
Reducing graph matching to tree matching for
XML queries with ID references

Huayu Wu1, Tok Wang Ling1, Gillian Dobbie2, Zhifeng Bao1, and Liang Xu1

1 School of Computing, National University of Singapore
{wuhuayu, lingtw, baozhife, xuliang}@comp.nus.edu.sg

2 Department of Computer Science, The University of Auckland, New Zealand
gill@cs.auckland.ac.nz

Abstract. ID/IDREF is an important and widely used feature in XML
documents for eliminating data redundancy. Most existing algorithms
consider an XML document with ID references as a graph and perform
graph matching for queries involving ID references. Graph matching nat-
urally brings higher complexity compared with original tree matching al-
gorithms that process XML queries. In this paper, we make use of seman-
tics of ID/IDREF to reduce graph matching to tree matching to process
queries involving ID references. Using our approach, an XML document
with ID/IDREF is not treated as a graph, and a general query with ID
references will be decomposed and processed using tree pattern matching
techniques, which are more efficient than graph matching. Furthermore,
our approach is able to handle complex ID references, such as cyclic ref-
erences and sequential references, which cannot be handled efficiently by
existing approaches. The experimental results show that our approach is
20-50% faster than MonetDB, an XQuery engine, and at least 100 times
faster than TwigStackD, an existing graph matching algorithm.

1 Introduction

Because XML is an important standard format for data exchange over the In-
ternet, it is important to remove redundant data from documents, which uses
unnecessary storage and adds extra cost during data transfer. Consider the ex-
ample shown in Fig. 1(a). Since both part A and part B are supplied by the
same supplier, the information about supplier s001 is repeated twice. The most
common way to reduce redundancy is to introduce ID and IDREF attributes
[20]. ID and IDREF can be likened to primary key and foreign key constraints
in relational databases. Using ID/IDREF, each object is stored once under the
document root with a unique ID. A new structure for the document tree in Fig.
1(a) with data redundancies removed is shown in Fig. 1(b). The dotted arrows
represent the references from IDREF value to the referenced object which will
have the same value as its ID.

Despite the importance of ID/IDREF for good XML design, existing algo-
rithms that process queries involving ID references in XML are still not efficient.
To the best of our knowledge, all the existing algorithms consider both XML
documents with ID/IDREF and XML queries with ID references as digraphs,

purchase

part part

purchaser purchaser name name supplier price

s_no location phone “A” “John” 100

quantity

100 “B” “John”

supplier price

s_no location 150

quantity

20 phone

“s001” “s001” “Roma” “Roma” “62309” “62309”

…

…

(a) XML tree with data redundancies

purchase

part

name supplierRef

“A”

quantity

100

supplier

s_no location phone

“s001”

“s001” “Roma” “62309”

…
by_purchaser

“John” price

100

part

name supplierRef

“B”

quantity

20 “s001”

price

150

…

purchase

part

name supplierRef

“A”

quantity

100

supplier

s_no location phone

“s001”

“s001” “Roma” “62309”

… by_purchaser

“John” price

100

part

name supplierRef

“B”

quantity

20 “s001”

price

150

…

(1:1000,1)

(2:23,2) (81:88,2)

(5:14,3)

(6:7,4) (8:9,4) (10:11,4) (12:13,4) (16:17,4)

(15:24,3)

(18:19,4) (20:21,4) (22:23,4)

(82:83,3) (84:85,3) (86:87,3)

person

person
(3:4,3)

(b) XML tree after reducing redundancies

Fig. 1. Example XML document in two schemas, with and without data redundancies

and perform graph matching to process queries. It is true that an XML document
is modeled as a digraph if we consider the ID references as directed edges. How-
ever, transforming tree pattern matching to graph pattern matching naturally
brings much higher complexity, because graph matching is more costly than tree
matching with the same size input [12]. A simple question is whether we have to
abandon many efficient tree pattern matching approaches (for XML and queries
without ID references), and invent new, but less efficient graph pattern matching
algorithms to process such queries with ID references. Fortunately, the answer
is no. Unlike the graph model for social networks or other graph databases, ID
reference in an XML document is not a random link between nodes. It has strong
semantics, which always starts at an IDREF value and references an object with
a same ID value. Surprisingly, no existing algorithm captures this semantics
during query processing. They normally focus on how to enhance the efficiency
of graph matching, but ignore the fact that using the semantic information of
ID/IDREF, graph matching can be reduced to a less complex tree matching.

This paper focuses on incorporating semantics of ID/IDREF to reduce graph
matching to tree matching to process XML queries with ID references. Besides
significantly reducing the pattern matching complexity, our approach also makes
all existing efficient tree pattern matching algorithms feasible for queries with ID
references. The rest of the paper is organized as follows. We revisit some related
work in XML query processing in Section 2. Our semantic approach to processing
queries with ID references is presented in Section 3. Section 4 discusses how to
handle special references in documents and queries. We present experimental
results in Section 5 and conclude our paper in Section 6.

2 Related work

XML query processing has been studied for many years. Since in most XML
query languages (e.g. [4][5]) queries are expressed as twig patterns, finding all
occurrences of a twig pattern in an XML document is a core operation for XML
query processing. In the early stage, a lot of work focused on storing and querying
XML data using mature relational database systems [10][21][27][26]. Generally
they shred XML data into relational tables, and convert XML queries into SQL
to query the database. The advantage of these relational approaches is that they
can manage and operate on values efficiently, e.g. performing range search for
predicates, and they can make use of existing relational query optimizers to
optimize SQL-style XML queries. However, the drawback of the relational ap-

proaches is also obvious. A twig pattern XML query may involve many table
joins, which are costly. Sometimes it is not easy to decide what tables are to be
joined and how many times to join them particularly for queries with “//”-axis
(ancestor-descendant axis). Later how to process twig pattern queries natively
without using relational databases became a hot topic. The structural join based
approach is the most efficient native approach accepted by researchers. In par-
ticular, TwigStack [6] and subsequent work [9][15][19][8] bring in the idea of
holistic structural join, which makes structural join very efficient. Finally, [25]
complements structural join based approaches by introducing relational tables
to process content search and content extraction.

When XML documents and queries involve ID references, most twig pattern
matching based algorithms cannot handle the references between nodes. Many
works focus on how to efficiently perform graph matching for such documents
and queries that are modeled as graphs. Some traditional approaches [22] gen-
erate all possible mappings between each pair of nodes in two graphs and check
for correctness. However, this sort of graph matching problem is NP-complete
generally [12]. Moreover, these graph matching algorithms can hardly support
“//”-axis queries. Later, [23] and [7] consider the structure of XML documents
with ID/IDREF as a directed acyclic graph (DAG) and proposes algorithms to
process queries on DAGs. However, XML documents with ID/IDREF may be a
cyclic graph [13]. Recently, [17] and [16] extend twig pattern query to support
queries involving ID references, and propose techniques to solve the extended
twig. [24] proposes a new labeling scheme for document graph so that parent-
child and ancestor-descendent relationships can be identified and thus queries
can be processed. However, all these attempts consider ID references as a random
link between nodes and match random graph queries to the document graph. As
mentioned in Section 1, graph matching is normally more expensive than tree
matching, thus this paper proposes a method to reduce graph matching to much
less complex tree matching for XML queries.

3 Semantic approach for queries with ID references

3.1 Reference pattern query

Twig pattern, or tree pattern, is considered the core XML query pattern when ID
reference is ignored in documents and queries. We first extend the twig pattern
expression to express ID references in a query, and propose a semantic approach
based on this approach. Our extension mainly includes two parts: explicitly
marking output nodes and introducing ID reference edges.

Definition 1. (Output node) Output nodes in a twig pattern query are defined
as a group of nodes in the twig pattern such that the query aims to find values
for them, based on conditions on other nodes.

Every query must contain at least one output nodes. For example, in the query
shown in Fig. 2(a), s no is an output node since we aim to find the value for c for
each supplier that is located in ‘Roma’. Besides noting output node, we also note
the ID reference within a query. For example a query to find the value for quantity

of part B which is purchased by John and supplied by some supplier located in
‘Roma’ is issued on the document shown in Fig. 1(b). From the document, we
can see that full information about a certain supplier is stored separately from
the object part and that an IDREF property supplierRef is used to reference
the corresponding supplier. By considering both output node and ID reference,
we propose the notion of reference pattern query. The above query can be issued
as a reference pattern query as shown in Fig. 2(b).

supplier

s_no location

purchase

part

name supplierRef

“A”

quantity

100

supplier

s_no location phone

“s001”

“s001” “Roma” “62309”

… by_purchaser

“John”

price

100

part

name supplierRef

“B”

quantity

20 “s001”

price

150

…

(1:1000,1)

(2:7,2) (81:,2)

(3:4,3) (5:6,3) (82:83,3) (84:85,3) (86:87,3)

“Roma”

(a) Query without ID reference

Rsupplier/location

Label Value

(24:31,2) Roma

… …

supplierlocation=“X”

s_no

Rsupplier

Label S_no Location Phone

(24:31,2) s001 Roma 62309

… … … …

part

name

“B”

quantity supplierRef

supplier

location

“Roma”

by_purchaser

person

“John”

(b) Example reference pattern query

Fig. 2. Example twig pattern query and reference pattern query

Definition 2. (Reference pattern query) Reference pattern query general-
izes twig pattern query to express ID references between twigs using a dotted
referencing arrow. In a reference pattern query, the main body where the ref-
erencing arrow starts is called the referencing part, and the part to which the
referencing arrow points is called the referenced part. The referenced part nor-
mally corresponds to an object with an ID value. The output nodes in a reference
pattern query are marked by underlining them.

Note that a query issuer is expected to have some schematic information
of the underlying XML document. Otherwise, she has no way to compose a
structured query expression. Similarly, a query processor is also aware of the
document structure. Although sometimes there is no formal schema available
for a document, by parsing the document a program can easily summarize its
structure. With such requirements, we assume that a user should be able to issue
a reference pattern query, and the system can interpret the query, even if the
query contains implicit ID references across a “//” relationship. For example,
to process the query shown in Fig. 3(a) which finds all locations where John
purchases things, the system will identify the ID reference across the “//” edge
by consulting the document structural summary, and rewrite the query to be a
reference pattern query as shown in Fig. 3(b). Sometimes, an object class may
have a recursive reference, e.g. a paper cites another paper. This case is similar
to element recursion in DTDs. The work in [18][11] discussed how to translate
queries involving recursive elements into SQL. Since in our work, we use SQL to
handle ID reference, these works can be adopted to solve recursive ID references.

Rsupplier

Label Price S_no Location Phone

(9:18,3) 100 s001 X 6230910

(25:30,3) 150 s001 NULL NULL

(72:81,3) 200 s002 Y 6384929

(94:99,3) 180 s002 NULL NULL

… … … … …

part

name

>80

supplierRef

supplier

location

“Roma”

phone quantity

by_purchaser

person location

by_purchaser

person supplierRef

supplier

location

“John” “John”

(a) Original query
Rsupplier

Label Price S_no Location Phone

(9:18,3) 100 s001 X 6230910

(25:30,3) 150 s001 NULL NULL

(72:81,3) 200 s002 Y 6384929

(94:99,3) 180 s002 NULL NULL

… … … … …

part

name

>80

supplierRef

supplier

location

“Roma”

phone quantity

by_purchaser

person location

by_purchaser

person supplierRef

supplier

location

“John” “John”

(b) Reference pattern query

Fig. 3. Case that “//” relationship contains ID reference

3.2 Parsing XML document with ID references
The hierarchical structure of XML data is normally modeled as a tree. However,
when there are references from tree node to tree node, the data model is consid-
ered as a graph. Most existing algorithms handle XML queries over documents
with ID reference in a graph matching manner, e.g. using an extra index to record
ID references between nodes or inventinga new labeling scheme for graphs. As
mentioned in Section 1, compared with tree matching, graph matching naturally
brings higher complexity. ID reference in an XML document is not a random
link between nodes. It always starts from an IDREF attribute and points to an
object with the same ID value. If we use the semantics to avoid treating a docu-
ment as a random graph, the performance could be improved. First, we present
how our approach parses an XML document with ID references.

Most XML query processing algorithms assign a label to each document
node, so that the parent-child or ancestor-descendant relationship between each
pair of document nodes can be easily determined by their labels during query
processing. In our approach, we ignore the ID references, and only label property
nodes, object nodes and other internal nodes, but not value nodes. IDREF is an
internal node, but its value is a value node (as shown in Fig. 4).

Definition 3. (Object, property) In an XML document, the parent node (ei-
ther an attribute or an element) of each value is a property. We consider the
parent node of a property node (including IDREF node) as an object3.

In the document in Fig. 1(b), the nodes name, quantity and supplierRef are all
properties as they have value children, and each supplier and part are objects as
they are parents of certain properties. When we ignore the ID reference and the
values, the label assignment of the document in Fig. 1(b) is shown in Fig. 4.

purchase

part

name supplierRef

“A”

quantity

100

supplier

s_no location phone

“s001”

“s001” “Roma” “62309”

…
by_purchaser

“John” price

100

part

name supplierRef

“B”

quantity

20 “s001”

price

150

…

purchase

part

name supplierRef

“A”

quantity

100

supplier

s_no location phone

“s001”

“s001” “Roma” “62309”

… by_purchaser

“John” price

100

part

name supplierRef

“B”

quantity

20 “s001”

price

150

…

(1:1000,1)

(2:23,2) (81:88,2)

(5:14,3)

(6:7,4) (8:9,4) (10:11,4) (12:13,4) (16:17,4)

(15:24,3)

(18:19,4) (20:21,4) (22:23,4)

(82:83,3) (84:85,3) (86:87,3)

person

person
(3:4,3)

Fig. 4. The purchase document with internal nodes labeled

The labeled document nodes are organized as inverted lists based on different
tags, which is the same as other approaches; whereas, the values that are not
labeled are stored in object-oriented relational tables. In particular, for each
object class there is a table, whose schema includes a label field to store the
label of each object in this class, and a set of property fields to store the values
of each property for a certain object. During this process, both ID value and
IDREF value are treated in the same way as other properties. The reference
between them is ignored, thus these indexes only keep the tree like nature of the
3 It may not be semantically true for all cases, but it will not affect the correctness of

query processing.

document. The example object tables for supplier and part are shown in Fig.
5, in which the ID and IDREF attributes are stored in the same way as other
properties. Note that the IDREF attribute supplierRef in the XML document
in Fig. 4 is represented directly with the same value in the attribute supplierRef
in the part table. There is no redundancy or duplicated data in the tables.

Rpart

Label Name Quantity Price SupplierRef

(3:12,3) A 100 100 s001

(13:22,3) B 20 150 s001

… … … … …

Rpart/price

Label Value

(4:13,2) 100

(14:23,2) 150

… …

Rpart/supplierRef

Label Value

(4:13,2) s001

(14:23,2) s001

… …

Rsupplier

Label S_no Location Phone

(81:88,2) s001 Roma 62309

… … … …

(a) Supplier table

Rpart

Label Name Quantity Price SupplierRef

(3:12,3) A 100 100 s001

(13:22,3) B 20 150 s001

… … … … …

Rpart/price

Label Value

(4:13,2) 100

(14:23,2) 150

… …

Rpart/supplierRef

Label Value

(4:13,2) s001

(14:23,2) s001

… …

Rsupplier

Label S_no Location Phone

(81:88,2) s001 Roma 62309

… … … …

(b) Part table

Fig. 5. Example object tables during document parsing

The implementation details of object table construction and the solution
to some potential problems of object tables, e.g., how to store multi-valued
property, are discussed in our previous report [25].

3.3 Query processing with tree matching
The ID reference in a reference pattern query is reflected by a dotted arrow.
Such a dotted arrow always corresponds to an ID reference in the document,
which makes the document a graph structure. During pattern matching, most
algorithms consider ID references in both documents and queries as a normal
edge, thus they have to perform graph matching. In our approach, we try to re-
duce the graph matching to a simple tree matching, to improve pattern matching
performance. To do this, we treat a document as a tree, as mentioned in the pre-
vious section, and also ignore the dotted arrow in a reference pattern query when
we perform pattern matching. However, the ID reference is a part of the query
constraint which cannot be ignored. Our solution transforms the ID reference in
a query to a table join, because (1) the semantics of ID/IDREF are such that
all the ID references must be between ID and IDREF attributes, and they are
not a random link, and (2) both the corresponding ID value and IDREF value
are stored in relevant object tables and the reference between them is the same
as the equi-join of the two tables.

The general idea of our approach is to decompose a reference pattern query
into a referencing part and a referenced part (the two parts are defined in Defini-
tion 2). The query is processed by a tree matching of the referencing part, with
any existing twig pattern matching algorithms, and a join between the referenc-
ing part and the referenced part. In more detail, the join between the referencing
part and the referenced part is eventually performed by a table join between two
object tables with ID and IDREF attributes. In fact, a tree matching is a series
of structural joins between each adjacent query node. In our heuristic we try to
perform the join between the referencing part and the referenced part first, as
this operation normally results in high selectivity due to the constraints in the
referenced part. However, if the referencing part has no output node, the whole
referencing part becomes a predicate, then we match the referencing part first

before joining with the referenced part where output nodes are involved. The
detailed query processing algorithm is presented in Algorithm 1, in which we
suppose o and obj are two objects in the referencing part and referenced part of
a reference pattern query respectively. First, we only consider the basic reference
pattern query with only one referencing part and one referenced part.

Algorithm 1 Query processor
1: if there is no output node in the referencing part then
2: match the referencing part to the document tree, to find the set S of distinct values of the

IDREF attribute
3: join S with Robj for the referenced part, based on the condition S.IDREF=Robj .ID
4: select values for the output node in the joined result, based on other constraints under obj.
5: else
6: Join Robj and Ro based on the condition Robj .ID=Ro.IDREF, and select the labels of o

based on the predicates under obj and o
7: create a new inverted list To′ for o and put the selected labels into To′
8: rewrite the referencing part by changing o to o′, which corresponds to To′
9: match the rewritten referencing part to the document tree with To′ for o′ to find values of

the output nodes in the referencing part
10: if there are output nodes in the referenced part then
11: find the set S of distinct values of the IDREF attribute from the tree matching result
12: join S with Robj for the referenced part, based on the condition S.IDREF=Robj .ID
13: select values for the output node in the joined result, based on constraints under obj.
14: end if
15: end if

There are three cases of reference pattern query, with respect to the position
of output nodes: Case (1) output nodes reside in the referencing part, Case (2)
output nodes reside in the referenced part and Case (3) output nodes reside in
both the referencing part and referenced part. Now we use examples to illustrate
our approach for the three cases.

Example 1. Consider the Case (1) query shown in Fig. 2(b). The query asks
for the quantity of part B which is purchased by John and supplied by some
supplier in ‘Roma’. In this query, only the referencing part contains an output
node, quantity. The two objects involved in the ID reference are part and sup-
plier. Using the algorithm, we join Rpart and Rsupplier (as shown in Fig. 5) based
on s no=SupplierRef, filter the results by the predicate part.name=‘B’ and sup-
plier.location=‘Roma’, and select the labels for part. These labels are put into a
new inverted list for part and the referencing part is rewritten as shown in Fig.
6(a). In the new query, the subscript of node part′ explains that this node cor-
responds to the new inverted list of parts, whose name is ‘B’ and has a supplier
located in ‘Roma’. The final step is to match the tree pattern referencing part
with the new inverted list for part′ to the document tree.

Tpart’

(13:22,3)
by_purchaser

…

part’name=‘B’ &s_no=SupplierRef
&supplier.location=‘Roma’

quantity

person

“John”

part
supplier

supplierRef

name

“B”

supplierRef location

“Roma”

phone
Supplier

s001

…

supplierRef

Roma

(a) Rewritten query for
Example 1

S_no

s001

…

part

name

“B”

quantity supplier’

Xsupplier’

(9:18,3)
(25:30,3)

…

Labels

(25:30,3)

…

part

name

“B”

quantity supplier’

part

name

“B”

supplierRef

supplier

location

“Roma”

by_purchaser

person

phone

quantity

“John”

(b) Query for Example 2

Tpart’

(14:23,2)

…

part’name=‘B’ & supplier.location=‘X’

quantity

part

name

“B”

supplier

supplier

location

“X”

phone

…

s001

Supplier

(c) IDREF values for
Example 2

Fig. 6. Figures for Example 1 and 2

Example 2. Consider the Case (2) query shown in Fig. 6(b), in which only the
referenced part has an output node, phone. By the algorithm, we first match the
referencing part to the document tree, to find the labels of each matched part
object. Then using these labels we can find the distinct values of supplierRef in
Rpart. The result is shown in Fig. 6(c). We join these tuples with table Rsupplier

and select phone in Rsupplier based on location=‘Roma’.

Example 3. Consider the Case (3) query in Fig. 7(a). In this query both the
referencing part and the object contain output nodes. We first join tables Rpart

and Rsupplier based on the equality of supplierRef and s no, and select part
labels based on the conditions that part’s name is ‘B’ and supplier is in ‘Roma’.
Then a new inverted list Tpart′ for part is constructed with the selected labels.
The referencing part is rewritten by renaming the node part to be part′ so
that the new inverted list will take effect (shown in Fig. 7(b)). Using any tree
matching algorithm to process the rewritten referencing part, we can find the
labels for matched part. Then in Rpart we can extract values for supplierRef and
the output node quantity. To find the value for the other output node phone, we
join the distinct values of supplierRef with the table Rsupplier, and select the
phone value based on the condition that location equals ‘Roma’.

S_no

s001

…

part

name

“B”

quantity supplier’

Xsupplier’

(9:18,3)
(25:30,3)

…

Labels

(25:30,3)

…

part

name

“B”

quantity supplier’

part

name

“B”

supplierRef

supplier

location

“Roma”

by_purchaser

person

phone quantity “John”

(a) Example query

S_no

s001

…

part

name

“B”

quantity supplier’

Xsupplier’

(9:18,3)
(25:30,3)

…

Labels

(25:30,3)

…

part

name

“B”

quantity supplier’

part’name=‘B’&supplierRef=s_no
 &supplier.location=‘Roma’

name

“B”

supplierRef

supplier

location

“Roma”

by_purchaser

person
phone

quantity “John”

(b) Rewritten query

Fig. 7. Figures for Example 3

During query processing, any reference pattern query requiring graph match-
ing on the document is eventually processed by tree pattern matching and table
joins. Furthermore, the tree pattern to be matched is normally much simpler
than the original query pattern with references. Since most relational systems
can perform selection and join very efficiently with B+ tree indexes, the overhead
on table operations will not affect the benefit of reducing graph matching to tree
matching. Our experiments also prove this. In particular, when the referenced
part of a reference pattern query is in a complex pattern, e.g. enclosing other
objects, we can perform pattern matching on the referenced part, before joining
with the referencing part.

3.4 Correctness

The basic query processing idea in our approach is to replace the structural join
using ID references, which is used in other algorithms, with a table join. Actually,
an ID reference means the involved IDREF attribute has the same value as the
ID attribute. On the one hand, we can visualize such a reference using a graph
edge and perform a structural join; on the other hand, we can push the equality
of IDREF and ID values to a table join. In this regard, both structural join and
table join have the same effect of solving the constraints of ID references.

4 Special references

ID/IDREF in XML documents may lead to very complex patterns. In this sec-
tion, we introduce two special cases of ID/IDREF and explain how our algorithm
handles queries involving these cases.

4.1 Cyclic reference
ID references in an XML document may cause cycles if we consider parent-child
relationships and ID references as directed edges in a document graph. Consider
a document which contains such cycles, as shown in Fig. 8. In this document, Roy
chooses Lisa as his first partner, while Lisa chooses Roy as her second partner.
Then the references between member Roy and Lisa generate a cycle. When we
process a query containing a reference cycle, e.g. the query shown in Fig. 9(b),
many DAG-based graph matching algorithms, e.g. [23][7], are no longer effective.
In our approach, two query objects involved in a reference cycle, i.e. two member
nodes in this case, play both a referencing part and a referenced part. Thus we
ignore the constraints under both of them during pattern matching, and handle
these constraints by table joins. For the query in Fig. 9(b), we first match a
rewritten query as shown in Fig. 9(c) to the document tree to get the labels of
all satisfied members. By joining the result with itself through the member table
(shown in Fig. 9(a)) twice, we can easily handle the cyclic situation, and output
the desired values.

member

name sex first partner

member

second partner

“M”

member’first partner.second partner=self

name

dancing_club

venue member

ID

(2:1001,2)

(3:4,3) (5:18,3)

(6:7,4)
name
(8:9,4)

sex
(10:11,4)

age
(12:13,4)

first_partner
(14:15,4)

second_partner
(16:17,4)

“city”

member

ID

(19:32,3)

(20:21,4)
name

(22:23,4)
sex

(24:25,4)
age

(26:27,4)
first_partner

(28:29,4)
second_partner

(30:31,4)

01 “Roy” “M” 26 02 09 02 “Lisa” “F” 24 03 01

…

clubs
(1:10000,1)

…

Fig. 8. XML document with cyclic reference

Rmember

Label ID Name Sex Age First_partner Second_partner

(5:18,3) 01 Roy M 26 02 09

(19:32,3) 02 Lisa F 24 03 01

… … … … … … …

research community

research area

“database”

seminar

serial topic chair

people

pid name affiliation

university

uid name contact

(1:1000,1)

(2:13,2)

(5:12,3)

(6:7,4) (8:9,4) (10:11,4)

(233:240,2)

(234:235,3) (236:237,3) (238:239,3)

(821:828,2)

(822:823,3) (824:825,3) (826:827,3)

… … …

1 “xml” 2

2 “Ling” 9 9 65166666 “NUS”

… name
(3:4,3)

(a) Table for member

member

name sex first_partner

member

second_partner

“M”

member’first partner.second partner=self

name

dancing_club

venue member

ID

(2:1001,2)

(3:4,3) (5:18,3)

(6:7,4)
name
(8:9,4)

sex
(10:11,4)

age
(12:13,4)

first_partner
(14:15,4)

second_partner
(16:17,4)

“city”

member

ID

(19:32,3)

(20:21,4)
name

(22:23,4)
sex

(24:25,4)
age

(26:27,4)
first_partner

(28:29,4)
second_partner

(30:31,4)

01 “Roy” “M” 26 02 09 02 “Lisa” “F” 24 03 01

…

clubs
(1:10000,1)

…

dancing_club

venue

“city”

member

dancing_club

venue

“city”

(b) Example query

dancing_club
(2:1001,2)

clubs
(1:10000,1)

…

venue member

ID

(3:4,3) (5:18,3)

(6:7,4)
name
(8:9,4)

sex
(10:11,4)

age
(12:13,4)

first_partner
(14:15,4)

second_partner
(16:17,4)

“city”

member

ID

(19:32,3)

(20:21,4)
name

(22:23,4)
sex

(24:25,4)
age

(26:27,4)
first_partner

(28:29,4)
second_partner

(30:31,4)

…

01 “Roy” “M” 26 02 09 02 “Lisa” “F” 24 03 01

member

dancing_club

venue

dancing_club

“city” name

member

name sex first_partner

member

second_partner

“M”

member’first partner.second partner=self

name

venue

“city”

(c) Rewritten query

Fig. 9. Example query involving cyclic reference

4.2 Sequential reference
Sequential references happen when one object references another object, while
that object also references a third object. One example document with sequen-
tial references is shown in Fig. 10. In this research community document, each
seminar has a chair whose detailed information is stored in some other part of
the document; and each people’s affiliation is also stored in detail separately.
The ID/IDREFs between seminar, people and affiliation form a set of sequen-
tial references. A reference pattern query with a sequential reference is shown in
Fig. 11(b). In this query, we try to find the topic of a seminar in the ‘database’
research area, which is chaired by a people from ‘NUS’.

Rmember

…

24

26

Age

…

03

02

First Partner

01FLisa02(18:31,2)

…

Roy

Name

…

01

ID

…

M

Sex

……

09(4:17,2)

Second PartnerLabel

research community

research area

“database”

seminar

serial topic chair

people

pid name affiliation

university

uid name contact

(1:1000,1)

(2:13,2)

(5:12,3)

(6:7,4) (8:9,4) (10:11,4)

(233:240,2)

(234:235,3)(236:237,3)(238:239,3)

(821:828,2)

(822:823,3) (824:825,3) (826:827,3)

… … …

1 “xml” 2

2 “Ling” 9 9 65166666“NUS”

…name
(3:4,3)

Fig. 10. XML document with sequential reference

Rseminar

Label Serial Topic Chair

Rpeople

Label Pid Name Affiliation

Runiversity

Label Uid Name Contact

(5:12,3) 1 XML 2

… … … …

(233:240,2) 2 Ling 9

… … … …

(821:828,2) 9 NUS 65166666

… … … …

(a) Tables involved

research area
research area

seminar people university

topic affiliation namechair

seminar’chair.affiliation.name=“NUS”

name
name

“database”
topic“database”

“NUS”

book

ISBN title price amountauthors

book

essential information selling information

author

0071230572
“X” “A”

author

“B” 33 20

ISBN title author price amount

0071230572
“X” “A”

author

“B” 33 20

0071230572

(b) Original query

research area
research area

seminar people university

topic affiliation namechair

seminar’chair.affiliation.name=“NUS”

name
name

“database”
topic“database”

“NUS”

book

ISBN title price amountauthors

book

essential information selling information

author

0071230572
“X” “A”

author

“B” 33 20

ISBN title author price amount

0071230572
“X” “A”

author

“B” 33 20

0071230572

(c) Rewritten query

Fig. 11. Example query involving sequential reference

Processing queries involving sequential references in an XML document in-
creases the complexity in many traditional subgraph matching algorithms. Se-
quential references lead to more cycles if we do not consider the directions of each
reference. As we know, in traditional approaches, subgraph matching is done by
generating all possible maps between nodes in two graphs and then filtering out
incorrect answers. With more cycles, incorrect mappings cannot be pruned as
early as that in graphs with fewer cycles. In our approach, we do not need to
consider this aspect. For the query in Fig. 11(b), we just perform selection and
join between tables for seminar, people and university (shown in Fig. 11(a)).

The selected label values for seminar will be used to construct a new inverted
list for query node seminar. Then the original query is rewritten to a new query
as shown in Fig. 11(c) by removing references and some other query nodes.

4.3 Complex reference
Theoretically, a general reference pattern query can be very complex with cyclic
and sequential ID references. The last two sections show that table join is pow-
erful to handle both kinds of references between two twig parts. When we deal
with a reference pattern query with complex references, we simply decompose
the query into twig parts, each of which contains an object referencing or be-
ing referenced by other parts. The reference between different parts is solved by
table join, and when a twig part is complex itself, we can perform a pattern
matching to solve it. We will further research on query optimization on queries
with complex reference.

5 Experiments

In this section, we present experimental results, comparing our approach with
an XQuery engine [2] and TwigStackD [7], which is a stack based approach for
XML query processing involving ID/IDREF, which has proven more efficient
than traditional graph matching methods. For convenience, we name our table
based method as TBM. Another recent work on XML graph matching [24] may
not be correct when it models a graph pattern query. Thus we do not do a
comparison with it4.

5.1 Experimental settings
Implementation: We implemented all algorithms in Java. The experiments

were performed on a 3.0GHz Pentium 4 processor with 1G RAM.
XML Data Sets: We used three XML data sets for our experiments: Gene on-

tology data, purchase data and XMark data. Gene ontology data is a 70MB
real-life data set, which is taken from a Gene Ontology Project [1]. Purchase
data is a 12MB synthetic data set generated by our data generator. The
schema of this document is similar to the schema of our example document
shown in Fig. 1(a). The characteristics of this document is a large number of
ID references, as every part has a supplier reference. We also use 9 XMark
benchmark [3] documents with the size varying from 11MB to 111MB to
compare document parsing time, and use one of them (23MB) to test exe-
cution time. XMark documents contain multiple types of ID references.

Queries: We randomly selected five meaningful queries with ID references for
each data set. The queries are shown in Fig. 12. The last element in each
query expression is the output node. We only consider the first two cases
where the output node resides in either the referencing part or the referenced
part in each query. The third case is just a combination of the first two cases.
ID references in queries are denoted by ‘→’, and some queries (Q1, Q5, Q11,
Q15) contain sequential references.

5.2 Experimental results and analysis
Comparison with XQuery engine This experiment is done using MonetDB
[2], which is a well known memory-based XQuery engine, and a relatively small
XMark document (11MB) so that all the processing can be done in memory.
4 More explanations are available at http://www.comp.nus.edu.sg/∼wuhuayu/problem.pdf

Query Data Set Path Expression

Q1 Gene //term[n_associations=0][isa/resource→term/isa/resource
→term/name=‘molecular_function’]/accession

Q2 Gene //term[accession=‘GO0016329’]/isa/resource
→term/association/evidence/evidence_code

Q3 Gene //term[name=‘anticoagulant’]/isa/resource
→term/dbxref[reference]/database_symbol

Q G // ‘GO ’ ‘ f ’ //Q4 Gene //term[accession=‘GO0016172’][name=‘antifreeze’][//resource
→term/dbxref[reference]]/about

Q5 Gene //term[n_associations=0][isa/resource→term/isa/resource
→iterm/isa/resource→iterm/dbxref[reference]]/accession

Q6 Purchase //part[name=‘phone’][supplierRef →supplier/location=‘Sydney’]/priceQ6 Purchase //part[name= phone][supplierRef →supplier/location= Sydney]/price

Q7 Purchase //department[part[name=‘PC’]/supplierRef →supplier/phone=‘345’]/head

Q8 Purchase //department[head=‘Fione’]/part[name=‘sofa’]/supplierRef
→supplier/location

Q9 Purchase //department[head]/part/supplierRef supplier[location=‘London’]/phoneQ9 Purchase //department[head]/part/supplierRef→supplier[location= London]/phone

Q10 Purchase //department[name=‘R&D’]//supplierRef→supplier/location

Q11 XMark //open_auction[itemref →item[location=‘United States’]/incategory
→category/name=‘Seeming mingle teach’]/current

Q12 XM k //bidd [d t ’11/13/2001’]/ fQ12 XMark //bidder[date=’11/13/2001’]/personref
→person[address/city=‘Birmingham’][profile/gender=‘male’]/phone

Q13 XMark //person[profile[education=‘High School’]/age=38][watches/watch
→open_auction/initial=71.36]/name

Q14 XMark //closed auction[buyer/person→person[address/province=‘Haban’]][seller/Q14 XMark //closed_auction[buyer/person→person[address/province= Haban]][seller/
person→person[address/city=‘Lisbon’]]/price

Q15 XMark //bidder[increase=‘21’][personref→person[age=’35’][//watch
→open_auction/reserve=50.84]]/date

Fig. 12. Experimental queries

MonetDB uses an optimized node-based relational approach [14] to process XML
queries. First using MonetDB and TBM, we process the queries Q11-Q15 which
include sequential reference cases.The XQuery expression of Q11 is shown in Fig.
13(a). Other queries can also be expressed as XQuery expressions in a similar
way. Due to the space limitations, we do not show the XQuery expression of every
query. The experimental result is shown in Fig. 13(b). In the second step, we
test queries with cyclic references. In XMark data, we observe that each person
has several watches, each watch contains an open auction, each open auction has
bidders, and each bidder is a person. We randomly compose five queries within
this cycle and the execution time for the two methods is shown in Fig. 13(c).

TBM outperforms MonetDB for all the queries by 20-50%. The reason is
that XQuery cannot express queries involving ID references using a single path.
Instead, XQuery has to do a multiple retrieval for the referencing part and the
referenced part of the query, and then do a join between the retrieved results.
However, using our method, we handle the reference separately, solving the ref-
erence constraint, and also simplifying the query structure and search space.

Comparison with TwigStackD Our experiments mainly compare the query
processing time and document parsing time between TwigStackD and our table
based methods (TBM). We used B+ trees to organize inverted lists for both
approaches to ensure high performance of inverted list accessing. The execution
time for TBM includes the time of processing ID reference with table joins and

Q11:
FOR $o IN doc("XMark.xml")//open_auction
FOR $i IN doc("XMark.xml")//
 item[location="United States"]
FOR $c IN doc("XMark.xml")//

category[name="Seeming mingle teach"]
WHERE $o/itemref/@item=$i/@id AND
 $i/incategory/@category=$c/@id
RETURN <open_auction current={$o/current}/>

(a) Q11 in XQuery

Gene
TwigStackD TBM 250TwigStackD TBM

107.6 0.1 Q1
377.5 3.9 Q2 3078 7.22 2.52
810.2 9.3 Q3 5473 12.8 3.03
425.4 2.4 Q4
462.3 2.1 Q5

purchase 9113 22.17 3.61
TwigStackD TBM 11776 33.56 4.05

7375.8 0.2 Q6 15253 49.55 4.69100

150

200

250

m
e

(s
ec

on
d)

TwigStackD

TBM

8784.6 2.2 Q7 17512 65.69 5.02
8544.4 1.1 Q8 20991 84.47 5.45
7565.5 1.5 Q9
6574.8 1.8 Q10

Xmark 23557 102.72 5.95
TwigStackD TBM MonetDB TBM 26881 135.52 6.5

70.1 0.1 Q11 218 90 30692 162.94 7.14
138.1 0.5 Q12 219 123 33309 192.55 7.69

0

50

0 10000 20000 30000 40000

Ti
m

Number of nodes

50.4 2 Q13 235 189 35541 210.78 7.72
83.2 1.5 Q14 250 145

187.9 2.1 Q15 245 176

107600 100
377500 3900
810200 9300
425400 2400
462300 2100

100000

1000000

100000

1000000

1000000

10000000

250

300

462300 2100

7375800 200
8784600 2200
8544400 1100
7565500 1500
6574800 180010

100

1000

10000

Ti
m

e
(m

s)

10

100

1000

10000

Ti
m

e
(m

s)

10

100

1000

10000

100000

Ti
m

e
(m

s)

50

100

150

200

Ti
m

e
(m

s)

70100 100
138100 500

50400 2000
83200 1500

187900 2100

1
Q1 Q2 Q3 Q4 Q5

Queries

TwigStackD TBM

1
Q11 Q12 Q13 Q14 Q15

Queries
TwigStackD TBM

1
Q6 Q7 Q8 Q9 Q10

Queries
TwigStackD TBM

0
Q11 Q12 Q13 Q14 Q15

Queries
MonetDB TBM

(b) Result for Q11-Q15

Gene
TwigStackD TBMTwigStackD TBM

107.6 0.1 Q1
377.5 3.9 Q2 3078 7.22 2.52
810.2 9.3 Q3 5473 12.8 3.03
425.4 2.4 Q4
462.3 2.1 Q5

purchase 9113 22.17 3.61
TwigStackD TBM 11776 33.56 4.05

7375.8 0.2 Q6 15253 49.55 4.69

150

200

250

(s
ec

on
d)

TwigStackD

TBM

8784.6 2.2 Q7 17512 65.69 5.02
8544.4 1.1 Q8 20991 84.47 5.45
7565.5 1.5 Q9
6574.8 1.8 Q10

Xmark 23557 102.72 5.95
TwigStackD TBM MonetDB TBM 26881 135.52 6.5

70.1 0.1 Q11 218 90 30692 162.94 7.14
138.1 0.5 Q12 219 123 33309 192.55 7.69

0

50

100

0 10000 20000 30000 40000

Ti
m

e

Number of nodes
50.4 2 Q13 235 189 35541 210.78 7.72
83.2 1.5 Q14 250 145

187.9 2.1 Q15 245 176

107600 100
377500 3900
810200 9300
425400 2400
462300 2100

Number of nodes

100000

1000000

100000

1000000

1000000

10000000

250

300

300

350

462300 2100

7375800 200
8784600 2200
8544400 1100
7565500 1500
6574800 180010

100

1000

10000

Ti
m

e
(m

s)

10

100

1000

10000

Ti
m

e
(m

s)

10

100

1000

10000

100000

Ti
m

e
(m

s)

50

100

150

200

Ti
m

e
(m

s)

50

100

150

200

250

Ti
m

e
(m

s)

70100 100
138100 500

50400 2000
83200 1500

187900 2100

1
Q1 Q2 Q3 Q4 Q5

Queries

TwigStackD TBM

1
Q11 Q12 Q13 Q14 Q15

Queries
TwigStackD TBM

1
Q6 Q7 Q8 Q9 Q10

Queries
TwigStackD TBM

0
Q11 Q12 Q13 Q14 Q15

Queries
MonetDB TBM

0
CQ1 CQ2 CQ3 CQ4 CQ5

Queries
MonetDB TBM

282 178 CQ1
275 204 CQ2
294 198 CQ3
226 134 CQ4
235 168 CQ5

(c) Result for cyclic cases

Fig. 13. Query performance comparison between MonetDB and TBM

Gene
TwigStackD TBM300TwigStackD TBM

107.6 0.1 Q1
377.5 3.9 Q2 3078 7.22 2.52
810.2 9.3 Q3 5473 12.8 3.03
425.4 2.4 Q4
462.3 2.1 Q5

purchase 9113 22.17 3.61
TwigStackD TBM 11776 33.56 4.05

7375.8 0.2 Q6 15253 49.55 4.69100

150

200

250
Ti

m
e

(m
s)

8784.6 2.2 Q7 17512 65.69 5.02
8544.4 1.1 Q8 20991 84.47 5.45
7565.5 1.5 Q9
6574.8 1.8 Q10

Xmark 23557 102.72 5.95
TwigStackD TBM MonetDB TBM 26881 135.52 6.5

70.1 0.1 Q11 218 112 30692 162.94 7.14
138.1 0.5 Q12 219 123 33309 192.55 7.69

0

50

Q11 Q12 Q13 Q14 Q15
Queries

MonetDB TBM

50.4 2 Q13 235 189 35541 210.78 7.72
83.2 1.5 Q14 250 145

187.9 2.1 Q15 245 169

107600 100
377500 3900
810200 9300
425400 2400
462300 2100

100000

1000000

462300 2100

7375800 200
8784600 2200
8544400 1100
7565500 1500
6574800 1800

150

200

250

se
co

nd
)

TwigStackD

TBM

1000

10000

100000

1000000

Ti
m

e
(m

s)

10

100

1000

10000

Ti
m

e
(m

s)

70100 100
138100 500

50400 2000
83200 1500

187900 21000

50

100

0 10000 20000 30000 40000

Ti
m

e
(s

f
100000

1000000

10000000

)

1

10

100

Q11 Q12 Q13 Q14 Q15

T

Queries
TwigStackD TBM

1
Q1 Q2 Q3 Q4 Q5

Queries

TwigStackD TBM

Number of nodes

1

10

100

1000

10000

Ti
m

e
(m

s

1
Q6 Q7 Q8 Q9 Q10

Queries
TwigStackD TBM

(a) Gene Ontology

Gene
TwigStackD TBM300TwigStackD TBM

107.6 0.1 Q1
377.5 3.9 Q2 3078 7.22 2.52
810.2 9.3 Q3 5473 12.8 3.03
425.4 2.4 Q4
462.3 2.1 Q5

purchase 9113 22.17 3.61
TwigStackD TBM 11776 33.56 4.05

7375.8 0.2 Q6 15253 49.55 4.69100

150

200

250

Ti
m

e
(m

s)

8784.6 2.2 Q7 17512 65.69 5.02
8544.4 1.1 Q8 20991 84.47 5.45
7565.5 1.5 Q9
6574.8 1.8 Q10

Xmark 23557 102.72 5.95
TwigStackD TBM MonetDB TBM 26881 135.52 6.5

70.1 0.1 Q11 218 112 30692 162.94 7.14
138.1 0.5 Q12 219 123 33309 192.55 7.69

0

50

Q11 Q12 Q13 Q14 Q15
Queries

MonetDB TBM

50.4 2 Q13 235 189 35541 210.78 7.72
83.2 1.5 Q14 250 145

187.9 2.1 Q15 245 169

107600 100
377500 3900
810200 9300
425400 2400
462300 2100

100000

1000000

100000

1000000

1000000

10000000

462300 2100

7375800 200
8784600 2200
8544400 1100
7565500 1500
6574800 1800

150

200

250

se
co

nd
)

TwigStackD

TBM

10

100

1000

10000

Ti
m

e
(m

s)

10

100

1000

10000

Ti
m

e
(m

s)

10

100

1000

10000

100000

Ti
m

e
(m

s)

70100 100
138100 500

50400 2000
83200 1500

187900 21000

50

100

0 10000 20000 30000 40000

Ti
m

e
(s

f

1
Q1 Q2 Q3 Q4 Q5

Queries

TwigStackD TBM

1
Q11 Q12 Q13 Q14 Q15

Queries
TwigStackD TBM

1
Q6 Q7 Q8 Q9 Q10

Queries
TwigStackD TBM

Number of nodes

(b) Purchase

Gene
TwigStackD TBM300TwigStackD TBM

107.6 0.1 Q1
377.5 3.9 Q2 3078 7.22 2.52
810.2 9.3 Q3 5473 12.8 3.03
425.4 2.4 Q4
462.3 2.1 Q5

purchase 9113 22.17 3.61
TwigStackD TBM 11776 33.56 4.05

7375.8 0.2 Q6 15253 49.55 4.69100

150

200

250

Ti
m

e
(m

s)

8784.6 2.2 Q7 17512 65.69 5.02
8544.4 1.1 Q8 20991 84.47 5.45
7565.5 1.5 Q9
6574.8 1.8 Q10

Xmark 23557 102.72 5.95
TwigStackD TBM MonetDB TBM 26881 135.52 6.5

70.1 0.1 Q11 218 112 30692 162.94 7.14
138.1 0.5 Q12 219 123 33309 192.55 7.69

0

50

Q11 Q12 Q13 Q14 Q15
Queries

MonetDB TBM

50.4 2 Q13 235 189 35541 210.78 7.72
83.2 1.5 Q14 250 145

187.9 2.1 Q15 245 169

107600 100
377500 3900
810200 9300
425400 2400
462300 2100

100000

1000000

100000

1000000

462300 2100

7375800 200
8784600 2200
8544400 1100
7565500 1500
6574800 1800

150

200

250

se
co

nd
)

TwigStackD

TBM

10

100

1000

10000

Ti
m

e
(m

s)

10

100

1000

10000

Ti
m

e
(m

s)

70100 100
138100 500

50400 2000
83200 1500

187900 21000

50

100

0 10000 20000 30000 40000

Ti
m

e
(s

f
100000

1000000

10000000

)

1
Q1 Q2 Q3 Q4 Q5

Queries

TwigStackD TBM

1
Q11 Q12 Q13 Q14 Q15

Queries
TwigStackD TBM

Number of nodes

1

10

100

1000

10000

Ti
m

e
(m

s

1
Q6 Q7 Q8 Q9 Q10

Queries
TwigStackD TBM

(c) XMark

Fig. 14. Execution time by TwigStackD and TBM

the time of structural joins during tree pattern matching. The results of execution
time are shown in Fig. 14 (the Y-axis is in logarithmic scale). From the results,
we can see for all queries the performance of TBM is more than 100 times faster
than TwigStackD. The reason why TwigStackD is worse is that their approach
uses graph matching rather than tree matching. As a result, in TwigStackD they
maintain an index to store position relationships between nodes. Each time they
process a query, partial solutions are expanded based on the index. This stage
is very costly and seriously affects the performance.

In the purchase document, the schema is simple but contains lots of refer-
ences between part and supplier. When TwigStackD expands partial solutions
in a pool, the pool size and amount of checking is very large. That is why the
execution time of TwigStackD in purchase document is much greater than that
in the other two documents where fewer references are involved. The XMark
document contains four types of ID/IDREF on objects item, category, person
and open auction. Due to the complex references, the index in TwigStackD is
very large (nearly 3 times greater than the original document size) and it takes
quite a long time to build such an index.

Finally we conducted experiments on document parsing time between TBM
and TwigStackD. This parsing time includes node labeling, inverted list con-
structing and other index building. All these operations are required for struc-
tural join based native XML query processing algorithms. In our experiment, we
took 12 XMark documents with different numbers of nodes. The results given

in Fig. 15, show that when the size of the document grows, the parsing time
for TwigStackD increases quickly, while using our approach the parsing time is
more acceptable for different document sizes.

0

50

100

150

200

250

0 10000 20000 30000 40000
Number of nodes

Ti
m

e
(s

ec
on

d)

TwigStackD
TBM

Fig. 15. Document parsing time comparison

6 Conclusions and further work

In this paper we analyze the drawbacks of existing work for query processing in
XML documents with ID/IDREF. In particular, most existing algorithms con-
sider XML documents and queries as graphs, and perform graph matching to
process queries. However, graph matching is generally believed to be less efficient
than tree matching, which is a widely accepted approach to process XML queries
without considering ID references. Motivated by this finding, we propose a table
based semantic approach to reduce graph matching to tree matching to process
XML queries involving ID references. When we parse an XML document, we
only consider the native hierarchical structure, and do not treat it as a graph
with ID references. We build relational tables for each object that may contain
ID or IDREF attributes. During query processing, we decompose a reference
pattern query into a referencing part and a referenced part using the ID refer-
ence involved. Now the referencing part will be a simple tree structure that can
be matched to the document tree. The reference between the referencing part
and the referenced part is eventually transformed to a table join between the two
parts. The experimental results show that our approach is 20-50% more efficient
than MonetDB and more than 100 times faster than TwigStackD, a structural
join based graph matching algorithm. Furthermore, our approach can also han-
dle complex ID/IDREF relationships such as cyclic references and sequential
references, which are bottlenecks for many existing works.

For further work, we will further investigate how to generate a better query
plan when dealing with both tree pattern matching and table joins.

References

1. http://www.geneontology.org/.
2. MonetDB. http://monetdb.cwi.nl/.
3. XMark. An XML benchmark project. http://www.xml-benchmark.org, 2001.
4. A. Berglund, D. Chamberlin, M. F. Fernandez, M. Kay, J. Robie, and J. Simeon.

XML path language XPath 2.0. W3C Working Draft, 2003.
5. S. Boag, D. Chamberlin, M. F. Fernandez, D. Florescu, J. Robie, and J. Simeon.

XQuery 1.0: An XML query. W3C Working Draft, 2003.

6. N. Bruno, N. Koudas, and D. Srivastava. Holistic twig joins: optimal XML pattern
matching. In SIGMOD, pages 310-321, 2002.

7. L. Chen, A. Gupta, and M. E. Kurul. Stack-based algorithms for pattern matching
on dags. In VLDB, pages 493-504, 2005.

8. S. Chen, H.-G. Li, J. Tatemura, W.-P. Hsiung, D. Agrawal, and K. S. Candan.
Twig2stack: Bottom-up processing of generalized-tree-pattern queries over XML
documents. In VLDB, pages 283-294, 2006.

9. T. Chen, J. Lu, and T. W. Ling. On boosting holism in XML twig pattern matching
using structural indexing techniques. In SIGMOD, pages 455-466, 2005.

10. A. Deutsch, M. F. Fernandez, and D. Suciu. Storing semistructured data with
STORED. In SIGMOD Conference, pages 431-442, 1999.

11. W. Fan, J. X. Yu, H. Lu, J. Lu, and R. Rastogi. Query translation from XPath to
SQL in the presence of recursive DTDs. In VLDB, pages 337-348, 2005.

12. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman, 1979.

13. G. Gou and R. Chirkova. Efficiently querying large XML data repositories: A
survey. IEEE Trans. Knowl. Data Eng., 19(10):1381-1403, 2007.

14. T. Grust, M. V. Keulen, and J. Teubner. Accelerating XPath evaluation in any
RDBMS. ACM Trans. Database Syst., 29(1):91-131, 2004.

15. H. Jiang, H. Lu, and W. Wang. Efficient processing of twig queries with or-
predicates. In SIGMOD, pages 59-70, 2004.

16. M. Jiang. Querying XML data: efficiency and security issues. Ph.D. Thesis. The
Chinese University of Hong Kong.

17. B. Kimelfeld, and Y. Sagiv. Twig patterns: from XML trees to graphs. In WebDB,
pages 26-31, 2006.

18. R. Krishnamurthy, V. T. Chakaravarthy, R. Kaushik, and J. F. Naughton. Recur-
sive XML schemas, recursive XML queries, and relational storage: XML-to-SQL
query translation. In ICDE, pages 42-53, 2004.

19. J. Lu, T. W. Ling, C. Y. Chan, and T. Chen. From region encoding to extended
dewey: On efficient processing of XML twig pattern matching. In VLDB, pages
193-204, 2005.

20. J. Morgenthal and J. Evdemon. Eliminating redundancy in XML using ID/IDREF.
XML Journal, 1(4), 2000.

21. J. Shanmugasundaram, K. Tufte, C. Zhang, G. He, D. J. DeWitt, and J. F.
Naughton. Relational databases for querying XML documents: Limitations and
opportunities. In VLDB, pages 302-314, 1999.

22. D. Shasha, J. T.-L. Wang, and R. Giugno. Algorithmics and applications of tree
and graph searching. In PODS, pages 39-52, 2002.

23. Z. Vagena, M. M. Moro, and V. J. Tsotras. Twig query processing over graph-
structured XML data. In WebDB, pages 43-48, 2004.

24. H. Wang, J. Li, J. Luo, and H. Gao. Hash-based subgraph query processing method
for fraph-structured XML documents. In VLDB, pages 478-489, 2008.

25. H. Wu, T. W. Ling, and B. Chen. VERT: A semantic approach for content search
and content extraction in XML query processing. In ER, pages 534-549, 2007.

26. M. Yoshikawa, T. Amagasa, T. Shimura, and S. Uemura. XRel: a path-based ap-
proach to storage and retrieval of XML documents using relational databases. ACM
Trans. Internet Techn., 1(1):110-141, 2001.

27. C. Zhang, J. F. Naughton, D. J. DeWitt, Q. Luo, and G. M. Lohman. On support-
ing containment queries in relational database management systems. In SIGMOD
Conference, pages 425-436, 2001.

