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Abstract. To select some "valuable" views for materialization is an essential
challenge in OLAP system design. Several techniques proposed previously are
not very scalable for systems with a large number of dimensional attributes in
the very dynamic OLAP environment. In this paper, we propose two filtering
methods. Our first method, the functional dependency filter, removes views with
redundant summary information based on functional dependencies among the
dimensional attributes. The second method, the size filter, is based on the view
size to filter out any view that can be either derived from another small materi-
alized view or has almost the same number of tuples as another materialized
view from which it can be derived. More over, all useful views are selected by
these two view filtering methods, other existing view selection methods can still
be applied on the remaining views to further reduce other possible non-essential
views from systems. We conduct performance tests to compare our method with
other existing methods. The results show our method outperform the others.

1.  Introduction

On-Line Analytical Processing (OLAP) system is a query subsystem inside a Decision
Support System (DSS). It is designed to help users to gain insight into data through
fast, consistent, interactive access to a variety of data in the database.

To achieve that, Multi-Dimensional model (MD model) is widely adopted by al-
most all OLAP systems. Under such model, data attributes are classified according to
users’ intuitive perception of the business, data are put into a simple and standardized
data schema and summary-views, some sort of intermediate results, are computed on
top of that. User queries are redirected to the smaller summary-views instead of the
original sources and better response time can be expected.

On the other hand, the number of possible summary-views in the MD model in-
creases explosively with the increasing number of dimensional attributes. The high
storage cost and computation cost make it unfeasible for any system to materialize all
of these possible views [OLAP]. Which summary-views should be materialized be-
comes an essential challenge in OLAP research. Although, there are already quite a
number of OLAP products, there are still no good solutions for this problem in the
market yet.
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Several methods have been proposed to select an appropriate subset of views or in-
dexes for materialization based on a set of user queries. However, it is very difficult to
get an accurate set of user queries, at least at the system design stage. If all possible
queries were included, the number of view needs to be considered would increase
significantly, the complexity of these methods would be increased.

In this paper, we will approach the problem from the other angle. Instead of finding
which view is more useful for OLAP system, we propose two methods to filter out
views that are not very useful for the OLAP query optimization process.

Based on functional dependencies among dimensional attributes, we propose a fil-
tering method, functional dependency filter, to trim out views holding duplicate
summary information. As functional dependencies are normally available at the sys-
tem design stage, the functional dependency filter can get ride of many views at this
initial stage. Functional dependencies are independent on the actual data, so we do not
need to review the filtered views unless there are changes to the set of functional de-
pendencies. Also in this paper, we solve the problem for computing functional de-
pendency filter set for a set of functional dependencies.

Then we move our interest to the view size. In [BPT97], a simple method is pro-
posed to filter out those “big” views, which are almost the same size of the ancestor
views. In this paper, we extend this technology to “small” views. With today’s tech-
nology, computers can easily handle complex queries on a view if its size is smaller
enough to be kept in the main memory. It is not very useful for a system to materialize
any view that can be derived from another already materialized small view.

In these two methods, all useful views are selected. We can still apply other exist-
ing view selection methods easily to further reduce those non-essential views from the
remaining views selected by these two methods. In the real environment, these two
methods are very efficient and a large percentage of views can be filtered out, we
might able to directly materialize all the views in this greatly reduced view set.

In section 2, we define summary view and summary view lattice. In section 3, we
propose two filtering algorithms and show the experimental results. Finally, the con-
clusion is presented in section 4.

2.  Multi-Dimensional Model and MD Query Model

Before we begin our discussion on view selection, we could like to define some major
concepts of MD model and develop some notations and definitions.

2.1  Summary-View and Summary-View Lattice

Multi-Dimensional Model (MD model) [KIM97] is a “business oriented” model.
Under such model, all attributes are divided into two major groups, measure attrib-
utes and dimensional attributes, according to their roles in the business analysis.
Measure attributes are numeric measurements about the business processes, while
dimensional attributes are describing dimensions of the business processes. In an
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OLAP SQL queries, measure attributes are normally acting as input for summary
operations such as SUM, while dimensional attributes are appearing in Group-by
clause and Where clause [KIM97].

Also in a MD model, we can predict queries that users tend to ask and build some
intermediate data sets in advance. Based on that, various kinds precomputation
methods, e.g. summary-view, range sum cube [HAMS97] and bit-map index [OQ97]
have been proposed. Query performance can be improved drastically as we can get the
final result by using these smaller precomputed results. Among all, summary-view
approach is one of the most popular ones. In the following part of this paper, we con-
centrate on summary-view only.

Definition 1. Summary-View. A summary-view is an aggregate view grouping
some measure attributes along various dimensions, i.e. corresponding to dif-
ferent sets of group-by attributes. In a MD model M, let GA be a subset of
dimensional attributes, M1, M2 .. be measure attributes, OP1, OP2 .. be SQL
aggregate functions like SUM, COUNT , MAX, and MIN1. A summary-
view in M is of the form:
 SELECT GA, OP1(M1), OP2(M2), …

FROM relations in M
WHERE  (joins of relations in M)
GROUP BY GA

To simplify the discussion, without loss generality, we assume there is only
one measure attribute in the M and SUM is the only SQL aggregate function
used in the following part of this paper. Thus, we can denote this summary-
view as SV(GA).

To represent the relationship among summary-views in a MD model, we will use a
lattice framework to represent all possible summary-views in a MD model as a
Summary-View Lattice [HRU96].

Definition 2. Operator �. We define the operator � between summary-views as
below: SV(A) � SV(B) iff  SV(A) can be derived from SV(B).

By definition of the summary-view, if A⊆ B where A and B are two sets of
dimensional attributes in a MD model, then SV(A) � SV(B), e.g. SV({FAMILY_ID})
� SV({FAMILY_ID,DATE_ID}).

Operator � is a partial order relationship among summary-views, therefore all pos-
sible summary-views of a given MD M can be presented as a lattice with the sum-
mary-view holding all dimensional attributes in its group-by dimensional attribute set
as the top element (top view), and the summary-view that aggregates everything to-
gether, i.e. nothing in its group-by dimensional attribute set (empty set) as the bottom
element.

                                                          
1 SQL function AVG can be derived from SUM()/COUNT()
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Example 1. Let a MD model M which has three
dimensioanl attributes A,B,C. The summary-view
lattice for M is shown in Figure 1.

2.2  View Filtering Example

It is obvious that not all these summary-views in
summary-view lattice are useful for OLAP query
optimization.

Example 2. Assuming we have a simple MD model: sales_info. In it, there are four
dimensional attributes: Product, Product_type, Branch_id, Date, one measure attribute
Unit, and a functional dependency f: Product�Product_type. Let us look at three
possible summary-views in the summary-view lattice:

sv1= SV(Product, Product_type, Branch_id, Date)
sv2= SV(Product, Branch_id, Date)
sv3= SV(Product_type, Branch_id, Date)

First, we look at sv1 and sv2. As every Product belongs to only one Product_type, two
summary-views have the same number of tuples and hold the same summary informa-
tion. Only one should be considered for materialization. In this paper, sv1 will be
chosen as it can be used to compute all queries answered by sv2.

Note that how sv1 should be materialized will be considered as a separate issue.
Whether sv1 should be materialized directly as a flat table or split into sv2 and a small
table p=(Product, Product_type), and how these views should be indexed will not be
covered in this paper. Here, we concentrate on eliminating redundant summary infor-
mation for measure attributes, this is, sv1 and sv2 should never be selected at the same
time.

Next, we look at sv3, should it be materialized? If sv1 is small, e.g. whole sv1 can
be fetched into memory quickly, it may not worth to materialize sv3 separately. All
queries running against sv3 can be redirected to sv1, additional I/O cost is negligible.
In another case, if there are only few Product belongs to each Product_type, sv1 and
sv3 might have almost the same number of tuples. It might be not worth to materialize
sv3 also. The benefit gained in query processing might not justify for the storage cost
involved.

In the above example, we have made use of two view trimming methods, which can
potentially trim out a large percentage of summary-views from a summary-view lat-
tice. In the next sections, we propose these two filtering algorithms formally.

3.  Summary-View Lattice Trimming

The total number of possible summy-view for a MD model with n dimensional
attributes will be 2n, it is simply impractical to materialize all nodes inside the lattice.
We should only materialize those views of the most value for the system performance.

ABC

AB

A

BC

B C

AC

SV({A,C})

∅

Fig. 1 A Summary-View Lattice
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3.1  Related works

Most techniques proposed previously concentrate on selecting an appropriate subset of
views or indexes based on a given set of user query. Various kinds of heuristics, e.g.
greedy, A* algorithm, are used to obtain a near optimal solution [HRU96][GHRU97]
[G97][YKL97][TS98][BPT97].

In [HRU96], the overall computation cost of the given set queries inside the lattice
is considered. By using the Greedy algorithm, the most “valuable” view for the re-
maining unmaterialized views is picked at each time, until the stop condition is met. In
[BPT97], a size filter algorithm is proposed to filter out those summary views with
similar number of tuples as their ancestor views.

In the very dynamic OLAP environment, these methods are hard to be imple-
mented.

1) It is very difficult to make good predictions for user queries, especially at the
system design stage. If all possible queries were included, the number of possi-
ble views will be increased significantly.

2) It is also very difficult to evaluate the size of the views accurately, which are
used to estimate the view costs. Before the actual data set is populated, avail-
able information is very limited, especially for those expensive big views. After
the data is loaded, we still need to do some complex statistics information col-
lection. One of the major burdens is the large number of view need to be evalu-
ated. Sampling methods, e.g. [DNK+97], could be a choice, but its accuracy is
depending on the samples. More, data pattern in the OLAP environment is also
changing frequently. We need to evaluate view sizes repeatedly.

3) In addition, there is no simple way to verify whether enough views have been
selected.

4) At last, various kinds of view selection algorithms are not compatibility with
each other. Some useful views selected by one algorithm could be filtered out
by another based on different view selection criteria without compensation. It is
difficult to use more than one method in the same case.

3.2  Functional Dependency Filter

Definition 3. Functional Dependency Filter, ϕ(f)
Let M be a MD model, f:AL�AR be a functional dependency where AL
and AR are two subsets of dimensional attributes. The functional depend-
ency filter for f, denoted as ϕ(f), is defined as: ϕ(f)={SV(X) | AL⊆X ∧
AR⊄X} where X is a subset of dimensional attributes.

Theorem 1. For any view SV(X) in ϕ(f:AL→AR), we can find another summary-
view SV(X∪AR), which is in the summary-view lattice but not in ϕ(f) and
holds the same summary information as SV(X). Therefore, all views in ϕ(f)
should be filtered out
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Proof is included in [QSG].

Definition 4. Functional Dependency Filter Set.
Let F={f1,f2,…fn} be a functional dependency set in a MD model M where
each fi is a functional dependency on dimensional attributes. We define the
functional dependency filter set for F, denoted as ϕ(F), as a union of ϕ(fi)
where i=1 to n

Example 3. Assuming there is a MD model M with four dimensional attributes {A, B,
C, D} and F={f1:A�B,f2:BC�D}. We can easily get ϕ(F) = ϕ(f1)∪ϕ(f2) = {SV({A}),
SV({A,C,D}),SV({A,C}),SV({A,D}),SV({A,B,C}),SV({B,C})} as shown in Fig. 2.
Views in ϕ(F) are represented as shaded nodes. Views in bracket below the node are
holding the same summary information and replaced by it, e.g. SV({A,B}) is used to
replace SV({A}). It is also interesting to look at that derived functional dependency
f3:AC�D, ϕ(f3)={SV({A,C}),SV({A,B,C})},  ϕ(f3) is a subset of ϕ(F).

As a next step, we compute a
functional dependency filter set
for the closure of a set of func-
tional dependencies. There are
two problems: completeness
and Interference. As there are
many derived functional de-
pendencies, will the functional
dependency filters for derived
functional dependencies fur-
ther filter out any new sum-
mary views? Will the filter sets
of functional dependencies in
the closure interfere with each
other and filter out some useful
views?

Theorem 2. For a set of functional dependencies F in M, ϕ(F)= ϕ(F+) where F+ is
the closure of F.

Proof will be included in [QSG].

Based on the Theorem 2, ϕ(F) has already included all summary-views need to be
filtered out in ϕ(F+) and ϕ(F) is complete. We don’t have to worry about the functional
dependency filters for functional dependencies derived from F.

If a view SV(X) is filtered out by functional dependency filter ϕ(f1:AL1→AR1),
then SV(X∪AR1), which is not filtered by ϕ(f1), holds the same summary information
as SV(X) , by Theorem 1. Similar, if SV(X∪AR1) is filtered out by another functional

ABCD
[ABC]
[AC]

[ACD]

ABD
[AD]

AD

ACD

AB
[A] AC

ABC
BCD
[BC]

BDBC CD

A B DC

MD model (A,B,C,D,V) and
f1: A→B, f2:BC→D

∅

Figure 2: Functional Dependency filter
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dependency filter ϕ(f2:AL2→AR2), then SV(X∪AR1∪AR2), which is not filtered by
either ϕ(f1) or ϕ(f2), holds the same summary information as SV(X∪AR1) and SV(X).
Similarly, we can prove that for every view filtered out by functional dependency
filters, there must be one view remained in the summary-view lattice which holds the
same summary information for measure attributes. So we don’t have to worry interfer-
ence among the filter sets for all functional dependencies also.

Hence, we can compute the functional dependency filter set for the functional de-
pendency closure by union the functional dependency filter for each functional de-
pendency inside F at any sequence. Also, assuming F’ is a non-redundant covering of
F. As F+=F’+, so ϕ(F)= ϕ(F+)=ϕ(F’). Cost to compute ϕ(F) could be further reduced by
computing ϕ(F’) instead.

As functional dependencies are normally available at the system design stage,
functional dependency filter can filter out a large number of views in advance before
actual data are loaded. Thus, system initialization, system maintenance, and further
view selection tasks can be drastically simplified. In addition, we do not have to re-
view the filtered view unless there are changes in the set of functional dependencies.

3.3  Size Filter

Not all summary-views are useful for OLAP query optimization. Let the size of a
materialized view V be a function: SIZE(V). When SIZE(V) is smaller than a certain
value, such as total memory available for the application, it is not a big issue for the
OLAP system to process complex queries posted on V within the satisfied response
time. So, there is no need
to materialize any other
summary-view that  can
be derived from this
small view. The extra
CPU, I/O cost in query
processing to use this
slightly bigger view is
tolerable. In this paper,
we will call the threshold
as Lower_Bound. In
Figure 3, if SV({A,B,C})
is very small and has
been materialized, we can
directly filter out all tiny
views under it in the
lattice.

Because of high aggregation, a view with few dimensional attributes in its group-by
attribute set will hold similar number of tuples as its domain size, the number of pos-
sible distinct tuples in the view. As most of the dimensional attributes have very small

ABCD

ABC

AC

ACD

AB AD

ABD BCD

BC BD CD

A B C D

∅

Fig. 3 Size Filter of Summary-View Lattice
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domains, e.g. either male or female for human gender, a large number of small views
can be filtered out. The OLAP System can be drastically simplified, although the stor-
age space saved might not very significant.

In another case as it described in [BPT97], if a view Y derived from another mate-
rialized view X has almost the same number of tuples as X, view Y would be similar
to a sorted version of view X, there would be little benefit for us to materialize the
view Y. In this paper, we define a threshold value as the Upper_Bound_Ratio. If
SIZE(Y)/SIZE(X) > Upper_Bound_Ratio, we will filter view Y from the summary-
view lattice. In an OLAP system with a large number of dimensional attributes, many
summary-views, especially those large views near the top of the summary lattice,
could be filtered out by this method.

In the size filtering method, the views need to be processed strictly from the top to
the bottom of the summary-view lattice in order to avoid the conflict among different
steps of the size filter algorithm.

In the OLAP environment, it is difficult to estimate the view size accurately. How-
ever, our size filter is running after applying functional dependency filters, much
smaller number of views need to be processed.

Size filter is to achieve a tradeoff between performance and cost. Up-
per_Bound_Ratio and Lower_Bound are determined based on various factors. Beside
machine capabilities, e.g. CPU, Memory, harddisk space and system I/O speed, main-
tenance cost and user requirement are also very important. For example, we could
define a bigger Lower_Bound if queries are asked in the system are simple or a faster
harddisk array is available. In the actual system, size filter can still get ride of many
views in the summary lattice even with conservatively selected bound values, e.g. 95%
as the Upper_Bound_Ratio and 10MB as the Lower_Bound.

3.4  Experiments

In this test, data and queries are generated by the program downloaded from the web-
site [OLAP]2. The system used is a Pentium Celeron 366 with 128MB SDRAM, run-
ning Windows NT 4.0 and Oracle 8.04. In this example, we use only one fact table,
four dimension tables and eight non-redundant functional dependencies among dimen-
sional attributes (Figure 4). All these data in form of raw text files are about 80MB.

In the test, we assume all summary-views will be used equally. Three view sets are
built.

1) The first view set is generated by our algorithms. We apply the functional de-
pendency filtering algorithm on this MD model using 8 FDs and filter out 3680
summary-views out of 4096, or 95.89%. For the size filter, we use 80% as the
Upper_Bound_Ratio and 10MB as the Lower_Bound, filter out another 135
views and get 33 views3.

                                                          
2 The parameters used as input to the data generator program are: Channel: 10, Density: 0.1%

and Users: 10. Refer the [OLAP] for more detail about the data generator.
3 To simplify the size estimation problem, we actually count the number of tuples in these 168

views, and assume: VIEW SIZE = Records Length × Number of tuples.
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2) The second set is generated by algorithm proposed by [BPT97] running on the
168 views selected by our functional dependency filter.4 We use 80% as the
Upper_Bound_Ratio, get 135 views.

3) The last data set is generated by [HRU96] with Maximum 33 views as the stop
condition for the greedy algorithm.

For the benchmark test queries, we use Query Set 1 (Channel Sales Analysis) gener-
ated by the data generator program [OLAP] also. There are 2500 queries in this set,
we only use the first 500 queries because of the resource limitation. Test results are
shown in Table 1.

It is clearly that our approach is the overall winner. We have reduced the number of
summary-views in the summary-view lattice to 1% of the original size. To achieve a
similar performance, we use the same number of views with 56% of storage space
required by [HRU96] and only 25% of views required by [BPT97]5. More testing
cases explored in [QSG] shows the similar results.

                                                          
4 It is because [BPT97] yields very bad result if it is simply applied on all possible views and

also we want to compare the effort of Lower Bound Size Filter.
5 [BPT97] is running after applying our functional dependency filter

SALES_FACT
TABLE (1239300)

Channel_id

Store

Code

Month

Unit sold

Dollar sold

CHANNEL_DIM
TABLE (9)

Channel_id

PRODUCT_DIM
TABLE (9000)

Code

Class

Group

Family

Line

Division

CUSTOMER_DIM
TABLE (900)

Store

Retailer

TIME_DIM
TABLE (24)

Month

Quarter

Year

                             Fig. 4 Multidimensional model
 The number on the right of the table name indicates the number of tuples in that table
 FD:  Code→Class,  Class→Group, Group→Family, Family→Line, Line→Division
         Store→Retailer, Month→Quarter, Quarter→Year
 *( Year is include as an element in Month, Quarter. e.g. 021997 and Q21997 )

Methods
Views

selected
Space

required
Processing
Time (avg)

Queries  processed
within 3 sec

Query processed
within 3 ~ 20 sec.

Queries processed
more than 20 sec

No. of
Queries

Processing
Time (avg)

No of
Queries

Processing
Time (avg)

No. of
Queries

Processing
Time (avg.)

Ours 33 1.09GB 9.1 sec. 312 1.16 sec. 35 9.67 sec 153 25.24 sec

[BPT97]* 135 1.16GB 9.1 sec. 312 1.16 sec. 35 9.67 sec 153 25.24 sec

[HRU96] 33 1.93GB 8.9 sec. 311 1.22 sec 53 12.28 sec 136 25.05 sec

             Table 1. Performance Comparison
* [BPT 97] is running after applying Functional Dependency Filter
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4.  Conclusion and Future Works

In this paper, we are proposing functional dependency filter and a size filter to filter
out a large number of redundant views in the OLAP system with limited cost of query
performance. In the test, our algorithms generated an impressive result comparing
with those of others.

As one of the future work, we would like to study how to accelerate query which
has many dimensional attributes in its where clause and few dimensional attributes in
its group-by clause. Summary-view approach may not be a good solution, as heavy
aggregations are required to run against a big summary-view. To organize this kind of
big views for quick access is still an open problem. Complex indexes [OQ97], Range-
Cube [HAMS97], sub-cube and some other complex data structure could be the right
direction. Further research in this area is definitely needed.
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