
Efficient Processing of Multiple XML Twig Queries

Huanzhang Liu, Tok Wang Ling, Tian Yu, and Ji Wu

School of Computing, National University of Singapore
{liuhuanz, lingtw, yutian, wuji}@comp.nus.edu.sg

Abstract. Finding all occurrences of a twig pattern in an XML docu-
ment is a core operation for XML query processing. The emergence of
XML as a common mark-up language for data interchange has spawned
great interest in techniques for filtering and content-based routing of
XML data. In this paper, we aim to use the state-of-art holistic twig
join technique to address multiple twig queries in a large scale XML
database. We propose a new twig query technique which is specially tai-
lored to match documents with large numbers of twig pattern queries. We
introduce the super-twig to represent multiple twig queries. Based on the
super-twig, we design a holistic twig join algorithm, called MTwigStack,
to find all matches for multiple twig queries by scanning an XML docu-
ment only once.

1 Introduction

Recently, XML has emerged as a standard information exchange mechanism on
the Internet. XML employs a tree-structured model to represent data. XML
query languages, such as XQuery and XPath, typically specify patterns with se-
lection predicates on multiple elements for matching XML documents. Twig pat-
tern matching has been identified as a core operation in querying tree-structured
XML data.

Many algorithms have been proposed to match XML twig pattern [3, 7, 8,
11]. [3] decomposes the twig pattern into binary structural relationships, then
matching the binary structural relationships and merging these matches. Bruno
et al. [7] improved the methods by proposing a holistic twig join algorithm, called
TwigStack. The algorithm can largely reduce the intermediate result comparing
with the previous algorithms. Later on, Chen et al. [8] proposed a new Tag+Level
labeling scheme and iTwigJoin algorithm to improve TwigStack. Lu et al. [11]
designed a novel algorithm, called TJFast, which employed extended Dewey to
match XML twig queries.

XML query processing also arises in the scenario of information dissemina-
tion, such as publish-subscribe (pub-sub) systems. In a typical pub-sub system,
many user submitted profiles are presented by XPath expressions, and an XML
document is presented as input. The goal is to identify the queries and their
matches in the input XML document, and disseminate this information to the
users who posed the queries [4, 9].

In a huge system, where many XML queries are issued towards an XML
database, we expect to see that the queries have many similarities. In traditional
database systems, there have been many studies on efficient processing of similar
queries using batch-based processing. Since pattern matching is an expensive
operation, it would save a lot in terms of both CPU cost and I/O cost if we
can process multiple similar twig queries simultaneously and only scan the input
data once to get all the results. [6] has proposed Index-filter to process multiple
simple XPath queries (no branch) against an XML document and it aims to find
all matches of multiple simple path queries in an XML document. To eliminate
redundant processing, it identifies query commonalities and combines multiple
queries into a single structure. But Index-Filter does not consider how to process
multiple twig queries.

Motivated by the recent success in efficient processing multiple XML queries,
we consider the scenario of matching multiple XML twig queries with high sim-
ilarity against an XML document.

The contributions of this paper can be summarized as follows:

– We introduce a new concept, called super-twig, which combines multiple twig
queries into just one twig pattern. We also give the algorithm of constructing
super-twig.

– Based on super-twig, we develop a new multiple twig queries processing al-
gorithm, namely MTwigStack. With the algorithm, we can find all matches
of multiple twig queries by scanning input data only once.

– Our experimental results show that the effectiveness, scalability and effi-
ciency of our algorithm for multiple twig queries processing.

The rest of this paper is organized as follows. Preliminaries are introduced
in Section 2. The algorithm MTwigStack is described in Section 3. Section 4 is
dedicated to our experimental results and we close this paper by conclusion and
future work in Section 5.

2 Preliminaries

2.1 Data Model

We model XML documents as ordered trees, each node corresponding to an
element or a value, and the edges representing element-subelement or element-
value relationships. Each node is assigned a region code (start :end, level) based
on its position in the data tree [3, 6, 7], start is the number in sequence assigned
to an element when it is first encountered and end is equal to one plus the end
of the last element visited, level is the level of a certain element in its data
tree. Each text value is assigned a region code that has the same start and end
values. Then structural relationships between tree nodes (elements or values),
such as parent-child or ancestor-descendant, whose positions are labelled with
region encoding can be determined easily. Figure 1 (a) shows an example XML
data tree with region encoding.

book

title author

book

title author

fn

"Jane"(b) (c) (d)

fn

"Jane"

"XML"

book

title author

book

title author

fn

"Jane"

"XML"

(e)

"XML"

1:40,1

book

6:13,3

author

14:21,3

author

2:4,2

title

8,4

John

11,4

Poe

25:39,2

chapter

3,3

XML

26:28,3

title

27,4

Xml

29:38,3

section

30:32,4

title

34:37,4

keyword

33,5

XML index

36,5

index

5:22,2

authors

23:25,2

year

24,3

2004

7:9,3

fn

10:12,3

ln

16,4

Jane

19,4

Doe

15:17,3

fn

18:20,3

ln

(a)

Fig. 1. An XML tree (a), three twig queries (b, c, d) and the super-twig query (e)

2.2 Super-Twig Query

When multiple twig queries are processed simultaneously, it is likely that signif-
icant commonalities between queries exist. To eliminate redundant processing
while answering multiple queries, we identify query commonalities and combine
multiple twig queries into a single twig pattern, which we call super-twig. Super-
twig can significantly reduce the bookkeeping required to answer input queries,
thus reducing the execution time of query processing. We will use q (and its
variants such as qi) to denote a node in the query or the subtree rooted at q
when there is no ambiguity. We introduce the concepts OptionalNode and Op-
tonalLeafNode to distinguish super-twig query from general twig queries.

In this paper, we only consider the tree patterns belonging to the fragment of
XPath XP {/,//,[]} [5] and the scenario that commonalities only existing in the
top parts of the twigs. Given a set of twig queries against an XML document,
Q = {q1,. . . , qk} belonging to XP {/,//,[]}, and assuming there is no repeated
node in each query, we combine all the queries into a super-twig such that:

– The set of nodes in the super twig pattern equals the union of the sets of
nodes of all individual twig queries;

– Each twig query is a subpattern (defined by [10]) of the super twig pattern;
– If the queries have different root nodes, we rewrite the queries whose root

nodes are not the root of the XML document and add the document’s root
as the root node of the queries. Then the root node of the super twig pattern
is same as the document’s root;

– Suppose n is a query node which appears in qi and qj , Pi and Pj are the
paths from the root to n in qi and qj respectively, Pi is same as Pj and m
is the parent node of n in these two queries. If the relationship between m
and n is Parent-Child (P-C) in qi, Ancestor-Descendant (A-D) in qj , then
the relationship between m and n in super-twig is relaxed to A-D;

– Suppose n is a query node in one query qi of Q, and m is the parent node of
n in qi. Let Qn is the subset of twig queries of Q which contain node n, and
Qm is the subset of twig queries which contain node m (the path from its

root to m must be a prefix of the path from its root to n). If Qn ⊂ Qm, we
call n an OptionalNode. And if all the relationships between m and n in Qn

are P-C relationships, then the relationship between m and n in the super
twig pattern is P-C (called optional parent-child relationship and depicted
by a single dotted line); otherwise, the relationship between m and n in
the super twig is A-D (called optional ancestor-descendant relationship and
depicted by double dotted lines);

– Following the same situations of the above item and assuming n is Option-
alNode, let Qx = Qm − Qn. If m is a leaf node in some queries of Qx (so
Qx 6= ∅), then we call m an OptionalLeafNode.

Example 1. In Figure 1, (e) shows the super-twig query of three queries (b), (c)
and (d). “XML” and fn are OptionalNodes, title and author are OptionalLeaf-
Nodes. The edge which connects “XML” to title represents optional parent-child
relationship. It means that we can output path solution “book-title” whether or
not the element title has a child whose content is “XML” in an XML document,
or output path solution “book-title-‘XML’ ” when the element title has a child
whose content is “XML” in an XML document.

2.3 super-twig

To combine multiple twigs into a super-twig, we should normalize them first.
It means to obtain a unique XPath query string from a tree pattern sorting
the nodes lexicographically. We use the method proposed in [12], for example,
the normal form of /a[q][p]/b[x[z]/y] is /a[p][q]/b[x[y][z]]. Then we design an
algorithm according to the principles proposed in the last section, as shown
in Algorithm 1. We input twig queries one by one and output the super-twig
presented by XPath query.

Algorithm 1 SuperTwig (s, r, q)
input: s is the current super-twig and r is its root, q is a twig query

1: q = NormalizeTwig(q)
2: if s = NULL then return q
3: rewrite q and s with the root of document
4: let sk denote each children(r) in s for k = 1, . . . , n and j = 1
5: for each child qi of the root rq in q
6: findmatchedNode = FALSE
7: while j ≤ n
8: if qi = sj then
9: update the edge between r and sj

10: SuperTwig(subtree(sj), subtree(qi), sj)
11: let findmatchedNode = TRUE and break while
12: else j + +
13: if findmatchedNode = FALSE then
14: if isLeaf(r) then r is marked as OptionalLeafNode in s
15: append subtree(qi) to s below r and assign edge between r and qi

16: qi is marked as OptionalNode in s
17: return s

3 Multiple Twig Queries Matching

3.1 Data Structure and Notations

Let SQ denote the super-twig pattern, and root represent the root node of SQ.
In our algorithm, each node q in SQ is associated with a list Tq of database
elements, which are encoded with (start:end, level) and sorted in ascending
order of the start field. We keep a cursor Cq for each query node q. The cursor
Cq points to the current element in Tq. Initially, Cq points to the head of Tq. We
can access the attribute values of Cq by Cq.start and Cq.end.

In MTwigStack algorithm, we also associate each query node q in the super-
twig query with a stack Sq. Each data node in the stack consists of a pair: (region
encoding of a element from Tq, pointer to a element in Sparent(q)). Initially,
all stacks are empty. During query processing, each stack Sq may cache some
elements and each elements is a descendant of the element below it. In fact,
cached elements in stacks represent the partial results that could be further
contributed to final results as the algorithm goes on.

3.2 The MTwigStack Algorithm

Given the super-twig query SQ of {q1, . . . , qn} and an XML document D,
a match of SQ in D is identified by a mapping from nodes in SQ to elements
and content values in D, such that: (i) query node predicates are satisfied by
the corresponding database elements or content values, and (ii) the structural
relationships between any two query nodes are satisfied by the corresponding
database elements or content values. The answer to the super-twig query SQ
with n twig queries can be represented as a set R = {R1, . . . , Rn} where each
subset Ri consists of the twig patterns in D which match query qi.

Algorithm MTwigStack, for the case when the lists contain nodes from a sin-
gle XML document, is presented in Algorithm 2. We execute MTwigStack(root)
to get all answers for the super-twig query rooted at root. MTwigStack operates
in two phases. In the first phase, it repeatedly calls the getNext(q) function to
get the next node for processing and outputs individual root-to-leaf and root-to-
OptionalLeafNode path solutions. After executing the first phase, we can guar-
antee that either all elements after Croot in the list Troot will not contribute to
final results or the list Troot is consumed entirely. Additionally, we guarantee
that for all descendants qi of root in the super-twig, every element in Tqi with
start value smaller than the end value of last element processed in Troot was
already processed. In the second phase, the function mergeAllPathSolutions()
merges the individual path solutions for respective original twig queries.

To get the next query node q to process, MTwigStack repeatedly calls func-
tion getNext(root) and the function will call itself recursively. If q is a leaf node
of the super-twig, the function returns q without any operation because we need
not check whether there exist its descendants matching the super-twig ; other-
wise, the function returns a query node qx with two properties: (i) if qx = q,
then Cq.start < Cqi

.start and Cq.end > Cqmax
.start for all qi ∈ children(q)

Algorithm 2 MTwigStack(root)

1: while NOT end(root) do
2: q = getNext(root)
3: if NOT isRoot(q) cleanStack(Sparent(q), Cq.start)
4: cleanStack(Sq, Cq.start)
5: if isRoot(q) OR NOT empty(Sparent(q))
6: push(Cq, Sq)
7: if isLeaf(q) outputSolution(Sq), pop(Sq)
8: else if isOptionalLeafNode(q) outputSolution(Sq)
9: else advance(Cq)

10: end while
11: mergeAllPathSolutions()

Function getNext(q)

1: if isLeaf(q) return q
2: for qi ∈ children(q) do
3: ni = getNext(qi)
4: if ni 6= qi return ni

5: qmin= the node whose start is minimal start value of all qi ∈ children(q)
6: qmax= the node whose start is maximal start value of all qi ∈ children(q)

which are not OptionalNodes
7: while qmax 6= NULL and Cq.end < Cqmax .start do advance(Cq)
8: if Cq.start < Cqmin .start return q
9: else return qmin

Procedure cleanStack(Sp, qStart)

1: pop all elements ei from Sp such that ei.end < qStart

Procedure mergeAllPathSolutions()

1: for each qi ∈ Q do
2: read the path solution lists whose leaf node is a leaf node of qi

3: merge the path solutions and check the relationships between any two nodes

and qi is not OptionalNode (lines 5-8 in Func. getNext(q)). In this case, q is
an internal node in the super-twig and Cq will participate in a new potential
match. If the maximal start value of Cq’s children which are not OptionalNodes
is greater than the end value of Cq, we can guarantee that no new match can
exist for Cq, so we advance Cq to the next element in Tq (see Figure 2(a));
(ii) if qx 6= q, then Cqx .start < Cqj .start, for all qj is in siblings of qx and
Cqx .start < Cparent(qx).start (lines 9 in Func. getNext(q)). In this case, we al-
ways process the node with minimal start value for all qi ∈ children(q) even
though qi is OptionalNode (see Figure 2(b)). These properties guarantee the
correctness in processing q.

Next, we will process q. Firstly, we discard the elements which will not con-
tribute potential solutions in the stack of q’s parent (see Figure 2(c)) and execute
the same operation on q’s stack. Secondly, we will check whether Cq can match
the super-twig query. In the case that q is root or the stack of q’s parent is not
empty, we can guarantee Cq must have a solution which matches the subtree

rooted at q. If q is a leaf node, then it means that we have found a root-to-leaf
path which will contribute to the final results of some or all queries; hence, we
can output possible path solutions from the node to root; especially, if q is an
OptionalLeafNode, we can also output the path for some queries, but we do
not pop up Sq because q is an internal node and maybe will contribute to other
queries in which q is not a leaf node. Otherwise, Cq must not contribute any
solutions and we just advance the pointer of q to the next element in Tq (see
Figure 2(d)).

T
q

T
qmax

advance(C
q
)

S
p(q)

T
q

pop(S
p(q)

)

(a) Func. getNext Line 7

advance(C
q
)

(c) Algo. 2 Line 3 (d) Algo. 2 Line 9

S
p(q)

T
q

T
q

T
qmin

(b) Func. getNext Line 9

Fig. 2. Possible scenarios in the execution of MTwigStack

In [7], when TwigStack processes a leaf node, it outputs root-to-leaf solu-
tions. However, for super-twig, there are leaf nodes and optional leaf nodes.
Different from TwigSack in the first phase, MTwigStack will output path-to-leaf
and path-to-OptionalLeafNode solutions if a node q of super-twig is leaf or Op-
tionalLeafNode (it means q is a leaf node in some queries). Furthermore, in the
function getNext(q), qmax is the node whose start is maximal start value of all
q’s children which are not OptionalNodes. This restriction guarantees that some
nodes in Tq are not skipped mistakenly by advance(Cq) when some children of
q are not necessary for all the twig queries.

After all possible path solutions are output, they are merged to compute
matching twig instances for each twig query respectively. In this phase, we will
not only join the intermediate path solutions for each query but also check
whether P-C relationships of the queries are satisfied in these path solutions.
Merging multiple lists of sorted path solutions is a simple practice of a multi-
way merge join. In this paper, we do not explain the details for saving space.

MTwigStack is a modification of the TwigStack algorithm. The main diver-
sification is to introduce the concept of OptionalLeafNode, which is treated as
a leaf node when processing the super-twig. The algorithm will output interme-
diate matches when processing the OptionalLeafNodes as they are in fact leaf
nodes of some twig queries. Hence, we can easily modify other algorithms such
as iTwigJoin [8], TJFast [11], etc.

Example 2. In Figure 3, SQ is the super-twig of q1, q2, and q3; in SQ, C is an
OptionalLeafNode, D and E are OptionalNodes; Doc1 is an XML document.
Initially, getNext(A) recursively calls getNext(B) and getNext(C). At the first
loop, a1 is skipped and CA advances to a2 because a1 has no descendant node
C. Then node B is returned and q = B. Now the stack (SA) for parent of B is
empty, hence, b1 is skipped and CB points to b2. In the next loop, A is returned
and a2 is pushed into SA; next, B is returned and (a2, b2) is output; then A
is returned again and a3 is pushed into SA but a2 will be not popped; B is
returned and b3 is pushed into SB , (a3, b3) and (a2, b3) are output. At the sixth

loop, C is returned and c1 is pushed into SC . C is an OptionalLeafNode, hence
(a3, c1) and (a2, c1) are output but c1 is not popped. Next D is returned and
d1 is pushed into SD; Then F is returned, (a3, c1, d1, f1) and (a2, c1, d1, f1) are
output. Next, c2 is processed, (a3, c2) and (a2, c2) are output. Finally, E is
returned, then (a3, c2, e1), (a3, c1, e1), (a2, c2, e1) and (a2, c1, e1) are output.
At the second phase, mergeAllPathSolutions() merges the path solutions of (A,
B) and (A, C) for q1, (A, B) and (A, C, D, F) for Q2, and (A, B) and (A, C, E)
for q3. In this phase, we also check whether P-C relationships are satisfied.

(e) Doc1

A

B C

D

F

(a)Q1 (b)Q2 (c)Q3

A

B C

A

(d)SQ

A

B C

E

B C

D E

F

a3

b3 c1

a2

c2d1

f1 e1

b2

root

a1

b1

Fig. 3. Illustration to MTwigStack

4 Experimental Evaluation

4.1 Experimental Setup

We implemented MTwigStack algorithm in Java. All experiments were run on
a 2.6 GHz Pentium IV processor with 1 GB of main memory, running windows
XP system. We used the TreeBank [1] and XMark [2] data sets for our experi-
ments. The file size of TreeBank is 82M bytes, and the file sizes of XMark are
128KB, 2MB, and 32MB respectively. We test our MTwigStack comparing with
TwigStack [7] and Index-Filter [6] with different numbers of queries on these
different data sets.

The set of queries consists of 1 to 10000 twig queries, with a random number
of nodes between 10 to 20. The total number of distinct tags in these twig queries
is less than 30% of total distinct tags (75 tags) for XMark data sets, and is less
than 15% of total distinct tags (249 tags) for TreeBank data set.

4.2 Experimental results

MTwigStack vs. TwigStack Figure 4 (a) shows the execution time of Twig-
Stack to the execution time of MTwigStack on the four data sets when processing
different numbers of queries. We find that whatever the data size is, when there
is only one query, these two methods consume the same time; with the number
of queries increasing, the processing time increase of MTwigStack is far lower
than the increase of TwigStack (e.g. the ratio is about 60 for 1000 queries on the
TreeBank data set). This is explained by the fact that MTwigStack process all
the multiple queries simultaneously, while TwigStack needs to match the queries
one by one.

In table 1, we show the number of elements scanned by MTwigStack and
TwigStack when processing different numbers of queries. Obviously, MTwigStack
scans far less elements than TwigStack does. The reason is, for the nodes which
appear in multiple queries, MTwgStack scans them only once. But extremely,
MTwigStack and TwigStack will scan the same number of elements only when
there is no node that appears in all the queries repeatedly, that is, all nodes in
the multiple queries are distinct.
MTwigStack vs. Index-Filter We implemented Index-Filter as follows: firstly,
decomposing twig pattern into simple path queries for each twig query and com-
bining these path queries into a prefix tree; next, executing the Index-Filter
algorithm to get intermediate solutions for each path; finally, joining the path
solutions which belong to the same query and eliminating useless solutions.

Figure 4 (b) shows the execution time of Index-Filter to the execution time
of MTwigStack. With the increase of data size and number of queries, Index-
Filter will run longer time even though it scans the same number of elements as
MTwigStack does, as shown in Table 1. The reason is, Index-Filter decomposes
a twig query into multiple simple paths during query processing and it will
produce many useless intermediate path solutions, as shown in Table 2. Merging
more path solutions also need consume more time. Furthermore, Index-Filter
also requires more space to keep intermediate results.

1 10 100 1000 10000
0

20

40

60

80

100

120

140

 82M TreeBank
 32M XMark
 2M XMark
 128K XMark

Tw
ig

S
ta

ck
tim

e
/ M

Tw
ig

S
ta

ck
tim

e

Number of Queries
(a) MTwigStack vs. TwigStack

1 10 100 1000 10000
1

2

3

4

5

6

7

8

In
de

x-
Fi

lte
r tim

e
/ M

Tw
ig

S
ta

ck
tim

e

Number of Queries

82M TreeBank
 32M XMark
 2M XMark
 128K XMark

(b) MTwigStack vs. Index-Filter

Fig. 4. Execution time ratio for different data sets

Table 1. The number of scanned elements

Data Set 128K XMark 2M XMark 32M XMark 82M TreeBank

No. of Queries 10 100 10 100 10 100 10 100

MTwigStack 286 397 5027 6059 78167 96357 1278766 1465232

Index-Filter 286 397 5027 6059 78167 96357 1278766 1465232

TwigStack 2312 18455 40337 354260 635718 6005265 11685319 106760340

5 Conclusion and Future Work

In this paper, we proposed a new twig join algorithm, called MTwigStack, to
process multiple twig queries with a high structural similarity. Although holistic
twig join has been proposed to solve single twig pattern, applying it to multiple

Table 2. The number of intermediate path solutions

Data Set 128K XMark 2M XMark 32M XMark 82M TreeBank

No. of Queries 10 100 10 100 10 100 10 100

MTwigStack 29 33 349 459 5401 7386 646 678

Index-filter 134 157 2332 2827 37197 44797 496691 498688

TwigStack 127 1215 1237 10425 19897 172360 775 3965

twig patterns matching is nontrivial. We developed a new concept super-twig
with OptionalNode and OptionalLeafNode to determine whether an element is
in the shared structure of the XML twig patterns. We also made the contribution
by processing the shared structure in the super-twig only once. The experimen-
tal results showed that our algorithm is more effective and efficient than the
applying TwigStack to each individual twig quires, or applying Index-Filter by
decomposing twig queries into many simple path queries.

In the future, we will improve the algorithm based on the following two
issues: one is to design an efficient index scheme to fasten the processing speed.
Another issue is our method only supports a subset of XPath queries. Some
queries, such as //A[B]/C and //D[B]/C, can not be processed efficiently. We
will try to process more XPath queries.

References

1. Treebank. Available from http://www.cis.upenn.edu/treebank/.
2. The xml benchmark project. Available from http://www.xml-benchmark.org.
3. S. Al-Khalifa, H. Jagadish, N. Koudas, J. Patel, D. Srivastava, and Y. Wu. Struc-

tural joins: A primitive for efficient XML query pattern matching. In Proceedings
of ICDE, 2002.

4. M. Altinel and M. Franklin. Efficient filtering of XML documents for selective
dissemination of information. In Proceedings of VLDB, 2000.

5. S. Amer-Yahia, S. Cho, L. K. S. Lakshmanan, and D. Srivastava. Minimization of
tree pattern queries. In Proceedings of ACM SIGMOD, 2001.

6. N. Bruno, L. Gravano, N. Koudas, and D. Srivastava. Navigation- vs. index-based
XML multi-query processing. In Proceedings of ICDE, 2003.

7. N. Bruno, N. Koudas, and D. Srivastava. Holistic twig joins: Optimal XML pattern
matching. In Proceedings of ACM SIGMOD, 2002.

8. T. Chen, J. Lu, and T. Ling. On boosting holism in XML twig pattern matching
using structural indexing techniques. In Proceedings of ACM SIGMOD, 2005.

9. Y. Diao, M. Altinel, M. Franklin, H. Zhang, and P. Fischer. Path sharing and
predicate evaluation for high-performance XML filtering. In ACM Transactions
on Database Systems (TODS), volume 28, pages 467–516, 2003.

10. S. Flesca, F. Furfaro, and E. Masciari. On the minimization of xpath queries. In
Proceedings of VLDB, 2003.

11. J. Lu, T. Ling, C. Chan, and T. Chen. From region encoding to extended dewey:
On efficient processing of XML twig pattern matching. In Proceedings of VLDB,
2005.

12. B. Mandhani and D. Suciu. Query caching and view selection for xml databases.
In Proceedings of VLDB, 2005.

