
Object Migration in ISA Hierarchies

Tok Wang LING and Pit Koon TEO
Department of Information Systems and Computer Science

National University of Singapore
Kent Ridge, Singapore 0511

lingtw@iscs.nus.sg

Abstract

When an object migrates from one class to another in an
ISA hierarchy, it acquires or loses membership in respec-
tive classes in the ISA hierarchy. Since an object can be an
instance of multiple classes in the ISA hierarchy, there is a
question of whether to have a single object identifier (OID)
or multiple OIDs assigned to an object as it migrates along
the ISA hierarchy. We refer to this as the OID ambiguity
problem. Rules for meaningful object migration are first

described in order to establish a framework for studying
this problem. Then, to address the problem, a number of
variables are considered, viz. (1) the storage scheme chosen
for the ISA hierarchy, (2) the representation for the OID,
(3) the way a message despatched to an object is processed,
and (4) the ability to decide if two (or more) OIDs refer to
the same real world object. Four approaches are studied,
each of which resolves the OID ambiguity problem. One of
the approaches is recommended as a superior approach be-
cause it retains the desirable OID properties of uniqueness
and immutability and has relatively less overheads.

1 Introduction

The support for object identity (OID) [S] is a key
characteristic of most object-oriented database sys-
tems (OODBMSs). It provides a means to distinguish
among objects, even those with similar attribute val-

ues. OIDs are system generated, logical, immutable
and, when used in inter-object references, allow ob-
jects to be shared. An object’s OID is durable in the
sense that it is independent of changes to (key) at-
tribute values of the object.

Object-oriented systems that support object migra-
tion allow an object to migrate from one class to an-
other in an ISA hierarchy. Depending on OID im-
plementation, e.g. typed OIDs, it is possible for an

Proceedings of the Fourth International Conference on
Database Systems for Advanced Applications (DASFAA’95)
Ed. Tok Wang Ling and Yoshifumi Masunaga

Singapore, April 10-13, 1995
@ World Scientific Publishing Co. Pte Ltd

teopitko@iscs.nus.sg

object to adopt another OID when it migrates to an-
other class, thus violating the immutability property
of OID. Further, as a consequence of object migration,
an object can be an instance of multiple classes in the
hierarchy, possibly adopting multiple OIDs. This vio-
lates the uniqueness property of OID.

When an object migrates to another class in an ISA
hierarchy (possibly becoming an instance of multiple
classes in the hierarchy), we can either (1) assign a sin-
gle OID to the object even though it is an instance of
multiple classes, or (2) have multiple OIDs assigned to
the object, i.e. one OID for each instance of the object
in the hierarchy. We refer to this as an OID ambiguity
problem. Suppose a single OID is assigned. There is a
mismatch between the single OID and the multiple in-
stances of the object in the ISA hierarchy. Given this
OID, there is also a question of which class to associate
with this OID. Class information is needed to provide
the object’s structure as well as to process messages
despatched to the object.

Suppose multiple OIDs are assigned to instances of
the object. In this case, there is a problem of deciding
that two (or more) OIDs are in fact referring to the
same real world object. We refer to this as an object
identification problem. This problem exists only when
multiple OIDs are assigned to a migrating object, but

not when the migrating object has only a single OID
assigned.

In the presence of object migration, a message
despatched to an object is ambiguous because it can
be for any of the classes that the object is an instance
of. The classical 00 way of processing a message
despatched to an object of a class X assumes that X is
the most specific class for the object. This assumption
may not be true in the presence of object migration.
We refer to this as a message ambiguity problem.

In this paper, we first describe the rules under which
meaningful object migration can occur. These rules
provide a framework in which to study the OID ambi-
guity problem, and the associated object identification

292

and message ambiguity problems. Then, to address
these problems, a number of variables are considered,
viz. the storage scheme for the ISA hierarchy, the rep-
resentation chosen for the OID, the way a message
despatched to an object is processed, and the ability
to resolve the object identification problem. In this pa-
per, three possible storage schemes for ISA hierarchies
and a number of possible representations for OIDs are
discussed. We also describe a method of message pro-
cessing that always starts from the most specific class
associated with an object. Finally, four approaches are
described, each of which resolves the OID ambiguity
problem, and the associated message ambiguity and
object identification problems. These four approaches
are:

1. Using typed surrogates[3] to support multiple
OIDs for a migrating object.

2. Using untyped surrogates[3] to support multiple
OIDs for a migrating object.

3. Using a typed surrogate to support a single OID
for a migrating object.

4. Using an untyped surrogate to support a single
OID for a migrating object.

Subsequent discussions will show that approach 4
is superior to the other three approaches for resolving
the OID ambiguity problem.

Section 2 discusses the motivation behind this pa-
per. Section 3 examines some of the semantics as-
sociated with object migration. These semantics de-
scribe the rules under which meaningful object migra-
tion can take place. In Section 4, storage schemes for
ISA hierarchies and representations for OIDs are dis-
cussed. Then a more reasonable method for processing
a despatched message is described. Finally, four ap
proaches are discussed to resolve the OID ambiguity
problem. Section 5 concludes the paper.

2 Motivation

Suppose an object 0 with OID 0, migrates from a
class X to a class Y in an ISA hierarchy. Then 0
becomes an instance of Y and all of Y’s superclass(
including X if Y is a subclass of X. We can either (1)
assign a single OID to 0 even though it is an instance
of multiple classes (e.g. X and Y), or (2) have multiple
OIDs assigned to 0, i.e. one OID for the instance in X
and another OID for the instance in Y and so on. The
problem of deciding whether to assign a single OID or
multiple OIDs to a migrating object is referred to as
the OID ambiguity problem.

Consider the case in which a single OID is assigned.
There are at least two problems. The first problem is
to decide whether to retain the original OID, i.e. O,,
or have a new OID, say O,, assigned to the object. If
a new OID is assigned, existing references to 0, are
now invalid and must be updated. This update is ex-
pensive, if not impossible, because the references may
be embedded in complex object structures throughout
the database. Once the OID is decided, the second
problem is to decide which class to associate with this
single OID. Class information is needed to determine
the structure of the object and to determine the va-
lidity of messages despatched to the object using this
OID.

Suppose multiple OIDs are assigned to a migrating
object. The immediate problem is that of deciding,
given two (or more) OIDs, that they, in fact, refer to
the same real world object. This is an object identi-
fication problem. Resolving the object identification
problem is important in a number of instances. For
example, the result of an 00 query may be a set of
OIDs. These OIDs may refer to a set of possibly het-
erogeneous objects, i.e. objects belonging to distinct
classes. It is useful to determine that two or more
such OIDs refer to the same real world object.

A real world object that participates in object mi-
gration may be an instance of multiple classes in an
ISA hierarchy. Any message sent to the object be-
comes potentially ambiguous, since it can be for any
of the classes that the object belongs to. We refer to
this as a message ambiguity problem. We motivate the
message ambiguity problem by looking at two exam-
ples:

Example 1 : Suppose MANAGER ISA EM-
PLOYEE and bonus0 is a method in both MANAGER
and EMPLOYEE such that the implementation of
bonus0 of MANAGER overrides the implementation
of bonus0 of EMPLOYEE. When a bonus0 message
is sent to an instance of EMPLOYEE who also hap
pens to be a manager, it is semantically incorrect to
execute the bonus0 method of EMPLOYEE, since a
more specialised bonus0 method exists for this par-
ticular employee who is also a manager. The correct
bonus0 method to execute should be that of MAN-
AGER.

Example 2 : Suppose MANAGER and EM-
PLOYEE each has a method print(). When a print0
message is sent to an employee who is also a manager,
the print0 method of manager should be activated.
The argument is exactly the same as that for activating
the bonus0 method in the example above. It may be
argued that it is sometimes desirable to just print the
employee details of the employee even though the em-
ployee is also a manager. However, we advocate that,

293

in such a case, there should really be two print meth-
ods, viz. empPrint() and mgrPrint() for EMPLOYEE
and MANAGER respectively. Defining two distinctly
named print methods will not exploit the benefits of
polymorphism, but is really necessary, because of the
need to print EMPLOYEE and MANAGER instances
differently.

3 Semantics of Object Migration

In this section, some interesting semantics associated
with object migration are discussed. These semantics
characterise the rules for nzeaningful object migration.

In [lI], the concepts of essential types and exclu-
sionary types are introduced to characterise the prop-
erties of types in an ISA hierarchy. An essential type is
a type which cannot be lost through object migration.
For example, an object of type PERSON still retains
that type when the object becomes an EMPLOYEE
instance and, later on, a MANAGER instance. PER-
SON is therefore an essential type for that object. An
exclusionary type is a type acquired when the object
is created, but can be removed as a result of object
migration. Once an exclusionary type is removed, it
can never be regained. For example, an object of type
CHILD can migrate to a type TEENAGER, thereby
losing its CHILD type. The object cannot regain its
CHILD type subsequently.

We believe that there are other interesting type
properties that should be noted during object migra-
tion. As a general rule, when an object moves from a
class X to another class Y, it becomes an instance of
class Y. It retains its membership in class X if Y is a
subclass of X or loses its membership in class X if Y
is a superclass of X. Consider the ISA hierarchy given
in Figure 1. There are five possible scenarios for the
migration of an object in the ISA hierarchy:

Case 1: An object can migrate from a class (e.g.
class C) to a more specialised class (e.g. class D) which
has only one superclass (i.e. class C itself). In this case,
the object acquires membership in both A and C.

An illustration of this scenario is the promotion of
an employee to a manager post, using the single inher-
itance situation in Example 1 of Section 2.

Case 2: An object can migrate from a class (e.g.
class C) to a more general class (e.g. class Z). In this
case, the object loses its membership in class C, while
acquiring membership in class Z.

As illustration, consider the case when a manager
instance is demoted to become an employee instance,
again using the single inheritance situation in Exam-
ple 1 of Section 2.

Case 3: An object can migrate from a class (e.g.

1 B

A

Fig. 1. An Example ISA hierarchy

class C) to a more specialised class (e.g. class A) which
has two or more superclasses (e.g. classes B and C).
These superclasses must have a common superclass
(e.g. class Z). In this case, the object acquires mem-
bership in B and A, and retains its membership in C.

For example, consider a multiple inheritance sit-
uation such that STUD-EMP is a subclass of both
STUDENT and EMPLOYEE, which are subclasses
of PERSON. When a STUDENT object migrates to
STUD-EMP, it becomes an instance of both STU-
DENT and EMPLOYEE. Note that it is not possible
for distinct instances of two distinct classes to migrate
to a common subclass and become a single instance
of the common subclass. For example, it is not pos-
sible for a STUDENT instance and an EMPLOYEE
instance, both of which are unrelated, to migrate to
STUD-EMP and become a single instance of STUD-
EMP.

Case 4: In a multiple inheritance situation, an
instance of a class with multiple superclasses (e.g.
class A) can migrate to at most one of its direct super-
class(es) (e.g. to class C), but never to two or more of
its direct superclasses (e.g. to both classes B and C).
In moving from class A to C, an instance retains its
membership in C (and its superclasses) but loses its
membership in A and the superclasses of A that are
not superclasses of C (i.e. it loses membership in B but
retains membership in Z). If it is desired to migrate to
two or more direct superclasses, we can always create
a common subclass of these superclasses and migrate
the object to this common subclass.

For example, consider the multiple inheritance situ-
ation given in Case 3. An instance of STUD-EMP can
migrate to either STUDENT or EMPLOYEE, but not
to both classes. If it migrates to STUDENT, it loses
its membership in EMPLOYEE, and the superclasses
of EMPLOYEE that are not also superclasses of STU-

294

DENT. Similar considerations apply if it migrates to
EMPLOYEE.

Case 5: An object can migrate from a class (e.g.
class C) to another class (e.g. class B) only if classes
C and B have a common superclass. This is logically
equivalent to case 2 (or case 4) followed by case 1 (or
case 3). To be semantically meaningful, the common
superclass cannot be an all-encompassing superclass
such as ROOT or OBJECT, which is the superclass of
all classes in the system. The object loses its member-
ship in class C and acquires membership in class B.

For all cases, an object is constrained to migrate
within the ISA hierarchy, as defined in a schema. This
is not a restrictive condition. It is not semantically
reasonable for an object to migrate arbitrarily from a
class X to another class Y such that there is no ISA
relationship between X, Y or their superclasses, if any.
For example, it is not possible for a SUPPLIER ob-
ject to migrate to a PART class, but it is possible for
a TECHNICIAN object to migrate to become an EN-
GINEER object, as long as TECHNICIAN and ENGI-
NEER have a common superclass, say EMPLOYEE.

Our approach is different from that in [9], which
uses the concept of aspects to model a real world en-
tity that plays different roles or adopts multiple facets.
An aspect extends an object with a new state and be-
haviour while still retaining the object’s OID. An ob-
ject of a class X may acquire many aspects which are
not ISA-related to the class X. An object of another
class Y can acquire aspects meant for class X as long
as the type of Y conforms[9] to the type of X. While
flexible, it may lead to some semantically meaningless
aspects being acquired. For example, a person object
with only name and age attributes may have an as-
pect EMPLOYEE defined for it. A bird object, also
with only name and age attributes, can acquire the
EMPLOYEE aspect, since it conforms to the type for
the person object.

Note that it is difficult to implement object migra-
tion using a deletion followed by an insertion. Each
deletion means that references to the deleted object
must be nullified. Identifying these dangling references
is difficult, if not impossible, since they can be em-
bedded in complex object structures throughout the
database.

4 Resolving Object Migration Prob-
lems

To resolve the OID ambiguity problem, a number of
variables must be considered, viz. the storage scheme
that is used to store ISA hierarchies, the representation
chosen for OID and the ability to handle the associated
problems of message ambiguity and object identifica-

tion. We discuss these variables in detail in subsequent
subsections. The selection of a particular storage
scheme for ISA hierarchies will not solve the OID am-
biguity problem, but it determines whether it is more
amenable (or less troublesome) to support single OID
or multiple OIDs for a migrating object. The repre-
sentation chosen for an OID (e.g. physical/structured
addresses, typed or untyped surrogates[3]) determines
the methods used to solve the message ambiguity and
object identification problems.

4.1 Hierarchy Storage Schemes

Three possible storage schemes for ISA hierarchies are
described below, using the single inheritance situation
in Example 1 of Section 2 to illustrate each of these
schemes.

Scheme 1 : Use a monolithic structure to store
the entire hierarchy, thus achieving a flattened table
structure for the hierarchy.

Under this scheme, the hierarchy of Example 1 in
Section 2 can be stored by using the MANAGER
record structure and storing all MANAGER and EM-
PLOYEE instances in this structure. This is not a
satisfactory approach because most employees are not
managers and therefore there are likely to be many
null values within this structure. We will not consider
scheme 1 further in this paper.

Scheme 2 : For an instance of a subclass, only the
values of attributes defined or specified in the subclass
and either inherited key attributes or OIDs of cor-
responding superclass instances, or both, are stored;
the values of its other inherited attributes are not
stored with the subclass, but with the respective su-
perclass(

Consider again the hierarchy of Example 1 (Sec-
tion 2). For all employees (including employees who
are managers), store the values of all employee-related
attributes within an EMPLOYEE structure, and store
only the values of manager-related attributes within a
MANAGER structure. In order to access the EM-
PLOYEE information of a MANAGER object, we
have to store, with the MANAGER object, either (1)
a pointer (e.g. the OID of the EMPLOYEE instance,
distinct from the OID of the MANAGER instance) or
(2) the values of the key attributes of the EMPLOYEE
instance, as in the relational approach, or (3) both
pointer and key attribute values. Values of attributes
inherited from EMPLOYEE, possibly other than the
key attributes, are not stored in the MANAGER struc-
ture.

This approach facilitates retrieval of all employee
records, via a scan of the EMPLOYEE structure.
However, to retrieve all manager records, it requires a

295

retrieval of all manager objects from the MANAGER
structure, and for each of these manager objects, the
matching employee object in the EMPLOYEE struc-
ture must also be retrieved.

Scheme 2 seems to be particularly amenable to sup-
porting multiple OIDs for an object as it migrates from
one class to another along the ISA hierarchy. To see
why this is so, consider the situation when an em-
ployee is promoted to manager. Its manager-related
information and, say, the employee OID are inserted
into the MANAGER structure as a manager object.
A manager OID (distinct from the employee OID) is
assigned to the manager object and inserted into a
hash or (physical) address lookup table. Suppose, on
the contrary, that a manager is demoted to become an
employee again. In this situation, the manager object
is deleted and its OID is cleaned up from the hash or
lookup table. Existing references to the manager ob-
ject are no longer valid and can rightly be highlighted
as such.

Scheme 2 is probably not suitable for supporting
a single OID for a migrating object. The OID must
be mapped to a single storage location, but scheme 2
is such that an object which is an instance of several
classes in the ISA hierarchy has several storage loca-
tions associated with it. It is necessary to chain these
storage locations using, say, address pointers.

Scheme 3 : An object that is an instance of mul-
tiple classes in the ISA hierarchy is only stored in the
structure of its most specific class, which includes the
set of attributes either defined or inherited by its most
specific class in the ISA hierarchy.

In Example 1 (Section 2), store information of em-
ployees who are not managers in an EMPLOYEE
structure. Store information of managers in a
MANAGER structure, which also holds the values
of employee-related attributes inherited from EM-
PLOYEE.

Such a storage scheme facilitates retrieving all
manager-related information, but requires a scan of
two structures in order to retrieve all employee records.
Consider a request to retrieve n manager records from
the database. Using scheme 3, it requires only n ac-
cesses to the MANAGER structure. In scheme 2, it
requires 2n accesses, i.e. n accesses to the MANAGER
structure and another n accesses to the EMPLOYEE
structure. Note that a retrieval of n’ employee records
using either scheme 2 or scheme 3 requires the same
number of accesses to the database.

Scheme 3 is suitable for supporting a single OID for
an object as it migrates along the ISA hierarchy. There
is only one storage structure associated with an object,
even though it is an instance of several classes in the

ISA hierarchy. The single OID assigned to the object
can therefore be mapped unambiguously to the loca-
tion of this storage structure. In contrast, scheme 3 is
clearly not suitable for supporting multiple OIDs for a
migrating object.

4.2 Representation for OID

As observed in fl], an OID is often defined in terms of
implementation (e.g. as surrogates or pointers). There
are at least four possible representations for OID[3]:-

l Using the physical (disk) address of an object.
This is rarely used because it does not allow an ob-
ject to be moved. Note that during the runtime
of an 00 program, the OID of a non-persistent
object is typically the main memory (virtual) ad-
dress at which the object is located.

l Using a structured address, comprising a physical
component (e.g. segment and page number) and
a logical offset (e.g. into a physical page). This
approach allows an object to be moved within
a page, or to another page by using a forward-
ing technique, but the OID is still dependent on
the physical location of the object. Examples of
OODBMSs that use this method include ONTOS
and Objectivity/DB. In 02[4], record identifiers
generated by the underlying storage manager are
used as OIDs for objects. Such record identifiers
are typically structured addresses. ObjectStore[7]
uses the virtual memory address of the object in
cache as its OID. While the original intention of
OID is that it should also be independent of the
(virtual) address of the location that the object
was stored in[6], the use of structured addresses
as OIDs means that OIDs are no longer logical.

l Using untyped surrogates. The OID is purely log-
ical and must be mapped to the physical address
of an object, via a lookup or hash table. The hash
table is likely to be huge and therefore cannot be
placed in memory for performance. Furthermore,
the updating of this hash table becomes a per-
formance issue when objects are moved on disk
as a result of database reorganisation, or when
objects are deleted/created. Generally, a smaller
in-memory hash table is maintained that maps
the OIDs of in-memory objects to its physical ad-
dress. When an object is needed whose OID is
not in the hash table, an object fault occurs; the
object is then brought into memory and an en-
try made in the hash table. Untyped surrogate
OIDs often have poorer retrieval performance[3].
POSTGRES[lO], IRIS[5] and GEMSTONE[2] are
examples of OODBMSs using untyped surrogates.

296

In OODBMSs that use either physical addresses,
untyped surrogates or structured addresses to rep-
resent OIDs, the ID of the class which an object
belongs to is kept as a separate system defined
attribute of the object. When a message is sent
to an object, the system must fetch the object,
retrieve the class ID and then access the class
definition to check for message validity. Invalid
messages can cause needless object accesses and
type checking is expensive.

l Using typed surrogates, each of which is a pair
< C, I > where C is the identifier of the class to
which the object belongs, and I is the identifier of
the instance either within the class or within the
whole database. Again, a hash table is maintained
that maps the OID of an in-memory object to its
physical address. An advantage of using typed
surrogate is that the validity of a message sent
to an object can be checked without fetching the
object. However, this representation makes the
migration of an object from one class to another
very difficult, since the OID, and any references to
it, must be updated. This approach is therefore
expensive and really violates the idea of having
immutable OIDs.

OIDs can be generated using any algorithm that
is guaranteed to produce unique IDS (e.g. using
date/time, or a monotonically increasing function).
GEMSTONE uses its STONE monitor to dynamically
allocate OIDs, while POSTGRES has a software rou-
tine to handle OID assignments. Invariably, the rou-
tine that generates OIDs becomes a bottleneck. To
overcome this problem, GEMSTONE allocates OIDs
in blocks.

Using physical or structured addresses for OIDs is
not true to the spirit of the original proposal for us-
ing OIDs[6]. As hardware becomes faster and memory
cheaper, the performance gains from using physical ad-
dresses for OIDs will become insignificant. Therefore,
only typed and untyped surrogates offer reasonable
representations for OIDs.

4.3 Semantics for Message Processing

Under the classical 00 approach to message process-
ing, if a message is despatched to an object of a class X,
the definition for class X is searched to see if there is
a method defined for X that matches the signature of
the message. If found, the method is executed. Other-
wise, a search up the class hierarchy is initiated until
either a method is found or the search returns a fail-
ure. The underlying assumption here is that the class
associated with the object, is its most specific class.

This assumption may not be true in the presence of
object migration, since a real world object may be an
instance of multiple classes, and there may be a more
specific instance of the object which has to be consid-
ered to process the message correctly, as example 1 in
Section 2 shows.

To resolve this problem, a message despatched to
an object should be processed starting from the most
specific class that the object is a member of. Only if
the message definition is not found in the most spe-
cific class should its superclasses be searched. Note
that subclasses, if any, of the most specific class asso-
ciated with an object need not be searched, because
the object is not an instance of any of these sub-
classes. For example, if an employee is not a man-
ager, and a message is sent to the employee to invoke
the bonus() method, then clearly, the search for the
bonus() method implementation should start and end
at the EMPLOYEE class.

Note that the search for a superclass for which the
message applies should only yield at most one super-
class; If two or more superclasses have this method,
an inheritance conflict is present which we assume has
been resolved by using the method proposed in [8].

4.4 Approaches to Resolve the OID Ambigu-
ity Problem

There are four possible approaches for resolving the
OID ambiguity problem:

Approach 1 : Using multiple OIDs, with
OIDs represented by typed surrogates. In this
implementation, every object has associated with it a
typed surrogate as its OID. When an object migrates
to a new class, it acquires an additional OID. An ob-
ject that migrates may therefore end up with multiple
OIDs.

This approach faces the twin problems of object
identification and message ambiguity. One way to re-
solve these problems is to link an instance to its su-
perclass and subclass instances via OIDs, as discussed
below.

We make use of the following concepts. The fan-in
of a class Fi is the number of superclasses of the class.
The fan-out F0 of a class is the number of subclasses of
the class. Since an object is also an instance of its su-
perclasses, if any, the object is linked to its superclass
instances via the OIDs of these superclass instances.
There are at most Fi such OIDs. An object of a class X
may have a more specialised instance of itself in a sub-
class of X. Links are setup between the object and all
its specialised instances in the subclasses by using the
OIDs of these specialised instances. There are at most
F, such OIDs. When an object 0 migrates from a class

297

C to its subclass C, , an instance is created in C,, say
0,, which still retains its link to 0. The object, 0 also
has its link to 0, updated simultaneously. Existing
references to 0 remain valid, since 0 (and its OID)
still exists. Therefore, given an object, it is possible
to traverse the ISA hierarchy, retrieving more gener-
alised instances of the object from the superclasses, if
any, and more specialised instances of the object from
the subclasses, if any. The overhead associated with
keeping the subclass and superclass information with
an object is a constant and is Fi + F, OIDs per object
instance. The problem of object identification is solved
using this structure, because instances of an object are
now linked via OIDs.

The message ambiguity problem is solved since the
most specific class associated with the object can be
retrieved by traversing the links.

As noted in Section 4.1, storage scheme 2 is more
suitable for storing the ISA hierarchies for Approach 1.
Using Approach 1 means that an object’s OID is not
unique and not immutable when it migrates from one
class to another.

Approach 2 : Using multiple OIDs, with
OIDs represented by untyped surrogates.
Again, the immediate problems with this approach are
those of object identification and message ambiguity.
To resolve these problems, the same data structure de-
scribed in Approach 1 can be used. The methods to
solve these problems are exactly the same as in Ap-
proach 1.

As discussed in Section 4.1, storage scheme 2 is

more suitable for storing the ISA hierarchies for Ap-
proach 2. Using this approach, an object’s OID is not
unique and not immutable when it migrates from one
class to another.

Approach 3 : Using single OID, with the OID
represented by a typed surrogate. Suppose that
a migrating object is assigned a single typed surrogate
OID. The OID must be updated to reflect the most
specific class associated with the object. For exam-
ple, suppose an employee is represented by the OID
c E, 11 >, where E is the identifier associated with
the EMPLOYEE class and 11 is an instance identifier.
If the employee becomes a manager, its OID should be
updated to become < M, I2 >, where M is the iden-
tifier associated with the MANAGER class and 12 is
an instance identifier. Any references to < E, II > in
the database must be updated to < M, I, >, since the
former no longer exists. The updating of existing ref-
erences can be expensive, if not impossible. Suppose
the manager is demoted to be an employee. A new
OID should be assigned to the demoted employee, say
< E, 13 >. It is meaningless and really without much

benefit to reuse < E, 11 > for the demoted employee.
To do so would mean that an object can have multi-
ple typed surrogates as its OIDs (i.e. similar to Ap-
proach 1).

Using this approach, there is no problem of object
identification, since an object has only one OID. The
message ambiguity problem is solved since the object’s
OID is associated with the most specific class of the
object.

Storage scheme 3 is more suitable for storing the
ISA hierarchies for this approach, as discussed in Sec-
tion 4.1. Using this approach, a migrating object’s
OID is not immutable but is unique in the database.

Approach 4 : Using single OID, with the OID
represented by an untyped surrogate. In this im-
plementation, every object is assigned an untyped sur-
rogate OID. The OID is used to hash into an auxiliary
table which stores the most specific class associated
with the object, as well as the physical address of the
object on disk. For example, suppose an object is an
instance of MANAGER, EMPLOYEE and PERSON.
Then, in the auxiliary table, the class information as-
sociated with this object is MANAGER. When the
object migrates, the OID is retained, but the class in-
formation in the auxiliary table is updated to the most
specific &sss of the object.

The message ambiguity problem is resolved since
the most specific class (and the physical address) for
an object can be retrieved via a lookup of the auxil-
iary table. Message processing up the ISA hierarchy,
starting from the most specific class, can be done using
schema information, if necessary.

Storage scheme 3 is more suitable for storing the
ISA hierarchies for this approach (see Section 4.1).
Using this approach, a migrating object’s OID is im-
mutable and unique.

From the above discussions, we can see that ap
preach 4, together with storage scheme 3, offers the
best, solution to the OID ambiguity problem. First,,
it is truer to the spirit of using OID, since each real
world object has only one unique OID, regardless of its
possible instances in the classes of the ISA hierarchy.
There is no problem of object identification. Second, it
does not require the setup of links between instances
along the ISA hierarchy. It only requires a hash or
lookup table, which is needed anyway to map an OID
to its physical address. Approach 1 is better than ap
preach 2 because class information is part of the OID
and, unlike approach 2, needs not be separately looked
up. Approach 3 is the worst of the four approaches,
since an object’s OID must be changed for every mi-
gration and existing references to the object must, be
updated.

298

5 Conclusion References

In this paper, we provided semantics for meaningful
object migration along an ISA hierarchy. This defined
clearly the situations under which meaningful object
migration can take place.

We addressed the problems associated with object
migration. The primary concern for object migration
is that it allows an object to be an instance of multiple
classes in an ISA hierarchy, and therefore the question
of whether it should have a single or multiple OIDs
arises. We referred to the problem of deciding whether
to have a single or multiple OIDs for a migrating object
as the OID ambiguity problem.

The OID ambiguity problem was resolved by con-
sidering a number of variables, viz. the storage scheme
for storing ISA hierarchies, the representations chosen
for OIDs, and the ability to resolve two other associ-
ated problems, viz. the message ambiguity and object
identification problems.

We examined three possible storage schemes for
ISA hierarchies. Some storage schemes are suitable
for supporting a single OID for a migrating object,
while other schemes are more amenable to supporting
multiple OIDs for a migrating object. For the rep-
resentations of OIDs, typed and untyped surrogates
are viable representations for OIDs and truer to the
spirit of using OIDs. Two examples were given to il-
lustrate and motivate the message ambiguity problem.
A solution to this problem was described, based on a
re-examination of the classical 00 way of handling a
message that is despatched to an object. The object
identification problem exists only when multiple OIDs
are assigned to a migrating object. A data structure
was described that resolves the object identification
problem.

Four possible approaches were then considered to
resolve the OID ambiguity problem. The first ap-
proach used typed surrogates to support multiple
OIDs for an object during migration. The second ap-
proach used untyped surrogates to support multiple
OIDs for an object during migration. The third ap-
proach used a typed surrogate to support a single OID
for a migrating object. The fourth approach used an
untyped surrogate to support a single OID for a mi-
grating object. Each of these approaches works well
with one of the three storage schemes discussed in this
paper. We recommended the fourth approach, with
an associated storage scheme, as a superior approach
to solving the OID ambiguity problem because it re-
tains the desirable OID properties of uniqueness and
immutability and has less overheads compared to the
other approaches.

PI

PI

131

PI

[51

k31

PI

PI

PI

WI

1111

F. Bancilhon, A Logic Progmmming/Object-
Orientkd Cocktail, ACM Sigmod Record, Vol. 15,
No. 3, Sep 1986.

P. Butterworth, A. Otis, J. Stein, The Gemstone
Object Database Management System, Communi-
cations of the ACM, Vol. 34 No. 10, Ott 91.

R. Cattell, Object Data Management: Object-
Oriented and Extended Relational Database Sys-
tems, Addison Wesley, 1991.

0. Deux et. al., The Story of 02, Communications
of the ACM, Vol. 34 No. 10, Ott 91.

D. Fishman, D. Beech, H. Cate, E. Chow, T. Con-
nors, J. Davis, N. Derrett, C. Hoch, W. Kent,
P. Lyngbaek, B. Mahbod, M. Neimatt, T. Ryan,
M. Shan, Iris: An object-oriented database man-
agement system, ACM Trans. Office Information
Syst., Vol. 5, pp 48-69, Jan 1987.

S. Khoshafian, G. Copeland, Object Identity,
Proc. OOPSLA, Portland, Oregon, Sep 1986.

C. Lamb, G. Landis, J. Orenstein, D. Weinreb,
The ObjectStore Database System, Communica-
tions of the ACM, Vol. 34 No. 10, Ott 91.

T.W. Ling, P.K. Teo, Inheritance conflicts in
object-oriented systems, Proc. Database and Ex-
pert Systems Applications, Prague, .Czech Rep.,
Sep 1993.

J. Richardson, P. Schwarz, Aspects: Extending
objects to support multiple, independent roles,
Proc. ACM Sigmod 91, Denver, Colorado, May
29-31, 1991.

M. Stonebraker, L. Rowe, M. Hirohama, The
Implementation of POSTGRES, IEEE Trans.
Knowledge and Data Engineering, Vol. 2, No. 1,
Mar 1990.

S. Zdonik, Object-oriented type evolution, Ad-
vances in database programming languages, F,
Bancilhon, P. Buneman eds., ACM Press, 1990.

299

