
Tok-Wang LING
Department of Information Systems

and CornDoter Science
National University of Singapore

Pit-Koon TEO
Data Resources

Ling-Ling YAN
institute of Systems Science

DBS Bank National University of Singapore

ABSTRACT

A 3-level schema architecture is proposed to
address some inadequacies in recent object-oriented
data models. The conceptual schema is based on a
normal form object-oriented entityrelationship IOOER)
diagram. A set of mapping rules is defined that allows
00 externalschemas, based on the 02 data model, to
be generated from the conceptual schema. Similar
mapping rules can be defined to generate external
schemas for other 00 data models. Other features of
this model include the incorporation of derived
attributes, deductive rules, triggers and methods.

proposed 00 data models [3,6,7,17 etc]) is treated as an
external schema that is generated from the conceptual
schema by applying a set of mapping rules. Distinct sets of
mapping rules are needed to handle different 00 data
models. Each 00 database schema is, therefore, a view of
the conceptual schema. User applications (00 or otherwise)
can then be written based on the 00 external schemas that
are generated from the conceptual schema. The advantages
of the 00 approach are therefore preserved at the external
schema level. To illustrate our approach, a set of mapping
rules is defined in this paper to generate, as examples, 02
class definitions from a normal form OOER diagram. Similar
mapping rules can be defined for other 00 data models.

1 INTRODUCTION

There exist many inadequacies[l6] in the object-
oriented (00) paradigm, eg. lack of a formal foundation,
general disagreement about 00 concepts, a navigational, as
opposed to a declarative, interface, lack of a standard
declarative query language etc. Some of these inadequacies
have been addressed but many issues remain unresolved. In
this paper, a three-level schema architecture, comprising an
external schema level, a conceptual schema level and an
internal schema level, is proposed to address a set of 00
data modelling issues, viz. (1) the problematic way in which
m-n, n-ary and recursive relationships are handled in the 00
approach, (2) the lack of general and flexible support for
external schemas or views, and (3) the inability to
differentiate good 00 schema design from bad. Our
approach leverages research efforts in Entity Relationship
(ER) data modelling [5].

Section 2 provides some background information.
Section 3 compares the 00 and ER data models. Section 4
presents some salient features of our approach. In Section 5,
a set of mapping rules for deriving 02 external schemas
from a normal form OOER diagram is given. Section 6
discusses some related work. Section 7 concludes.

2 BACKGROUND

The 00 concepts presented in this section are based
primarily on the 02[6] data model, supplemented with
examples from ORION[3] and POSTGRES[17].

The 00 data modelling issues are resolved at the
conceptual schema level. To represent the conceptual
schema, the notion of a normal form OOER diagmm is
introduced. A normal form OOER diagram has all the
structural features of a classic ER diagram[5,14]. It goes
beyond the classic ER diagram in two areas. First, a
behavioural dimension is included that incorporates the
notions of methods, derived attributes, deductive rules and
triggers. This yields an OOER diagram. Second, the
structural quality of the OOER diagram is improved by
applying the techniques of [14] to convert the OOER
diagram into a normal form OOER diagram. Informally, a
normal form OOER diagram is a normal form ER diagram
[14] extended with the notions of methods, derived
attributes, deductive rules and triggers.

A conceptual entity is anything that exists and can be
distinctly identified. For example, a person, an employee, a
student etc are conceptual entities. In an 00 system, all
conceptual entities are modelled as objects. An object has
structural properties defined by a finite set of attributes and
behavioural properties defined by a finite set of methods.
Each object is associated with a logical non-reusable and
unique object identifier (OID) [111. The OID of an object is
independent of the values of its attributes.

All objects with the same set of attributes and
methods are grouped into a class, and form instances of that
class. We distinguish between a lexical class and a
non-lexical class. A lexical class contains objects that can be
directly represented by their values, eg. integer, string etc.
A non-lexical class contains objects, each of which is
represented by a set of attributes and methods. Instances of
a non-lexical class are referred to by their OIDs. Examples
of non-lexical classes include PERSON, EMPLOYEE,
SUPPLIER etc.

The domain of an attribute of a non-lexical class A
can be one of the following:

Each 00 database schema (based on any of the
(Case a) a lexical class such as integer, string etc. An

attribute with this domain is called a data-valued attribute@].

GENERATING OBJECT-ORIENTED VfEWS FROM AN ER-BASED CONCEPTUAL SCHEMA

148

(Case b) a non-lexical class B. An attribute with this
domain is called an entity-valued attribute [8].

Note the recursive nature of this definition. There is
an implicit binary relationship between A and B. The value
of the attribute is the OID of an instance of B, which must
exist before it can be assigned to the attribute. This provides
referential integrity. A special case exists in which the class
B is, in fact, A. This represents a cyclic definition in the 00
model. Cyclic definitions are used to specify recursive
relationships such as a part and its subparts, a course and its
prerequisite courses etc. A cyclic definition needs not be
direct; for instance, a class A may reference a class Bl
which in turn reference class B2 and so on until class Bn is
referenced by class Bn-1 for some n. Then Bn can reference
A, thus completing the cycle. In some 00 systems, eg.
ORION, the relationship between A and B can be given
semantics such as IS-PART-OF, in which case A is a
composite object [12] comprising B. Orion also supports the
concept of an existentially-dependent object, in which the
existence of the object depends on the existence of its parent
object. The deletion of an object triggers a cascading delete
of all objects that are existentially dependent on the deleted
object. This adds to the integrity features of ORION.

(Case c) a set, set(E) where E is either a lexical class
or a non-lexical class. An attribute with this domain is called
a set-valued attribute.

If E is lexical, values from E are stored in the set. If
E is a non-lexical class, members of the set can either be an
instance of E or its subclasses. In this case, the set comprises
instances from possibly heterogeneous classes. Only the OID
of each instance is stored in the set. In some systems, eg.
02, both sets and lists are supported. While it is correct to
differentiate between a list and a set, this paper treats a set
and a list as equivalent.

(Case d) a query type whose values range over the set
of possible queries coded in a query language. An attribute
with this domain is called a query-valued attribute.

The value of a query-valued attribute is the result of
the query, which is a set of objects satisfying the query
condition. An example of a system that allows attributes of
type query is POSTGRES.

(Case e) a tuple type. An attribute with this domain
is called a tuple-valued attribute.

This represents an aggregation of attributes of the
tuple type, which is treated as a composite attribute of A. An
attribute of the tuple type can be a data-valued,
entity-valued, set-valued, query-valued or tuple-valued
attribute.

A type constructor is a mechanism for building new
domains. For example, the set and tuple constructs described
above are used to create domains for set-valued and
tuple-valued attributes respectively. A complex object is built
using type constructors such as sets, tuples, lists and nested
combinations of these. The structure of objects (complex or
otherwise) is hierarchical.

The class hierarchy is one of the most important
features of the 00 paradigm. It provides a taxonomy of

classes that are related through the ISA relationship. Given
two classes X and Y, X ISA Y implies that each instance of
X is also an instance of Y. This has a set inclusion
semantics. We call X a subclass of Y and we call Y a
supercks of X. A class hierarchy provides an inheritance
mechanism which allows a class to inherit properties
(attributes/methods) from its superclass(if any.

3 COMPARISON BETWEEN 00 AND ER MODELS

The ER model was first introduced in [5]. It
incorporates the concepts of entities, relationships and
attributes and allows the structural representation of a
database to be captured in an ER diagram. The ER diagram
has proven to be a useful database design tool. Good normal
form relations can be generated from a normal form ER
diagram 1141 and directly implemented on any relational
DBMS. Figure 1 shows an ER diagram which will be used
to illustrate the various concepts of this paper.

We believe that all the structural properties of the 00
approach can be derived (generated) from the ER model. For
instance, an 00 class hierarchy can be directly represented
using the ER relationship type ‘ISA’. Figure 1 shows a
representation of a class hierarchy rooted at the PART entity
type. The composite entity type VEHICLE with component
parts ENGINE and DRIVETRAIN is represented using the
IS-PART-OF relationship type. Weak entities (eg.
DEPENDENTS) correspond to existentially dependent
objects [12] which cannot exist independently of their parent
objects. Table 1 provides a summary of the comparison
between these two models. Note that there is no equivalent
concept of methods in the ER model.

The ER model supports functional dependencies,
multi-valued dependencies and cardinality constraints among
entities, relationships and attributes. These concepts are not
inherent in the 00 approach and have to be explicitly
enforced using, for example, programming. Each regular
entity or relationship type is associated with an identifier
which is dependent on the values of the primary key
attributes. This is different from the OID of an object. The
00 approach provides only one type of ISA relationship. In
contrast, the ER approach provides special ISA relationship
types1143 such as UNION, INTERSECTION, DECOMPOSE
etc. which consider the set properties between entity types.

4 RESOLVING 00 DATA MODELLING ISSUES

The 00 approach suffers from a number of 00 data
modelling inadequacies, viz. (1) the problematic way in
which m-n, nary and recursive relationships are handled in
the 00 approach, (2) the lack of general and flexible support
for external schemas or views, and (3) the inability to judge
the quality of an 00 database schema. We address these
issues by adopting the following steps:

149

(1) Represent a database schema by an ER diagram.
(2) Imbue the ER diagram of Step(l) with methods,

derived attributes, deductive ruIes and triggers to obtain an
OOER diagram.

(3) Convert the OOER diagram of Step(2) into a
normal form OOER diagram, using the techniques
introduced in [14]. The normal form OOER diagram is used
as the conceptual schema.

(4) Apply a set of mapping rules to generate 00
external schemas from the normal form OOER diagram.

Step 1 ensures that relationships such as m-n, nary,
recursive, ISA, IS-PART-OF etc are explicitly represented.
In the 00 approach, to represent m-n, n-ary and recursive
relationship types, or to answer symmetric queries, some
data redundancy may need to be introduced, eg. through the
use of inverse pointers. This redundancy is not controlled
and introduces problems similar to those of the hierarchical
model. By providing strong support for association among
entity types, it eliminates the need to maintain inverse
pointers among related entities, because their semantic

association is now conceptually represented by a relationship.
Another advantage of supporting relationships directly is that
the cardinalities of entity types participating in a reIationship
type are displayable on the ER diagram. This is a cardinality
constraint which is absent from most 00 data models.

Step 2 provides a behavioural dimension to an ER
diagram to obtain an OOER diagram. (See later subsections)

Step 3 converts an OOER diagram into a normal form
OOER diagram, using the techniques of 1143. A normal form
OOER diagram is considered ‘good’ structurally since it
satisfies the criteria for a normal form ER diagram[141. Note
that a normal form ER diagram is based on a firm theoretical
foundation provided by normalisation/dependency theories.

Step 4 allows the generation of 00 external schemas
from the conceptual schema. This addresses the problem of
a lack of general and flexible support for views or external
schemas in the 00 approach. In Section 5, a set of mapping
rules is provided to generate 02 external schemas. Similar
mapping rules can be defined for other 00 data models.

The rest of this section describes the behavioural
component of our model, viz. methods, triggers, derived

N \dm+ (j%+

” I
DRIVE-TRAIN

IROUND-RED-PART%

FIGURE 1 : AN EXAMPLE ER DIAGRAM

RED-PART 53

N SUBORDINATE

EPENDENTS

\\

Object-Oriented Data Model Entity Relationship Model

Class Entity Type or Relationship
Type or Domain of attributes

An instance of a class Entity or relationship or
attribute value

Class has attritutes Attributes
describing its structural

properties

Domain of an attribute of a
class can itself be 8

The relationship type batwean

class. Implicitly, a binary
tuo or mare entity types is
made explicit.

relationship exists between
these too classes.

E$jx:ntially Dependent Ueak Entity <with associated
1 EX or ID relationship)

Wethods No equivalent concept

Coqmsite object Entity types cormacted by IS-
PART-OF relationship type

Use of cyclic definition Natural way of representing
(see text) to represent reCUrSiVe re(etionships. Role
recursive relationships names are used to distinguish
(eg. part-subpart, course- entity types participating in

prerequisites etc) recursive relationships.

Class hierarchy ISA, INTERSECTION constructs

Set-valued attributes Multi-valued attributes

Tuple-valued attributes Ccmposite attributes

Table 1: Comparison of ER and 00 Data Models

attributes and deductive rules.

4.1 Adding Methods to the OOER Model

Methods are categorized into system genemted
methods, database administmzor (DBA) definable methods
and progmmmerdefinable methods. System generated
methods exist in both the conceptual and external schema
levels and include code to browse instances of a class, or to
retrieve or update an object’s attribute values. These methods
are more efficiently optimised and they free programmers
from writing trivial code. Updates to identifiers of entity
types are handled independently of system generated
methods. A DBA must treat these updates as special one-
time operation and ensure that database consistency is
maintained after the updates are done. DBA-definable
methods are accessible by all author&d users of the database
and can be defined at both the conceptual and external
schema levels. For instance, the DBA can define methods to
provide generic computations such as calculation of interest,
commission based on generic formulas, etc. Programmer-
definable methods, eg. hire an employee, print an entity etc
are application specific and not generally accessible. The
proper place for programmer-definable methods is at the
external, rather than conceptual, schema level. This is no
different from conventional practice, in which a database
programmer writes application programs based on an
external schema available to him.

4.2 Triggers.

Triggers can be system generated to enforce simple
integrity constraints, or explicitly coded by DBA and
programmers at both the conceptual and external schema
levels. For example, consider Figure 1, in which projects
sponsered by departments are shown by the relationship
SPONSER. A simple trigger to enforce the referential
constraint that exists between PROJECT and SPONSER is:

AFTER DELETE ON PROJECT
REFERENCING OLD AS OLD-PROJECT
DELETE FROM SPONSER S WHERE S. P# = OLD-PROJECT. P#.

Note that it is difficult to enforce more complicated
constraints using triggers, eg. suppliers who do not supply
all red parts must supply a blue part or a green part with
quantity greater than 100.

4.3 Derived Attributes

Derived attributes can be obtained from other
attributes, based on some derivation rules. For example, in
Figure 1, the ‘Commission’ attribute of the EMPLOYEE
entity type is derivable from the ‘Salary’ and ‘SalesAmt’
attributes by some computation rule. Derived attributes can
be treated as being computed by a method in the 00 sense.
Derived attributes are explicitly coded by either the DBA
(conceptual and external schema levels) or programmers (at
external schema level).

4.4 Deductive Rules

Simple deductive rules can be defined for classes by
predicating on attributes of a class. For example, a
RED-PART deductive rule can be defined as:

RED_pART(P#, Pname, Price) :- PART(P#, Pname, ‘red’, Price).

The RED-PART deductive rule is character&d by
the fact that the positions of the variables (ie P#, Pname,
Price) in each clause are important. However, the positions
of attributes in an ER diagram representation of an entity are
immaterial. In [19], we propose a notation to address this
difference. Example 4.4.1 illustrates this notation.

Example 4.4.1 : The above RED-PART deductive rule can
be either be rewritten as:

RED-PART(X:P#, Y:Pname, Z.-Price) :-
PART(X:P#, Y:l?name, ‘red ‘:Color, 2:Price).

OR
RED-PART(z:Price, X:P#, CPname) :-

PART(Y:Pname,X:P#, ‘red’:Color,Z:Price).

In the above representations, a variable is placed to the left
of ‘:’ and a corresponding attribute name or role name is
placed to the right of ‘:‘. This notation provides for more
expressive power in the sense that each variable in a

151

-. ;:...- _ --u

predicate is tagged with an attribute or role name. It ensures
that the positions of variables in a predicate no longer
matter; two attributes can be interchanged without affecting
the meaning of the rule. Another advantage of this notation
is that it reduces the need for anonymous variables.

5 MAPPING RULES

In this section, a set of mapping rules which allows
02 external schemas to be constructed from a normal form
OOER diagram is provided. The justifications and
motivations for these rules are given through several
examples. Mapping rules for other 00 data models can be
similarly obtained. Appendix I gives an example 02 schema
which will be used to illustrate the mapping rules.

5.1 Generic Rules

(Rule 1) Each (regular or weak) entity type can be
mapped to an external class. Only regular relationship types
can be mapped to an external class.

Two points are to be noted: (1) It is possible to have
class specifications for regular relationship types (eg.
SPJ-VIEW1 in Appendix I is based on the SPJ relationship
type in Figure 1). As noted in 141, it is necessary to provide
class specifications for ternary and higher degree relationship
types if it is required to model such relationship types in an
external schema. (2) A weak entity type A may be mapped
to an external class A’ without also mapping the entity type
on whose existence A depends. See Rule 6 for a mapping
rule that applies to weak entity types.

(Rule 2) Not all entity/relationship types have a
corresponding external class in the external schema.

This satisfies the maxim that an external schema is an
abstraction of the conceptual schema which emphasises
relevant details while suppressing unwanted details.

schema
(Rule 3) An entity/relationship type of the conceptual
may have more than one corresponding external

class specification.
An entity/relationship type can therefore be viewed in

different ways. In Appendix I, external classes EMPVIEWl
and EMPVIEWZ have the same underlying entity type
EMPLOYEE. Classes SPJ-VIEW1 and SPJ VIEW2 are
different views of the same underlying relation&p type SPJ.

(Rule 4) An external class A’ whose underlying entity
type is A must include at least one key of A as its attribute.
This is an entity-preserving condition, which ensures the
updatability of A’. However, an external class A’ generated
from a relationship type may not possess a key of the
underlying relationship type as its attribute.

This rule ensures that apparently frivolous and
meaningless views (eg. a class comprising only attributes sex
and salary generated from the entity type EMPLOYEE in
Appendix I) cannot be generated from any entity type. There
is no equivalent ‘relationship-preserving’ condition because,

in some cases, it may be semantically meaningful to generate
an external class from a relationship set without retaining the
key of the relationship set. For instance, given the SPJ
relationship set, it is meaningful to generate a view SP which
contains information about the parts supplied by suppliers.

In Appendix I, key attributes of external classes based
on entity types are indicated using comments. Both
SPJ VIEW1 and SPJ-VIEW2 are created from the
relationship set SPJ but SPJ-VIEW1 retains the key
attributes of SPJ while SPJ-VIEW2 does not.

(Rule 5) Consider a regular entity type A of the
conceptual schema. An external class A’ whose underlying
entity type is A can base its data-valued attributes on some
or all the single-valued attributes of A, or from a single
component of a composite attribute of A. A’ can construct
each of its tuple-valued attributes, if any, from some
single-valued attributes of A, or from a composite attribute,
or part of a composite attribute, of A. Each multi-valued
attribute of A is mapped, if needed, to a set-valued attribute
of A’.

In Appendix I, EMPVIEWl is derived using Rule 5.
(Rule 6) Consider a regular entity type B connected

to a weak entity type A by an existence dependent or an
identifier dependent relationship type R. B can easily be
mapped to an external class, say, B’ by using Rule 5. The
mapping of A to an external class, say A’, depends on R. If
R is an existence dependent relationship type, then A’ can be
derived from A in exactly the same manner as any regular
entity type by applying Rule 5. If R is an identifier
dependent relationship type, then A’ must include the
identifier of B as one of its attributes. In each of these cases,
if it is desired to impose the existence dependency constraint
of A’ on B’, then B’ can specify either an entity-valued
attribute whose domain is A’ (if the cardinality of A in R is
1) or a set-valued attribute whose domain is set(A’) (if the
cardinality of A in R is n, n> 1). The attribute is given a
name which reflects the role of A’ in B’ .

In Appendix 1, classes EMPVIEW 1 and
DEPENDENTS-VIEW are defined from the regular entity
type EMPLOYEE and weak entity type DEPENDENTS
respectively. If DEPENDENTS does not have any identifier
attribute (thereby changing the relationship type into an
identifier dependent relationship type), then DEPENDENTS-
VIEW must include E# (the identifier of EMPLOYEE) as an
attribute. In this case, inserts to DEPENDENTS-VIEW are
possible provided that the EMPLOYEE entity identified by
E# already exists. Other updating constraints exist. For
example, when an instance of EMPVIEWl is deleted, the
underlying EMPLOYEE tuple will be deleted. This triggers
a corresponding deletion of all DEPENDENTS tuples whose
existence depends on the deleted EMPLOYEE tuple. The set
of instances of DEPENDENTS-VIEW that forms the value
of the attribute ‘Support’ of the deleted EMPVIEW 1 instance
automatically disappears.

(Rule 7) Recursive relationships are mapped to a
cyclic definition (Section 2) in the external schema. Cycles
in the conceptual OOER diagram (eg. the cycle involving

152

VEHICLE, EMPLOYEE and DEPARTMENT of Figure 1)
can also be mapped to a cyclic definition.

In Appendix I, VEHICLE-VIEW, EMPVIEW2 and
DEPTVIEWl represent a cyclic definition based on the cycle
involving VEHICLE, EMPLOYEE and DEPARTMENT.
Further, EMPVIEW2 represents a view of the EMPLOYEE
entity type that considers the recursive relationship
SUPERVISES in the conceptual schema. A cyclic definition
enables the computation of the transitive closure of a class.
For example, from EMPVIEW2, it is possible to compute all
the bosses (supervisors) of a particular employee.

(Rule 8) Consider an nary relationship type R
involving n entity types El,. . ,En, which have external
classes E’ i,. . ,E’, derived using Rule 5 respectively. R has
associated single valued attributes Y,, , . , Y, (m > 0) of
respective domains D i,. . ,D, (not necessarily distinct) and
multivalued attributes Z ,,..,Zp @>O) of respective domains
F i,.. ,F,, (not necessarily distinct). An external class E’i
(O<i I n) can have a set-valued attribute named Rext with
domain constructed using the set and tuple constructors on
different permutations of E’,,. ,, E’,, except E’i and the
attributes of R. The domain of Rext is therefore a nested set
(of tuples) construct. Each entity type E’,.. E’,, except E’i,
is the domain of one, and only one, component of a tuple in
the nested set construct. The deepest set includes the
attributes of R. Further, to allow for different restructuring,
any two entity types E’, and E’, (u < > i, v < >i) can be
interchanged positionally. Formally, Rext has a domain :

seWvldQwl:E’aQ,, . . ,QnO)qO:E’(LO)qO1
P,:set(tuple(Q,,),:E),,,,, . . .Qclkl:E’1L1)41,.-r
h:setWple(Q,,S’ (LL)I,. . ,Q,&E’,,,,
Yil:Dil,.., Y,:D&i:set(Fji),..,Zjp:set(Fj,)))..)))),

where
(1) the domain is a set of sets nested k times, qO+ql + . . +

qk = n-l
(2) (LO),,..,(LO),,,(Ll),,..,(Ll),,,..,(Lk),,..,(Lk),, =e

different permutations of 1,. . ,n, except i, il,. . ,im and
jl,.. ,jp are different permutations of 1,. .,m, and 1,. . ,p
respectively,

(3) Q~~qo’,Qnl)ql.t..,Q~ur)qL., PI,..,h =e am-he names,
(4) E’nO)qO’,E’n,)ql., . . ,E’(Lk)qL’ are external classes whose

underlying entity types =e EcO)qO’,Enl)qls,. . ,&lqk
respectively, and

(5) for all qi, i=O,. .,k, qi > 0, ie at each level of
nesting, there must be at least one entity-valued attribute.

(6) when n=2 (ie a binary relationship), k = 0 and
therefore Rext has a domain set(tuple(QnQ,:E’(,,Yi,:Di,,.. ,
Y,:D,,Zjl:Set(Fjl),.., Jp Z. :set(Fj,))). If the cardinality of the
link between R and EaO), is 1 (ie R is m-l), then Rext is a
tuple-valued attribute; if R is m-l and all attributes of R are
discarded, then Rext is an entity-valued attribute.

In Appendix I, SUPPLIER-VIEWl,
SUPPLIER-VIEW2 and SUPPLIER-VIEW3 represent three
views created from the ternary relationship set SPJ.
DEPTVIEWl is an external class, based on DEPT in Figure
1, that considers the binary relationship sets SPONSERS and

MANAGES. If the cardinalities of the links between R and
its entity types are equal to 1, then external schemas can be
generated in some preferred ways. For example, if the
cardinality of the link from SPJ to PROJECT in Figure 1 is
1, then SUPPLIER-VIEW1 is preferred over
SUPPLIER_VIEW2 and SUPPLIER-VIEW3, because it is
semantically more correct. As another example, the attribute
‘Manager’ of DEPTVIEWl is an entity-valued attribute of
domain EMPVIEW2. This is because the cardinality of the
link between EMPLOYEE and MANAGES in Figure 1 is 1,
and no attributes are associated with MANAGES. If
MANAGES has associated attributes, then the attribute
‘Manager’ of DEPTVIEWl is tuple-valued.

(Rule 9) Given a relationship type R, we can
construct a new relationship type from R by :

(a) projecting out some of the associated attributes of R,
(b) projecting out part of a composite attribute of R,
(c) restricting the values of some attribute of R, and/or
(d) removing the participation of some entity types of R.

The previous mapping rules can then be applied to the
constructed relationship type to derive external classes.

Note that the cardinalities of attributes of the,
constructed relationship type may not be the same as their
original cardinalities. For example, SPJ-VIEW2 is derived
from a relationship type constructed from SPJ by removing
the participation of PROJECT. Because the cardinality of the
link from SPJ to PROJECT is m, the cardinality of the
attribute ‘SpecialPrice’ of SPJ is changed from single-valued
to multi-vaIued when PROJECT is removed. However, if the
cardinality of the link from SPJ to PROJECT is 1, then the
cardinality of ‘SpecialPrice’ will not be changed.

5.2 Rules Arising From The Inheritance Lattice

(Rule 10) Given an external class specification A
with an attribute A’ of domain B, the value of the attribute
A’ can be drawn from B or any of the subclasses of B.

(Rule 11) The structure of an inheritance lattice can
be viewed in different ways, as long as the inclusion
dependency between a class and its subclasses is maintained.

In Appendix I, ROUND-RED PART-VIEW is a
direct subclass of PART VIEW. This 7s a consequence of
the fact that the ISA relationship type is transitive.

(Rule 12) If two entity types A and B are connected
by an ISA relationship such that A ISA B, then A inherits
and may possibly override attributes/methods of B. An
external entity type A’ can then be derived from A using the
relevant mapping rules, eg. rule 5.

EMPVIEWl shows a view of EMPLOYEE in which
the attribute DOB is inherited from PERSON entity type.

(Rule 13) Given two entity types A and B such that
A ISA B, and B is participating in a relationship type R, we
can construct a virtual relationship type R’ from R in the ER
diagram by replacing the participant B in R by A. We can
then use R’ for constructing external classes.

Rules 12 and 13 apply to special relationships such as

153

UNION, INTERSECT, DECOMPOSE. For example, if
entity types A, Bl ,. . ,Bn are connected by the special
relationship UNION such that A = UNION (Bl,B2,. . ,Bn),
then Bi ISA A for all i= 1,2,..,n. External class
specifications can then be constructed using rules 12 and 13.

(Rule 14) We may specify the value range of any
attribute of an external class. This derives a subclass of the
external class based on attribute values.

For example, a class PART with attribute colour can
have a subclass RED-PART which is the set of parts with
colour = ‘red’. By predicating on the values of other
attributes, other subclasses can be defined, eg. in Figure 1,
ROUND-RED-PART is predicated on the ‘shape’ attribute
in RED PART.

5.3 Rules Arising From The Reachability Principle.

An entity type is reachable from another entity type
if both entity types are connected, directly or indirectly, by
some relationship type(s) and/or entity type(s). For example,
in Figure 1, the entity type PROJECT is reachable from the
entity type BUILDING through the relationship types
LOCATED-IN and SPONSER and the entity type DEPT.

(Rule 15) An external entity typo may include
attributes from a reachable entity type. The cardinalities of
such attributes in the external entity type may not be the
same as their original cardinalities in the conceptual schema.

In general, an external entity type may not include
attributes of entity types which are not related according to
the reachability principle. The rules of Sections 5.1 and 5.2
can then be applied to derive external class specifications
from the external entity type obtained. In Appendix I,
DEPTVIEW2 is an example class, based on DEPT, that
includes attributes from the reachable entity types
BUILDING and PROJECT.

5.4 Rules Relating To Methods

(Rule 16) An external class can contain
programmer-defined methods which derive new attributes
(Properties) for the class.

For example, in Appendix I, a method can be defined
for EMPVIEWl that computes the age of an instance of
EMPVIEWl, based on the attribute DOB. Another method
can be defined for EMPVIEW:! that allows all the superiors
of an instance of EMPVIEW2 to be computed.

(Rule 17) A method defined at the conceptual schema
level can be used at the external schema level if it does not
refer to resources which are not present at the external
schema level or which are protected from access.

For example, EMPVIEWl can include a method
(defined at the conceptual schema level) that derives a count
of the number of children for an employee instance, if the
execution right on that method has been granted by the DBA
to users.

6 RELATED WORK

Most 00 database systems (DBMSs) do not fit into
the three level schema architecture as spelled out in the
ANSI/XYSPARC[2]proposal for DBMSs. These OODBMSs
typically provide a large grained conceptual schema with
minimum or no facility for defining views or external
schemas. Several proposals have been made to incorporate
some view mechanisms in OODBMSs [1,9,13,18]. The
works of [9,18] focussed on defining multiple interfaces
(views) to an object class. Each interface or views defines a
set of methods and different views of an object class may
share methods. Generally, these proposals do not sufficiently
address the need for a flexible and declarative view
mechanism such as that found in relational DBMSs. In
[l ,131, a query based view mechanism is used to derive
subclasses from superclasses. [l] treats views as queries and
uses the view mechanism to define virtual classes, which are
structured into inheritance lattice. The behavioural aspects of
the views defined are generated automatically by the system.
Furthermore, such views are not updatable. In [13], updates
apply only to views that are based on a join of the primary
keys of the base tables. The views are non-recursive. Many
of the view mechanisms proposed are defined on 00
schemas which themselves suffer from several limitations
(eg. problematic way of representing m-n, n-ary (n >2),
recursive relationships, presence of redundancy etc). This
seriously hampers the usefulness of these view mechanisms.

7 CONCLUSION

The 00 paradigm is not a panacea that will address
all the data modelling problems of complex applications.
This paper has proposed a framework to address several 00
data modelling issues, viz. (1) the problematic way in which
m-n, n-ary and recursive relationships are handled in the 00
approach, (2) the lack of general and flexible support for
external schemas or views, and (3) the inability to
differentiate good 00 schema design from bad. Our
approach allows 00 external schemas to be generated from
a conceptual schema which is represented by a normal form
OOER diagram. A set of mapping rules is defined to derive
02 external schemas from the conceptual schema. A normal
form OOER diagram incorporates several 00 concepts, eg.
methods, inheritance, existentially dependent objects etc. The
model also include triggers for simple constraint
enforcements, derived attributes and deductive rules.

As future work, we are currently investigating the
updatability of the external schema%

REFERENCES

[l] S. Abiteboul, A. Bonner, Objects and Views, Proc
ACM SIGMOD Int’l Conf. on Mgmt of Data, Denver,
Colorado, 1991.

154

[2] ANSI/XYSPARC Study Group on Data Base
Management Systems, Interim Report, FDT (ACM Sigmod
bulletin) Vol 7 No 2,1975.

[3] J. Banerjee et al, Data Model Issues for Object-
Oriented Applications, ACM Trans. Office Information
Syst., Vol 5 No 1, Jan 87, pp. 3-26.

[4] R. Cattell, Object Data Management: Object-Oriented
and Extended Relational Database Systems, Addison Wesley,
1991.

[5] P.P. Chen, The Entity-Relationship Model: Toward a
Unified View of Data, ACM Trans. on Database Systems,
Vol 1, No 1, 1976.

[6] 0. Deux et al, The Story of 02, IEEE Trans. on

Knowledge and Data Engineering, Vo12, No 1, Mar 1990,
pp. 91-108.

[7] D. Fishman et al, IRIS: An object oriented database
management system, ACM Trans. Office Information Syst.,
Vol 5 No 1, Jan 87, pp. 48-69.

[8] B. Fritchman, R. Guck, D. Jogannathan, J.
Thompson, D. Tolbert, SIM : Design and Implementation of
a Semantic Database System, Proc ACM Sigmod Conf.
1989, pp 46-55.

[9] B.Hailpern, H.Ossher, Extending Objects to Support
Multiple Interfaces and Access Controls, IEEE Trans.
Software Engineering,Vol 16,No 11 ,Nov 1990.

[lo] A. Keller, Choosing a View Update Translator by
Dialog at View Definition Time, Computer, Jan 1986.

[l l] S. Khoshafian, G. Copeland, Object Identity, Proc
OOPSLA, 86, Portland, Oregon, 1986.

[12] W. Kim, An Introduction to Object-Oriented
Databases, MIT Press, 1990.

[131 ChenHo Kung, Object Subclass Hierarchy in SQL: A
Simple Approach, CACM 33, 7, 1990.

[14] T.W. Ling, A Normal Form for Entity-Relationship
Diagrams, Proc. 4th Int’l Conf. on Entity-Relationship
Approach, 1985, pg 24-35.

[15] T.W. Ling, A Three Level Schema Architecture
ER-Based Data Base Management System, Proc. 6th Int’l
Conf. on Entity Relationship Approach, 1987, pp 181-196.

[16] T.W. Ling, P.K. Teo, Towards Resolving
Inadequacies in Object-Oriented Data Models, Submitted for
Publication, 1992.

[17] L. Rowe and M. Stonebraker, The Postgres Data
Model, in The Postgres Papers, Memo No UCBlERL
M86/85 Jun 87 (Revised), U.C. (Berkeley).

[18] J. Shilling, P. Sweeney, Three Steps to Views:
Extending the Object-Oriented Paradigm, Proc OOPSLA 89.

[19] P.K. Teo, An Object-Oriented Entity Relationship
Data Model, MSc Thesis, National University of Singapore,
1992.

Appendix I : Example 02 Schema Based on Figure 1

add Class EMPVlEWl type tuple (
E# : string; I” key ‘I
Name : string;
Address : tuple(street:string, Zip:string);
Job-History : set (string);
support : set(DEPENDENTS-VIEW);
DOB : string;) /’ from PERSON ‘I

L

155

add Class EMPVIEW2 type tuple (
E# : string; f* key *I
Name : string;
Boss : EMPVIEWZ; I* cyclic definition ‘/
Subordinate : set(EMPVIEW21;
Drives : VEHICLE-VIEW;) I’ defined below ‘/

add Class DEPENDENTS-VIEW type tuple (
BirthCert# : string; I’ key *I
Sex : char;

Aoe : integer;)
add Class DEPTVlEWl type tuple (

D# : string; I+ key *I
Dname : string;
Manager : EMPVIEWZ;
Sponser : set(tupleU:PROJECTVIEW,

Cost:float,ChkPtDte:set(string))))
add Class DEPTVIEWZ type tuple (

D# : string; I* key ‘I
Dname : string;
Projects : setlstring); I” project descriptions ‘/
Location : string;) I” from Bdesc attribute “I

add Class VEHICLE-VIEW type tuple f
V# : string; I+ key ‘f
OwnedBy : DEPTVIEWl ;I

add Class SUPPLIER-VIEW1 type tuple f
S# : string; I” key “I
Sname : string;
PJ : set(tuple(P:PARTVIEW. J:PROJECTVIEW,

QtyDate:set(tupleKIty:integer,date:string~~~~~
add Class SUPPLIER-VIEW2 type tuple (

S# : string; /+ key l l
Sname : string;
PJ : set(tuple(P:PARTVIEW, ProjQtyDate:setftuple

(J:PROJECTVIEW, Qty:integer, date:string)))))
add Class SUPPLIER-VIEW3 type tuple (

S# : string; I’ key ‘1
Sname : string;
JP : set(tuple(J:PROJECTVIEW, PartQtvDate:set(tuple

(P:PARTVIEW, Qty:integer, date:string))I))
add Class PARTVIEW type tuple f

P# : string; I* key ‘i
Pname : string;
Color : string;
Shape : string;)

Class ROUND RED-PART-VIEW inherits PARTVIEW
type f&ish:string;

add Class PROJECTVIEW type tuple (
J# : string; I” key +I
Jdesc : string;)

add Class SPJ-VIEW1 type tuple f
I’ key is composite comprising S, P and J l /
S : SUPPLIER-VIEW1 ;
P : PARTVIEW;
J : PROJECT-VIEW;
QtyDate : set(tuple (Qty:integer, Date:string));
SpecialPrice : integer;)

add Class SPJ-VIEW2 type tuple f
S : SUPPLIER-VIEW1 ; I’ no underlying key ‘I
P : PARTVIEW;
SpecialPrice : setfinteger));

