quaternary string and vector codes, and are called
STB, STQ and STV encoding schemes respectively.



Algorithm 1: InsertBinaryString(Cl, Cr)
Data: Cl and Cr which are both binary strings that end with 1 and Cl ≺ Cr

Result: Cm which ends with 1 and Cl ≺ Cm ≺ Cr

if length(Cl) ≥ length(Cr) then1

Cm = Cl⊕ 1 /* ⊕ means concatenation */;2

end3

else Cm = Cr with the last number 1 change to 01;4

return Cm;5

3.1 ST-Binary (STB)

Data structure Our STB encoding is based by the data structure we call STB
tree. An STB tree is a complete binary tree where each node is associated with
a binary string that ends with 1, which we refer to as an STB code. The STB
code of the root is 1.

Given a node n in the STB tree, the STB code of its left child lc and right
child rc can be derived as follows:

– Clc=Cn with the last 1 replaced with 01
– Crc=Cn⊕ 1 (⊕ means concatenation)

Two STB trees with 6 and 12 nodes are shown in Figure 2 (b) and (c).
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(b) An STB tree of size 6 

(d) STB table of (b)

L-Index: level order traversal sequence number

I-Index:  inorder traversal sequence number

STB Code

1

01

11

001

011

101

111

0001

0011

0101

0111

1001

1011

1101

1111

00001

00011

00101

L-Index

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

I-Index STB Code

1 0001

2 001

3 0011

4 01

5 0101

6 011

7 0111

8 1

9 1001

10 101

11 11

12 111

I-Index STB Code

1 001

2 01

3 011

4 1

5 101

6 11

Fig. 2. STB encoding of two ranges 6 and 12

Lemma 1. The left subtree of a node n contains only STB codes lexicographi-
cally less than Cn; The right subtree of n contains only STB codes lexicographi-
cally greater than Cn.



Proof. [Sketch] Given any STB code n which is a binary string that ends with
1, we denote Cn as “S1” where “S” is a binary string or an empty string. It
follows that Clc=“S01” and similarly, Clc.lc=“S001” and Clc.rc=“S011”. Now
it is easy to see that all the STB codes in the left subtree have “S0” as their
prefix. Since “S0” precedes “S1” in lexicographical order, all the STB codes in
the left subtree are lexicographically less than Cn. The rest of the lemma follows
similarly.

Theorem 2. An STB tree is a binary search tree based on lexicographical order.

Proof. Theorem 2 follows directly from Lemma 1.

An L table stores the STB codes of an STB tree in order of level order
traversal. We denote the index of an L table as L-Index and use L to denote
the set of decimal numbers in L-Index. An important observation about L table
is that it can be shared by STB trees of different sizes: the first m rows of the
L table represents an STB tree of size m in level order. An STB table stores
the STB codes of an STB tree in order of inorder traversal. We denote the index
of an STB table as I-Index and use I to denote the set of decimal numbers in
I-Index.

Example 5. Consider the STB tree of size 6 in Figure 2 (b). If we order its STB
codes according to level order traversal sequence, they match the first 6 rows
of the L table in (a). Ordering the codes in order of inorder traversal sequence
would produce the STB table in (d). Similar observation can be made for the
STB tree in (c).

Algorithms To encode a range m with STB encoding is to realize the mappings
represented by an STB table of size m. Intuitively, this can be achieved by
traversing the STB tree of size m in inorder.

Formally speaking, STB encoding defines a mapping f : I → B where B
denotes the set of STB codes. More specifically, f is established through two
levels of mappings: f(i) = h(g(i)) where g : I → L and h : L → B. Deriving
h is straight forward from the L table. Depending on the range to be encoded,
the size of L table can be extended dynamically. How g can be established is
shown in Algorithm 2 which is based on inorder traversal of a binary tree. First
a stack path is initialized to store the L-Indices of a root-to-leaf path(line 1).
Then we proceed to call Function PushLeftPath which pushes the L-Index of
the leftmost path (starting from the root) into path (line 2). For each i ∈ I, we
map i to the top element in path (Recall that during an inorder traversal, the
leftmost element is always visited first). Then the L-Index of the leftmost path
that starts from the right child of the top element is pushed into path (line 3 to
6).

Next we show that STB encoding is order preserving and of optimal size.

Theorem 3. Given a range m and any two numbers j and k such that 1 ≤
j < k ≤ m, it follows that Cj ≺ Ck where Cj and Ck denote the STB codes
transformed from j and k based on STB encoding.



Algorithm 2: ItoLMapping(m)
Data: m which is the range to be encoded.
Result: The mapping from I-Index to L-Index stored in an array ItoL[1 . . . m].
Initialize Stack path;1

PushLeftPath(path, 1, m);2

for i=1 to m do3

l=path.Pop();4

ItoL[i] = l;5

PushLeftPath(path, 2× l + 1, m) /* 2× l + 1 −→ right child */6

end7

Function PushLeftPath(path, l, m)

while l ≤ m do
path.Push(l);
l = 2× l /* 2× l −→ left child */

end

Proof. Since an STB tree is a binary search tree (Theorem 2), an inorder traver-
sal of the STB tree visits the STB codes in increasing lexicographical order. In
other words, STB encoding is order preserving.

Lemma 2. Level i of an STB tree has 2i−1 STB codes (except possibly the last
level) of length i. (Assume the root is of level 1).

Lemma 2 easily follows from the properties of STB trees.
Since an STB code is a binary string that ends with 1, there are 2i−1 possible

STB codes of length i. From Lemma 2, we can see that an STB tree has all the
possible STB codes of length i at level i (except possibly the lowest level). The
fact that an STB tree is a complete binary tree implies that STB codes with
length i are always used up before STB codes with length i+1 are used. Therefore
STB encoding produces labels with optimal size.

3.2 ST-Quaternary (STQ)

We illustrate our STQ encoding scheme using the data structure we call STQ
tree. An STQ tree is a complete ternary tree. Each node of the STQ tree is
associated with two STQ codes: left code (L) and right code (R) where R = L
with the last number 2 change to 3. L and R of the root are 2 and 3 respectively.

Given a node n in the STQ tree, the left code of its left child (lc), middle
child (mc) and right child (rc) can be derived as follows:

– Llc= Ln with the last number 2 change to 12;
– Lmc= Ln ⊕ 2 (⊕ means concatenation);
– Lrc= Rn ⊕ 2.



(c) An STQ tree of size 12

(The decimal numbers above and below each node 

indicate its L-Index and I-Index respectively)
(e) STQ table  of  (c)(a) L table
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(b) An STQ tree of size 6

(d) STQ table of (b)

L-Index: level order traversal sequence number

I-Index:  inorder traversal sequence number

L-Index

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

STQ Code

2

3

12

13

22

23

32

33

112

113

122

123

132

132

212

213

222

223

I-Index STQ Code

1 112

2 113

3 12

4 122

5 123

6 13

7 2

8 22

9 23

10 3

11 32

12 33

I-Index STQ Code

1 12

2 13

3 2

4 22

5 23

6 3

Fig. 3. STQ Encoding of two ranges 6 and 12

For every node, we have R = L with the last number 2 change to 3.
Two STQ trees with 6 and 12 codes are shown in Figure 3 (b) and (c).

Lemma 3. The left subtree of a node n contains only STQ codes lexicograph-
ically less than Ln; The middle subtree of n contains only STQ codes lexico-
graphically between Ln and Rn; The right subtree of n contains only STQ codes
lexicographically greater than Rn.

The proof is similar to that of Lemma 1, so we omit it here. Given Lemma
3, an STQ tree can be seen as a search tree if we define the inorder traversal
sequence to be in order of: (1) Traverse the left subtree; (2) Visit L of the root;
(3) Traverse the middle subtree; (4) Visit R of the root and (5) Traverse the
right subtree. In this way, we can define I-Index, L-Index, STQ table and L
table similar to those of STB tree.

STQ encoding defines the mapping from I-Index to STQ codes which is
achieved through two levels of mappings: from I-Index to L-Index and from L-
Index to STQ codes. As shown in Figure 3, the mappings from L-Index to STQ
codes are stored a single L table (a) which can be shared by multiple ranges.
The mappings from I-Index to L-Index can be derived from Algorithm 4 which
performs an inorder traversal of the STQ tree.

The correctness of our STQ encoding algorithms follows from the fact that
its inorder traversal visits the STQ codes in increasing lexicographical order.
The resulting label size is also optimal because our algorithm favors STQ codes
with smaller lengths.



Algorithm 4: ItoLMapping(m)
Data: m which is range to be encoded.
Result: The mapping from I-Index to L-Index stored in an array ItoL[1 . . . m].
Initialize Stack path;1

PushLeftPath(path, 1, m);2

for i=1 to m do3

l=path.Pop();4

ItoL[i] = l;5

if l mod 2 =1 then /* l −→ lcode */6

PushLeftPath(path, 3× l + 2, m) /* 3× l + 2 −→ middle child */7

else /* l −→ rcode */8

PushLeftPath(path, 3× l + 1, m) /* 3× l + 1 −→ right child */9

end10

end11

Function PushLeftPath(path, l, m)

while l ≤ m do
path.Push(l + 1);
path.Push(l);
l = 3× l /* 3× l −→ left child */

end

3.3 ST-Vector (STV)

Our STV encoding scheme is based on the data structure we call STV tree. It
is a complete binary tree where each node is associated with a vector code: C.
The vector codes of the root, its left child and right child are (1,1), (2,1) and
(1,2) respectively.

Given a node n and its parent p in the STV tree, the vector codes of its left
child (lc) and right child (rc) can be derived as follows: If n is the left child of
p, Clc=2 × Cn - Cp; Crc=Cn + Cp; Else, Clc=Cn + Cp; Crc=2 × Cn - Cp. An
example of STV tree is shown in Figure 4.

(4,1) (5,2) (5,3) (4,3) (3,4) (3,5)

(3,1) (3,2)

(2,5) (1,4)

(2,3) (1,3)

(2,1) (1,2)

(1,1)

(5,1) (7,2) (8,3)

Fig. 4. STV tree



Theorem 4. An STV tree is a binary search tree based on vector order.

The proof is based on mathematical induction, we omit it here. Given the STV
tree, we can define L table similar to that of STB encoding which stores the
mapping from L index to Vector codes. Moreover, since STV tree is a binary
search, Algorithm 2 can be directly applied to derive the mapping from I to L
index. We ignore the details of STV encoding since it is similar to STB encoding.

3.4 Comparison with insertion-based approach

Compared with the insertion-based approach, our design of ST encoding as a two
level mapping has the following advantages: (1) Since h : L → STB/STQ/STV code
remains the same for different ranges, the cost of encoding a new range is only
to compute g : I → L. By sharing h for different ranges, we avoid costly table
creation for every range; (2) Compression technique can be conveniently applied
to L table to provide high flexibility of memory usage (Section 4). The compres-
sion technique is easily incorporable because compressing L table only affects
h while h and g are independent of each other; (3) By exploiting the common
mappings of different ranges, we can further speed up the encoding of multiple
ranges (Section 5).

4 Encoding Table Compression

The L table of STB is shown in Figure 5 (a). Considering its STB codes with
indices from 2 onwards, we can see that every STB code at index 2i + 1 can be
deduced from the STB code at index 2i by changing the second last number to
1. Therefore we can compress this L table to half by only retaining the rows with
even indices ((b)). Thus, the mapping from L-Index to STB codes for becomes:

(b) Compressed L

table with C=1

(c) Compressed L 

table with C=2

(a) The original 

L table of  STB

(e) Compressed L 

table with C=0

(d) The original 

L table of STQ

(f) Compressed L

table with C=1

L STB Code

1 1

2 01

3 11

4 001

5 011

6 101

7 111

8 0001

9 0011

10 0101

11 0111

12 1001

13 1011

14 1101

15 1111

16 00001

17 00011

18 00101

L STB Code

1 001

2 0001

3 1001

4 00001

L STB Code

1 01

2 001

3 101

4 0001

5 0101

6 1001

7 1101

8 00001

9 00101

L STQ Code

1 2

2 3

3 12

4 13

5 22

6 23

7 32

8 33

9 112

10 113

11 122

12 123

13 132

14 133

15 212

16 213

17 222

18 223

L STQ Code

1 12

2 112

3 212

L STQ Code

1 2

2 12

3 22

4 32

5 112

6 122

7 132

8 212

9 222

Fig. 5. Compress L tables of STB and STQ by factors of 2C and 2× 3C respectively



h(l) →





LTable[l/2] , when l mod 2 = 0

LTable[bl/2c]with the sec-
ond last number change to 1 , when l mod 2 = 1

(1)

The table in (b) can be further compressed by a factor of 2 if we consider
the STB codes with indices from 2 onwards. We exclude the STB codes with
odd indices since they can be derived from the STB codes with even indices
by changing the third last number to 1 ((c)). In this way, we can compress the
L table of STB by factors of 2, 4, 8 . . . 2C and we denote C as the compression
factor.

By analyzing the L table of STQ in Figure 5 (d), the straight forward com-
pression is to exclude the STQ codes with even indices since they can be derived
from the STQ codes with odd indices by changing the last 2 to 3 ((b)). Therefore
the mapping from L-Index to STQ codes becomes:

h(l) →





LTable[dl/2e] , when l mod 2 = 1

LTable[l/2] with the
last number change to 3 , when l mod 2 = 0

(2)

Consider the table in Figure 5 (e), it can be further compressed by a factor of 3
if we consider the STQ codes from index 2 onwards. The STQ codes at indices
3i and 3i + 1 can be derived from the STQ code at index 3i− 1 by changing the
second last number to 2 and 3. Therefore we exclude the STQ codes at indices
3i and 3i + 1 and the resulting table is shown in (f). In summary the L table of
STQ can be compressed by factors of 2, 6, 18 . . . 2× 3C .

The L table of STV can be compressed by a factor of 2 based on the bilateral
symmetry we observe in the STV tree (Figure 4). Further compression is possible
based on the symmetry at lower levels. Overall we can achieve compression
factors of 2C .

5 Tree Partitioning (TP)

We introduce Tree Partitioning (TP) as an optimization to further enhance the
performance of ST encoding technique. We use STB tree to illustrate the idea of
TP. Our optimization technique can be easily adapted for STQ and STV trees.

STB encoding technique, as we have shown, is a mapping f(i) = h(g(i))
where g : I → L and h : L → B. Since h remains the same for different
ranges, the cost of encoding a range is dominated by g. The motivation for TP
optimization is that, given multiple ranges to be encoded, the computational
cost of g can be reduced if we can exploit the common mappings for ranges that
are close to some extent.

Suppose there are two STB trees T of size s1 and T ′ of size s2 (without loss
of generality, we assume s1 < s2), we analyze the common mapping of the two
trees when they have the same height, say k, i.e. 2k ≤ s1 < s2 < 2k+1.

Our TP algorithm divides T ′ into three partitions:



(a) An STB tree T of size 9
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(b) An STB tree T’ of size 11

M’

Fig. 6. TP Optimization

L partition All the nodes on the left of the path from the root to the node
with L-Index=s1 + 1.

R partition All the nodes on the right of the path from the root to the node
with L-Index=s2

M partition The rest of the nodes in the STB tree

T is also divided into three partitions: L’, R’ and M’. L’ and L partitions have
the same L-Index and so do R’ and R partitions. And the rest of the nodes fall
into M’. g in L and L’ partitions are the same as the two partitions overlap and
are visited first during inorder traversal. If we increase all the I-Index in R by
s2 − s1, g in R and R’ also coincide.

Example 6. Two STB trees T and T’ in Figure 6 (a) and (b) are partitioned
based on our TP algorithm. In the resulting partitions, g in L and L’ are the
same. g in region R can be derived from that in R’ if we increase the L-Index in
R by 11− 9 = 2.

Since both M and M’ bounded by two root-to-leaf paths, Algorithm 2 can be
easily modified to compute the mappings in them (an intermediate state can be
calculated based on direct calculation which is available in [10]). By partition-
ing the range to be encoded, we can re-use some of the previously-computed
mappings and avoid re-computing g for the whole range.

6 Experiments and Results

In this section, we experimentally evaluate and compare the various encoding
techniques developed in this paper against the insertion-based encoding schemes
including CDBS, QED and Vector. The comparison of CDBS, QED and Vector
with the previous labeling scheme are beyond the scope of this paper and can
be found in [5, 8].

We used data sets from XMark benchmark, Treebank, SwissProt and DBLP
datasets for our experiments. The characteristic of these data sets are shown
in Table 1. We used JAVA for our implementation and our experiments are
performed on Pentium IV 3 GHz with 1G of RAM running on windows XP.



Data set Max/average fan-out Max/average depth No. of nodes

XMark 25500/3242 12/6 179689
Treebank 56384/1623 36/8 1666315
SwissProt 50000/301 5/3 2437666

DBLP 328858/65930 6/3 3332130
Table 1. Test data sets

6.1 Encoding Time

First we evaluate the encoding time of these encoding schemes using contain-
ment labels of the XMark data set. We randomly generated 80 XMark documents
whose sizes range from 1 MB to 90 MB. In Figure 7, we observe clear time dif-
ference between ST encodings and insertion-based encodings: our STB and STV
encodings are both approximately 3 times faster than CDBS and Vector en-
coding; Moreover, our STQ encoding is approximately 7 times faster than QED
encoding. The reason is clear from the comparison of algorithms: insertion-based
encodings need to create an encoding table for every range, which is significantly
slower than our ST encodings that perform index mapping of a single table. The
advantages of ST encoding are more significant when we apply TP optimization
which exploits common mappings of encoding multiple ranges. Overall ST encod-
ings with TP are by a factor of 5-11 times faster than insertion-based encodings
for containment labels. The results confirm that our ST encoding techniques
are highly efficient for encoding multiple ranges and substantially surpass the
insertion-based encodings.
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6.2 Memory Usage and Encoding Table Compression

We compare the memory usage of different algorithms which is dominated by
the size of the encoding tables and the results are shown in Figure 8. Without



any compression, the table size of STB and CDBS are the same, and so are their
table creation times. However, unlike CDBS whose table size is fixed, our STB
encoding can adjust its table size by varying the compression factor C. A larger
C yields a smaller table size and less table creation time. Similar observation can
be made in Figure 8 (c) and (d) for quaternary strings. The table creation time
of STQ is less than that of QED due to the complexity of the QED insertion
algorithms. By adjusting the compression factor, our ST encoding can process
large XML data sets with limited memory available.
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Fig. 8. Encoding table compression

6.3 Label size and query performance

We empirically evaluate the label size and query performance of different labeling
schemes. We have proved that both STB and STQ encodings produce labels of
optimal sizes. The labels of vector and STV encoding schemes are stored as UTF8
strings. From our experimental results, their label sizes may differ by a small
amount which is overall negligible, so we ignore the diagrams here. Moreover,
since the labels produced by ST encoding and its insertion-based counterpart
are of the same format, their query performance is also the same. In summary,
the labels produced by our ST encoding techniques are of optimal quality.



7 Conclusion

In this paper, we take the initiative to address the problem of efficient label
encoding. We propose ST encoding technique which can be applied to range-
based labeling schemes to produce dynamic labels. We show that ST encoding
technique is highly efficient and has a wide application domain. Compared with
insertion-based encodings which are main memory-based and have fixed memory
requirements, our ST encoding technique has an adjustable memory usage and
is therefore able to process very large XML documents with limited memory
available. An interesting future research direction is to explore more dynamic
formats and study how the application scope of ST encoding could be extended
to these formats.
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