
Efficient Processing of Ordered XML Twig Pattern

Jiaheng Lu, Tok Wang Ling, Tian Yu, Changqing Li, Wei Ni
School of computing, National University of Singapore

{lujiahen,lingtw,yutian,lichangq,niwei}@comp.nus.edu.sg

Abstract. Finding all the occurrences of a twig pattern in an XML database is
a core operation for efficient evaluation of XML queries. Holistic twig join al-
gorithm has showed its superiority over binary decompose based approach due
to efficient reducing intermediate results. The existing holistic join algorithms,
however, cannot deal with ordered twig queries. A straightforward approach
that first matches the unordered twig queries and then prunes away the unde-
sired answers is obviously not optimal in most cases. In this paper, we study a
novel holistic-processing algorithm, called OrderedTJ, for ordered twig queries.
We show that OrderedTJ can identify a large query class to guarantee the I/O
optimality. Finally, our experiments show the effectiveness, scalability and ef-
ficiency of our proposed algorithm.

1 Introduction

With the rapidly increasing popularity of XML for data representation, there is a lot
of interest in query processing over data that conforms to a tree-structured data
model([1],[5]). Efficient finding all twig patterns in an XML database is a major
concern of XML query processing. Recently, holistic twig join approach has been
taken as an efficient way to match twig pattern since this approach can efficiently
control the size of intermediate results([1],[2],[3],[4]). We observe that, however, the
existing work on holistic twig query matching only considered unordered twig que-
ries. But XPath defines four ordered axes: following-sibling, preceding-sibling, fol-
lowing, preceding. For example, XPath: //book/text/following-sibling::chapter is an
ordered query, which finds all chapters in the dataset that are following siblings of
text which should be a child of book.

We call a twig query which cares the order of the matching elements as an or-
dered twig query. On the other hand, we denote a twig query that does not consider
the order of matching elements as an unordered query. In this paper, we research how
to efficiently evaluate an ordered twig query.

To handle an ordered twig query, naively, we can use the existing algorithm (e.g.
TwigStack[1]/TwigStackList[5]) to output the intermediate path solutions for each
individual root-leaf query path, and then merge path solutions so that the final solu-
tions are guaranteed to satisfy the order predicates of the query. Although existing
algorithms are applied, such a post-processing approach has a serious disadvantage:
many intermediate results may not contribute to final answers.

Motivated by the recent success in efficient processing unordered twig queries ho-
listically, we present in this paper a novel holistic algorithm, called OrderedTJ, for
ordered twig queries. The contribution of this paper can be summarized as follows:
1. We develop a new holistic ordered twig join algorithm, namely OrderedTJ,

based on the new concept of Ordered Children Extension (for short OCE). With
OCE, an element contributes to final results only if the order of its children ac-
cords with the order of corresponding query nodes. Thus, efficient holistic algo-
rithm for ordered-twigs can be leveraged.

2. If we call edges between branching nodes and their children as branching edges
and denote the branching edge connecting to the n’th child as the n’th branching
edge, we analytically demonstrate that when the ordered-twig contains only an-
cestor-descendant relationship from the 2nd branching edge, OrderedTJ is I/O
optimal among all sequential algorithms that read the entire input. In other
words, the optimality of OrderedTJ allows the existence of parent-child rela-
tionships in non-branching edges and the first branching edges.

3. Our experimental results show that the effectiveness, scalability and efficiency
of our holistic twig algorithms for ordered twig pattern.

The remainder of the paper is organized as follows. Section 2 presented related

work. The novel ordered twig join algorithm is described in Section 3. Section 4 is
dedicated to our experimental results and we close this paper by conclusion and fu-
ture work in Section 5.

2 Related work

With the increasing popularity of XML data, query processing and optimization for
XML databases have attracted a lot of research interest. There is a rich set of litera-
ture on matching twig queries efficiently. Below, we describe these literatures with
the notice that the existing work deals with only unordered twig queries.

Zhang et al.([9]) proposed a multi-predicate merge join (MPMGJN) algorithm
based on (DocId, Start, End, Level) labeling of XML elements. The later work by Al-
Khalifa et al.([7]) gave a stack-based binary structural join algorithm. Different from
binary structural join approaches, Bruno et al.([1]) proposed a holistic twig join algo-
rithm, called TwigStack, to avoid producing a large intermediate result. However, the
class of optimal queries in TwigStack is very small. When a twig query contains any
parent-child edge, the size of “useless” intermediate results may be very large. Lu et
al.([5]) propose a new algorithm called TwigStackList. They use list data structure to
cache limited elements to identify a larger optimal query class. TwigStackList is I/O
optimal for queries with only ancestor-descendant relationships in all branching
edges. Recently, Jiang et al.([3]) researched the problem of efficient evaluation of
twig queries with OR predicates. Chen et al.([2]) researched the relationship between
different data partition strategies and the optimal query classes for holistic twig join.
Lu et al.([6]) proposed a new labeling scheme called extended Dewey to efficiently
process XML twig pattern.

3 Ordered twig join algorithm

3.1 Data model and ordered twig pattern

We model XML documents as ordered trees. Figure 1(e) shows an example XML
data tree. Each tree element is assigned a region code (start, end, level) based on its
position. Each text is assigned a region code that has the same start and end values.

XML queries make use of twig patterns to match relevant portions of data in an
XML database. The pattern edges are parent-child or ancestor-descendant relation-
ships. Given an ordered twig pattern Q and an XML database D, a match of Q in D is
identified by a mapping from the nodes in Q to the elements in D, such that: (i) the
query node predicates are satisfied by the corresponding database elements; and (ii)
the parent-child and ancestor-descendant relationships between query nodes are satis-
fied by the corresponding database elements; and (iii) the orders of query sibling
nodes are satisfied by the corresponding database elements. In particular, with region
encoding, given any node q Q∈ and its right-sibling r Q∈ (if any), their correspond-
ing database elements, say eq and er in D, must satisfy that eq.end<er.start.

The answers to query Q with n nodes can be represented as a list of n-ary tuples,
where each tuple (t1,t2,….tn) consists of the database elements that identify a distinct
match of Q in D.

Figure 1(a) shows three sample XPath and Figure 1(b-d) shows the corresponding
ordered twig patterns for the data of Fig 1(e). For each branching node, we use a
symbol “>” in a box to mark its children ordered. Note that in Q3, we add book as the
root of the ordered query, since it is the root of XML document tree. For example,
the query solution for Q3 is only <book1, chpater2, title2, “related work”, section3 >.
But if Q3 were an unordered query, section1, section2 also would involve in answers.

XPah of Q1:
//chapter/section/precedingsibling::title

XPah of Q2:
/book/author/followingsibling::chpater/title/followingsibling::section

XPah of Q3:
//chapter[title="Related work"]/following::section

book1

chapter1 chapter2

section1

"Introduction"

(4,10,2) (11,17,2)

(5.7,3) (15.16,3)

chapter3
(18,24,2)

title1 section2 section3title2 title3

"Related work" "Algorithm"
(6.6,4)

(8.9,3) (12,14,3)

(13,13,4) (20,20,4)

(22,23,3)(19,21,3)

(1,25,1)

(a) Xpath expressions

book

chapterauthor

sectiontitle

book

title

section

"Related work"

chapter

chapter

title section
(b) Q1

(c) Q2 (d) Q3
(e) XML document

author1
(2,3,2)

>

>

>

>

Figure 1. (a) three XPaths (b)-(d) the corresponding ordered twig query (e) an XML tree

3.2 Algorithm

In this section, we present OrderedTJ, a novel holistic algorithm for finding all
matches of an ordered twig pattern against an XML document. OrderedTJ makes the

extension of TwigStackList algorithm in the previous work [5] to handle ordered twig
pattern. We will first introduce data structures and notations to be used by OrderedTJ.

Notation and data structures An ordered query is represented with an ordered tree.
The function PCRchildren(n) , ADRChildren(n) return child nodes which has par-
ent-child or ancestor-descedant relationships with n, respectively. The self-
explaining function rightSibling(n) returns the immediate right sibling node of n (if
any).

There is a data stream Tn associated with each node n in the query twig. We use
Cn to point to the current element in Tn. We can access the values of Cn by
Cn.start,Cn.end and Cn.level. The cursor can advance to the next element in Tn
with the procedure advance(Tn). Initially, Cn points to the first element of Tn.

Our algorithm will use two types of data structures: list and stack. We associate a
list Ln and a stack Sn for each node of queries. At every point during computation: the
nodes in stack Sn are guaranteed to lie on a root-leaf path in the database. We use
top(Sn) to denote the top element in stack Sn. Similarly, elements in each list Ln are
also strictly nested from the first to the end, i.e. each element is an ancestor or parent
of that following it. For each list Ln, we declare an integer variable, say pn, as a cursor
to point to an element in Ln. Initially, pn =0 , which points to the first element of Ln.

a

b c d

a1

b1

c1

d1

e1 e2

a1

b1

c1

d1

e1

(a) Query (b) Doc1 (c) Doc2

>
a

b c

>

(a) Query

a1

a2

b1

c1

(b) Data
Figure 2. illustration to ordered child extension Figure 3. Optimality exam-
ple

The challenge to ordered twig evaluation is that, even if an element satisfies the

parent-child or ancestor-descendant relationship, it may not satisfy the order predicate.
We introduce a new concept, namely Ordered Children Extension (for short, OCE),
which is important to determine whether an element likely involves in ordered queries.
DEFINITION 1(OCE) Given an ordered query Q and a dataset D, we say that an
element en (with tag n Q∈) in D has an ordered children extension (for short OCE),
if the following properties are satisfied:
(i) for ()in ADRChildren n∈ in Q (if any) , there is an element

ine (with tag ni)
in D such that

ine is a descendant of en and
ine also has OCE;

(ii) for ()in PCRChildren n∈ in Q (if any), there is an element e’ (with tag n)
in the path en to

ine such that e’ is the parent of
ine and

ine also has OCE;
(iii) for each child ni of n and mi= rightSibling(ni) (if any), there are elements

ine
and

ime such that
ine .end <

ime .start and both
ine and

ime have OCE. □

Properties (i) and (ii) discuss the ancestor-descendant and parent-child relationship
respectively. Property (iii) manifests the order condition of queries. For example, see
the ordered query in Fig 2(a), in Doc 1, a1 has the OCE, since a1 has descendants
b1,d1, child c1 and more importantly, b1,c1,d1 appear in the correct order. In contrast,
in Doc2, a1 has not the OCE, since d1 is the descendant of c1, but not the following
element of c1(i.e. c1.end ≮ d1 .start)

Algorithm OrderedTJ ()
01While (()end¬)
02 qact= getNext(root);
03 if (isRoot(qact)∨ ()()

actparent qempty S¬) cleanStack(qact, getEnd(qact));

04 moveStreamToStack(qact,
actqS);

05 if (isLeaf(qact))
06 showpathsolutions (

actqS ,getElement(qact));

07 else proceed(
actqT);

08 mergeALLPathsolutions;

Function end()
01 return () : () ()nn subtreesNodes root isLeaf n e Cof∀ ∈ ∧ ;

Procedure cleanStack (n ,actEnd)
01 while (()nempty S¬ and (topEnd(Sn)< actEnd)) do pop(Sn);

Procedure moveStreamToStack(n,Sn)
01 if((getEnd(n)< top(Srightsibling(n)).start) //check order
02 push getElement(n) to stack Sn
06 proceed(n);

Procedure proceed(n)
01 if (empty(Ln)) advance(Tn);
02 else Ln.delete(pn);
03 pn = 0; //move pn to pint to the beginning of Ln

Procedure showpathsolutions(Sm,e)
01 index[m]=e
02 if (m == root) //we are in root
03 Output(index[q1],…,index[qk]) //k is the length of path processed
04 else //recursive call
05 for each element ei in Sparent(m)
06 if ei satisfies the corresponding relationship with e
07 showpathsolutions(Sparent(m), ei)

Figure 4 Procedure OrderedTJ

Algorithm OrderedTJ OrderedTJ, which computes answers to an ordered query
twig, operates in two phases. In the first phase (line 1-7), the individual query root-
leaf paths are output. In the second phase (line 8), these solutions are merged-joined
to compute the answers to the whole query. Next, we first explain getNext algorithm
which is a core function and then presents the main algorithm in details.
 getNext(n)(See Fig 5) is a procedure called in the main algorithm of OrderedTJ. It
identifies the next stream to be processed and advanced. At line 4-8, we check the
condition (i) of OCE. Note that unlike the previous algorithm TwigStackList[5], in
line 8, we advance the maximal (not minimal) element that are not descendants of the

current element in stream Tn , as we will use it to determine sibling order. Line 9-12
check the condition (iii) of OCE. Line 11 and 12 return the elements which violate
the query sibling order. Finally, line 13-19 check the condition (ii) of OCE.
Now we discuss the main algorithm of OrderedTJ. First of all, Line 2 calls getNext

algorithm to identify the next element to be processed. Line 3 removes partial an-
swers that cannot be extended to total answer from the stack. In line 4, when we in-
sert a new element to stack, we need to check whether it has the appropriate right
sibling. If n is a leaf node, we output the whole path solution in line 6.

Algorithm getNext (n)
01 if (isLeaf(n)) return n;
02 for all ni in children(n) do
03 gi = getNext(ni); if (gi ≠ ni) return ni ;
04

max ()max arg ()
in children n in getStart n∈= ;

05
min ()min arg ()

in children n in getStart n∈= ;

06 While (getEnd(n) < getStart(nmax)) proceed(n);
07 if (getStart(n) >getStart(nmin))
08 return

() (() ())max arg ()
i in children n getStart n getStart n igetStart n∈ ∧ >

;

09 sort all ni in children(n) by start values;
// assume the new order are n’1,n’2, …,n’k

10 for each n’i (1 ≤ i ≤ n) do //check children order
11 if (n'i ≠ ni) return n’i;
12 else if ((i>1)∧(getEnd(n’i-1)>getStart(n’i)) return n’i-1
13 MoveStreamToList(n, nmax);
14 for ni in PCRchildren(n) //check parent-child relationship

15 if (' ne L∃ ∈ such that e’ is the parent of
inC)

16 if (ni is the first child of n)
17 Move the cursor of list Lq to point to e’;
18 else return ni ;
19 return n;

Proceudre MoveStreamToList(n,g)
01 delete any element in Ln that is not an ancestor of getElement(n);
02 while Cn.start < getStart(g) do if Cn.end>getEnd(g) Ln.append(Cn);
03 advance(Tn)

Procedure getElement(n)
01 if (()nempty L¬) return Ln.elementAt(pn);
02 else return Cn;

Procedure getStart(n)
01 return the start attribute of getElement(n);

Procedure getEnd(n)
01 return the end attribute of getElement(n);

Figure 5 Function GetNext in the main algorithm OrderedTJ

EXAMPLE 1. Consider the ordered query and data in Fig 1(d) and (e) again. First of
all, the five cursors are (book1, chapter1, title1,”related work”, section1). After two
calls of getNext(book), the cursors are forwarded to (book1, chapter2, title2, ”related
work”, section1). Since section1.start=6<chapter2.start=9, we return section (in line
11 of getNext) and forward to section2. Then chapter2.end=15> section2.start=13. We
return section again (in line 12 of getNext) and forward to section3. Then chap-

ter2.end=15<section3.start=17. The following steps push book1 to stack and output
the individual two path solutions. Finally, in the second phase of main algorithm, two
path solutions are merged to form one final answer. □

3.3 Analysis of OrderedTJ

In the section, we show the correctness of OrderedTJ and analyze its efficiency.
Some proofs are omitted here due to space limitation.
DEFINITION 2 (head element en) In OrderedTJ, for each node in the ordered query,
if List Ln is not empty, then we say that the element indicated by the cursor pn of Ln is
the head element of n, denoted by en. Otherwise, we say that element Cn in the stream
Tn is the head element of n. □

LEMMA 1. Suppose that for an arbitrary node n in the ordered query we have
getNext(n)=n’. Then the following properties hold:

(1) n’ has the OCE.
(2) Either (a) n=n’ or (b) parent(n) does not have the OCE because of n’ (and

possibly a descendant of n’).

LEMMA 2. Suppose getNext(n)=n’ returns a query node in the line 11 or 12 of Algo-
rithm getNext. If the current stack is empty, the head element does not contribute to
any final solution since it does not satisfy the order condition of query.

LEMMA 3. In Procedure moveStreamToStack any element e that is inserted to
stack Sn satisfy the order requirement of the query. That is, if n has a right-sibling
node n’ in query, then there is an element en’ in stream Tn’ such that en’.start >en.end.

LEMMA 4. In OrderedTJ, when any element e is popped from stack , e is guaranteed
not to participate a new solution any longer.

THEOREM 1. Given an ordered twig pattern Q and an XML database D. Algorithm
OrderedTJ correctly returns all answers for Q on D.
Proof:[sketch] Using Lemma 2, we know that when getNext returns a query node n
in the line 11 and 12 of getNext, if the stack is empty, the head element en does not
contribute to any final solutions. Thus, any element in the ancestors of n that use en in
the OCE is returned by the getNext before en. By using lemma 3, we guarantee that
each element in stack satisfy the order requirement in the query. Further. By using
lemma 4, we can maintain that, for each node n in the query, the elements that involve
in the root-leaf path solution in the stack Sn. Finally, each time that n =getNext(root)
is a leaf node, we output all solution for en (line 6 of OrderedTJ). □

Now we analyze the optimality of OrderedTJ. Recall that the unordered twig join
algorithm TwigStackList([5]) is optimal for query with only ancestor-descendant in all
branching edges, but our OrderedTJ can identify a little larger optimal class than

TwigStackList for ordered query. In particular, the optimality of OrderedTJ allows the
existence of parent-child relationship in the first branching edge, as illustrated below.
EXAMPLE 2. Consider the ordered query and dataset in Fig 3. If the query were an
unordered query, then TwigStackList([5]) would scan a1, c1 and b1 and output one
useless solution (a1,c1), since before we advance b1 we could not decide whether a1
has a child tagged with b. But since this is an ordered query, we immediately identify
that c1 does not contribute to any final answer since there is no element with name b
before c1. Thus, this example tells us that unlike algorithms for unordered query,
OrderedTJ may guarantee the optimality for queries with parent-child relationship in
the first branching edge. □

THEOREM 2. Consider an XML database D and an ordered twig query Q with only
ancestor-descendant relationships in the n’th (n≥2) branching edge. The worst case
I/O complexity of OrdereTJ is linear in the sum of the sizes of input and output lists.
The worst-case space complexity of this algorithm is that the number of nodes in Q
times the length of the longest path in D. □

text

bold keyword

description

text partilist

text

bold keyword emph

(a) Q1 (b) Q2

S

VP

PP
IN NP

VBN

NP

NN PP

S

DT PRP_DOLLAR_

(c) Q3 (d) Q4 (e) Q5 (f) Q6

> > >

>

> >

Figure 6. Six tested ordered twig queries (Q1,2,3 in XMark; Q4,5,6 in TreeBank)

4 Experimental evaluation

4.1 Experimental setup

We implemented three ordered twig join algorithms: straightforward -TwigStack (for
short STW), straightforward-TwigStackList (STWL) and OrderedTJ. The first two
algorithms use the straightforward post-processing approach. By post-processing, we
mean that the query is first matched as an unordered twig (by TwigStack[1] and
TwigStackList[5], respectively) and then we merge all intermediate path solutions to
get the answers for an ordered twig. We use JDK 1.4 with the file system as a simple
storage engine. All experiments were run on a 1.7G Pentium IV processor with
768MB of main memory and 2GB quota of disk space, running windows XP system.
We used two data sets for our experiments. The first is the well-known benchmark
data: XMark. The size of file is 115M bytes with factor 1.0. The second is a real data-
set: TreeBank[8]. The deep recursive structure of this data set makes this an interest-
ing case for our experiments. The file size is 82M bytes with 2.4 million nodes.

For each data set, we tested three XML twig queries (see Fig 6). These queries have
different structures and combinations of parent-child and ancestor-descendant edges.
We choose these queries to give a comprehensive comparison of algorithms.

Evaluation metrics We will use the following metrics to compare the performance
of different algorithms. (i) Number of intermediate path solutions This metric
measures the total number of intermediate path solutions, which reflects the ability of
algorithms to control the size of intermediate results. (ii) Total running time This
metric is obtained by averaging the total time elapsed to answer a query with six
consecutive runs and the best and worst performance results discarded.

0

2

4

6

8

10

12

14

Q1 Q2 Q3

XMark dataset

E
x
e
c
u
t
i
o
n

t
i
m
e
(
s
e
c
o
n
d
)

STW STWL OrderedTJ

(a) XMark

0

5

10

15

20

25

30

35

Q4 Q5 Q6

TreeBank dataset

E
x
e
c
u
t
i
o
n

t
i
m
e
(
s
e
c
o
n
d
)

STW STWL OrderedTJ

(b) TreeBank

0

10

20

30

40

50

60

1 2 3 4

XMark factor

E
x
e
c
u
t
i
o
n

t
i
m
e

(
s
e
c
o
n
d
s
)

STW STWL OrderedTJ

 (c) varying data size
Figure 7. Evaluation of ordered twig pattern on two datasets

Query Dataset STW STWL OrderedTJ Useful solutions
Q1 XMark 71956 71956 44382 44382
Q2 XMark 65940 65940 10679 10679
Q3 XMark 71522 71522 23959 23959
Q4 TreeBank 2237 1502 381 302
Q5 TreeBank 92705 92705 83635 79941
Q6 TreeBank 10663 11 5 5

Table 1. The number of intermediate path solutions

4.2 Performance analysis

Figure 7 shows the results on execution time. An immediate observation from the
figure is that OrderedTJ is more efficient than STW and STWL for all queries. This
can be explained that OrderedTJ output much less intermediate results. Table 1
shows the number of intermediate path solutions. The last column shows the number
of path solutions that contribute to final solutions. For example, STW and STWL
could output 500% more intermediate results than OrderedTJ (see XMark Q2).
Scalability We tested queries XMark Q2 for scalability. We use XMark factor
1(115MB)， 2(232MB)，3 (349M) and 4(465M). As shown in Fig 7(c), OrderedTJ
scales linearly with the size of the database. With the increase of data size, the bene-
fit of OrderedTJ over STW and STWL correspondingly increases.
Sub-optimality of OrderedTJ As explained in Section 3, when there is any parent-
child relationship in the n’th branching edges (n≥2), OrderedTJ is not optimal. As
shown in Q4,Q5 of Table 1, none of algorithms is optimal, since all algorithms output

some useless solutions. However, even in this case, OrderedTJ still outperforms STW
and STWL by outputting less useless intermediate results.

Summary According to the experimental results, we draw two conclusions. First,
our new algorithm OrderedTJ, could be used to evaluate ordered twig pattern because
they have obvious performance advantage over the straightforward approach: STW
and STWL. Second, OrderedTJ guarantee the I/O optimality for a large query class.

5 Conclusion and future work

In this paper, we proposed a new holistic twig join algorithm, called OrderedTJ, for
processing ordered twig query. Although the idea of holistic twig join has been pro-
posed in unordered twig join, applying it for ordered twig matching is nontrivial. We
developed a new concept ordered child extension to determine whether an element
possibly involves in query answers. We also make the contribution by identifying a
large query class to guarantee I/O optimal for OrderedTJ. Experimental results
showed the effectiveness, scalability, and efficiency of our algorithm.

There is more to answer XPath query than is within the scope of this paper. Con-
sider an XPath query: “//a/following-sibling::b”, we cannot transform this query to an
ordered twig pattern, since there is no root node in this query. Thus, algorithm Or-
deredTJ cannot be used to answer this XPath. In fact, based on region code
(start,end,level), none of algorithms can answer this query by accessing the labels of
a and b alone, since a and b may have no common parent even if they belong to the
same level. We are currently designing a new labeling scheme to handle such case.

References

1. N. Bruno, N. Koudas, and D. Srivastava. Holistic Twig Joins: Optimal XML pattern match-
ing. In Proc. of the SIGMOD, pages 310-321 2002.

2. T. Chen J. Lu , and T. W Ling On boosting holism in XML twig pattern matching using
structural indexing techniques In Proc. of the SIGMOD 2005 To appear

3. H. Jiang, H. Lu, W. Wang, Efficient Processing of XML Twig Queries with OR-Predicates,
In Proc. of the SIGMOD pages 59-70 2004.

4. H. Jiang, et al. Holistic twig joins on indexed XML documents. In Proc. of the VLDB, pages
273-284, 2003.

5. J. Lu , T. Chen and T. W. Ling Efficient Processing of XML Twig Patterns with Parent
Child Edges: A Look-ahead Approach In Proc. of CIKM, pages 533-542, 2004

6. J. Lu et. al From Region Encoding To Extended Dewey: On Efficient Processing of XML
Twig Pattern Matching In Proc. of VLDB, 2005 To appear

7. S. Al-Khalifa et. al Structural joins: A primitive for efficient XML query pattern matching.
In Proc. of the ICDE, pages 141-152, 2002.

8. Treebank http://www.cs.washington.edu/research/xmldatasets/www/repository.html
9. C. Zhang et. al. On supporting containment queries in relational database management sys-

tems. In Proc. of the SIGMOD, 2001.

