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Abstract. Semistructured data is becoming increasingly important for web 
applications with the development of XML and related technologies. Designing 
a “good” semistructured database is crucial to prevent data redundancy, 
inconsistency and undesirable updating anomalies. However, unlike relational 
databases, there is no normalization theory to facilitate the design of good 
semistructured databases. In this paper, we introduce the notion of a 
semistructured schema and identify the various anomalies that may occur in 
such a schema. A Normal Form for Semistructured Schemata, NF-SS, is 
proposed. A semistructured schema in NF-SS guarantees minimal redundancy 
and hence no undesirable updating anomalies for the associated semistructured 
databases. Furthermore, a semistructured schema in NF-SS gives a more 
reasonable representation of real world semantics. We develop an iterative 
algorithm based on a set of heuristic rules to restructure a semistructured 
schema into a normal form. These design methods also provide insights into the 
normalization task for semistructured databases.  

1. Introduction 

Semistructured data plays a crucial role in the new Internet applications ranging from 
electronic commerce to web site management to digital government. The emergence 
of XML (eXtended Markup Language) [2] as the likely standard for representing and 
exchanging data on the web has confirmed the central role of semistructured data. 
Many information providers have published their databases on the web as 
semistructured data, and others are developing repositories for new applications. As 
with traditional databases, data redundancy and inconsistency may occur in a 
semistructured database if its schema is not designed properly. Thus, it is important to 
provide guidelines for designing “good” semistructured databases.  

Unlike the relational model where normalization theory is used to decide whether a 
set of relations is a good design for a given database, there is no normalization theory 
defined for semistructured data to determine whether a semistructured database has 
been well-designed. This is a major problem in the field of semistructured data 
research. 



Normal forms defined for relational databases, either 3NF, BCNF, 4NF and 5NF 
for the flat relational model, or nested relations like NNF [8] and NF-NR [7], are not 
directly applicable to semistructured data for the following reasons. First, the 
semistructured data model is richer and more complex than the flat relational data 
model. For example, XML incorporates cardinality constraints that are not found in 
the relational data model. Second, a semistructured data instance whose structure is 
embedded together with the data, is required to conform to its schema. Hence there is 
no regular structure in semistructured data instances. Third, unlike comparing values 
of atomic types, it is a nontrivial task to directly compare values of hierarchically 
structured data. The notion of value equality for semistructured data has to be defined. 
Fourth, dependency constraints (such as functional and multi-valued dependencies) 
used in traditional design approaches are not directly applicable to the semistructured 
data model.   

In this paper, we propose NF-SS, a normal form for semistructured schema. We use 
XML as a data model to represent semistructured data and enrich the model with 
schema and integrity constraints such as dependency and key constraints. We will 
show that a semistructured schema in NF-SS not only reduces redundancy and 
undesirable updating anomalies for the complying semistructured databases, but also 
captures the set of semantic connections among objects and attributes that exist in the 
real world. We will propose a set of heuristic restructuring rules and use them in an 
algorithm to obtain a NF-SS schema.  

 The rest of paper is organized as follows. Section 2 gives a motivating example 
and identifies the anomalies that may occur in semistructured databases. Section 3 
defines NF-SS, a normal form for semistructured schema. Section 4 presents a set of 
heuristic rules to restructure a semistructured schema. An algorithm that iteratively 
transforms a semistructured schema into NF-SS is also given. Section 5 discusses 
some related works and we conclude in Section 6 with directions for future work. 

2. Motivating Example 

In this section, we will give an example to demonstrate that without some guide to 
design schemas, it is easy to produce semistructured schemas that contain redundancy 
and unnatural representation of real word semantics.  
 
Example 2.1 Consider the XML DTD in Figure 2.1. A graphical representation of the 
DTD is shown in Figure 2.2(a). A database instance that conforms to this DTD is 
given in Figure 2.3. Note that this database is not well designed because it contains 
data redundancy: the name and age of a student will be repeated for each additional 
course he/she takes. Similar to traditional databases, we can identify three kinds of 
update anomalies in a badly designed semistructured database: insertion anomaly, 
rewriting anomaly and deletion anomaly (see [9] for more details). This redundancy 
can be avoided if the database is designed according to the schema shown in Figure 
2.2(b), where student’s information, including name and age, is referenced rather than 
nested under course.   



 
 <!ELEMENT   department    (course+) 

     <!ATTLIST     department  
                               name             ID         #REQUIRED> 
<!ELEMENT   course                (students*)> 
     <!ATTLIST     course 
                              cid                  ID           #REQUIRED 
                              title        CDATA           #IMPLIED> 
<!ELEMENT   student              (grade?)> 
     <!ATTLIST     student 
                              sid         ID     #REQUIRED 
                            name     CDATA          #REQUIRED 

age        CDATA          #IMPLIED> 
<!ELEMENT    grade            (#PCDATA)> 

 
Fig. 2.1: Example of a DTD. 
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Fig. 2.2: Graphical representations for the DTD in Figure 2.1. 
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Fig. 2.3:  A semistructured database instance that conforms to the schema in Figure 2.2(a). 

3. A Normal Form for Semistructured Schema (NF-SS) 
 

In this section we will give the formal definition of a semistructured schema as well 
as the concept of data tree that conforms to its schema. We will also introduce the 
concept of Extended Functional Dependency (EFD) and key constraints defined over 
semistructured schema. Finally, we will present the definition of NF-SS. 



3.1   Semistructured Schema (D) and Data Tree (T) 

Definition 3.1: A semistructured schema D = (E, A, B, P, R, r) where 
• E is a finite set of object types in D. 
• A is a finite set of attributes, disjoint from E. 
• B is a set of basic domain type like string, integer, Boolean etc. 
• P is a function from E to object type definition, which is an expression 

,,...,1
1

kw
k

w oo where Oi is either a distinct object type in E or a basic domain type in B. 
Each Wi is a symbol in {*, +, ? ,1} called multiplicity.  

• R is a function from E to the power set of A. If a ∈ R (o), then a is defined for o. 
• r ∈  E and is called the object type of the root. 

 
We denote an object type o in an schema D with attributes a1, …, am and sequence 

of sub-object type o1,…on by o(a1,…,am ; o1,…on). D can be represented graphically 
as a tree with labeled rectangles and circles denoting object types and attributes 
respectively. Any multiplicity is indicated on the edges between object types. 

Example 3.1 The schema in Figure 2.2(a) can be represented as D=(E, B, A, P, R, r) 
where E= {department, course, student, grade}  A = {cid, title, sid, name, age} 

   P(department) = course+               R(department) = {name} 
   P (course)   = student*            R(course) = {cid, title} 
   P (student)  = grade                           R(student) = {sid, name, age } 
   P (grade)   = string                            r = department 

 
A semistructured database instance such as an XML document is usually modeled 

as a labeled tree. We define such a data tree as an image of a given semistructured 
schema as follows.     

Definition 3.2: A data tree T w.r.t. a semistructured schema D = (E, A, B, P, R, r) is 
defined to be a tree T = (V, lab, obj, att, val, root) where 

• V is a finite set of nodes. 
• lab is a labeling function that mapping each node in V to E∪ A∪ B. 
• obj is a partial function from V to a sequence of nodes in V such that for any v∈ V, 

obj(v) is defined iff lab(v)=o, and o∈ E; moreover, if obj(v)=<v1, …, vn>, then 
<lab(v1), …, lab(vn)> must be in < nw

n
w oo ,...,1
1 > defined by P(o);  and for iw

io  in  
P(o), the number of children of v that is labeled Oi as is restricted as follows: 

       wi=1: exactly one child is labeled Oi;   wi =?: at most one child is labeled Oi; 
       wi =+: at least one child is labeled Oi;   wi =*: no restriction; 

• att is a partial function from V×A to V such that for any v∈ V and a∈ A, 
att(v,a)=v’ is defined iff lab(v)=o, lab (v’)=a, o∈ E , v’∈ V and a ∈ R(o). 

• val is a partial function from V to atomic values such that for any node v∈ V, val(v) 
is an atomic value iff lab(v)=s, s∈ B or s∈ A. 

• root is a distinguished node in V, lab(root)=r , and is called the root of T. 
 

Example 3.2 The data tree in Figure 2.3 is an instance of the schema in Figure 2.2(a). 
The labeled rectangles and circles denote object nodes and attribute nodes 



respectively. In the department object node, obj defines its sub-objects such as course 
“cs4221” and teacher “t1234” etc., while att defines its attribute nodes labeled with 
name, which is assigned value “cs” by val.        

For any node n in a tree, either a schema tree D or a data tree T, there exists a 
unique path starting from the root to n, denoted as PathD(n) or PathT(n) accordingly. 
Their formal definitions are provided in [10], and their notation makes use of XPath 
expression [4].    

Since data tree T is an image of D, given a node n∈ E∪ A in D, there maybe many 
nodes in T whose path in T is equal to n’s path in D, we call such set of nodes as 
target set of n in T. Formally, it is defined as follows: 

Definition 3.5: Let T=(V, lab, obj, att, val, root) be a data tree of schema D= (E, A, B, 
P, R, r). n∈ E∪ A. The target set of n in T, denoted as T[n], is {v: v∈ V, PathT(v)= 
PathD(n)} 

Example 3.3: Refer to the schema in Figure 2.2(a), the path for object type student is 
/department/course/student. For its data tree T in Figure 2.3, the path for student 
“s01” is /department/course/student; the target set T[student] includes nodes of 
students with sid “s01” and “s02”. 

3.2   Extended Functional Dependency (EFD) and Key Constraints 

Extended Functional Dependency (EFD) 
Before we give the definition for EFD, we first define some terminology that is 
fundamental to the semantics of EFD. 

First, we provide the notion of equality of two nodes in data trees. Intuitively, two 
nodes n1, n2 are value equal denoted by n1 =v n2, if they have the same label and either 
they have the same atomic value (when they are value or attribute nodes) or their 
children are pair-wise value equal (when they are object nodes).  

Example 3.4 In Figure 2.3, the leftmost student node (sid is “s01”) and the rightmost 
student node (sid is “s01”) are value equal because they have the same label tag 
(student) and all their children <sid, name, age> are pairwise value equal.  

In relational databases, when two tuples agree on a set of attributes X, this implies 
that their projections on X are equal. Similarly, two data trees T1 and T2 that agree on 
an object type or attribute X implies that there exists nodes in their target sets of X in 
T1 and T2 respectively satisfying value equality.  

Definition 3.6: Let T1 and T2 be two data trees that are images of schema D = (E, A, 
B, P, R, r). Let X∈ E ∪  A. T1 and T2 agree on X, denoted as T1=xT2 iff the following 
condition is hold: ∃ t1∈ T1[X],t2∈ T2[X], such that (t1=vt2) 

Note that we do not require that the above two target sets to satisfy set equality, 
since it is possible that there are no such nodes in a data tree. 

Definition 3.7: Let D = (E, A, B, P, R, r) be a semistructured schema, let X ⊆  E∪ A 
and Y ∈  E∪ A. Y is extended functionally dependent on X, is denoted as X⇒Y. Let S 



denotes a set of data trees that are images of D, S satisfies X⇒Y, iff for any data trees 
T1, T2 in S, if they agree on every component in X, then they will agree on Y. That is,  

∀ T1, T2 ∈ S((∀ x∈ X, T1=xT2) a T1=yT2). 1 
In the above definition, we write the EFD as X→Y if Y is an attribute of an object 

type or a single valued object type. If there exists an X’⊂ X such that X’⇒Y, then the 
EFD X⇒Y is called partial EFD; otherwise we say that X⇒Y is a full EFD. If Y⊆ X, 
then X⇒Y is a trivial EFD. X⇒Y is said to be coherent iff /X/Y is a path in D; 
otherwise it is called an incoherent EFD. If there exists Z∈ E∪ A, such that X⇒Y and 
Y⇒Z and Y   X, then Z is transitively extended functionally dependent on X via Z. 
From the definition of partial EFD and transitive EFD as well as inference rules for 
EFD, it is easy to conclude that partial EFD is a special case of transitive EFD. We 
use the following notation for an EFD: 

O1[@X1], …, Oi[@Xi],…,On-1[@Xn-1]⇒On[@Xn] 
 where Oi is an object type in D, Xi is a set of Oi’s attributes that participate in the 

dependency. Note that the notation makes use of Xpath[4] expressions.   

Example 3.5 Consider the schema in Figure 2.2(a). We have the following two EFDs: 
(1)course[@cid],student[@sid]⇒student[@name] (2)student[@sid]⇒student[@name]  
where (1) is a partial EFD while (2) is a full EFD since a student’s name is fully 
determined by sid. 

An incoherent EFD introduces a path that is not expressed in the schema's structure. 
We say that the existence of incoherent EFD leads to path anomaly in schema that 
indicates an unintuitive grouping of objects and attributes in schema’s structure. In 
such cases, the schema does not adequately reflect the real world semantic 
relationships and will lead to data redundancy and data retrieval overheads.  

 
Example 3.6 Consider the schema D shown in Figure 3.1(a) that intends to be a 
schedule for teachers lecturing courses. Assume the specified EFD is teacher[@tid], 
time [@day, @hour]→subject[@cid]. It is an incoherent EFD, since /teacher/time/ 
subject is not a path in the schema. Therefore, there exists a path anomaly. Such 
anomaly can be avoided if we promote time to be child of teacher, and move 
ClassRoom and subject under time, as shown in Figure 3.1(b).   
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Fig. 3.1: Schema for Example 3.6 illustrating path anomaly 
                                                           
1 The inference rules for EFD is given in [10]  



Example 3.7 In Figure 2.2(a), age is transitively dependent on course via student 
given the constraints: (1) course[@cid]⇒student[@sid] 
                  (2) student[@sid]→student[@age] and 

student[@sid]   course[@cid] 
 

Theorem 3.1: Let D = (E, A, B, P, R, r) be a semistructured schema, X, Y, Z ⊆  E ∪ A. 
If Z is transitively dependent on X via Y, then there exists a data tree of D in which a 
rewriting anomaly arises when the values of Z are updated. 

We will illustrate the above theorem with the following example. A detailed proof 
is given in [10]. 

Example 3.8 Refer to Figure 2.3. As aforementioned, age is transitively dependent on 
course via student. The age information for student with sid equal “s01” is repeated 
for two courses in which he is enrolled. If we update his age information under the 
course “cs4221”, then it can cause inconsistency unless the update is also propagated 
to his age information under the course “cs5220”.    

Key Constraints  
Key plays an important part in database design [1,9].  Unlike previous proposal that 
define key constraints for semistructured data in the absence of schema [3], we want 
to define the notion of key based on semistructured schema and EFD. This allows us 
to derive key constraints more easily.  

Definition 3.8: Let O(a1,…,am ;o1,…,on) be a complex object type in semistructured 
schema,  and K is a non-empty subset of {a1,…,am, op,…,oq}, where {op,…,oq} ⊆  
{o1,…,on}, and are single-valued atomic sub-object types. The key of O is defined as: 
Case 1: O is the root of D. K is a candidate key of O iff K→O and there is no proper 

subset K1 of K, such that K1 → O. 
Case 2: O is at some level in D. Let PathD(O)=/O0/…/Ov-1/O, v>0. Let Pk ⊆ Kov-1, 

where Kov-1 is the key of O’s parent Ov-1. Ko = Pk ∪ K. Ko is a candidate key of 
O iff (Pk, K→ O) and there is no proper subset S of {Pk, K} such that S → O.  

 
We use the following notation for the key of an object type O in a semistructured 

schema D: Ko = O1[@X1]/…/Oi[@Xi]/…/On[@Xn]/O[@X], where Oi is an object 
type in D, Xi is a set of Oi’s components, and O1/…/O, is a path in D (n>0). If n 
equals one, then Ko is called an absolute key. Otherwise it is called a relative key.  

 
Example 3.9 Consider a semistructured schema describing books, which has path 
/book[@isbn]/chapter[@number]/chapter[@number]. We have 

• Kbook= book[@isbn].  Kbook is an absolute key indicating that isbn uniquely 
identifies a book. 

• Kchapter = book[@isbn]/chapter[@number]. Kchapter is a relative key indicating 
that a chapter number uniquely identifies a chapter contained in a book. 



• Ksection= book[@isbn]/chapter[@number]/section[@number]. Ksection is a 
relative key indicating that a section number uniquely identifies a section 
within a chapter of a book. 

 
[10] defines a foreign key constraint for semistructured data which is similar to 

IDREF in XML. Consider the schema in Figure 2.2(b). sid in student1 is a foreign key 
and refers to student2 (referenced object type). This reference semantics is represented 
graphically as a dashed edge (reference edge) from the foreign key to the referenced 
object type.  

Definition 3.9: Let D be a semistructured schema and O be its root object type. The 
set of basic dependencies of D, denoted as BD(D), is defined as follows: 

• Let X, Y be children of O, non-trivial extended functional dependencies of the 
form X⇒Y where X is a key of O or Y is part of a key of O, are in BD(D). 

• For each sub-object type Oi of O, extended functional dependency KO⇒Oi is in 
BD (D), where KO is O’s key. 

• Let O1 be a complex sub-object type of O and D1 be a schema tree that is rooted at 
O1 and add KO as attribute(s) of O1, then BD(D1) ⊆  BD(D). 

• No other non-trivial dependencies that are not generated from above is in BD(D) 

3.3   NF-SS: Normal Form for Semistructured Schemata 

We now give the definition of NF-SS. 

Definition 3.9 Let D be a semistructured schema and O be its root object type. D is in 
Normal Form for Semistructured Schemata (NF-SS), iff 

1. O has at least one key. 
2. For any non-trivial EFD of the form X⇒Y satisfied by O, where X and Y are 

attributes or atomic sub-object types of O, then either X is a key or Y is part of 
the key of O. 

3. For any complex sub-object type O1 of O 
(a) If adding KO to O1 as its components with other remains, a schema tree D1 

rooted at O1 will be in NF-SS. 
(b) KO ∩KO1=φ or KO ⊂ KO1, where KO and KO1 are O and O1’s key respectively.  

    (c) O1 is not transitively dependent on KO  
4. Any non-trivial EFD in D can be derived from BD(D) by using the inference 

rules for EFDs. 

4. Designing Semistructured Schema in NF-SS 

We adopt the restructuring approach to design semistructured schema. We propose a 
set of restructuring rules to transform a semistructured schema into NF-SS. This 
restructuring involves the decomposition of object types, creation of new object types 
and regrouping of components in a semistructured schema. The objective is to remove 



transitive or partial EFD and incoherent EFD. This is accomplished by identifying 
violations of the conditions of NF-SS from the given dependency and key constraints.  

4.1 Normalization Rules 

Rule 1. (Remove Transitive Dependencies by Decomposition) Given an object type 
O in a semistructured schema D. Suppose there exists some non-prime component(s) 
Y of O that is transitively dependent on some key KO of O, i.e., KO ⇒X, X ⇒ Y and 
X    KO, and X ∩ KO =φ. Then D can be restructured as follows:  

1. Duplicate X to form a new node(s) Z.  
2. Move Y and all the descendants of Y and their corresponding edges under Z. 
3. Make X as foreign key of O, and add a reference edge from the original node 

X to Z.  
Element duplication is actually relation decomposition or splitting when the 

element is an object type. Rule 1 can be used to remove undesirable transitive 
dependency. Note that splitting may happen in many ways and choosing a correct 
way to decompose is nontrivial since certain splitting will cause the loss of EFDs.  

 
Example 4.1 Consider the schema in Figure 2.2(a) with the following dependency 
constraints:  
 (1)department[@name]⇒course[@cid]  (2) course[@cid]→department                            
 (3)course[@cid]→course[@title]       (4)course[@cid]⇒student[@sid] 
 (5)course[@cid],student[@sid]→grade  (6)student[@sid]→student[@name, @age]  

From the EFDs (4) and (6), D is not in NF-SS since name and age are transitively 
dependent on course via student. Furthermore, student[@sid]   course. Since 
course[@cid]∩student[@sid]=φ, we can use Rule 1 to decompose student into two 
object types: student1(sid; grade) and student2(sid, name, age). The former remains as 
a sub-object type of course while the latter becomes the root of a new schema tree. A 
reference edge is created from student1’s sid (foreign key) to student2. The schema is 
now in NF-SS, as shown in Figure 2.2(b).  

 
Rule 2. (Remove Path Anomaly by Path Splitting) Given a semistructured schema 
D. Suppose there exists an incoherent EFD: O1[@X1],…,On[@Xn] a Y, where 
a denotes either →or ⇒, Y is either an object type or an attribute, and there exists a 
path P that contains {O1,…,On,Y}. Path P can be split into two sub-paths P1 and P2, 
where P1 only contains {O1,…,On } and Y, while P2 contains {O1,…,On} and (P-Y). If 
we have a is →, then the cardinality of Y (when Y is an object type) is assumed to 
be “?” after restructuring; Otherwise, if we have a is ⇒, then the cardinality of Y is 
“*”. 

Rule 2 can be used to remove path anomalies and partial dependencies. This in turn 
helps to avoid over-nesting. Intuitively, components (whether they be attributes or 
object types) should be kept as close to the owner object type as possible. This is 
achieved though path splitting. The promotion of a component may happen more than 
once, each time moving the component closer to its rightful owner.  



Example 4.2 Consider the schema D shown in Figure 3.1(a). Assume the set of 
specified EFDs follows: 
(1) teacher[@tid],time→ClassRoom  (2)teacher[@tid], time→subject 

D is not in NF-SS since (1) is an incoherent dependencies. Applying Rule 2, D is 
normalized by splitting path /teacher/ classroom/subject/time into two sub-paths: 
/teacher/ time/ClassRoom and /teacher/time/subject, as shown in Figure 3.1(b). 

 
Rule 3. (Removing Partial Dependency by Creating New Object type) Given an 
object type O in a semistructured schema D. Let X be a set of prime attributes of O, 
and Y be the set of O’s attributes. Let O1 be a sub-object type of O. If (KO -X) ⇒ O1 
and no proper superset of X satisfy this property, then D can be restructured as 
follows:  

1.(KO ∩Y –X) becomes the only attribute(s) of O while O1 remains to be its sub-
object type. 

2.Create a new object type O2 that is a direct component of O.  
3.Move rest of the components of O and all their descendants and corresponding 

edges under O2. 
 

Example 4.3 Consider the schema D in Figure 4.1(a). Suppose O satisfies the EFDs 
{O[@A,@B]→D, O[@A,@B]⇒O2, O[@A]⇒ O1, O[@A] →E} and the key of O is 
{A,B}.  

D is not in NF-SS because O[@A,@B]⇒O1 is not a full dependency. Applying 
Rule 3, a new object O3 is created which has O2 and {B, D, E} as its children (O is 
renamed as O’). The restructured schema given in Figure 4.1(b) is still not in NF-SS 
since there exists an incoherent dependency O’[@A]→E. We apply Rule 2 to promote 
E as a child of O’’ (O’ is renamed as O’’). The schema obtained in Figure 4.1(c) is now 
in NF-SS. 
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Fig. 4.1: Using Rules 2 and 3 to restructure a schema. 
 

Rule 4. (Restructure to satisfy Condition 3(b) of NF-SS Definition) Given an 
object type O in a semistructured schema D. Let X be a set of O’s attributes and 
single-valued atomic sub-object types, O1 be a complex sub-object type of O. O1 has 



relative key KO1, but KO ⊄  KO1 and KO1    KO. Let Y be KO ∩ KO1 ∩ X, and Y≠φ. D 
can be restructured as follows: 

1. O1 remains to be a sub-object type of O. 
2. Make Y as components of O. 
3. Create a new object type O2 to be a child of O and the rest components of O 

(excluding Y) become children of O2. 
 

Example 4.4 Consider the semistructured schema D in Figure 4.2(a). Suppose O 
satisfies the EFD: (1) O[@K, @A]⇒ O1  (2) O[@K, @B]⇒O2 and the key of O KO 
is {K, A, B}.  

D is not in NF-SS since O1 and O2 are partially dependent on the key of O. We use 
Rule 3 to create a new object type O3, rename O as O’ and make it a child of O’; After 
that, we move B and O2 and all their descendants and corresponding edges under O3. 
Figure 4.2(b) shows the schema obtained. This is still not in NF-SS because Condition 
3(b) in the NF-SS definition remains violated: KO=O’[@K,@A],while KO3= 
O’[@K]/O3[@B]. In addition, KO3→KO cannot be derived. Applying Rule 4, O3 
remains to be a sub-object type of O’’, and K become attribute of O’’ (O’ is renamed as 
O’’). We create a new object type O4 as a child of O’’ and move the rest components 
of O’’ and their corresponding edges under O4. The schema shown in Figure 4.2(c) is 
now in NF-SS. 
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Fig. 4.2: Using Rules 3 and 4 to restructure a schema. 

 

4.2 Restructuring Algorithm 

In this section, we present an algorithm that uses the normalization rules presented in 
Section 4.1 to iteratively restructure a semistructured schema into NF-SS. The 
algorithm takes as input a set of semistructured schema and a set of dependency 
constraints for these schemas. It returns as output a set of semistructured schema in 
NF-SS. 
 
Algorithm 4.1:  Restructuring Algorithm 



Input: A set S that contains semistructured schemas, and a set of EFDs for S. 
Output:  A set of semistructured schemas that in NF-SS. 
Begin  

1. for each semistructured schema D in S do  
if D is not in NF-SS then repeat until no further change: 

         (1) if ∃  transitive EFD: KO ⇒ X, X ⇒ Y and X   KO for an object type O in D, 
Case 1: X ∩ KO =φ. 
      Apply Rule 1 to remove the transitive EFD. 
Case 2: X ⊂  KO. 
      Apply Rule 3 to remove the transitive EFD. 
Case 3: X ∩ KO ≠φ. 
      Apply Rule 4 to remove the transitive EFD. 

 (2) if there exists incoherent EFD then apply Rule 2 to remove it. 
       2. output S. 
End  

 

In the normalization process, object types may be created and components of the 
schema may be regrouped. Two problems are involved there. One is the cardinality of 
a new sub-object type. We assume “*” on the new object type at this design stage, and 
let designers/users elaborate later. The other is naming of the new object types. We 
believe it is generally preferable to have designers/users specify alternate names, 
which indicate the role played by the object type in the context of the application. 

4.3 Discussion  

We have presented a technique for restructuring semistructured schema to obtain NF-
SS. We would like to highlight two pertinent issues for this restructuring approach. 
The first issue is the completeness of the restructuring rules. That is, given a schema, 
is it always possible to restructure it into a set of semistructured schema in NF-SS 
using heuristic rules such as Rules 1 to 4 ? This is a difficult question that also arises 
when the decomposition approach is used in relational databases. It is not always 
possible to get all the EFDs satisfied by a semistructured schema, that is, covering is 
not guaranteed. Furthermore, it is not always possible to preserve dependencies 
during transformation, that is, dependency preservation is not guaranteed, which is a 
problem that also happens to the decomposition method taken in relational database 
design. A formal investigation of the problem is beyond the scope of this paper. 
Nevertheless, we would like to point out that losing some EFD could actually prevent 
infinite loop for Algorithm 4.1 in some situations.  

Consider the following two EFD (1) A, B⇒C (2) A, C⇒D for a schema D that has 
a path /A/B/C/D. There is a “conflict” between (1) and (2) in the sense that only one 
of them is expressible in D. Hence, applying these rules to an unnormalized schema 
results in infinite schema transformations and there may exist conflicts among the 
specified EFD constraints.  

The second issue is the uniqueness of the solution. That is, does the process of 
restructuring give a unique solution? The answer is no. In the normalization of 



relational schema, it is well known that decomposition does not guarantee unique 
results as it depends on the order in which the dependencies are examined. Although 
the restructuring approach does not necessarily give unique results and guarantee 
dependency preservation, it does give practical heuristics and provides insights into 
the normalization task for semistructured databases.   

5. Related Works 

To the best of our knowledge, only [6] and [5] provide works that parallel our 
research efforts here. [6] defines a schema called S3-Graph. S3-Graph makes no 
distinction between element node and attribute node and does not specify cardinality 
on the schema. Therefore S3-Graph doesn't lend itself to XML definition. To identify 
redundancy in S3-Graph, [6] defines a dependency constraint called SS-Dependency.  
A S3-Graph is in S3-NF if there is no transitive SS-dependency. This limits the types 
of redundancies that can be resolved by S3-NF. S3-NF deals with SS-dependency 
constraints and does not handle key constraints, an essential feature in database design. 
Furthermore, S3-NF may not remove anomalies such as like partial dependency and 
path anomaly. In contrast, NF-SS is designed to handle more general situations and 
therefore, subsumes and extends that of [6].  

[5] defines a normal form called XNF (XML Normal Form) is defined. The work in 
[5] focuses on how to translate a schema, that is represented in conceptual-model 
hypergraphs, to a scheme-tree forest in XNF. A scheme-tree forest F is in XNF if 
each scheme tree in F has no potential redundancy with respect to a specified set of 
(functional and multivalued) constraints C and F has as few, or fewer, scheme trees as 
any other schemes-tree forest corresponding to M in which each scheme tree has no 
potential redundancy with respect to C. CM hypergraph has no hierarchical structures, 
no key concepts; additionally, it has no concept of attributes resulting too many 
objects in a schema.  Although an XNF-compliant DTD can ensure complying XML 
documents have as few hierarchies as possible, the presented algorithms for 
generating XNF scheme-tree forest suffers from efficiency. A large set of scheme-tree 
forests that in XNF is generated and this requires the user to select the best that 
satisfies their application requirements.  

[7] studies the normalization for nested relational data model, and proposes a 
normal form called NF-NR(Normal Form for Nested Relations). Our NF-SS 
definition and normalization process is similar to that of [7] in concept, but is 
different in essence, which we have mentioned in the first section.  

  

6. Conclusion 
 
In this paper, we have shown the importance of designing good semi-structured 
databases. We defined a semistructured schema for semistructured databases, and 
incorporated it with integrity constraints such as dependency and key constraints. We 



identified various anomalies, including rewriting anomaly, insertion anomaly, 
deletion anomaly and path anomaly, that may arise when a semistructured database is 
not designed properly and contains redundancies.  We proposed NF-SS, a normal 
form for semistructured schema. A semistructured schema in NF-SS does not have 
redundancy and hence no undesirable updating anomalies for the conforming 
semistructured databases. In addition, a semistructured schema in NF-SS also gives a 
more reasonable representation of real world semantics. We have presented a set of 
heuristic restructuring rules and developed an algorithm for iteratively restructuring a 
semistructured schema into NF-SS.  

Future directions for research include investigating additional heuristic 
restructuring rules as well as extending existing rules to deal with various anomalies 
that may exist in semistructured schemata. We also intend to improve the 
restructuring Algorithm 4.1 by developing a conflict-detecting framework to check 
for the existence of conflicts within the specified dependency constraints for a schema.   
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