
Prefix Path Streaming: a New Clustering
Method for XML Twig Pattern Matching

Ting Chen, Tok Wang Ling, Chee-Yong Chan

School of Computing, National University of Singapore
Lower Kent Ridge Road, Singapore 119260
{chent,lingtw,chancy}@comp.nus.edu.sg

Abstract. Searching for all occurrences of a twig pattern in a XML
document is an important operation in XML query processing. Recently
a class of holistic twig pattern matching algorithms has been proposed.
Compared with the prior approaches, the holistic method avoids gen-
erating large intermediate results which do not contribute to the final
answer. The method is CPU and I/O optimal when twig patterns only
have ancestor-descendant relationships.The holistic twig-pattern match-
ing method proposed earlier [1] operates on element streams which clus-
ter all XML elements with the same tag name together. In this paper
we introduce a clustering method called Prefix Path Streaming (PPS)
and new holistic twig pattern matching algorithms based on PPS. PPS
clusters elements of XML documents according to the paths from root
to the elements. This clustering approach avoids unnecessary scanning of
irrelevant portion of XML documents.More importantly, we develop op-
timal algorithms based on PPS streaming which can process a large class
of twig patterns consisting of both ancestor-descendant and parent-child
relationships.

1 Introduction

XML data is often modelled as labelled and ordered tree or graph. Naturally twig
(a small tree) pattern becomes an essential part of XML queries. A twig pattern
can be represented as a node-labelled tree whose edges are either Parent-Child
(P-C) or Ancestor-Descendant (A-D) relationship. For example, the following
twig pattern written in XPath[7] format:

//section[title]/paragraph//figure . . . (Q1)
selects figure elements which are descendants of some paragraph elements which
in turn are children of section elements having at least one child element title.

Prior work on XML twig pattern processing usually decomposes a twig pat-
tern into a set of binary parent-child or ancestor-descendant relationships. After
that, each binary relationship is processed using structural join techniques[8][5]
and the final match results are obtained by “stitching” individual binary join
results together. This approach may generate large and possibly unnecessary
intermediate results. Bruno et al.[1] propose a novel holistic method of XML
path and twig pattern matches which avoids storing intermediate results unless

they contribute to the final results. The method is CPU and I/O optimal for
all path(with no branching) patterns and twig patterns whose edges are entirely
ancestor-descendant edges. However the approach is found to be suboptimal if
there are parent-child relationships in twig patterns.

The original holistic method groups all elements in XML document with the
same tag name together. We call this clustering method Tag Streaming. Choi et
al.[3] show that it is not possible to develop an optimal holistic twig join algo-
rithm for twig patterns having both ancestor-descendant and parent-child rela-
tionships using Tag Streaming. In this paper, we propose a new XML document
clustering scheme: Prefix-Path Streaming (PPS), which groups XML document
elements with the same root-to-element tag sequence into the same stream (we
call such a stream Prefix-Path Stream). Prefix-Path Streaming is simple and it
can avoid unnecessary scanning of portions of XML documents which do not
contribute to final matching results. More importantly,we demonstrate that for
twig patterns with only P-C edges or only A-D edges and twig patterns with
only one node having fan-out factor larger than 1(or 1-branch twig pattern),
PPS streaming can provide I/O and CPU optimal solution. To the best of our
knowledge, this is the first method which can process all the above classes of
twig pattern optimally.

The rest of this paper is organized as follows: Section 2 is the preliminary
which introduces XML data model, twig pattern query and notations used in
this paper. In section 3, we review the current holistic method for twig pattern
matching and discuss its problems. In section 4 we introduce our new clustering
method: Prefix-Path Streaming (PPS). Section 5 explains how to prune unneces-
sary streams given a twig pattern. Section 6 shows our holistic pattern matching
algorithms based on PPS: PPS-TwigStack. Section 7 shows the performance of
our new methods. Section 8 concludes the paper.All the proofs of results are
omitted in this paper and can be found in a full version on line[2].

2 Preliminary

A XML document is commonly modelled as a rooted, ordered and labelled tree.
In this paper wherever the word “element” appears, it refers to either element
or attribute in a XML document. Many XML query processing algorithms rely
on certain numbering schemes. [4] uses (startPos: endPos, LevelNum) to label
elements in a XML file.startPos and endPos are calculated by performing a pre-
order(document order) traversal of the document tree; startPos is the number in
sequence assigned to an element when it is first encountered and endPos is equal
to one plus the endPos of the last element visited. Leaf elements have startPos
equal to endPos. LevelNum is the level of a certain element in its data tree. Ele-
ment A is a descendant of Element B if and only if startPos(A) > startPos(B)
and endPos(A) < endPos(B). A sample XML document tree labeled with the
above scheme is shown in Fig.1.

A twig pattern match in a XML database can be represented as an n-ary
tuple < d1, d2, . . . , dn > consisting of the database nodes that identify a distinct

match of Q with n nodes in D. The problem of twig pattern matching is defined
as:

Given a twig pattern query Q, and an XML database D that has index struc-
tures to identify database nodes that satisfy each of Q’s node predicates, compute
ALL the matches to Q in D.

As an example, the matches to twig pattern Q1 of Section 1 in Fig.1 are
tuples < s1, t1, p4, f3 > and < s2, t2, p2, f1 >.

In the remaining sections of this paper, we use Q to denote a twig pattern
and QA to denote the subtree of Q rooted at node A. We use node to refer to
a query node in twig pattern and element to refer to a data node in XML data
tree. We use M or M =< e1, e2, . . . , en > to denote a match to a twig pattern
or sub-twig pattern where ei is an element in the match tuple. We assume there
is no repeated tag in twig pattern Q.

book (0: 50, 1)

preface (1:3, 2) chapter (4:22, 2)

chapter(23:45, 2)

paragraph (2:2, 3) section (5:21, 3)

section(7:12, 4)

figure (10:10, 6)

paragraph(9:11, 5)

section(13:17, 4)

figure (15:15, 6)

paragraph(14:16, 5)
 figure (19:19, 5)

paragraph(18:20, 4)

………….

title: (6:6, 4)

title: (8:8, 5)

p1

t1

c1

s1

s2

t2 p2

pf1

f1

s3

p3

f2

c2

f3

p4

b1

Fig. 1. A sample XML document with node labels in parentheses. Each element is also
given an identifier (e.g. s1) for easy reference.

3 Related Work

The holistic method TwigStack,proposed by Bruno et al[1], is CPU and I/O
optimal for all path patterns and A-D only twig patterns. It associates each
node q in the twig pattern with a stack Sq and an element stream Tq containing
all elements of tag q. Elements in each stream are sorted by their startPos.
Each stream has a cursor which can either move to the next element or read the
element under it. The algorithm operates in two phases:

1. TwigJoin. In this phase a list of element paths are output as intermediate
results. Each element path matches one root-to-leaf path of the twig pattern.

2. Merge. In this phase, the list of element paths are merged to produce the
final output.

When all the edges in the twig are A-D edges, TwigStack ensures that each
path output in phase 1 not only matches one path of the twig pattern but is
also part of a match to the entire twig. Thus the algorithm ensures that its time
and I/O complexity is independent of the size of partial matches to any root-to-
leaf path of the descendant-only twig pattern. However, with the presence of P-C
edges in twig patterns, the TwigStack method is no longer optimal.

Example 1. Let us evaluate the twig pattern section[title]/paragraph//figure
on the XML document in Fig.1. Because of the P-C edge section/paragraph, in
order to know that element s1 is in a match, we have to advance Tparagraph to
p4 and Tfigure to f3. By doing so, we skip nodes p2, p3, f1 and f2 and miss the
matches involving p2 and f1. However, since s2 and s3 have not been seen, we
have no way to tell if any of the above four elements might appear in the final
match results. The only choice left is to store all the four elements in which only
two are useful (unnecessary storage).

4 Prefix-Path Streaming(PPS)

Tag Streaming does not consider the context where an element appears. In this
section, we introduce a new streaming approach.

The prefix-path of an element in a XML document tree is the path from
the document root to the element. A prefix-path stream(PP stream) contains
all elements in the document tree with the same prefix-path, ordered by their
startPos numbers. Each PP stream T has a label or label(T) which is the com-
mon prefix-path of its elements. A PP stream is said to of class N if its label
ends with tag N . Two PP streams are of the same class if their labels end with
the same tag. Referring again to the example in Fig.1 there will be 11 streams
using PPS streaming compared with 7 streams generated by Tag Streaming. For
example, instead of a single stream Tsection in Tag Streaming, now we have two
PP streams: Tbook−chapter−section and Tbook−chapter−section−section.

4.1 Differences between Tag and Prefix-Path Streaming

PPS streaming,unlike Tag Streaming, allows parallel access to PP streams con-
taining elements with the same tag. The benefits can be immediately seen on
the twig pattern query in Example 1: under PPS streaming,p4 is placed in a
different PP stream as p2 and p3; now we can find s1 is the parent of p4 without
skipping any elements. In this subsection we explore further the properties of
PPS streaming and its advantages over Tag Streaming in the problem of twig
pattern matching.

Definition 1. (Match Order) Given a twig pattern Q and a certain streaming
method, a match MA to QA is said to be ahead of a match MB to QB or
MA ≤ MB if for each node q ∈ (QA ∩ QB), eA

q .startPos ≤ eB
q .startPos or eA

q

and eB
q are placed on different streams, where eA

q and eB
q are of tag q and belong

to match MA and MB respectively. A and B are nodes in Q.

As an example,for twig pattern Q1 : //section[title]/paragraph//figure,
the two matches M1 =< s1, t1, p4, f3 > and M2 =< s2, t2, p2, f1 > in Fig.1
are incomparable under Tag Streaming because t1.startPos < t2.startPos but
p4.startPos > p2.startPos. However under PPS streaming, we have both M1 ≤
M2 and M2 ≤ M1 simply because the eight elements in M1 and M2 are placed on
eight different streams. Note that under Match Order, M1 ≤ M2 and M2 ≤ M1

doesn’t mean M1 = M2.

Definition 2. Given a twig pattern Q and two elements a with tag A and b with
tag B, a ≤

Q
b if a is in a match MA to QA such that MA ≤ MB for any match

MB to QB containing element b.

Intuitively, a ≤
Q
b implies that it is possible to determine if a is in a match

to QA without skipping any matches of b to QB . For example, given the twig
pattern Q : //section[//title]//paragraph//figure, s1 ≤ Qs2 in Fig.1 under Tag
Streaming because s1 has a match (s1, t1, p2, f1) which is ahead of any match
s2 for Q. However,for Q1 : //section[title]/paragraph//figure, the only match
of s1 is < s1, t1, p4, f3 > and the only match of s2 is < s2, t2, p2, f1 > since the
two matches are not “comparable”, neither s1 ≤ Q1s2 nor s2 ≤ Q1s1 under Tag
Streaming. On the other hand, we have s1 ≤ Q1s2 as well as s2 ≤ Q1s1 under
PPS streaming.

Lemma 1. For two elements a of tag A and b of tag B in a A-D only twig
pattern Q, suppose a has matches to QA and b has matches to QB, either a ≤ Qb
or b ≤ Qa under Tag Streaming.

Analogous to Lemma 1, PPS-streaming has similar properties for a larger
classes of twig patterns.

Lemma 2. For two elements a of tag A and b of tag B in a A-D only or a P-C
only or a 1-branch twig pattern Q, if a has matches to QA and b has matches to
QB, either a ≤ Qb or b ≤ Qa under PPS streaming.

The significance of Lemma 1 and 2 can be understood as follows. Suppose
the contrary, if there is a pair of elements a and b such that neither a ≤

Q
b nor

b ≤
Q
a for twig pattern Q, then to determine if a is in a match to Q may skip

elements in b’s match and vice versa. In the above situation, the only way to
ensure result correctness is to store potentially useless elements which sacrifices
optimality. Therefore the two lemmas pave the way for designing optimal twig
pattern matching algorithms for their respective class of twig patterns.

5 Pruning PP streams

Using labels of PP streams, we can statically prune away PP streams which con-
tain no match to a twig pattern. For example, the stream Tbook−preface−para

of the XML document in Fig.1 is certainly not useful for the twig pattern

//section[title]/paragraph//figure. Although all the elements in the PP stream
have element name paragraph, they do not have section parents!

A PP stream T1 is an ancestor PP stream of PP stream T2 if label(T1) is a
prefix of label(T2). T1 is the parent PP stream of T2 if label(T1) is a prefix of
label(T2) and label(T2) has one more tag than label(T2). The following recursive
formula helps us determine the useful streams for evaluating a twig pattern Q.
For a PP stream of class N with label l, we define Ul to be the set of all de-
scendant PP streams of Tl(including Tl) which are useful for the sub-twig of QN

except that we only use stream Tl (not its descendant streams) to match node N .

Ul =

{Tl} if N is a leaf node;
{Tl}

⋃{⋃Ni∈child(N) Ci} if none of Ci is null;
null if one of Ci is null.

where Ci =
⋃

Uli for each child stream label li of l if the edge < N,Ni > is
a P-C edge ;or Ci =

⋃
Uli for each descendant stream label li of l if the edge

< N, Ni > is a A-D edge. Function child(N) returns the children nodes of N in
the twig pattern Q.

The base case is simple because if N is a leaf node, any PP stream of class N
must contain matches to the trivial single-node pattern QN . As for the recursive
relationship, note that for a PP stream with label l of class N to be useful to
the sub-twig pattern rooted at N , for each and every child node Ni of N , there
should exist some non-empty set Uli which are useful to the sub-twig QNi AND
the structural relationship of l and li satisfies the edge between N and Ni. In
the end the set

⋃
Ulr contains all the useful PP streams to a query pattern Q,

where lr is the labels of PP streams of class root(Q).

6 Holistic Twig Join based on PPS

The algorithm PPS-TwigStack reports all the matches in a XML document to
a twig pattern. PPS-TwigStack is also a stack-based algorithm. It associates a
stack for each query node in the twig pattern. A stack Sq1 is the parent stack
of Sq2 if q1 is the parent node q2 in Q. Each item in the stack S is a 2-tuple
consisting of an element e and a pointer to the nearest ancestor of e in the parent
stack of S. The parent pointer is used to reconstruct result paths. This idea is
first used in [1]. A query node N is also associated to all the useful PP streams
of class N . A PP stream has the same set of operations as a stream in Tag
Streaming. Fig.2(a) shows the main data structures used.

The algorithm PPS-TwigStack, similar to TwigStack, in each step finds a
“potential” matching element a. Depending on the current stack states, a is
then being pushed into its stack if it’s really in some match and/or being used
only for updating stack matching states.

With Lemma 2,in each step, we repeatedly find element a of tag A with the
following properties in the remaining portions of streams:

1. a is in a match to QA and a ≤Q e for each remaining element e.

{TBCSP,
 TBCSSP}

{TBCS,
 TBCSS}

{TBCSPF,
 TBCSSPF}

section

paragraph

figure

title

{TBCST,
 TBCSST}

getNext(Paragraph)

getNext(Figure)

getNext(title)
 <title,

{TBCST(t1),TBCSST(t2)}>

 (b) (a)

getNext(Section)

<paragraph,
{TBCSSP(p2),TBCSP(p4)} >

<section,
{TBCS(s1),TBCSS(s2)}>

< figure,
{TBCSSPF(f1),TBCSPF(f3)} >

Fig. 2. Illustration of Algorithm PPS−TwigStack (a) Main data structures used.We
use a shorter form to denote PP streams.E.g. Tbook−chapter−section is represented as
TBCS (b) The call stack of the first getNext() call with return values. The elements in
parenthesis indicates the cursor position of each stream right after the call.

2. a.startPos < d.startPos for each d of tag D which is in a match to QD(D
∈ QA).

3. For each sibling node SIi of A,there is an element si of tag SIi which satisfies
property (1) and (2) w.r.t. SIi.

4. a.startPos < si.startPos for each sibling node SIi.
5. There is no element a′ in streams of class parent(A) such that a′ is par-

ent(ancestor) of a if the edge < A, parent(A) > is a P-C(A-D) edge.

Property (1) implies the element a is in a match to QA and thus may be
in a match to Q. Meanwhile in searching for a, no potential matching element
is skipped because a ≤

Q
e for every e. Property (5) guarantees that ancestor

element of a match to Q or sub-twig of Q is always found before any descendant
element in the same match. Properties (2)-(4) ensure that whenever an element
is popped out of its stacks, all matches involving it have been found. Combining
(2)-(5),we can see that if a is in a match to Q, its parent or ancestor element
in the match MUST be still in the stack Sparent(A); so if no such element exists
there we can just discard a.

At the heart of our algorithm, the method getNext() implements the basic
searching strategy. Lines 2-3 in the main routine find the element satisfying the
five conditions. Lines 4-12 maintain the states of matching in stacks(which are
identical to those of TwigStack). The getNext() method returns two things:

1. a node qx in the sub-twig Qq;and
2. a set of PP streams {T i

qx
} of class qx whose head elements are in matches to

Qqx . Moreover, among head elements of streams in {T i
qx
}, the one with the

smallest startPos satisfies all the five properties w.r.t. sub-twig Qq.

getNext() works recursively. For a node q, it makes recursive calls for all child
nodes of q(lines 3-4 of textsf(getNext()).

– If getNext(qi) = qi for all child nodes qi, we are able to find an element
e which satisfies the first four properties(line 17). Then in lines 7-16 we

Algorithm 1 PPS-TwigStack
1: while ¬end(q) do
2: < qmin, {Tqmin} > = getNext(q);
3: Tmin = the PP-stream in set {Tqmin} whose head element has the smallest

startPos;
4: if ¬isRoot(qmin) then
5: cleanStack(parent(qmin),nextL(qmin))
6: if isRoot(qmin) ∨ ¬empty(Sparent(qmin)) then
7: cleanStack(qmin,next(qmin))
8: moveStreamToStack(Tmin,Sqmin ,pointer to top of Sparent(qmin))
9: if isLeaf(qmin) then

10: showSolutionWithBlocking(Sqmin ,l)
11: pop(Sqmin)
12: advance(Tmin)
13: mergeAllPathSolutions()

try to find if there is an element of tag q which is in match of Qq and
parent(ancestor) of e. If such an element exists,e does not satisfy property
(5) and we return < q, Tq > in lines 18-19 and keeps on searching. Otherwise,
e is the element satisfying all five properties and can be returned(line 20).

– Otherwise getNext(qi) 6= qi for some child nodes qi, which suggests the ele-
ment satisfying the five properties have been found. Therefore we just return
what getNext(qi) returns.

Example 2. Consider the twig pattern query section[title]/paragraph//figure
on the XML document in Fig.1. The call stack of the first getNext(section) is
shown in Fig.2(b). We find s1 in a match because we recursively find the first
two paragraph elements and the first two title elements from their respective PP
streams which are in matches to paragraph//figure and /title. After consid-
ering the four combinations of the title and paragraph elements (2x2), we find
two match elements s1 and s2 push s1 into its stack Ssection. The subsequent
calls find t1,s2,t2,p2,f1,p3,f2,p4 and f3 in order.

PPS-TwigStack performs a single forward scan of all useful PP streams. It
never stores any paths which are only partial matches to one branch of the twig
pattern but do not appear in the final match results. Therefore, the worst case
I/O complexity is linear in the sum of sizes of the useful PP streams and the out-
put list. The worst case CPU complexity is O((|max PPSStreams per tag|)|Q|
× (|Input list|+ |Output list|)) where |Q| is the twig pattern size, which is also
independent of the size of partial matches to any root-to-leaf path of the twig.
The factor of |max PPSStream per tag||Q| is because getNext() needs to enu-
merate PP stream combinations. The space complexity is the maximum length
of a root-to-leaf path. If a twig pattern is not in any of the three classes afore-
mentioned, we can simply run TwigStack by simulating a single stream Tq in
Tag Streaming using multiple PP streams of class q.

Algorithm 2 getNext(q)
1: if isLeaf(q) then
2: return < q, {Tq} > /* Tq contains PP streams of class q not yet end*/
3: for qi in children(q) do
4: < ni, {Tci} > = getNext(qi)
5: if ni 6= qi then
6: return < ni, {Tci} >
7: for < T α1

c1 , T α2
c2 , . . . , T αn

cn
>∈ {Tc1} × {Tc2} × . . .× {Tcn} do

8: for each T j
q of class q satisfying the P-C or A-D relationship with each T αi

ci do
9: Tmin = the stream in < T α1

c1 , T α2
c2 , . . . , T αn

cn
> whose head has the smallest

startPos
10: Tmax = the stream in < T α1

c1 , T α2
c2 , . . . , T αn

cn
> whose head has the largest

startPos
11: if ¬mark[T j

q] then
12: while head(T j

q).endPos < head(Tmax).startPos do
13: advance(T j

q);
14: if head(T j

q).startPos < head(Tmin).startPos then
15: mark[T j

q] = true;
16: add T j

q to set {Tq}
17: T1 = min(Tq); T2= min(∪{Tci}); /* min is a function which returns the PP-stream

in the input set whose head has the smallest startPos */
18: if head(T1).startPos < head(T2).startPos then
19: return < q, {Tq} >
20: return < ci, {Tci} > /*T2 is of class ci */

7 Experiments

All our experiments were run on a 2.4GHz Pentium 4 processor with 512MB
memory. We first measure the effect of PPS pruning on the following five twig
queries in XMark[6] benchmark. For each twig pattern, Fig.3 shows the execution
time and the total number of pages read using TwigStack and PPS−TwigStack
with pruning on a XMark document of size 130MB.

1. /site/people/person/name

2. /site/open auctions/open auction/bidder/increase/

3. /site/closed auctions/closed auction/price

4. /site/regions//item

5. /site/people/person[//ageand//income]/name

PPS-TwigStack is optimal for A-D or P-C only twig patterns and 1-branch
twig patterns. Even without pruning, PPS-TwigStack still outperforms TwigStack
in these classes of queries. We build XML documents of 1 million nodes with
tags A,B, C, D, E such that no PP stream will be pruned away. The XML data
generated has two sub-trees: the first contains only partial matches while the
second contains full matches. We vary the size of the second sub-tree from 5%
to 30% of the total document size and run the twig query A/B[C//D]//E.

0

1

2

3

4

5

6

7
E

x
e
c
u

ti
o

n

T
im

e
(S

e
c
o

n
d

)

Q1 Q2 Q3 Q4 Q5

PPS TwigStack TwigStack

0

50

100

150

200

250

300

350

P
a
g

e
s

 R
e
a

d

Q1 Q2 Q3 Q4 Q5

PPS TwigStack TwigStack

Fig. 3. Comparison of execution time and I/O cost of TwigStack and PPS-TwigStack
on a 130MB XMark data

PPS − TwigStack generates much smaller intermediate result sizes. As an ex-
ample, when the ratio is 10%,PPS − TwigStack produces 9,674 paths whereas
TwigStack produce 121,532.

8 Conclusion

In this paper, we address the problem of holistic twig join on XML documents.
We propose a novel clustering method Prefix-Path Streaming (PPS) to group
XML elements. The benefits of PPS streaming include reduced I/O cost and
optimal processing of a large class of twig patterns with both A-D and P-C
edges. In particular we show that A-D and P-C only twig and 1-branch twig
patterns can be evaluated optimally using PPS.

References

1. N. Bruno, D. Srivastava, and N. Koudas. Holistic twig joins: optimal xml pattern
matching. In ICDE Conference, 2002.

2. T. Chen, T.W. Ling, and C.Y. Chan. Prefix path streaming:a new clustering method
for optimal holistic xml twig pattern matching. Technical report, National Univer-
sity of Singapore, http://www.comp.nus.edu.sg/ chent/dexapps.pdf.

3. B. Choi, M. Mahoui, and D. Wood. On the optimality of the holistic twig join
algorithms. In In Proceeding of DEXA, 2003.

4. M.P. Consens and T.Milo. Optimizing queries on files. In In Proceedings of ACM
SIGMOD, 1994.

5. S.Al-Khalifa, H. V. Jagadish, Nick Koudas, J. M. Patel, Y. Wu, N. Koudas, and
D. Srivastava. Structural joins: A primitive for efficient xml query pattern matching.
In In Proceedings of ICDE, pages 141–152, 2002.

6. XMARK. Xml-benchmark. http://monetdb.cwi.nl/xml.
7. XPath. http://www.w3.org/TR/xpath.
8. C. Zhang, J.F. Naughton, D.J. DeWitt, Q. Luo, and G.M. Lohman. On support-

ing containment queries in relational database management systems. In SIGMOD
Conference, 2001.

