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ABSTRACT 

A 3-level schema architecture is proposed to 
address some inadequacies in recent object-oriented 
data models. The conceptual schema is based on a 
normal form object-oriented entityrelationship IOOER) 
diagram. A set of mapping rules is defined that allows 
00 externalschemas, based on the 02 data model, to 
be generated from the conceptual schema. Similar 
mapping rules can be defined to generate external 
schemas for other 00 data models. Other features of 
this model include the incorporation of derived 
attributes, deductive rules, triggers and methods. 

proposed 00 data models [3,6,7,17 etc]) is treated as an 
external schema that is generated from the conceptual 
schema by applying a set of mapping rules. Distinct sets of 
mapping rules are needed to handle different 00 data 
models. Each 00 database schema is, therefore, a view of 
the conceptual schema. User applications (00 or otherwise) 
can then be written based on the 00 external schemas that 
are generated from the conceptual schema. The advantages 
of the 00 approach are therefore preserved at the external 
schema level. To illustrate our approach, a set of mapping 
rules is defined in this paper to generate, as examples, 02 
class definitions from a normal form OOER diagram. Similar 
mapping rules can be defined for other 00 data models. 

1 INTRODUCTION 

There exist many inadequacies[l6] in the object- 
oriented (00) paradigm, eg. lack of a formal foundation, 
general disagreement about 00 concepts, a navigational, as 
opposed to a declarative, interface, lack of a standard 
declarative query language etc. Some of these inadequacies 
have been addressed but many issues remain unresolved. In 
this paper, a three-level schema architecture, comprising an 
external schema level, a conceptual schema level and an 
internal schema level, is proposed to address a set of 00 
data modelling issues, viz. (1) the problematic way in which 
m-n, n-ary and recursive relationships are handled in the 00 
approach, (2) the lack of general and flexible support for 
external schemas or views, and (3) the inability to 
differentiate good 00 schema design from bad. Our 
approach leverages research efforts in Entity Relationship 
(ER) data modelling [5]. 

Section 2 provides some background information. 
Section 3 compares the 00 and ER data models. Section 4 
presents some salient features of our approach. In Section 5, 
a set of mapping rules for deriving 02 external schemas 
from a normal form OOER diagram is given. Section 6 
discusses some related work. Section 7 concludes. 

2 BACKGROUND 

The 00 concepts presented in this section are based 
primarily on the 02[6] data model, supplemented with 
examples from ORION[3] and POSTGRES[17]. 

The 00 data modelling issues are resolved at the 
conceptual schema level. To represent the conceptual 
schema, the notion of a normal form OOER diagmm is 
introduced. A normal form OOER diagram has all the 
structural features of a classic ER diagram[5,14]. It goes 
beyond the classic ER diagram in two areas. First, a 
behavioural dimension is included that incorporates the 
notions of methods, derived attributes, deductive rules and 
triggers. This yields an OOER diagram. Second, the 
structural quality of the OOER diagram is improved by 
applying the techniques of [14] to convert the OOER 
diagram into a normal form OOER diagram. Informally, a 
normal form OOER diagram is a normal form ER diagram 
[14] extended with the notions of methods, derived 
attributes, deductive rules and triggers. 

A conceptual entity is anything that exists and can be 
distinctly identified. For example, a person, an employee, a 
student etc are conceptual entities. In an 00 system, all 
conceptual entities are modelled as objects. An object has 
structural properties defined by a finite set of attributes and 
behavioural properties defined by a finite set of methods. 
Each object is associated with a logical non-reusable and 
unique object identifier (OID) [ 111. The OID of an object is 
independent of the values of its attributes. 

All objects with the same set of attributes and 
methods are grouped into a class, and form instances of that 
class. We distinguish between a lexical class and a 
non-lexical class. A lexical class contains objects that can be 
directly represented by their values, eg. integer, string etc. 
A non-lexical class contains objects, each of which is 
represented by a set of attributes and methods. Instances of 
a non-lexical class are referred to by their OIDs. Examples 
of non-lexical classes include PERSON, EMPLOYEE, 
SUPPLIER etc. 

The domain of an attribute of a non-lexical class A 
can be one of the following: 

Each 00 database schema (based on any of the 
(Case a) a lexical class such as integer, string etc. An 

attribute with this domain is called a data-valued attribute@]. 

GENERATING OBJECT-ORIENTED VfEWS FROM AN ER-BASED CONCEPTUAL SCHEMA 
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(Case b) a non-lexical class B. An attribute with this 
domain is called an entity-valued attribute [8]. 

Note the recursive nature of this definition. There is 
an implicit binary relationship between A and B. The value 
of the attribute is the OID of an instance of B, which must 
exist before it can be assigned to the attribute. This provides 
referential integrity. A special case exists in which the class 
B is, in fact, A. This represents a cyclic definition in the 00 
model. Cyclic definitions are used to specify recursive 
relationships such as a part and its subparts, a course and its 
prerequisite courses etc. A cyclic definition needs not be 
direct; for instance, a class A may reference a class Bl 
which in turn reference class B2 and so on until class Bn is 
referenced by class Bn-1 for some n. Then Bn can reference 
A, thus completing the cycle. In some 00 systems, eg. 
ORION, the relationship between A and B can be given 
semantics such as IS-PART-OF, in which case A is a 
composite object [12] comprising B. Orion also supports the 
concept of an existentially-dependent object, in which the 
existence of the object depends on the existence of its parent 
object. The deletion of an object triggers a cascading delete 
of all objects that are existentially dependent on the deleted 
object. This adds to the integrity features of ORION. 

(Case c) a set, set(E) where E is either a lexical class 
or a non-lexical class. An attribute with this domain is called 
a set-valued attribute. 

If E is lexical, values from E are stored in the set. If 
E is a non-lexical class, members of the set can either be an 
instance of E or its subclasses. In this case, the set comprises 
instances from possibly heterogeneous classes. Only the OID 
of each instance is stored in the set. In some systems, eg. 
02, both sets and lists are supported. While it is correct to 
differentiate between a list and a set, this paper treats a set 
and a list as equivalent. 

(Case d) a query type whose values range over the set 
of possible queries coded in a query language. An attribute 
with this domain is called a query-valued attribute. 

The value of a query-valued attribute is the result of 
the query, which is a set of objects satisfying the query 
condition. An example of a system that allows attributes of 
type query is POSTGRES. 

(Case e) a tuple type. An attribute with this domain 
is called a tuple-valued attribute. 

This represents an aggregation of attributes of the 
tuple type, which is treated as a composite attribute of A. An 
attribute of the tuple type can be a data-valued, 
entity-valued, set-valued, query-valued or tuple-valued 
attribute. 

A type constructor is a mechanism for building new 
domains. For example, the set and tuple constructs described 
above are used to create domains for set-valued and 
tuple-valued attributes respectively. A complex object is built 
using type constructors such as sets, tuples, lists and nested 
combinations of these. The structure of objects (complex or 
otherwise) is hierarchical. 

The class hierarchy is one of the most important 
features of the 00 paradigm. It provides a taxonomy of 

classes that are related through the ISA relationship. Given 
two classes X and Y, X ISA Y implies that each instance of 
X is also an instance of Y. This has a set inclusion 
semantics. We call X a subclass of Y and we call Y a 
supercks of X. A class hierarchy provides an inheritance 
mechanism which allows a class to inherit properties 
(attributes/methods) from its superclass( if any. 

3 COMPARISON BETWEEN 00 AND ER MODELS 

The ER model was first introduced in [5]. It 
incorporates the concepts of entities, relationships and 
attributes and allows the structural representation of a 
database to be captured in an ER diagram. The ER diagram 
has proven to be a useful database design tool. Good normal 
form relations can be generated from a normal form ER 
diagram 1141 and directly implemented on any relational 
DBMS. Figure 1 shows an ER diagram which will be used 
to illustrate the various concepts of this paper. 

We believe that all the structural properties of the 00 
approach can be derived (generated) from the ER model. For 
instance, an 00 class hierarchy can be directly represented 
using the ER relationship type ‘ISA’. Figure 1 shows a 
representation of a class hierarchy rooted at the PART entity 
type. The composite entity type VEHICLE with component 
parts ENGINE and DRIVETRAIN is represented using the 
IS-PART-OF relationship type. Weak entities (eg. 
DEPENDENTS) correspond to existentially dependent 
objects [12] which cannot exist independently of their parent 
objects. Table 1 provides a summary of the comparison 
between these two models. Note that there is no equivalent 
concept of methods in the ER model. 

The ER model supports functional dependencies, 
multi-valued dependencies and cardinality constraints among 
entities, relationships and attributes. These concepts are not 
inherent in the 00 approach and have to be explicitly 
enforced using, for example, programming. Each regular 
entity or relationship type is associated with an identifier 
which is dependent on the values of the primary key 
attributes. This is different from the OID of an object. The 
00 approach provides only one type of ISA relationship. In 
contrast, the ER approach provides special ISA relationship 
types1143 such as UNION, INTERSECTION, DECOMPOSE 
etc. which consider the set properties between entity types. 

4 RESOLVING 00 DATA MODELLING ISSUES 

The 00 approach suffers from a number of 00 data 
modelling inadequacies, viz. (1) the problematic way in 
which m-n, nary and recursive relationships are handled in 
the 00 approach, (2) the lack of general and flexible support 
for external schemas or views, and (3) the inability to judge 
the quality of an 00 database schema. We address these 
issues by adopting the following steps: 
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(1) Represent a database schema by an ER diagram. 
(2) Imbue the ER diagram of Step(l) with methods, 

derived attributes, deductive ruIes and triggers to obtain an 
OOER diagram. 

(3) Convert the OOER diagram of Step(2) into a 
normal form OOER diagram, using the techniques 
introduced in [14]. The normal form OOER diagram is used 
as the conceptual schema. 

(4) Apply a set of mapping rules to generate 00 
external schemas from the normal form OOER diagram. 

Step 1 ensures that relationships such as m-n, nary, 
recursive, ISA, IS-PART-OF etc are explicitly represented. 
In the 00 approach, to represent m-n, n-ary and recursive 
relationship types, or to answer symmetric queries, some 
data redundancy may need to be introduced, eg. through the 
use of inverse pointers. This redundancy is not controlled 
and introduces problems similar to those of the hierarchical 
model. By providing strong support for association among 
entity types, it eliminates the need to maintain inverse 
pointers among related entities, because their semantic 

association is now conceptually represented by a relationship. 
Another advantage of supporting relationships directly is that 
the cardinalities of entity types participating in a reIationship 
type are displayable on the ER diagram. This is a cardinality 
constraint which is absent from most 00 data models. 

Step 2 provides a behavioural dimension to an ER 
diagram to obtain an OOER diagram. (See later subsections) 

Step 3 converts an OOER diagram into a normal form 
OOER diagram, using the techniques of 1143. A normal form 
OOER diagram is considered ‘good’ structurally since it 
satisfies the criteria for a normal form ER diagram[ 141. Note 
that a normal form ER diagram is based on a firm theoretical 
foundation provided by normalisation/dependency theories. 

Step 4 allows the generation of 00 external schemas 
from the conceptual schema. This addresses the problem of 
a lack of general and flexible support for views or external 
schemas in the 00 approach. In Section 5, a set of mapping 
rules is provided to generate 02 external schemas. Similar 
mapping rules can be defined for other 00 data models. 

The rest of this section describes the behavioural 
component of our model, viz. methods, triggers, derived 
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Object-Oriented Data Model Entity Relationship Model 

Class Entity Type or Relationship 
Type or Domain of attributes 

An instance of a class Entity or relationship or 
attribute value 

Class has attritutes Attributes 
describing its structural 

properties 

Domain of an attribute of a 
class can itself be 8 

The relationship type batwean 

class. Implicitly, a binary 
tuo or mare entity types is 
made explicit. 

relationship exists between 
these too classes. 

E$jx:ntially Dependent Ueak Entity <with associated 
1 EX or ID relationship) 

Wethods No equivalent concept 

Coqmsite object Entity types cormacted by IS- 
PART-OF relationship type 

Use of cyclic definition Natural way of representing 
(see text) to represent reCUrSiVe re(etionships. Role 
recursive relationships names are used to distinguish 
(eg. part-subpart, course- entity types participating in 

prerequisites etc) recursive relationships. 

Class hierarchy ISA, INTERSECTION constructs 

Set-valued attributes Multi-valued attributes 

Tuple-valued attributes Ccmposite attributes 

Table 1: Comparison of ER and 00 Data Models 

attributes and deductive rules. 

4.1 Adding Methods to the OOER Model 

Methods are categorized into system genemted 
methods, database administmzor (DBA) definable methods 
and progmmmerdefinable methods. System generated 
methods exist in both the conceptual and external schema 
levels and include code to browse instances of a class, or to 
retrieve or update an object’s attribute values. These methods 
are more efficiently optimised and they free programmers 
from writing trivial code. Updates to identifiers of entity 
types are handled independently of system generated 
methods. A DBA must treat these updates as special one- 
time operation and ensure that database consistency is 
maintained after the updates are done. DBA-definable 
methods are accessible by all author&d users of the database 
and can be defined at both the conceptual and external 
schema levels. For instance, the DBA can define methods to 
provide generic computations such as calculation of interest, 
commission based on generic formulas, etc. Programmer- 
definable methods, eg. hire an employee, print an entity etc 
are application specific and not generally accessible. The 
proper place for programmer-definable methods is at the 
external, rather than conceptual, schema level. This is no 
different from conventional practice, in which a database 
programmer writes application programs based on an 
external schema available to him. 

4.2 Triggers. 

Triggers can be system generated to enforce simple 
integrity constraints, or explicitly coded by DBA and 
programmers at both the conceptual and external schema 
levels. For example, consider Figure 1, in which projects 
sponsered by departments are shown by the relationship 
SPONSER. A simple trigger to enforce the referential 
constraint that exists between PROJECT and SPONSER is: 

AFTER DELETE ON PROJECT 
REFERENCING OLD AS OLD-PROJECT 
DELETE FROM SPONSER S WHERE S. P# = OLD-PROJECT. P#. 

Note that it is difficult to enforce more complicated 
constraints using triggers, eg. suppliers who do not supply 
all red parts must supply a blue part or a green part with 
quantity greater than 100. 

4.3 Derived Attributes 

Derived attributes can be obtained from other 
attributes, based on some derivation rules. For example, in 
Figure 1, the ‘Commission’ attribute of the EMPLOYEE 
entity type is derivable from the ‘Salary’ and ‘SalesAmt’ 
attributes by some computation rule. Derived attributes can 
be treated as being computed by a method in the 00 sense. 
Derived attributes are explicitly coded by either the DBA 
(conceptual and external schema levels) or programmers (at 
external schema level). 

4.4 Deductive Rules 

Simple deductive rules can be defined for classes by 
predicating on attributes of a class. For example, a 
RED-PART deductive rule can be defined as: 

RED_pART(P#, Pname, Price) :- PART(P#, Pname, ‘red’, Price). 

The RED-PART deductive rule is character&d by 
the fact that the positions of the variables (ie P#, Pname, 
Price) in each clause are important. However, the positions 
of attributes in an ER diagram representation of an entity are 
immaterial. In [19], we propose a notation to address this 
difference. Example 4.4.1 illustrates this notation. 

Example 4.4.1 : The above RED-PART deductive rule can 
be either be rewritten as: 

RED-PART(X:P#, Y:Pname, Z.-Price) :- 
PART(X:P#, Y:l?name, ‘red ‘:Color, 2:Price). 

OR 
RED-PART(z:Price, X:P#, CPname) :- 

PART(Y:Pname,X:P#, ‘red’:Color,Z:Price). 

In the above representations, a variable is placed to the left 
of ‘:’ and a corresponding attribute name or role name is 
placed to the right of ‘:‘. This notation provides for more 
expressive power in the sense that each variable in a 
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predicate is tagged with an attribute or role name. It ensures 
that the positions of variables in a predicate no longer 
matter; two attributes can be interchanged without affecting 
the meaning of the rule. Another advantage of this notation 
is that it reduces the need for anonymous variables. 

5 MAPPING RULES 

In this section, a set of mapping rules which allows 
02 external schemas to be constructed from a normal form 
OOER diagram is provided. The justifications and 
motivations for these rules are given through several 
examples. Mapping rules for other 00 data models can be 
similarly obtained. Appendix I gives an example 02 schema 
which will be used to illustrate the mapping rules. 

5.1 Generic Rules 

(Rule 1) Each (regular or weak) entity type can be 
mapped to an external class. Only regular relationship types 
can be mapped to an external class. 

Two points are to be noted: (1) It is possible to have 
class specifications for regular relationship types (eg. 
SPJ-VIEW1 in Appendix I is based on the SPJ relationship 
type in Figure 1). As noted in 141, it is necessary to provide 
class specifications for ternary and higher degree relationship 
types if it is required to model such relationship types in an 
external schema. (2) A weak entity type A may be mapped 
to an external class A’ without also mapping the entity type 
on whose existence A depends. See Rule 6 for a mapping 
rule that applies to weak entity types. 

(Rule 2) Not all entity/relationship types have a 
corresponding external class in the external schema. 

This satisfies the maxim that an external schema is an 
abstraction of the conceptual schema which emphasises 
relevant details while suppressing unwanted details. 

schema 
(Rule 3) An entity/relationship type of the conceptual 
may have more than one corresponding external 

class specification. 
An entity/relationship type can therefore be viewed in 

different ways. In Appendix I, external classes EMPVIEWl 
and EMPVIEWZ have the same underlying entity type 
EMPLOYEE. Classes SPJ-VIEW1 and SPJ VIEW2 are 
different views of the same underlying relation&p type SPJ. 

(Rule 4) An external class A’ whose underlying entity 
type is A must include at least one key of A as its attribute. 
This is an entity-preserving condition, which ensures the 
updatability of A’. However, an external class A’ generated 
from a relationship type may not possess a key of the 
underlying relationship type as its attribute. 

This rule ensures that apparently frivolous and 
meaningless views (eg. a class comprising only attributes sex 
and salary generated from the entity type EMPLOYEE in 
Appendix I) cannot be generated from any entity type. There 
is no equivalent ‘relationship-preserving’ condition because, 

in some cases, it may be semantically meaningful to generate 
an external class from a relationship set without retaining the 
key of the relationship set. For instance, given the SPJ 
relationship set, it is meaningful to generate a view SP which 
contains information about the parts supplied by suppliers. 

In Appendix I, key attributes of external classes based 
on entity types are indicated using comments. Both 
SPJ VIEW1 and SPJ-VIEW2 are created from the 
relationship set SPJ but SPJ-VIEW1 retains the key 
attributes of SPJ while SPJ-VIEW2 does not. 

(Rule 5) Consider a regular entity type A of the 
conceptual schema. An external class A’ whose underlying 
entity type is A can base its data-valued attributes on some 
or all the single-valued attributes of A, or from a single 
component of a composite attribute of A. A’ can construct 
each of its tuple-valued attributes, if any, from some 
single-valued attributes of A, or from a composite attribute, 
or part of a composite attribute, of A. Each multi-valued 
attribute of A is mapped, if needed, to a set-valued attribute 
of A’. 

In Appendix I, EMPVIEWl is derived using Rule 5. 
(Rule 6) Consider a regular entity type B connected 

to a weak entity type A by an existence dependent or an 
identifier dependent relationship type R. B can easily be 
mapped to an external class, say, B’ by using Rule 5. The 
mapping of A to an external class, say A’, depends on R. If 
R is an existence dependent relationship type, then A’ can be 
derived from A in exactly the same manner as any regular 
entity type by applying Rule 5. If R is an identifier 
dependent relationship type, then A’ must include the 
identifier of B as one of its attributes. In each of these cases, 
if it is desired to impose the existence dependency constraint 
of A’ on B’, then B’ can specify either an entity-valued 
attribute whose domain is A’ (if the cardinality of A in R is 
1) or a set-valued attribute whose domain is set(A’) (if the 
cardinality of A in R is n, n> 1). The attribute is given a 
name which reflects the role of A’ in B’ . 

In Appendix 1, classes EMPVIEW 1 and 
DEPENDENTS-VIEW are defined from the regular entity 
type EMPLOYEE and weak entity type DEPENDENTS 
respectively. If DEPENDENTS does not have any identifier 
attribute (thereby changing the relationship type into an 
identifier dependent relationship type), then DEPENDENTS- 
VIEW must include E# (the identifier of EMPLOYEE) as an 
attribute. In this case, inserts to DEPENDENTS-VIEW are 
possible provided that the EMPLOYEE entity identified by 
E# already exists. Other updating constraints exist. For 
example, when an instance of EMPVIEWl is deleted, the 
underlying EMPLOYEE tuple will be deleted. This triggers 
a corresponding deletion of all DEPENDENTS tuples whose 
existence depends on the deleted EMPLOYEE tuple. The set 
of instances of DEPENDENTS-VIEW that forms the value 
of the attribute ‘Support’ of the deleted EMPVIEW 1 instance 
automatically disappears. 

(Rule 7) Recursive relationships are mapped to a 
cyclic definition (Section 2) in the external schema. Cycles 
in the conceptual OOER diagram (eg. the cycle involving 
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VEHICLE, EMPLOYEE and DEPARTMENT of Figure 1) 
can also be mapped to a cyclic definition. 

In Appendix I, VEHICLE-VIEW, EMPVIEW2 and 
DEPTVIEWl represent a cyclic definition based on the cycle 
involving VEHICLE, EMPLOYEE and DEPARTMENT. 
Further, EMPVIEW2 represents a view of the EMPLOYEE 
entity type that considers the recursive relationship 
SUPERVISES in the conceptual schema. A cyclic definition 
enables the computation of the transitive closure of a class. 
For example, from EMPVIEW2, it is possible to compute all 
the bosses (supervisors) of a particular employee. 

(Rule 8) Consider an nary relationship type R 
involving n entity types El,. . ,En, which have external 
classes E’ i,. . ,E’, derived using Rule 5 respectively. R has 
associated single valued attributes Y,, , . , Y, (m > 0) of 
respective domains D i,. . ,D, (not necessarily distinct) and 
multivalued attributes Z ,,..,Zp @>O) of respective domains 
F i,.. ,F,, (not necessarily distinct). An external class E’i 
(O<i I n) can have a set-valued attribute named Rext with 
domain constructed using the set and tuple constructors on 
different permutations of E’,,. ,, E’,, except E’i and the 
attributes of R. The domain of Rext is therefore a nested set 
(of tuples) construct. Each entity type E’,.. E’,, except E’i, 
is the domain of one, and only one, component of a tuple in 
the nested set construct. The deepest set includes the 
attributes of R. Further, to allow for different restructuring, 
any two entity types E’, and E’, (u < > i, v < >i) can be 
interchanged positionally. Formally, Rext has a domain : 

seWvldQwl:E’aQ,, . . ,QnO)qO:E’(LO)qO1 
P,:set(tuple(Q,,),:E),,,,, . . .Qclkl:E’1L1)41,.-r 
h:setWple(Q,,S’ (LL)I,. . ,Q,&E’,,,, 
Yil:Dil,.., Y,:D&i:set(Fji),..,Zjp:set(Fj,)))..)))), 

where 
(1) the domain is a set of sets nested k times, qO+ql + . . + 

qk = n-l 
(2) (LO),,..,(LO),,,(Ll),,..,(Ll),,,..,(Lk),,..,(Lk),, =e 

different permutations of 1,. . ,n, except i, il,. . ,im and 
jl,.. ,jp are different permutations of 1,. .,m, and 1,. . ,p 
respectively, 

(3) Q~~qo’,Qnl)ql.t..,Q~ur)qL., PI,..,h =e am-he names, 
(4) E’nO)qO’,E’n,)ql., . . ,E’(Lk)qL’ are external classes whose 

underlying entity types =e EcO)qO’,Enl)qls,. . ,&lqk 
respectively, and 

(5) for all qi, i=O,. .,k, qi > 0, ie at each level of 
nesting, there must be at least one entity-valued attribute. 

(6) when n=2 (ie a binary relationship), k = 0 and 
therefore Rext has a domain set(tuple(QnQ,:E’(,,Yi,:Di,,.. , 
Y,:D,,Zjl:Set(Fjl),.., Jp Z. :set(Fj,))). If the cardinality of the 
link between R and EaO), is 1 (ie R is m-l), then Rext is a 
tuple-valued attribute; if R is m-l and all attributes of R are 
discarded, then Rext is an entity-valued attribute. 

In Appendix I, SUPPLIER-VIEWl, 
SUPPLIER-VIEW2 and SUPPLIER-VIEW3 represent three 
views created from the ternary relationship set SPJ. 
DEPTVIEWl is an external class, based on DEPT in Figure 
1, that considers the binary relationship sets SPONSERS and 

MANAGES. If the cardinalities of the links between R and 
its entity types are equal to 1, then external schemas can be 
generated in some preferred ways. For example, if the 
cardinality of the link from SPJ to PROJECT in Figure 1 is 
1, then SUPPLIER-VIEW1 is preferred over 
SUPPLIER_VIEW2 and SUPPLIER-VIEW3, because it is 
semantically more correct. As another example, the attribute 
‘Manager’ of DEPTVIEWl is an entity-valued attribute of 
domain EMPVIEW2. This is because the cardinality of the 
link between EMPLOYEE and MANAGES in Figure 1 is 1, 
and no attributes are associated with MANAGES. If 
MANAGES has associated attributes, then the attribute 
‘Manager’ of DEPTVIEWl is tuple-valued. 

(Rule 9) Given a relationship type R, we can 
construct a new relationship type from R by : 

(a) projecting out some of the associated attributes of R, 
(b) projecting out part of a composite attribute of R, 
(c) restricting the values of some attribute of R, and/or 
(d) removing the participation of some entity types of R. 

The previous mapping rules can then be applied to the 
constructed relationship type to derive external classes. 

Note that the cardinalities of attributes of the, 
constructed relationship type may not be the same as their 
original cardinalities. For example, SPJ-VIEW2 is derived 
from a relationship type constructed from SPJ by removing 
the participation of PROJECT. Because the cardinality of the 
link from SPJ to PROJECT is m, the cardinality of the 
attribute ‘SpecialPrice’ of SPJ is changed from single-valued 
to multi-vaIued when PROJECT is removed. However, if the 
cardinality of the link from SPJ to PROJECT is 1, then the 
cardinality of ‘SpecialPrice’ will not be changed. 

5.2 Rules Arising From The Inheritance Lattice 

(Rule 10) Given an external class specification A 
with an attribute A’ of domain B, the value of the attribute 
A’ can be drawn from B or any of the subclasses of B. 

(Rule 11) The structure of an inheritance lattice can 
be viewed in different ways, as long as the inclusion 
dependency between a class and its subclasses is maintained. 

In Appendix I, ROUND-RED PART-VIEW is a 
direct subclass of PART VIEW. This 7s a consequence of 
the fact that the ISA relationship type is transitive. 

(Rule 12) If two entity types A and B are connected 
by an ISA relationship such that A ISA B, then A inherits 
and may possibly override attributes/methods of B. An 
external entity type A’ can then be derived from A using the 
relevant mapping rules, eg. rule 5. 

EMPVIEWl shows a view of EMPLOYEE in which 
the attribute DOB is inherited from PERSON entity type. 

(Rule 13) Given two entity types A and B such that 
A ISA B, and B is participating in a relationship type R, we 
can construct a virtual relationship type R’ from R in the ER 
diagram by replacing the participant B in R by A. We can 
then use R’ for constructing external classes. 

Rules 12 and 13 apply to special relationships such as 
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UNION, INTERSECT, DECOMPOSE. For example, if 
entity types A, Bl ,. . ,Bn are connected by the special 
relationship UNION such that A = UNION (Bl,B2,. . ,Bn), 
then Bi ISA A for all i= 1,2,..,n. External class 
specifications can then be constructed using rules 12 and 13. 

(Rule 14) We may specify the value range of any 
attribute of an external class. This derives a subclass of the 
external class based on attribute values. 

For example, a class PART with attribute colour can 
have a subclass RED-PART which is the set of parts with 
colour = ‘red’. By predicating on the values of other 
attributes, other subclasses can be defined, eg. in Figure 1, 
ROUND-RED-PART is predicated on the ‘shape’ attribute 
in RED PART. 

5.3 Rules Arising From The Reachability Principle. 

An entity type is reachable from another entity type 
if both entity types are connected, directly or indirectly, by 
some relationship type(s) and/or entity type(s). For example, 
in Figure 1, the entity type PROJECT is reachable from the 
entity type BUILDING through the relationship types 
LOCATED-IN and SPONSER and the entity type DEPT. 

(Rule 15) An external entity typo may include 
attributes from a reachable entity type. The cardinalities of 
such attributes in the external entity type may not be the 
same as their original cardinalities in the conceptual schema. 

In general, an external entity type may not include 
attributes of entity types which are not related according to 
the reachability principle. The rules of Sections 5.1 and 5.2 
can then be applied to derive external class specifications 
from the external entity type obtained. In Appendix I, 
DEPTVIEW2 is an example class, based on DEPT, that 
includes attributes from the reachable entity types 
BUILDING and PROJECT. 

5.4 Rules Relating To Methods 

(Rule 16) An external class can contain 
programmer-defined methods which derive new attributes 
(Properties) for the class. 

For example, in Appendix I, a method can be defined 
for EMPVIEWl that computes the age of an instance of 
EMPVIEWl, based on the attribute DOB. Another method 
can be defined for EMPVIEW:! that allows all the superiors 
of an instance of EMPVIEW2 to be computed. 

(Rule 17) A method defined at the conceptual schema 
level can be used at the external schema level if it does not 
refer to resources which are not present at the external 
schema level or which are protected from access. 

For example, EMPVIEWl can include a method 
(defined at the conceptual schema level) that derives a count 
of the number of children for an employee instance, if the 
execution right on that method has been granted by the DBA 
to users. 

6 RELATED WORK 

Most 00 database systems (DBMSs) do not fit into 
the three level schema architecture as spelled out in the 
ANSI/XYSPARC[2]proposal for DBMSs. These OODBMSs 
typically provide a large grained conceptual schema with 
minimum or no facility for defining views or external 
schemas. Several proposals have been made to incorporate 
some view mechanisms in OODBMSs [1,9,13,18]. The 
works of [9,18] focussed on defining multiple interfaces 
(views) to an object class. Each interface or views defines a 
set of methods and different views of an object class may 
share methods. Generally, these proposals do not sufficiently 
address the need for a flexible and declarative view 
mechanism such as that found in relational DBMSs. In 
[l ,131, a query based view mechanism is used to derive 
subclasses from superclasses. [l] treats views as queries and 
uses the view mechanism to define virtual classes, which are 
structured into inheritance lattice. The behavioural aspects of 
the views defined are generated automatically by the system. 
Furthermore, such views are not updatable. In [13], updates 
apply only to views that are based on a join of the primary 
keys of the base tables. The views are non-recursive. Many 
of the view mechanisms proposed are defined on 00 
schemas which themselves suffer from several limitations 
(eg. problematic way of representing m-n, n-ary (n >2), 
recursive relationships, presence of redundancy etc). This 
seriously hampers the usefulness of these view mechanisms. 

7 CONCLUSION 

The 00 paradigm is not a panacea that will address 
all the data modelling problems of complex applications. 
This paper has proposed a framework to address several 00 
data modelling issues, viz. (1) the problematic way in which 
m-n, n-ary and recursive relationships are handled in the 00 
approach, (2) the lack of general and flexible support for 
external schemas or views, and (3) the inability to 
differentiate good 00 schema design from bad. Our 
approach allows 00 external schemas to be generated from 
a conceptual schema which is represented by a normal form 
OOER diagram. A set of mapping rules is defined to derive 
02 external schemas from the conceptual schema. A normal 
form OOER diagram incorporates several 00 concepts, eg. 
methods, inheritance, existentially dependent objects etc. The 
model also include triggers for simple constraint 
enforcements, derived attributes and deductive rules. 

As future work, we are currently investigating the 
updatability of the external schema% 
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Appendix I : Example 02 Schema Based on Figure 1 

add Class EMPVlEWl type tuple ( 
E# : string; I” key ‘I 
Name : string; 
Address : tuple(street:string, Zip:string); 
Job-History : set (string); 
support : set(DEPENDENTS-VIEW); 
DOB : string;) /’ from PERSON ‘I 

L 
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add Class EMPVIEW2 type tuple ( 
E# : string; f* key *I 
Name : string; 
Boss : EMPVIEWZ; I* cyclic definition ‘/ 
Subordinate : set(EMPVIEW21; 
Drives : VEHICLE-VIEW;) I’ defined below ‘/ 

add Class DEPENDENTS-VIEW type tuple ( 
BirthCert# : string; I’ key *I 
Sex : char; 

Aoe : integer;) 
add Class DEPTVlEWl type tuple ( 

D# : string; I+ key *I 
Dname : string; 
Manager : EMPVIEWZ; 
Sponser : set(tupleU:PROJECTVIEW, 

Cost:float,ChkPtDte:set(string)))) 
add Class DEPTVIEWZ type tuple ( 

D# : string; I* key ‘I 
Dname : string; 
Projects : setlstring); I” project descriptions ‘/ 
Location : string;) I” from Bdesc attribute “I 

add Class VEHICLE-VIEW type tuple f 
V# : string; I+ key ‘f 
OwnedBy : DEPTVIEWl ;I 

add Class SUPPLIER-VIEW1 type tuple f 
S# : string; I” key “I 
Sname : string; 
PJ : set(tuple(P:PARTVIEW. J:PROJECTVIEW, 

QtyDate:set(tupleKIty:integer,date:string~~~~~ 
add Class SUPPLIER-VIEW2 type tuple ( 

S# : string; /+ key l l 
Sname : string; 
PJ : set(tuple(P:PARTVIEW, ProjQtyDate:setftuple 

(J:PROJECTVIEW, Qty:integer, date:string))))) 
add Class SUPPLIER-VIEW3 type tuple ( 

S# : string; I’ key ‘1 
Sname : string; 
JP : set(tuple(J:PROJECTVIEW, PartQtvDate:set(tuple 

(P:PARTVIEW, Qty:integer, date:string))I)) 
add Class PARTVIEW type tuple f 

P# : string; I* key ‘i 
Pname : string; 
Color : string; 
Shape : string;) 

Class ROUND RED-PART-VIEW inherits PARTVIEW 
type f&ish:string; 

add Class PROJECTVIEW type tuple ( 
J# : string; I” key +I 
Jdesc : string;) 

add Class SPJ-VIEW1 type tuple f 
I’ key is composite comprising S, P and J l / 
S : SUPPLIER-VIEW1 ; 
P : PARTVIEW; 
J : PROJECT-VIEW; 
QtyDate : set(tuple (Qty:integer, Date:string)); 
SpecialPrice : integer;) 

add Class SPJ-VIEW2 type tuple f 
S : SUPPLIER-VIEW1 ; I’ no underlying key ‘I 
P : PARTVIEW; 
SpecialPrice : setfinteger)); 


