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Abstract. In database applications, the availability of a conceptual
schema and semantics constitute invaluable leverage for improving the ef-
fectiveness, and sometimes the efficiency, of many tasks including query
processing, keyword search and schema/data integration. The Object-
Relationship-Attribute model for Semi-Structured data (ORA-SS) model
is a conceptual model intended to capture the semantics of object class-
es, object identifiers, relationship types, etc., underlying XML schemas
and data. We refer to the set of these semantic concepts as the ORA-
semantics. In this work, we present a novel approach to automatically
discover the ORA-semantics from data-centric XML. We also empirically
and comparatively evaluate the effectiveness of the approach.

1 Introduction

To improve the conceptual quality, we needs to discover the intended seman-
tics in the logical XML schemas and data. This requires finding such seman-
tic information as object classes, relationship types, object identifiers (OIDs),
etc., as present in conceptual models for semi-structured data such as Object-
Relationship-Attribute for Semi-Structured data (ORA-SS) [6]. We refer to this
semantics as the ORA-semantics. Once discovered, the ORA-semantics is useful
not only for users to understand the data and schemas but also for improving
both the effectiveness and efficiency of processing. Let us use the XML document
in Fig. 1 to illustrate how the availability of such semantics help applications.

XML query processing
To process an XPath query, e.g. //Student[Matric# =‘HT001’]/Name, most
approaches match the query pattern to the data to find all occurrences.
However, if we have the semantics that Matric# is the OID of student, after
getting an answer, we can stop searching the rest of data.

XML keyword search
The use of semantics in current keyword search approaches [7] is still on
object level. For a query {CS5201, CS5208} to find common information of
two courses, only by knowing there is a relationship type between object
classes Student and Course, one can infer the meaningful answer should
be all students taking these two courses. Otherwise, the root node will be
returned by most LCA-based XML keyword search approaches [12].
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Schema/data integration
Most existing approaches [1] integrate elements based on their structural and
linguistic similarities. Grade is an attribute of the relationship type between
Course and Student. Without this semantics, when we integrate this schema
with another, in which Student has an object attribute Grade which means
the year of his study in school, we may wrongly integrate these two different
attributes with the same attribute name Grade and the same parent node
Student, because of their high structural and linguistic similarities.
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Fig. 1. An XML data tree

However, most practical applications are semantics-less, as most existing XM-
L schema languages, e.g., DTD and XSD, cannot fully represent the semantics
such as object class, relationship type, OID, etc. Despite the existence of se-
mantically rich XML models, e.g., ORA-SS, they still requires manual provision
of semantics from the initial design or model transformation. We believe only
if the automatic semantics discovery technique is developed to a satisfactory
level, the achievements in semantics-based query optimization, keyword search,
schema/data integration, etc., will be widely adopted by different applications.

In this paper we present a novel approach to automatically discover the ORA-
semantics from data-centric XML schemas and data. Different from the existing
approaches that only focus on object identification, we consider a comprehensive
set of ORA-semantics, including OID, relationship type as well as the distinction
between object attribute and relationship attribute.

2 Preliminary

We refer the tree structure derived from XML schemas as XML schema trees.
For ease of description, all following concepts are defined on XML schema trees.

In XML schema tree, object class is an internal node representing a re-
al world entity or concept. An object class has a set of object attributes to
describe its properties. Each object class has an object identifier (OID) to
uniquely identify its instance. Several object classes may be connected through a
relationship type which may or may not explicitly appear in the XML schema
tree. We call them explicit relationship type and implicit relationship
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type . A relationship type may have a set of relationship attributes. Ag-
gregational node aggregates its child nodes with identical/similar meaning.
Composite attribute is an object/relationship attribute containing multiple
components, each of which can be a single attribute or a composite attribute.

Based on the semantic concepts mentioned above, we define the ORA-Semantics,
which is the scope of the semantic concepts we consider in this paper.

Concept 1 ORA-semantics (Object-Relationship-Attribute-semantics)
In an XML schema tree, the ORA-semantics is the identification of object class,
OID, object attribute, aggregational node, composite attribute and explicit/implicit
relationship type with relationship attributes. Each particular semantic concept
in ORA-semantics is called an ORA-semantic concept.
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Fig. 2. An XML schema Tree

Example 1. In Fig. 2, we can infer the internal nodes Project, Supplier, Part,
Employee, Book, Paper and Child are object classes, with their OIDs Project#,
Supplier#, Part#, E#, ISBN, PaperID and SocialSecurity#. The internal node
Borrow is an explicit relationship type between Employee and Book with a
relationship attribute Date; the internal node Has is an explicit relationship
type between Employee and Child without any relationship attribute. The leaf
node Price is a relationship attribute of the binary relationship type between
Supplier and Part, and the leaf node Quantity is a relationship attribute of the
ternary relationship type among Project, Supplier and Part. The internal node
Qualifications is an aggregational node, aggregating its child node Qualification,
which is a composite attribute. All other leaf nodes are object attributes.

3 ORA-Semantics Discovery

We use properties of ORA-semantics, heuristics and data mining techniques to
discover the ORA-semantics in data-centric XML schema/XML data. The prop-
erties used in our approach conform to the design of the corresponding ORA-SS
model or ER model, and the heuristics are summarized based on the characteris-
tics and our observations of different ORA-semantics concepts. In case an XML
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schema is not available with XML data, XML schema summarization/extraction
has been studied in [3]. Fig. 3 shows the road map of our approach.
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Fig. 3. General process of our automatic semantics discovery approach

3.1 Step 1: Pre-processing

We summarize properties of ORA-semantics concepts. Properties of an ORA-
semantics concept are its necessary conditions, which means given an ORA-
semantics concept, it must satisfy its properties. E.g, object class has property
‘Having more than one child node in its XML schema tree’, which also conforms
to its design in ORA-SS model. We also identify sufficient conditions, by which
we can identify a particular ORA-semantics concept, e.g. ‘Having an ID attribute
in its XML schema as its child node.’ is a sufficient condition for object class. We
also proposed heuristics related to ORA-semantics concepts. Some are abstracted
from XML schema based on the common way of schema design, and some are
discovered from XML data using data mining techniques. We list the properties,
sufficient conditions and heuristics for each ORA-semantics concept in Table 1.

In an XML schema tree, a node must be either an internal node or a leaf
node. Based on the properties of each ORA-semantics concept in Table 1, internal
nodes can be object class, role name, composite attribute, aggregational node
and explicit relationship type; while leaf nodes can be OID, object attribute and
relationship attribute. We will identify them in 3.2 and 3.3 respectively. There is
another ORA-semantics concept, implicit relationship type, which is not explicit
shown in the XML schema or XML schema tree. We will identify it in 3.4.

3.2 Step 2: Internal Node Classification

To classify internal nodes, we build a decision tree, Fig. 4, with the properties,
sufficient conditions and heuristics in Table 1. We use bottom-up approach so
that the category of an internal node can help to identify the category of its
parent node. We will explain the decision tree using following rules:
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Table 1. Properties, sufficient conditions and heuristics of ORA-semantics concepts

ORA-semantics  Properties (Necessary Conditions) Sufficient  Conditions Heuristics / Observations Examples
O1) It is an internal node; Supplier
O2) It has more than one child node; Employee
O3) It has at least one FD/MVD among its EDLNs; Part
O4) Not all nodes in the LHS of each of its FDs/MVDs are IDREF attribute; etc.
E1) It is an internal node; Borrow
E2) It has at least one object class, IDREF(S) attribute or role name as descendant node. Has

RentBy
Buy

E4) Its EDLN(s) should be relationship attribute;
A1) It is an internal node;
A2) It has only one child node;
A3) Its child node is a repeatable node;
C1) It is an internal node;
C2) It has more than one child node;
C3) It does not have FD/MVD among its EDLNs;
C4) It hasn't any object class, IDREF(s) attribute or role name as its descendant node;
OID1) It is a leaf node; Project#

ISBN
etc.

OA1) It is a leaf node; Location
Address
Author

OA3) Its lowest ancestor object class is the object class it belongs to; etc.
RA1) It is a leaf node; Quantity

Price

R1) It is an internal node; Landlord
R2) It has only one child node; Tenant
R3) Its child node is not a repeatable node;
R4) Its child node is an IDREF(S) attribute;

H1) Its tag name can be a verb form.

Object Class
A) It has ID attribute in its
XML schema;(E.g.
Project )

Role Name

H3) Its tag name shares high
linguistic similarity with or being a
specialization of the tag name of the
object class which the IDREF(S)
attribute references;

RA4) It is an EDLN of an explicit relationship type or EDLN of the lowest object class
that involves in an implicit relationhsip type to which the relationship attribute belongs;

H2) Its tag name is the plural form of
the tag name of its only child node;

Qualifica-
tions

Composite
Attribute

Qualification

RA2) It cannot be functionally/multi-valued  determined by the OID of its lowest
ancestor object class;

OID of object
class

B) It is specified as ID
attribute in XML schema;
(E.g. Project # )

Object
Attribute

OA2) It can be functionally/multi-valued  determined by the OID of its lowest ancestor
object class;

E3) If it has at least one FDs/MVDs among its EDLN(s), then all nodes in the LHS of
each of its FDs/MVDs are IDREF attributes;

OID2) Together with OID(s) of some(zero or more) of its ancestor object class(es), they
can functionally multi-valued determine all  EDLN(s) of the object class;

RA3) It can be functionally/multi-valued  determined by  OIDs of all object classes
involved in the relationship type to which the relationship attribute belongs;

Relationship
Attribute

Aggregational
Node

Explicit
Relationship

Type

Rule 1 [Object Class vs. OID] Given an XML schema tree, if an internal
node has an ID attribute1 specified in its XML schema as its child, then this in-
ternal node is an object class, and the ID attribute is the OID of the object class.

Rule 1 is obvious. However, some OIDs may not or cannot be specified as
ID attribute in the corresponding XML schema because of the limitation of
XML schema language. In XML data, the value of an ID attribute is required
to be unique for the corresponding object in the whole document, which makes
it impossible for some object classes to have ID attribute being specified in
their XML schemas. E.g, in Fig. 2, Project# is specified as OID for object class
Project by ID attribute, but Supplier# and Part# cannot. Otherwise, a supplier
can only supply one project and a part can only be supplied by one supplier.
Because of this, we use following rules to classify the rest of the internal nodes.

Concept 2 Exclusive Descendant Leaf Node (EDLN) In XML schema
tree, an exclusive descendant leaf node of an internal node i is a leaf node, which
is also a descendant node of i, but not a descendant node of any other object
class which is also a descendant node of i.

The intuitive meaning of EDLN is: given an internal node i, each EDLN of i
is a leaf node under i, but there is no other object class between the EDLN and
i. E.g, in Fig. 2, the EDLNs of object class Project are: Location and Funding.

1
ID attribute is specified in DTD. In XSD there is a similar concept, key element, which can also be
used to identify object class and its OID. For simpleness, Rule 1 is illustrated using ID attribute,
but key element also applies. Detail of key element in XSD is given in our technical report [5].
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Fig. 4. Decision Tree for Internal Node Classification

Rule 2 [Object Class vs. Explicit Relationship Type] Given an XML schema
tree, let i be an internal node with more than one child nodes and there is at least
one Functional/Multi-valued Dependency(FD/MVD) among its EDLNs. If for
each FD/MVD, there is a left hand side (LHS) node which is not an IDREF at-
tribute or role name then i is an object class, else i is an explicit relationship type.

An object class must have more than one child node (O2 in Table 1), which
conflicts with the properties of aggregation node (A2) and role name (R2), and
at least one FD/MVD among its EDLNs (O3) that conflict with composite at-
tribute (C3). However, explicit relationship type also has these characteristics. To
distinguish object class from explicit relationship type, we check whether there
is a LHS node in FD/MVD which is not an IDREF attribute or role name (O4,
E3). This is because the FD/MVD among the EDLNs of an explicit relationship
type must involve a relationship attribute, which is functionally/multi-valued
determined by the OIDs of all involved object classes, and these OIDs can only
be represented as IDREF attributes or role names if it is an EDLN of the ex-
plicit relationship type. On the other hand, for FD/MVD among the EDLNs of
an object class, its LHS should contain the OID of this object class, which is not
an IDREF attribute or role name. FDs/MVDs in XML can be identified in [13].

Rule 3 [Composite Attribute vs. Explicit Relationship Type] Given an
XML schema tree, let i be an internal node with more than one child node and
there is no FD/MVD among its exclusive descendant leaf nodes. If i does not
have object class, role name or IDREF(S) attribute as its child node, then i is a
composite attribute, else i is an explicit relationship type.

Composite attributes have more than one child node (C2), which distinguishes
it from aggregation nodes (A2) and role names (R2). As discussed before, compos-
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ite attribute has been distinguished from object class. To distinguish composite
attribute from explicit relationship type (e.g., composite attribute Qualification
and explicit relationship type Borrow in Fig.2), we check whether it has object
class, role name or IDREF(S) attribute as its child node (C4, E2). This is be-
cause explicit relationship types should have at least one object class, IDREF(S)
attribute or role name as its descendant nodes to represent the involved object
class, while composite attributes should not.

Because of the space limit, we leave the rules to identify aggregational node
and role name in our technical report [5]. In the following section, we aim to
classify them into OID, object attribute and relationship attribute.

3.3 Leaf Node Classification

OID Discovery As stated in Rule 1, OID can be explicitly specified in the
XML schema with ID attribute, which is a sufficient condition to identify OID.
Here we only consider the case that the single-attributed OID is not specified in
the XML schema (e.g., ISBN in Fig. 2), or the OID contains multiple attributes.
Before we explain our approach, we first introduce a concept named Super OID.

Concept 3 Super OID The super OID of an object class o is a minimal set of
nodes which contains a subset of the exclusive descendant leaf nodes of o and the
OIDs of some ancestor object classes of o. Super OID of o can functionally/multi-
valued determine all exclusive descendant leaf nodes of o.

In an XML schema tree, given an object class o, its EDLNs may be object
attributes of o, or attributes of a relationship type in which o participates. Based
on the definition of super OID, the properties of OID and object/relationship
attribute (i.e. OID2, OA2, RA2 and RA3 in Table.1), the super OID of o can
functionally/multi-valued determine both object attributes and relationship at-
tribute of o, while the OID of o can only functionally/multi-valued determine
the object attributes of o. The rationale of our approach to identify OIDs is that
given an object class o, there is a minimal attribute set S formed by the OID of
o and the OIDs of some ancestor object classes of o, which functionally/multi-
valued determine all EDLNs of o. If there is no relationship attribute being
EDLN of o, no OID of ancestor object class of o will be included in S. Thus,
from the super OID of object class o, its corresponding OID can be derived by
excluding all OID(s) of the ancestors object class(es) of o.
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We proposed a top-down approach (the OID of an ancestor object class
may be needed to identify the OIDs of its descendant object classes) shown
in Algorithm 1 to identify the OID of each identified object class without ID
attribute being specified in its XML schema. Given an object class o, we create
a set SupEDLNo, which is a superset of its exclusive descendant leaf nodes,
denoted as EDLN(o), and include OIDs of all its ancestor object classes. In
SupEDLNo, we identify the super OID of o. There may be more than one
super OID for o. For each super OID, we can get an OID candidate for o by
excluding all OID(s) of ancestor object class(es) of o. (Details about choosing
which OID candidate as the OID will be discussed later.) For the object class
without ancestor object class, its only super OID will be the same as its OID.

Algorithm 1: Candidate OID Discovery
Input: Identified object classes O; EDLN(o) for each identified object class o ∈ O;
Output: Candidate OID ido for each identified object class o ∈ O

1 foreach identified object class o ∈ O do
2 SupEDLNo=EDLN(o);
3 foreach oi ∈ O, which is ancestor object class of o do
4 SupEDLNo = SupEDLNo ∪ idoi; //idoi is the OID of object class

oi
5 foreach SIDo ⊂ SupEDLNo do
6 if ∀e ∈ EDLN(o), such that SIDo → e or SIDo � e then
7 if @S ⊂ SIDo, such that ∀e ∈ EDLN(o), such that S → e or S � e then
8 if ∀oj ∈ O with its OID idoj ∈ EIDo, such that ∃ok ∈ O with its OID

idok, AD(oj , ok) and AD(ok, o), then idok ∈ SIDo then
9 foreach e ∈ SIDo do

10 if e ∈ EDLN(o) then
11 e ∈ ido;
12 return ido as a candidate OID of o.

Example 2. In Fig. 2, considering 3 identified object classes Project, Supplier
and Part with their EDLNs, suppose we get the following full FDs from the
XML data: {Project#}→{Location,Funding}, {Supplier#}→{Contact#,Name},
{Part#}→{Color}, {Supplier#,Part#}→{Price}, {Project#,Supplier#,Part#}
→{Quantity}. For object class Project, we can identify Project# as its OID
by Rule 1, as it is an ID attribute. For object class Supplier, as the attribute
Supplier# functionally determines all its EDLNs, we identify Supplier# as its
OID, the same as its super OID. For object class Part, we combine its EDLNs and
OIDs of its ancestor object classes Supplier and Project, and use the above given
FDs to discover the minimal subsets that functionally determine all its EDLNs
to be its super OID, which are {Project#, Supplier#, Part#}, {Supplier#,
Part#, Quantity} and {Part#, Quantity, Price}. Then we get {Part#}, {Part#,
Quantity} and {Part#, Quantity, Price} as OID candidates of object class Part.

We use the following heuristics summarized from our observations to choose
the best OID from all OID candidates returned by Algorithm 1.

Observation 1 [OID] In XML schema tree, given an object class o, its OID
ido is likely to be designed with some of the following features: (1) ido is a single
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attribute of o; (2) The first child node of o is (part of) ido; (3) ido contains
substring ’Identifier’, ’Number’, ’Key’ or their abbreviations in its tag name; (4)
ido has numeric as (part of) its value, and the numerical part is in sequence.

Observation 1 is based on structural/linguistic characteristics of OIDs de-
signed in real world. Besides, we have two more observations: (1) the number of
object classes without relationship attribute is more than the number of object
classes with relationship attributes; (2) the number of relationship attributes of
binary relationship type is more than the number of relationship attributes of
ternary relationship type, and so on. Based on these observations, we collect 204
object classes with their OIDs being manually specified in XML schemas and ex-
tract the statistics mentioned above. Using such statistics, we train a Bayesian
Network to rank all OID candidates, and choose the best one as its OID. In
Example 2, for the object class Part, among all its OID candidates, {Project#,
Supplier#,Part#} get the highest ranking using our Bayesian Network ranking
model. Thus, {Part#} is identified as the OID of object class Part. More details
of our Bayesian Network ranking model can be found in our technical report [5].

Object Attribute and Relationship Attribute Discovery For an explicit
relationship type, we identify its EDLNs that are not role names, as its relation-
ship attributes based on its property (i.e. E4 and RA4 in Table 1). For implicit
relationship type, its relationship attributes should appear as EDLNs of the low-
est object class participating in the relationship type (RA4 in Table 1), together
with the object attributes of that object class. Based on these, we propose Rule
4 to distinguish object attributes and relationship attributes among the EDLNs
of each identified object class with OID identified. We use the properties that ob-
ject attribute can be functionally/multi-valued determined by OID of the object
class it belongs to, while relationship attribute can not, to differentiate them.

Rule 4 [Object Attribute vs. Relationship Attribute] Given an object class
o and its OID, if an exclusive descendant leaf node e of o can be functionally/multi-
valued determined by the OID of o, then e is an attribute of o, otherwise it is
an attribute of an implicit relationship type which o involves in.

Example 3. In Figure 2, given the object class Part with its OID Part#, its child
node Color is functionally dependent on its OID, while Quantity and Price are
not. Thus, we identify Color as an object attribute of Part, while Quantity, Price
as relationship attributes of some relationship types that Part involves in. The
corresponding relationship types will be discovered in the following Step 4.

3.4 Step 4: Implicit Relationship Type Discovery

Recall that explicit relationship type can be identified by Rule 2, 3 in Step 2 in
Section 3.2. However, there are some implicit relationship types which are not
explicitly represented as any node in its XML schema tree. In this section, we
classify implicit relationship type into four categories: (1) Implicit relationship
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type with at least one relationship attribute; (2) Implicit relationship type with
IDREF(S) attribute; (3) Implicit relationship type with no relationship attribute
and no IDREF(S) attribute, and (4) Identifier Dependency (IDD) Relationship
Type [6]. Because of the space limit, we only discuss the first two categories in
this paper. The other two categories are discussed in our technical report [5].

Implicit relationship type with at least one relationship attribute
For each relationship attribute discovered in Section 3.3 (except those being
EDLNs of explicit relationship type), there must be an implicit relationship
type it belongs to. Based on the property that relationship attribute should be
functionally/multi-valued determined by the OIDs of all object classes involved
in the implicit relationship type, to which the relationship attribute belongs (i.e.
RA4 in Table 1), we proposed a bottom-up approach, Algorithm 2, to identify
the implicit relationship type with its degree, and all involved object classes.

Example 4. In Fig. 2, given a relationship attribute Price, object classes Project,
Supplier, Part, and their OIDs. By Algorithm 2, we find out {Supplier#,Part#}
→ {Price}. Then, there is an implicit binary relationship type between Sup-
plier and Part, with relationship attribute Price. For another relationship at-
tribute Quantity, {Supplier#,Part#} cannot functionally/multi-valued deter-
mine it. Then we add in the OID of object class Project, and get {Project#,
Supplier#,Part#}→{Quantity}. Then there is an implicit ternary relationship
type among Project, Supplier and Part, with relationship attribute Quantity.

Algorithm 2: Implicit Relationship Type with Relationship Attribute
Input: Relationship attribute A; Object classes O, with OIDs; XML schema tree; XML data
Output: Relationship type r(C) with its involved object classes C and degree |C|, for each

identified relationship attribute in A
1 foreach identified relationship attribute ra ∈ A do
2 oi = the lowest ancestor object class of ra.
3 C = {oi};
4 SemIDra = idoi; //idoi is the OID of object class oi;
5 foreach identified object class oj ∈ O, along the path from oi to the root in its XML

schema tree in bottom-up order do
6 SemIDra = SemIDra ∪ idoj ; //idoj is the OID of object class oj;
7 C = C ∪ {oj};
8 if SemIDra → ra or SemIDra � ra; then break;

9 return implicit relationship type r(C) to which ra belongs, object classes in C as its
involved object classes and |C| as its degree;

Implicit relationship type with IDREF(S) attribute In XML schema,
some designers may design an implicit relationship type by specifying an IDREF(S)
attribute under an object class, which references other object class(es). Thus, if
an object class has a child node specified as an IDREF(S) attribute, we identify
an implicit relationship type between the object class and the object class(es)
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the IDREF(S) attribute refers to. For some XML schema language (e.g.,DTD),
we do not know to which object class(es) the IDREF(S) attribute refer. Based
on the property and the heuristic of IDREF(S) attribute listed in Table 1, there
are two ways to identify the object classes involved in implicit relationship type:
(1) [H3] Tag name of the IDREF(S) attribute may share high linguistic similarity
with the tag name of the object class(es) to which it refers, or the corresponding
OID(s). We can identify them by research work [9] comparing linguistic sim-
ilarity. E.g., given two object classes Department and Staff with their OIDs
Dept# and Staff# respectively, if there is an IDREF(S) attribute under Staff
with its tag name as Dept#, we identify an implicit relationship type between
Department and Staff ; (2) If we cannot find high linguistic similarity between
the IDREF(S) attribute and any object class or OID, we can use the XML data
to identify which object class(es) the IDREF(S) attribute references. A property
of IDREF(S) attribute is that [I1] the value range of the IDREF(S) attribute
in its XML data must be a subset of the value range of the OID of the object
class(es) which it references. E.g., in Fig. 2, if we know that every value of the
IDREFS attribute ContactWith is also found as a value of OID of object class
Supplier, there is a high possibility that there is an implicit relationship type
between Employee and Supplier. Furthermore, as the property of IDREF(S) at-
tribute, I1 is also used to verify H3. Although neither of the two ways can 100%
guarantee that the object class we discover is the corresponding object class
which the IDREF(S) references, we will show the accuracy in our experiments.

4 Experiment

We evaluate the proposed approach for discovering the ORA-semantics in the
given XML schemas. The experimental data includes 15 real world data-centric
XML schemas, e.g., mondial2 and XMark3, etc. For all XML schemas used in our
experiments, the average number of internal node is 11 and the average maximal
depth is 5. To evaluate the accuracy of our approach, we measure precision, recall
and F-measure4 against a gold standard provided by 8 evaluators. Divergence in
their opinions is accounted for by means of an uncertainty factor weighting the
results. Further details are given in [5].

4.1 Accuracy of Internal Node Classification

There are totally 512 internal nodes in our input XML schema trees, with their
ORA-semantics being labelled (i.e., object class, role name, explicit relationship
type, aggregational node or composite attribute). Table 2 shows that the overall
accuracy of our rules achieves almost 95% of precision, recall and F-measure. The
low precision and recall for explicit relationship type as well as low precision for
role name and aggregational node are because the related heuristics used are

2
http://www.cs.washington.edu/research/xmldatasets/www/repository.html

3
http://www.xml-benchmark.org/

4
F-measure = 2 * precision * recall/(precision + recall)
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not as accurate as the properties used in our rules. In Table 3, we show the
number and percentage of each ORA-semantics concept in all our collected data
sets. Object class is one of the most important ORA-semantics concepts, and
its identification helps many XML applications to increase their efficiency and
effectiveness as introduced in Section 1. There are 311 object classes among
all 512 internal nodes, which take up around 60% of all internal nodes. Other
ORA-semantics concepts only take up a small percentage of the internal nodes,
especially for role name, which takes up less than 5% of the internal nodes.

Table 2. Precision, recall and F-measure of internal node classification

Object
Class

Role
Name

Explicit Rela-
tionship Type

Aggregational
Node

Composite
Attribute

Overall

Precision 99.4% 85.0% 82.9% 81.0% 96.3% 94.7%

Recall 98.4% 94.4% 69.4% 94.4% 96.3% 94.7%

F-measure 98.9% 89.7% 76.2% 87.7% 96.3% 94.7%

Table 3. Statistic information of the internal node in experiment data

Object
Class

Role
Name

Explicit Rela-
tionship Type

Aggregational
Node

Composite
Attribute

Total

# of nodes 311 18 49 54 80 512

Percentage 60.7% 3.5% 9.6% 10.5% 15.6% 100%

We also used a machine learning approach to classify the internal nodes for
comparison purpose. We use the properties listed in Table 1 with all our ex-
perimental data to train a classification model to classify the internal nodes.
In order to avoid bias because the selection of training data, we use 3 folds
cross-verification with all the input internal nodes. In 3 folds cross-validation,
the original input data is randomly partitioned into 3 portions. Of the 3 por-
tions, a single portion is retained as the validation data for testing the trained
classification model, and the remaining 2 portions are used as training data.
The cross-validation process is then repeated 3 times, with each of the 3 por-
tions used exactly once as the validation data. The 3 results of precision, recall
and F-measure then can be averaged to get the overall accuracy of the trained
classification model. We compare the accuracy of our rules with the trained clas-
sification model in Fig. 6. We choose the frequently used decision tree algorithm
C4.5 [10] to build the classification models. The results show our rules work bet-
ter than the trained classification models, especially for discovering the explicit
relationship types. This is because the explicit relationship type can be designed
with different structures in XML schema tree; the classification of a descendent
node also cannot help classifying ancestor node as in our approach using rules.
Furthermore, the decision trees trained from different training data sets are quite
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different from each other and most of their branches are not as meaningful as
our rules, which shows that they are heavily dependent on the training data.
More details about the internal node classification test can be found in [5].
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Fig. 6. Comparison of internal node identification (OC: Object Class; RN: Role Name;
ERT: Explicit Relationship Type; AN: Aggregational node; CA: Composite Attribute)

4.2 Accuracy of Leaf Node Classification

Recall that our approach may return more than one OID candidates for each
object class, thus we build a Bayesian Network to rank all its OID candidates,
and choose the highest ranked candidate as its OID. There are 311 object classes
with their OIDs in our experimental data. We randomly choose 2/3 of them for
training and the rest for testing. From the training data, we collect the statistics
of the features mentioned in Observation 1, and build a Bayesian Network, which
returns us the probability of an OID candidate being the correct OID based on
the statistics. More details of building the Bayesian Network are discussed in [5].

In our step-by-step approach, outputs of the previous step will work as the
inputs for a latter step. The accuracy of the latter step is affected by the accuracy
of its previous steps. To show the accuracy of each step, we conduct two groups
of experiments to evaluate the precision, recall and F-measure of our approach
for leaf node classification, one with user verification, which means all object
classes have been correctly labelled in XML schema trees, and the other one
based on the results of our internal node classification without user verification.

Fig. 7 shows our approach for leaf node classification get above 90% of pre-
cision, recall and F-measure. Even without user verification, the precision/recall
only drop slightly, as our approach for discovering object class also gets high pre-
cision and recall. The low precision of implicit relationship attribute is because
its identification is heavily depended on FDs/MVDs among the corresponding
XML data, which may not be large enough to return all the correct FDs/MVDs.

4.3 Accuracy of Implicit Relationship Type Discovery

We also conduct experiments on our approach for implicit relationship type
discovery. Similar to the leaf node classification, we conduct two groups of ex-
periments to evaluate its accuracy, one with user verification, and the other one
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(a) Precision (b) Recall (c) F-measure

Fig. 7. Precision, Recall and F-measure of Leaf Node Classification (OA: Object At-
tribute, ERA: Explicit Relationship Attribute, IRA: Implicit Relationship Attribute)

without user verification. Fig. 8 shows that our approach to discover implicit re-
lationship types has high precision, recall and F-measure. Because of the space
limit, more detailed breakdown is given in [5].
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Fig. 8. Precision, Recall, F-measure of Implicit Relationship Type Discovery

5 Related Work

To the best of our knowledge, only a few research works have frontally addressed
the problem of automatically discovering the implicit semantics embedded in
XML schema and XML data. Most existing works in semantics discovery in
XML data only focus on objects. In [2], in the context of view design, all internal
nodes in an XML schema tree are considered as object classes. In the context of
keyword search, XSeek [7] also infers semantics from XML schemas to identify
return nodes. This work infers semantics of objects by using the repeatable node.
In [11], the authors build a data graph from an XML document. However, they
just focus on objects and properties, still missing lots of meaningful semantics.
Compared to our work, the existing works have two major drawbacks. First,
they only consider the semantics of object, ignoring many other important ORA-
semantics concepts which may play an important role in XML applications, as
illustrated. Second, even for object, the inference accuracy of the existing works
is quite low. For example, most of them will treat relationship attribute as object
attribute when the relationship is implicit. In contrast, our work focuses on a
comprehensive set of ORA-semantics concepts, and has high inference accuracy.
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Semantics are also captured in other domains. In [8] authors proposed a form-
driven approach, which firstly transforms the relational database to a set of form
model schemas, each of which is essential a view on the underlying database, and
then extracts the corresponding ER schema from them; [4] resolves the reference
ambiguation problem, which means an attribute is actually referencing another
attribute but cannot be detected due to the inconsistent name issue, by also
considering their neighbor attributes. However, as the underlying data is flat
in relational database, and these approaches only try to identify relationships
between relations through key-foreign key constraints, they still cannot identify
ternary or n-nary relationships as well as the relationship attributes.

6 Conclusion and Future Work

ORA-semantics is important for many XML applications. Existing works in se-
mantics discovery only focus on object, ignoring many other important concepts
such as relationships. In this paper we present a novel approach to identify a com-
prehensive set of ORA-semantics, including object, object ID, explicit/implicit
relationship, relationship attribute, etc. We analyze the properties of each seman-
tics concepts, and propose rules and apply data mining techniques to discover
them in XML schema and data. We conduct experiments to demonstrate our
approach can achieve almost 95% overall precision, recall and F-measure.

We are now investigating those cases that still defeat our proposed approach
and consider its combination with additional domain knowledge and ontologies.
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