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Abstract.  Finding all the occurrences of a twig pattern in an XML database is 
a core operation for efficient evaluation of XML queries.  Holistic twig join al-
gorithm has showed its superiority over binary decompose based approach due 
to efficient reducing intermediate results. The existing holistic join algorithms, 
however, cannot deal with ordered twig queries. A straightforward approach 
that first matches the unordered twig queries and then prunes away the unde-
sired answers is obviously not optimal in most cases. In this paper, we study a 
novel holistic-processing algorithm, called OrderedTJ, for ordered twig queries.  
We show that OrderedTJ can identify a large query class to guarantee the I/O 
optimality. Finally, our experiments show the effectiveness, scalability and ef-
ficiency of our proposed algorithm. 

1   Introduction 

With the rapidly increasing popularity of XML for data representation, there is a lot 
of interest in query processing over data that conforms to a tree-structured data 
model([1],[5]). Efficient finding all twig patterns in an XML database is a major 
concern of XML query processing. Recently, holistic twig join approach has been 
taken as an efficient way to match twig pattern since this approach can efficiently 
control the size of intermediate results([1],[2],[3],[4]). We observe that, however, the 
existing work on holistic twig query matching only considered unordered twig que-
ries. But XPath defines four ordered axes: following-sibling, preceding-sibling, fol-
lowing, preceding. For example, XPath: //book/text/following-sibling::chapter is an 
ordered query, which finds all chapters in the dataset that are following siblings of 
text which should be a child of book. 

We call a twig query which cares the order of the matching elements as an or-
dered twig query. On the other hand, we denote a twig query that does not consider 
the order of matching elements as an unordered query. In this paper, we research how 
to efficiently evaluate an ordered twig query. 

To handle an ordered twig query, naively, we can use the existing algorithm (e.g. 
TwigStack[1]/TwigStackList[5]) to output the intermediate path solutions for each 
individual root-leaf query path, and then merge path solutions so that the final solu-
tions are guaranteed to satisfy the order predicates of the query. Although existing 
algorithms are applied, such a post-processing approach has a serious disadvantage: 
many intermediate results may not contribute to final answers. 



Motivated by the recent success in efficient processing unordered twig queries ho-
listically, we present in this paper a novel holistic algorithm, called OrderedTJ,  for 
ordered twig queries. The contribution of this paper can be summarized as follows: 
1. We develop a new holistic ordered twig join algorithm, namely OrderedTJ,  

based on the new concept of Ordered Children Extension (for short OCE). With 
OCE, an element contributes to final results only if the order of its children ac-
cords with the order of corresponding query nodes. Thus, efficient holistic algo-
rithm for ordered-twigs can be leveraged. 

2. If we call edges between branching nodes and their children as branching edges 
and denote the branching edge connecting to the n’th child as the n’th branching 
edge, we analytically demonstrate that when the ordered-twig contains only an-
cestor-descendant relationship from the 2nd branching edge, OrderedTJ is I/O 
optimal among all sequential algorithms that read the entire input. In other 
words, the optimality of OrderedTJ allows the existence of parent-child rela-
tionships in non-branching edges and the first branching edges. 

3. Our experimental results show that the effectiveness, scalability and efficiency 
of our holistic twig algorithms for ordered twig pattern. 

 
The remainder of the paper is organized as follows. Section 2 presented related 

work. The novel ordered twig join algorithm is described in Section 3. Section 4 is 
dedicated to our experimental results and we close this paper by conclusion and fu-
ture work in Section 5. 

2   Related work 

With the increasing popularity of XML data, query processing and optimization for 
XML databases have attracted a lot of research interest. There is a rich set of litera-
ture on matching twig queries efficiently. Below, we describe these literatures with 
the notice that the existing work deals with only unordered twig queries. 

Zhang et al.([9]) proposed a multi-predicate merge join (MPMGJN) algorithm 
based on (DocId, Start, End, Level) labeling of XML elements. The later work by Al-
Khalifa et al.([7]) gave a stack-based binary structural join algorithm. Different from 
binary structural join approaches, Bruno et al.([1]) proposed a holistic twig join algo-
rithm, called TwigStack, to avoid producing a large intermediate result. However, the 
class of optimal queries in TwigStack is very small. When a twig query contains any 
parent-child edge, the size of “useless” intermediate results may be very large. Lu et 
al.([5]) propose a new algorithm called TwigStackList. They use list data structure to 
cache limited elements to identify a larger optimal query class. TwigStackList is I/O 
optimal for queries with only ancestor-descendant relationships in all branching 
edges. Recently, Jiang et al.([3]) researched the problem of efficient evaluation of 
twig queries with OR predicates. Chen et al.([2]) researched the relationship between 
different data partition strategies and the optimal query classes for holistic twig join. 
Lu et al.([6]) proposed a new labeling scheme called extended Dewey to efficiently 
process XML twig pattern. 



3   Ordered twig join algorithm 

3.1   Data model and ordered twig pattern  

We model XML documents as ordered trees. Figure 1(e) shows an example XML 
data tree. Each tree element is assigned a region code (start, end, level) based on its 
position. Each text is assigned a region code that has the same start and end values.   

XML queries make use of twig patterns to match relevant portions of data in an 
XML database. The pattern edges are parent-child or ancestor-descendant relation-
ships. Given an ordered twig pattern Q and an XML database D, a match of Q in D is 
identified by a mapping from the nodes in Q to the elements in D, such that: (i) the 
query node predicates are satisfied by the corresponding database elements; and (ii) 
the parent-child and ancestor-descendant relationships between query nodes are satis-
fied by the corresponding database elements; and (iii) the orders of query sibling 
nodes are satisfied by the corresponding database elements. In particular, with region 
encoding, given any node q Q∈  and its right-sibling r Q∈ (if any), their correspond-
ing database elements, say eq and er in D, must satisfy that eq.end<er.start.  

The answers to query Q with n nodes can be represented as a list of n-ary tuples, 
where each tuple (t1,t2,….tn) consists of the database elements that identify a distinct 
match of Q in D. 

Figure 1(a) shows three sample XPath and Figure 1(b-d) shows the corresponding 
ordered twig patterns for the data of Fig 1(e). For each branching node, we use a 
symbol “>” in a box to mark its children ordered. Note that in Q3, we add book as the 
root of the ordered query, since it is the root of XML document tree.  For example, 
the query solution for Q3 is only <book1, chpater2, title2, “related work”, section3 >.  
But if Q3 were an unordered query, section1, section2 also would involve in answers. 

XPah of Q1:
//chapter/section/precedingsibling::title

XPah of Q2:
/book/author/followingsibling::chpater/title/followingsibling::section

XPah of Q3:
//chapter[title="Related work"]/following::section
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Figure 1. (a) three XPaths  (b)-(d) the corresponding ordered twig query  (e)  an XML tree 

3.2   Algorithm 

In this section, we present OrderedTJ, a novel holistic algorithm for finding all 
matches of an ordered twig pattern against an XML document. OrderedTJ makes the 



extension of TwigStackList algorithm in the previous work [5] to handle ordered twig 
pattern. We will first introduce data structures and notations to be used by OrderedTJ. 
 
Notation and data structures   An ordered query is represented with an ordered tree. 
The function PCRchildren(n) , ADRChildren(n) return child nodes which has par-
ent-child or ancestor-descedant relationships with n, respectively.  The self-
explaining function rightSibling(n) returns the immediate right sibling node of n (if 
any).    

There is a data stream Tn associated with each node n in the query twig. We use 
Cn to point to the current element in Tn. We can access the values of Cn by 
Cn.start,Cn.end and Cn.level. The cursor can advance to the next element in Tn 
with the procedure advance(Tn). Initially, Cn points to the first element of Tn.  

Our algorithm will use two types of data structures: list and stack. We associate a 
list Ln and a stack Sn for each node of queries. At every point during computation: the 
nodes in stack Sn are guaranteed to lie on a root-leaf path in the database. We use 
top(Sn) to denote the top element in stack Sn. Similarly, elements in each list Ln are 
also strictly nested from the first to the end, i.e. each element is an ancestor or parent 
of that following it. For each list Ln, we declare an integer variable, say pn, as a cursor 
to point to an element in Ln. Initially, pn =0 , which points to the first element of Ln. 
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Figure 2.  illustration to ordered child extension          Figure 3.  Optimality exam-
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The challenge to ordered twig evaluation is that, even if an element satisfies the 

parent-child or ancestor-descendant relationship, it may not satisfy the order predicate. 
We introduce a new concept, namely Ordered Children Extension (for short, OCE), 
which is important to determine whether an element likely involves in ordered queries. 
DEFINITION 1(OCE)  Given an ordered query Q and a dataset D, we say that an 
element en (with tag n Q∈ ) in D has an ordered children extension (for short OCE), 
if the following properties are satisfied:  
(i) for ( )in ADRChildren n∈  in Q (if any) , there is an element 

ine  (with tag ni) 
in D such that 

ine  is a descendant of en  and 
ine  also has OCE; 

(ii)  for ( )in PCRChildren n∈  in Q (if any), there is an element e’ (with tag n)  
in the path en to 

ine  such that e’ is the parent of 
ine  and 

ine  also has OCE; 
(iii)  for each child ni of n and mi= rightSibling(ni) (if any), there are elements 

ine  
and 

ime  such that 
ine .end < 

ime .start and both 
ine and 

ime  have OCE.  □   



Properties (i) and (ii) discuss the ancestor-descendant and parent-child relationship 
respectively. Property (iii) manifests the order condition of queries. For example, see 
the ordered query in Fig 2(a), in Doc 1, a1 has the OCE, since a1 has descendants 
b1,d1, child c1 and more importantly, b1,c1,d1 appear in the correct order. In contrast, 
in Doc2, a1 has not the OCE, since d1 is the descendant of c1, but not the following 
element of c1(i.e. c1.end  ≮ d1 .start ) 
 
Algorithm OrderedTJ () 
01While ( ( )end¬ )  
02    qact= getNext(root); 
03    if (isRoot(qact)∨ ( )( )

actparent qempty S¬ ) cleanStack(qact, getEnd(qact)); 

04    moveStreamToStack(qact, 
actqS );  

05    if (isLeaf(qact))       
06             showpathsolutions (

actqS ,getElement(qact)); 

07    else      proceed(
actqT ); 

08 mergeALLPathsolutions; 
 
Function end() 
01 return  ( ) : ( ) ( )nn subtreesNodes root isLeaf n e Cof∀ ∈ ∧ ;   
 
Procedure cleanStack (n ,actEnd) 
01 while ( ( )nempty S¬  and (topEnd(Sn)< actEnd)) do pop(Sn); 

 
Procedure moveStreamToStack(n,Sn ) 
01 if((getEnd(n)< top(Srightsibling(n)).start) //check order 
02    push getElement(n) to stack Sn 
06    proceed(n); 
 
Procedure proceed(n) 
01 if (empty(Ln))  advance(Tn); 
02 else  Ln.delete(pn);  
03     pn = 0; //move pn to pint to the beginning of Ln   
 
Procedure showpathsolutions(Sm,e) 
01 index[m]=e 
02 if (m == root ) //we are in root 
03  Output(index[q1],…,index[qk]) //k is the length of path processed 
04 else  //recursive call 
05   for each element ei in Sparent(m)   
06        if  ei satisfies the corresponding relationship with e 
07                    showpathsolutions(Sparent(m), ei) 

    
Figure  4      Procedure OrderedTJ     

 
Algorithm OrderedTJ   OrderedTJ, which computes answers to an ordered query 
twig, operates in two phases. In the first phase (line 1-7), the individual query root-
leaf paths are output. In the second phase (line 8), these solutions are merged-joined 
to compute the answers to the whole query. Next, we first explain getNext algorithm 
which is a core function and then presents the main algorithm in details. 
  getNext(n)(See Fig 5)  is a procedure called in the main algorithm of OrderedTJ. It 
identifies the next stream to be processed and advanced. At line 4-8, we check the 
condition (i) of OCE.  Note that unlike the previous algorithm TwigStackList[5], in 
line 8, we advance the maximal (not minimal) element that are not descendants of the 



current element in stream Tn , as we will use it to determine sibling order. Line 9-12 
check the condition (iii) of OCE. Line 11 and 12 return the elements which violate 
the query sibling order. Finally, line 13-19 check the condition (ii) of OCE.  
Now we discuss the main algorithm of OrderedTJ. First of all, Line 2 calls getNext 

algorithm to identify the next element to be processed. Line 3 removes partial an-
swers that cannot be extended to total answer from the stack. In line 4, when we in-
sert a new element to stack, we need to check whether it has the appropriate right 
sibling. If n is a leaf node, we output the whole path solution in line 6.  
 
Algorithm getNext (n) 
01  if (isLeaf(n))  return n; 
02  for all ni in children(n)  do 
03        gi = getNext(ni);   if (gi ≠ ni ) return ni ; 
04  

max ( )max arg ( )
in children n in getStart n∈= ; 

05  
min ( )min arg ( )

in children n in getStart n∈= ; 

06  While (getEnd(n) < getStart(nmax))  proceed(n); 
07  if (getStart(n) >getStart(nmin))   
08        return  

( ) ( ( ) ( ))max arg ( )
i in children n getStart n getStart n igetStart n∈ ∧ >

; 

09   sort all ni in children(n) by start values; 
// assume the new order are n’1,n’2, …,n’k 

10  for each n’i   (1 ≤ i ≤  n)  do   //check children order 
11        if (n'i ≠ ni)  return  n’i; 
12        else if ((i>1)∧(getEnd(n’i-1)>getStart(n’i)) return n’i-1 
13  MoveStreamToList(n, nmax); 
14  for ni in PCRchildren(n)  //check parent-child relationship 

15    if ( ' ne L∃ ∈  such that e’ is the parent of 
inC ) 

16        if  (ni is the first child of n)   
17            Move the cursor of list Lq to point to e’; 
18        else  return ni ; 
19  return n; 
 
Proceudre MoveStreamToList(n,g) 
01 delete any element in Ln  that is not an ancestor of getElement(n); 
02 while Cn.start < getStart(g) do  if Cn.end>getEnd(g)   Ln.append(Cn); 
03                                  advance(Tn) 
 
Procedure getElement(n) 
01  if ( ( )nempty L¬ )      return Ln.elementAt(pn); 
02  else   return Cn; 
 
Procedure getStart(n) 
01 return the start attribute of getElement(n); 
 
Procedure getEnd(n) 
01 return the end attribute of getElement(n); 

      
Figure  5   Function GetNext in the main algorithm  OrderedTJ    
 

EXAMPLE 1.  Consider the ordered query and data  in Fig 1(d) and (e) again. First of 
all, the five cursors are (book1, chapter1, title1,”related work”, section1). After two 
calls of getNext(book), the cursors are forwarded to (book1, chapter2, title2, ”related 
work”, section1). Since section1.start=6<chapter2.start=9, we return section (in line 
11 of getNext) and forward to section2. Then chapter2.end=15> section2.start=13. We 
return section again (in line 12 of getNext) and forward to section3. Then chap-



ter2.end=15<section3.start=17. The following steps push book1 to stack and output 
the individual two path solutions. Finally, in the second phase of main algorithm, two 
path solutions are merged to form one final answer.      □ 

3.3   Analysis of OrderedTJ 

In the section, we show the correctness of OrderedTJ and analyze its efficiency. 
Some proofs are omitted here due to space limitation. 
DEFINITION 2 (head element en)  In OrderedTJ, for each node in the ordered query, 
if List Ln is not empty, then we say that the element indicated by the cursor pn of Ln is 
the head element of n, denoted by en. Otherwise, we say that element Cn in the stream 
Tn is the head element of n.  □ 
 
LEMMA  1.  Suppose that for an arbitrary node n in the ordered query we have 
getNext(n)=n’. Then the following properties hold: 

(1) n’ has the OCE. 
(2) Either (a) n=n’ or (b) parent(n) does not have the OCE because of n’ (and 

possibly a descendant of n’).  
 
LEMMA 2.  Suppose getNext(n)=n’ returns a query node in the line 11 or 12 of Algo-
rithm getNext. If the current stack is empty, the head element does not contribute to 
any final solution since it does not satisfy the order condition of query.  
 
LEMMA 3.  In Procedure moveStreamToStack any element e that is inserted to 
stack Sn satisfy the order requirement of the query. That is, if n has a right-sibling 
node n’ in query, then there is an element en’ in stream Tn’ such that en’.start >en.end.  
 
LEMMA 4.  In OrderedTJ, when any element e is popped from stack , e is guaranteed 
not to participate a new solution any longer.  
 
THEOREM 1. Given an ordered twig pattern Q and an XML database D. Algorithm 
OrderedTJ correctly returns all answers for Q on D. 
Proof:[sketch] Using Lemma 2, we know that when getNext returns a query node n 
in the line 11 and 12 of getNext, if the stack is empty, the head element en does not  
contribute to any final solutions. Thus, any element in the ancestors of n that use en in 
the OCE is returned by the getNext before en.  By using lemma 3, we guarantee that 
each element in stack satisfy the order requirement in the query. Further. By using 
lemma 4, we can maintain that, for each node n in the query, the elements that involve 
in the root-leaf path solution in the stack Sn. Finally, each time that n =getNext(root) 
is a leaf node, we output all solution for en (line 6 of OrderedTJ). □ 
 
Now we analyze the optimality of OrderedTJ. Recall that the unordered twig join 
algorithm TwigStackList([5]) is optimal for query with only ancestor-descendant in all 
branching edges, but our OrderedTJ can identify a little larger optimal class than 



TwigStackList for ordered query. In particular, the optimality of OrderedTJ allows the 
existence of parent-child relationship in the first branching edge, as illustrated below. 
EXAMPLE 2. Consider the ordered query and dataset in Fig 3. If the query were an 
unordered query, then TwigStackList([5]) would scan a1, c1 and b1 and output one 
useless solution (a1,c1), since before we advance b1 we could not decide whether a1 
has a child tagged with b. But since this is an ordered query, we immediately identify 
that c1 does not contribute to any final answer since there is no element with name b 
before c1. Thus, this example tells us that unlike algorithms for unordered query,  
OrderedTJ may guarantee the optimality for queries with parent-child relationship in 
the first branching edge. □ 

 
THEOREM 2. Consider an XML database D and an ordered twig query Q with only 
ancestor-descendant relationships in the n’th (n≥2) branching edge. The worst case 
I/O complexity of OrdereTJ  is linear in the sum of the sizes of input and output lists. 
The worst-case space complexity of this algorithm is that the number of nodes in Q 
times the length of the longest path in D.  □ 
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Figure 6.   Six tested ordered twig queries   (Q1,2,3 in XMark; Q4,5,6 in TreeBank) 

4   Experimental evaluation 

4.1   Experimental setup 

We implemented three ordered twig join algorithms: straightforward -TwigStack ( for 
short STW), straightforward-TwigStackList (STWL) and OrderedTJ. The first two 
algorithms use the straightforward post-processing approach. By post-processing, we 
mean that the query is first matched as an unordered twig (by TwigStack[1] and 
TwigStackList[5], respectively) and then we merge all intermediate path solutions to 
get the answers for an ordered twig. We use JDK 1.4 with the file system as a simple 
storage engine. All experiments were run on a 1.7G Pentium IV processor with 
768MB of main memory and 2GB quota of disk space, running windows XP system. 
We used two data sets for our experiments. The first is the well-known benchmark 
data: XMark. The size of file is 115M bytes with factor 1.0. The second is a real data-
set: TreeBank[8]. The deep recursive structure of this data set makes this an interest-
ing case for our experiments. The file size is 82M bytes with 2.4 million nodes. 



For each data set, we tested three XML twig queries (see Fig 6). These queries have 
different structures and combinations of parent-child and ancestor-descendant edges. 
We choose these queries to give a comprehensive comparison of algorithms. 
 
Evaluation metrics   We will use the following metrics to compare the performance 
of different algorithms. (i)  Number of intermediate path solutions  This metric 
measures the total number of intermediate path solutions, which reflects the ability of 
algorithms to control the size of intermediate results. (ii) Total running time This 
metric is obtained by averaging the total time elapsed to answer a query with six 
consecutive runs and the best and worst performance results discarded. 
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Figure 7.  Evaluation of ordered twig pattern on two datasets 
 

Query Dataset STW STWL OrderedTJ Useful solutions 
Q1 XMark 71956 71956 44382 44382 
Q2 XMark 65940 65940 10679 10679 
Q3 XMark 71522 71522 23959 23959 
Q4 TreeBank 2237 1502 381 302 
Q5 TreeBank 92705 92705 83635 79941 
Q6 TreeBank 10663 11 5 5 

Table 1. The number of intermediate path solutions 

4.2   Performance analysis 

Figure 7 shows the results on execution time. An immediate observation from the 
figure is that OrderedTJ is more efficient than STW and STWL for all queries. This 
can be explained that OrderedTJ output much less intermediate results. Table 1 
shows the number of intermediate path solutions. The last column shows the number 
of path solutions that contribute to final solutions. For example, STW and STWL 
could output 500% more intermediate results than OrderedTJ (see XMark Q2).  
Scalability  We tested queries XMark Q2 for scalability. We use XMark factor 
1(115MB)， 2(232MB)，3 (349M) and 4(465M). As shown in Fig 7(c), OrderedTJ 
scales linearly with the size of the database.  With the increase of data size, the bene-
fit of OrderedTJ over STW and STWL correspondingly increases. 
Sub-optimality of OrderedTJ   As explained in Section 3, when there is any parent-
child relationship in the n’th branching edges (n≥2), OrderedTJ is not optimal. As 
shown in Q4,Q5 of Table 1, none of algorithms is optimal, since all algorithms output 



some useless solutions. However, even in this case, OrderedTJ still outperforms STW 
and STWL by outputting less useless intermediate results.    
 
Summary   According to the experimental results, we draw two conclusions. First, 
our new algorithm OrderedTJ, could be used to evaluate ordered twig pattern because 
they have obvious performance advantage over the straightforward approach: STW 
and STWL. Second, OrderedTJ guarantee the I/O optimality for a large query class. 

5   Conclusion and future work 

In this paper, we proposed a new holistic twig join algorithm, called OrderedTJ, for 
processing ordered twig query. Although the idea of holistic twig join has been pro-
posed in unordered twig join, applying it for ordered twig matching is nontrivial. We 
developed a new concept ordered child extension to determine whether an element 
possibly involves in query answers. We also make the contribution by identifying a 
large query class to guarantee I/O optimal for OrderedTJ. Experimental results 
showed the effectiveness, scalability, and efficiency of our algorithm. 

There is more to answer XPath query than is within the scope of this paper. Con-
sider an XPath query: “//a/following-sibling::b”, we cannot transform this query to an 
ordered twig pattern, since there is no root node in this query. Thus, algorithm Or-
deredTJ cannot be used to answer this XPath. In fact, based on region code 
(start,end,level), none of algorithms can answer this query by accessing the labels of 
a and b alone, since a and b may have no common parent even if they belong to the 
same level. We are currently designing a new labeling scheme to handle such case. 
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